subr_vmem.c revision 1.115 1 1.115 thorpej /* $NetBSD: subr_vmem.c,v 1.115 2023/12/03 19:34:08 thorpej Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.55 yamt * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.88 para *
35 1.88 para * locking & the boundary tag pool:
36 1.88 para * - A pool(9) is used for vmem boundary tags
37 1.88 para * - During a pool get call the global vmem_btag_refill_lock is taken,
38 1.88 para * to serialize access to the allocation reserve, but no other
39 1.88 para * vmem arena locks.
40 1.88 para * - During pool_put calls no vmem mutexes are locked.
41 1.88 para * - pool_drain doesn't hold the pool's mutex while releasing memory to
42 1.108 andvar * its backing therefore no interference with any vmem mutexes.
43 1.88 para * - The boundary tag pool is forced to put page headers into pool pages
44 1.88 para * (PR_PHINPAGE) and not off page to avoid pool recursion.
45 1.88 para * (due to sizeof(bt_t) it should be the case anyway)
46 1.1 yamt */
47 1.1 yamt
48 1.1 yamt #include <sys/cdefs.h>
49 1.115 thorpej __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.115 2023/12/03 19:34:08 thorpej Exp $");
50 1.1 yamt
51 1.93 pooka #if defined(_KERNEL) && defined(_KERNEL_OPT)
52 1.37 yamt #include "opt_ddb.h"
53 1.93 pooka #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
54 1.1 yamt
55 1.1 yamt #include <sys/param.h>
56 1.1 yamt #include <sys/hash.h>
57 1.1 yamt #include <sys/queue.h>
58 1.62 rmind #include <sys/bitops.h>
59 1.1 yamt
60 1.1 yamt #if defined(_KERNEL)
61 1.1 yamt #include <sys/systm.h>
62 1.30 yamt #include <sys/kernel.h> /* hz */
63 1.30 yamt #include <sys/callout.h>
64 1.66 para #include <sys/kmem.h>
65 1.1 yamt #include <sys/pool.h>
66 1.1 yamt #include <sys/vmem.h>
67 1.80 para #include <sys/vmem_impl.h>
68 1.30 yamt #include <sys/workqueue.h>
69 1.66 para #include <sys/atomic.h>
70 1.66 para #include <uvm/uvm.h>
71 1.66 para #include <uvm/uvm_extern.h>
72 1.66 para #include <uvm/uvm_km.h>
73 1.66 para #include <uvm/uvm_page.h>
74 1.66 para #include <uvm/uvm_pdaemon.h>
75 1.1 yamt #else /* defined(_KERNEL) */
76 1.80 para #include <stdio.h>
77 1.80 para #include <errno.h>
78 1.80 para #include <assert.h>
79 1.80 para #include <stdlib.h>
80 1.80 para #include <string.h>
81 1.1 yamt #include "../sys/vmem.h"
82 1.80 para #include "../sys/vmem_impl.h"
83 1.1 yamt #endif /* defined(_KERNEL) */
84 1.1 yamt
85 1.66 para
86 1.1 yamt #if defined(_KERNEL)
87 1.66 para #include <sys/evcnt.h>
88 1.66 para #define VMEM_EVCNT_DEFINE(name) \
89 1.66 para struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
90 1.88 para "vmem", #name); \
91 1.66 para EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
92 1.66 para #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
93 1.66 para #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
94 1.66 para
95 1.88 para VMEM_EVCNT_DEFINE(static_bt_count)
96 1.88 para VMEM_EVCNT_DEFINE(static_bt_inuse)
97 1.66 para
98 1.80 para #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
99 1.80 para #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
100 1.80 para #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
101 1.80 para #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
102 1.66 para
103 1.1 yamt #else /* defined(_KERNEL) */
104 1.1 yamt
105 1.66 para #define VMEM_EVCNT_INCR(ev) /* nothing */
106 1.66 para #define VMEM_EVCNT_DECR(ev) /* nothing */
107 1.66 para
108 1.80 para #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
109 1.80 para #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
110 1.80 para #define VMEM_CONDVAR_WAIT(vm) /* nothing */
111 1.80 para #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
112 1.80 para
113 1.79 para #define UNITTEST
114 1.79 para #define KASSERT(a) assert(a)
115 1.110 thorpej #define KASSERTMSG(a, m, ...) assert(a)
116 1.31 ad #define mutex_init(a, b, c) /* nothing */
117 1.31 ad #define mutex_destroy(a) /* nothing */
118 1.31 ad #define mutex_enter(a) /* nothing */
119 1.55 yamt #define mutex_tryenter(a) true
120 1.31 ad #define mutex_exit(a) /* nothing */
121 1.110 thorpej #define mutex_owned(a) true
122 1.55 yamt #define ASSERT_SLEEPABLE() /* nothing */
123 1.55 yamt #define panic(...) printf(__VA_ARGS__); abort()
124 1.1 yamt #endif /* defined(_KERNEL) */
125 1.1 yamt
126 1.55 yamt #if defined(VMEM_SANITY)
127 1.55 yamt static void vmem_check(vmem_t *);
128 1.55 yamt #else /* defined(VMEM_SANITY) */
129 1.55 yamt #define vmem_check(vm) /* nothing */
130 1.55 yamt #endif /* defined(VMEM_SANITY) */
131 1.1 yamt
132 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
133 1.54 yamt #define VMEM_HASHSIZE_MAX 65536 /* XXX */
134 1.66 para #define VMEM_HASHSIZE_INIT 1
135 1.1 yamt
136 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
137 1.1 yamt
138 1.80 para #if defined(_KERNEL)
139 1.80 para static bool vmem_bootstrapped = false;
140 1.80 para static kmutex_t vmem_list_lock;
141 1.80 para static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
142 1.80 para #endif /* defined(_KERNEL) */
143 1.79 para
144 1.80 para /* ---- misc */
145 1.1 yamt
146 1.110 thorpej #define VMEM_LOCK(vm) mutex_enter(&(vm)->vm_lock)
147 1.110 thorpej #define VMEM_TRYLOCK(vm) mutex_tryenter(&(vm)->vm_lock)
148 1.110 thorpej #define VMEM_UNLOCK(vm) mutex_exit(&(vm)->vm_lock)
149 1.110 thorpej #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&(vm)->vm_lock, MUTEX_DEFAULT, (ipl))
150 1.110 thorpej #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&(vm)->vm_lock)
151 1.110 thorpej #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&(vm)->vm_lock))
152 1.1 yamt
153 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
154 1.19 yamt (-(-(addr) & -(align)))
155 1.62 rmind
156 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
157 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
158 1.19 yamt
159 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
160 1.62 rmind #define SIZE2ORDER(size) ((int)ilog2(size))
161 1.4 yamt
162 1.110 thorpej static void
163 1.110 thorpej vmem_kick_pdaemon(void)
164 1.110 thorpej {
165 1.110 thorpej #if defined(_KERNEL)
166 1.110 thorpej uvm_kick_pdaemon();
167 1.110 thorpej #endif
168 1.110 thorpej }
169 1.110 thorpej
170 1.110 thorpej static void vmem_xfree_bt(vmem_t *, bt_t *);
171 1.110 thorpej
172 1.62 rmind #if !defined(_KERNEL)
173 1.62 rmind #define xmalloc(sz, flags) malloc(sz)
174 1.67 rmind #define xfree(p, sz) free(p)
175 1.62 rmind #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
176 1.62 rmind #define bt_free(vm, bt) free(bt)
177 1.110 thorpej #define bt_freetrim(vm, l) /* nothing */
178 1.66 para #else /* defined(_KERNEL) */
179 1.1 yamt
180 1.67 rmind #define xmalloc(sz, flags) \
181 1.80 para kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
182 1.80 para #define xfree(p, sz) kmem_free(p, sz);
183 1.66 para
184 1.75 para /*
185 1.75 para * BT_RESERVE calculation:
186 1.106 andvar * we allocate memory for boundary tags with vmem; therefore we have
187 1.105 riastrad * to keep a reserve of bts used to allocated memory for bts.
188 1.75 para * This reserve is 4 for each arena involved in allocating vmems memory.
189 1.75 para * BT_MAXFREE: don't cache excessive counts of bts in arenas
190 1.75 para */
191 1.75 para #define STATIC_BT_COUNT 200
192 1.75 para #define BT_MINRESERVE 4
193 1.66 para #define BT_MAXFREE 64
194 1.66 para
195 1.66 para static struct vmem_btag static_bts[STATIC_BT_COUNT];
196 1.66 para static int static_bt_count = STATIC_BT_COUNT;
197 1.66 para
198 1.80 para static struct vmem kmem_va_meta_arena_store;
199 1.66 para vmem_t *kmem_va_meta_arena;
200 1.80 para static struct vmem kmem_meta_arena_store;
201 1.88 para vmem_t *kmem_meta_arena = NULL;
202 1.66 para
203 1.88 para static kmutex_t vmem_btag_refill_lock;
204 1.66 para static kmutex_t vmem_btag_lock;
205 1.66 para static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
206 1.66 para static size_t vmem_btag_freelist_count = 0;
207 1.88 para static struct pool vmem_btag_pool;
208 1.112 thorpej static bool vmem_btag_pool_initialized __read_mostly;
209 1.66 para
210 1.1 yamt /* ---- boundary tag */
211 1.1 yamt
212 1.94 chs static int bt_refill(vmem_t *vm);
213 1.101 ad static int bt_refill_locked(vmem_t *vm);
214 1.66 para
215 1.88 para static void *
216 1.88 para pool_page_alloc_vmem_meta(struct pool *pp, int flags)
217 1.66 para {
218 1.88 para const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
219 1.66 para vmem_addr_t va;
220 1.88 para int ret;
221 1.66 para
222 1.88 para ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
223 1.88 para (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
224 1.77 para
225 1.88 para return ret ? NULL : (void *)va;
226 1.88 para }
227 1.66 para
228 1.88 para static void
229 1.88 para pool_page_free_vmem_meta(struct pool *pp, void *v)
230 1.88 para {
231 1.66 para
232 1.88 para vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
233 1.88 para }
234 1.66 para
235 1.88 para /* allocator for vmem-pool metadata */
236 1.88 para struct pool_allocator pool_allocator_vmem_meta = {
237 1.88 para .pa_alloc = pool_page_alloc_vmem_meta,
238 1.88 para .pa_free = pool_page_free_vmem_meta,
239 1.88 para .pa_pagesz = 0
240 1.88 para };
241 1.66 para
242 1.66 para static int
243 1.101 ad bt_refill_locked(vmem_t *vm)
244 1.66 para {
245 1.66 para bt_t *bt;
246 1.66 para
247 1.101 ad VMEM_ASSERT_LOCKED(vm);
248 1.101 ad
249 1.88 para if (vm->vm_nfreetags > BT_MINRESERVE) {
250 1.88 para return 0;
251 1.77 para }
252 1.66 para
253 1.66 para mutex_enter(&vmem_btag_lock);
254 1.66 para while (!LIST_EMPTY(&vmem_btag_freelist) &&
255 1.115 thorpej vm->vm_nfreetags <= BT_MINRESERVE &&
256 1.115 thorpej (vm->vm_flags & VM_PRIVTAGS) == 0) {
257 1.66 para bt = LIST_FIRST(&vmem_btag_freelist);
258 1.66 para LIST_REMOVE(bt, bt_freelist);
259 1.114 thorpej bt->bt_flags = 0;
260 1.66 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
261 1.66 para vm->vm_nfreetags++;
262 1.66 para vmem_btag_freelist_count--;
263 1.88 para VMEM_EVCNT_INCR(static_bt_inuse);
264 1.66 para }
265 1.66 para mutex_exit(&vmem_btag_lock);
266 1.66 para
267 1.88 para while (vm->vm_nfreetags <= BT_MINRESERVE) {
268 1.88 para VMEM_UNLOCK(vm);
269 1.112 thorpej KASSERT(vmem_btag_pool_initialized);
270 1.88 para mutex_enter(&vmem_btag_refill_lock);
271 1.91 para bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
272 1.88 para mutex_exit(&vmem_btag_refill_lock);
273 1.88 para VMEM_LOCK(vm);
274 1.91 para if (bt == NULL)
275 1.88 para break;
276 1.114 thorpej bt->bt_flags = 0;
277 1.88 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
278 1.88 para vm->vm_nfreetags++;
279 1.88 para }
280 1.88 para
281 1.92 para if (vm->vm_nfreetags <= BT_MINRESERVE) {
282 1.66 para return ENOMEM;
283 1.66 para }
284 1.88 para
285 1.88 para if (kmem_meta_arena != NULL) {
286 1.101 ad VMEM_UNLOCK(vm);
287 1.94 chs (void)bt_refill(kmem_arena);
288 1.94 chs (void)bt_refill(kmem_va_meta_arena);
289 1.94 chs (void)bt_refill(kmem_meta_arena);
290 1.101 ad VMEM_LOCK(vm);
291 1.88 para }
292 1.66 para
293 1.66 para return 0;
294 1.66 para }
295 1.1 yamt
296 1.101 ad static int
297 1.101 ad bt_refill(vmem_t *vm)
298 1.101 ad {
299 1.101 ad int rv;
300 1.101 ad
301 1.101 ad VMEM_LOCK(vm);
302 1.101 ad rv = bt_refill_locked(vm);
303 1.101 ad VMEM_UNLOCK(vm);
304 1.101 ad return rv;
305 1.101 ad }
306 1.101 ad
307 1.88 para static bt_t *
308 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
309 1.1 yamt {
310 1.66 para bt_t *bt;
311 1.101 ad
312 1.101 ad VMEM_ASSERT_LOCKED(vm);
313 1.101 ad
314 1.88 para while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
315 1.101 ad if (bt_refill_locked(vm)) {
316 1.94 chs if ((flags & VM_NOSLEEP) != 0) {
317 1.94 chs return NULL;
318 1.94 chs }
319 1.94 chs
320 1.94 chs /*
321 1.94 chs * It would be nice to wait for something specific here
322 1.94 chs * but there are multiple ways that a retry could
323 1.94 chs * succeed and we can't wait for multiple things
324 1.94 chs * simultaneously. So we'll just sleep for an arbitrary
325 1.94 chs * short period of time and retry regardless.
326 1.94 chs * This should be a very rare case.
327 1.94 chs */
328 1.94 chs
329 1.94 chs vmem_kick_pdaemon();
330 1.101 ad kpause("btalloc", false, 1, &vm->vm_lock);
331 1.66 para }
332 1.66 para }
333 1.66 para bt = LIST_FIRST(&vm->vm_freetags);
334 1.66 para LIST_REMOVE(bt, bt_freelist);
335 1.66 para vm->vm_nfreetags--;
336 1.66 para
337 1.66 para return bt;
338 1.1 yamt }
339 1.1 yamt
340 1.88 para static void
341 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
342 1.1 yamt {
343 1.66 para
344 1.101 ad VMEM_ASSERT_LOCKED(vm);
345 1.101 ad
346 1.66 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
347 1.66 para vm->vm_nfreetags++;
348 1.88 para }
349 1.88 para
350 1.88 para static void
351 1.88 para bt_freetrim(vmem_t *vm, int freelimit)
352 1.88 para {
353 1.113 thorpej bt_t *bt, *next_bt;
354 1.88 para LIST_HEAD(, vmem_btag) tofree;
355 1.88 para
356 1.101 ad VMEM_ASSERT_LOCKED(vm);
357 1.101 ad
358 1.88 para LIST_INIT(&tofree);
359 1.88 para
360 1.113 thorpej LIST_FOREACH_SAFE(bt, &vm->vm_freetags, bt_freelist, next_bt) {
361 1.113 thorpej if (vm->vm_nfreetags <= freelimit) {
362 1.113 thorpej break;
363 1.113 thorpej }
364 1.115 thorpej if (bt->bt_flags & BT_F_PRIVATE) {
365 1.115 thorpej continue;
366 1.115 thorpej }
367 1.66 para LIST_REMOVE(bt, bt_freelist);
368 1.66 para vm->vm_nfreetags--;
369 1.88 para if (bt >= static_bts
370 1.90 mlelstv && bt < &static_bts[STATIC_BT_COUNT]) {
371 1.88 para mutex_enter(&vmem_btag_lock);
372 1.88 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
373 1.88 para vmem_btag_freelist_count++;
374 1.88 para mutex_exit(&vmem_btag_lock);
375 1.88 para VMEM_EVCNT_DECR(static_bt_inuse);
376 1.88 para } else {
377 1.88 para LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
378 1.88 para }
379 1.66 para }
380 1.88 para
381 1.66 para VMEM_UNLOCK(vm);
382 1.88 para while (!LIST_EMPTY(&tofree)) {
383 1.113 thorpej bt = LIST_FIRST(&tofree);
384 1.113 thorpej LIST_REMOVE(bt, bt_freelist);
385 1.113 thorpej pool_put(&vmem_btag_pool, bt);
386 1.88 para }
387 1.1 yamt }
388 1.115 thorpej
389 1.115 thorpej /*
390 1.115 thorpej * Add private boundary tags (statically-allocated by the caller)
391 1.115 thorpej * to a vmem arena's free tag list.
392 1.115 thorpej */
393 1.115 thorpej void
394 1.115 thorpej vmem_add_bts(vmem_t *vm, struct vmem_btag *bts, unsigned int nbts)
395 1.115 thorpej {
396 1.115 thorpej VMEM_LOCK(vm);
397 1.115 thorpej while (nbts != 0) {
398 1.115 thorpej bts->bt_flags = BT_F_PRIVATE;
399 1.115 thorpej LIST_INSERT_HEAD(&vm->vm_freetags, bts, bt_freelist);
400 1.115 thorpej vm->vm_nfreetags++;
401 1.115 thorpej bts++;
402 1.115 thorpej nbts--;
403 1.115 thorpej }
404 1.115 thorpej VMEM_UNLOCK(vm);
405 1.115 thorpej }
406 1.67 rmind #endif /* defined(_KERNEL) */
407 1.62 rmind
408 1.1 yamt /*
409 1.67 rmind * freelist[0] ... [1, 1]
410 1.1 yamt * freelist[1] ... [2, 3]
411 1.1 yamt * freelist[2] ... [4, 7]
412 1.1 yamt * freelist[3] ... [8, 15]
413 1.1 yamt * :
414 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
415 1.1 yamt * :
416 1.1 yamt */
417 1.1 yamt
418 1.1 yamt static struct vmem_freelist *
419 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
420 1.1 yamt {
421 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
422 1.62 rmind const int idx = SIZE2ORDER(qsize);
423 1.1 yamt
424 1.109 riastrad KASSERT(size != 0);
425 1.109 riastrad KASSERT(qsize != 0);
426 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
427 1.1 yamt KASSERT(idx >= 0);
428 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
429 1.1 yamt
430 1.1 yamt return &vm->vm_freelist[idx];
431 1.1 yamt }
432 1.1 yamt
433 1.59 yamt /*
434 1.59 yamt * bt_freehead_toalloc: return the freelist for the given size and allocation
435 1.59 yamt * strategy.
436 1.59 yamt *
437 1.59 yamt * for VM_INSTANTFIT, return the list in which any blocks are large enough
438 1.59 yamt * for the requested size. otherwise, return the list which can have blocks
439 1.59 yamt * large enough for the requested size.
440 1.59 yamt */
441 1.59 yamt
442 1.1 yamt static struct vmem_freelist *
443 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
444 1.1 yamt {
445 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
446 1.62 rmind int idx = SIZE2ORDER(qsize);
447 1.1 yamt
448 1.109 riastrad KASSERT(size != 0);
449 1.109 riastrad KASSERT(qsize != 0);
450 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
451 1.1 yamt
452 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
453 1.1 yamt idx++;
454 1.1 yamt /* check too large request? */
455 1.1 yamt }
456 1.1 yamt KASSERT(idx >= 0);
457 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
458 1.1 yamt
459 1.1 yamt return &vm->vm_freelist[idx];
460 1.1 yamt }
461 1.1 yamt
462 1.1 yamt /* ---- boundary tag hash */
463 1.1 yamt
464 1.1 yamt static struct vmem_hashlist *
465 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
466 1.1 yamt {
467 1.1 yamt struct vmem_hashlist *list;
468 1.1 yamt unsigned int hash;
469 1.1 yamt
470 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
471 1.101 ad list = &vm->vm_hashlist[hash & vm->vm_hashmask];
472 1.1 yamt
473 1.1 yamt return list;
474 1.1 yamt }
475 1.1 yamt
476 1.1 yamt static bt_t *
477 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
478 1.1 yamt {
479 1.1 yamt struct vmem_hashlist *list;
480 1.1 yamt bt_t *bt;
481 1.1 yamt
482 1.95 msaitoh list = bt_hashhead(vm, addr);
483 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
484 1.1 yamt if (bt->bt_start == addr) {
485 1.1 yamt break;
486 1.1 yamt }
487 1.1 yamt }
488 1.1 yamt
489 1.1 yamt return bt;
490 1.1 yamt }
491 1.1 yamt
492 1.1 yamt static void
493 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
494 1.1 yamt {
495 1.1 yamt
496 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
497 1.73 para vm->vm_inuse -= bt->bt_size;
498 1.1 yamt vm->vm_nbusytag--;
499 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
500 1.1 yamt }
501 1.1 yamt
502 1.1 yamt static void
503 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
504 1.1 yamt {
505 1.1 yamt struct vmem_hashlist *list;
506 1.1 yamt
507 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
508 1.1 yamt
509 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
510 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
511 1.101 ad if (++vm->vm_nbusytag > vm->vm_maxbusytag) {
512 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
513 1.101 ad }
514 1.73 para vm->vm_inuse += bt->bt_size;
515 1.1 yamt }
516 1.1 yamt
517 1.1 yamt /* ---- boundary tag list */
518 1.1 yamt
519 1.1 yamt static void
520 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
521 1.1 yamt {
522 1.1 yamt
523 1.87 christos TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
524 1.1 yamt }
525 1.1 yamt
526 1.1 yamt static void
527 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
528 1.1 yamt {
529 1.1 yamt
530 1.87 christos TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
531 1.1 yamt }
532 1.1 yamt
533 1.1 yamt static void
534 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
535 1.1 yamt {
536 1.1 yamt
537 1.87 christos TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
538 1.1 yamt }
539 1.1 yamt
540 1.1 yamt static void
541 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
542 1.1 yamt {
543 1.1 yamt
544 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
545 1.1 yamt
546 1.1 yamt LIST_REMOVE(bt, bt_freelist);
547 1.1 yamt }
548 1.1 yamt
549 1.1 yamt static void
550 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
551 1.1 yamt {
552 1.1 yamt struct vmem_freelist *list;
553 1.1 yamt
554 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
555 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
556 1.1 yamt }
557 1.1 yamt
558 1.1 yamt /* ---- vmem internal functions */
559 1.1 yamt
560 1.5 yamt #if defined(QCACHE)
561 1.5 yamt static inline vm_flag_t
562 1.5 yamt prf_to_vmf(int prflags)
563 1.5 yamt {
564 1.5 yamt vm_flag_t vmflags;
565 1.5 yamt
566 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
567 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
568 1.5 yamt vmflags = VM_SLEEP;
569 1.5 yamt } else {
570 1.5 yamt vmflags = VM_NOSLEEP;
571 1.5 yamt }
572 1.5 yamt return vmflags;
573 1.5 yamt }
574 1.5 yamt
575 1.5 yamt static inline int
576 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
577 1.5 yamt {
578 1.5 yamt int prflags;
579 1.5 yamt
580 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
581 1.5 yamt prflags = PR_WAITOK;
582 1.7 yamt } else {
583 1.5 yamt prflags = PR_NOWAIT;
584 1.5 yamt }
585 1.5 yamt return prflags;
586 1.5 yamt }
587 1.5 yamt
588 1.5 yamt static size_t
589 1.5 yamt qc_poolpage_size(size_t qcache_max)
590 1.5 yamt {
591 1.5 yamt int i;
592 1.5 yamt
593 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
594 1.5 yamt /* nothing */
595 1.5 yamt }
596 1.5 yamt return ORDER2SIZE(i);
597 1.5 yamt }
598 1.5 yamt
599 1.5 yamt static void *
600 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
601 1.5 yamt {
602 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
603 1.5 yamt vmem_t *vm = qc->qc_vmem;
604 1.61 dyoung vmem_addr_t addr;
605 1.5 yamt
606 1.61 dyoung if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
607 1.61 dyoung prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
608 1.61 dyoung return NULL;
609 1.61 dyoung return (void *)addr;
610 1.5 yamt }
611 1.5 yamt
612 1.5 yamt static void
613 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
614 1.5 yamt {
615 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
616 1.5 yamt vmem_t *vm = qc->qc_vmem;
617 1.5 yamt
618 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
619 1.5 yamt }
620 1.5 yamt
621 1.5 yamt static void
622 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
623 1.5 yamt {
624 1.22 yamt qcache_t *prevqc;
625 1.5 yamt struct pool_allocator *pa;
626 1.5 yamt int qcache_idx_max;
627 1.5 yamt int i;
628 1.5 yamt
629 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
630 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
631 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
632 1.5 yamt }
633 1.5 yamt vm->vm_qcache_max = qcache_max;
634 1.5 yamt pa = &vm->vm_qcache_allocator;
635 1.5 yamt memset(pa, 0, sizeof(*pa));
636 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
637 1.5 yamt pa->pa_free = qc_poolpage_free;
638 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
639 1.5 yamt
640 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
641 1.22 yamt prevqc = NULL;
642 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
643 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
644 1.5 yamt size_t size = i << vm->vm_quantum_shift;
645 1.66 para pool_cache_t pc;
646 1.5 yamt
647 1.5 yamt qc->qc_vmem = vm;
648 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
649 1.5 yamt vm->vm_name, size);
650 1.66 para
651 1.80 para pc = pool_cache_init(size,
652 1.80 para ORDER2SIZE(vm->vm_quantum_shift), 0,
653 1.80 para PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
654 1.80 para qc->qc_name, pa, ipl, NULL, NULL, NULL);
655 1.80 para
656 1.80 para KASSERT(pc);
657 1.80 para
658 1.66 para qc->qc_cache = pc;
659 1.35 ad KASSERT(qc->qc_cache != NULL); /* XXX */
660 1.22 yamt if (prevqc != NULL &&
661 1.35 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
662 1.35 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
663 1.80 para pool_cache_destroy(qc->qc_cache);
664 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
665 1.27 ad continue;
666 1.22 yamt }
667 1.35 ad qc->qc_cache->pc_pool.pr_qcache = qc;
668 1.22 yamt vm->vm_qcache[i - 1] = qc;
669 1.22 yamt prevqc = qc;
670 1.5 yamt }
671 1.5 yamt }
672 1.6 yamt
673 1.23 yamt static void
674 1.23 yamt qc_destroy(vmem_t *vm)
675 1.23 yamt {
676 1.23 yamt const qcache_t *prevqc;
677 1.23 yamt int i;
678 1.23 yamt int qcache_idx_max;
679 1.23 yamt
680 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
681 1.23 yamt prevqc = NULL;
682 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
683 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
684 1.23 yamt
685 1.23 yamt if (prevqc == qc) {
686 1.23 yamt continue;
687 1.23 yamt }
688 1.80 para pool_cache_destroy(qc->qc_cache);
689 1.23 yamt prevqc = qc;
690 1.23 yamt }
691 1.23 yamt }
692 1.66 para #endif
693 1.23 yamt
694 1.66 para #if defined(_KERNEL)
695 1.80 para static void
696 1.66 para vmem_bootstrap(void)
697 1.6 yamt {
698 1.6 yamt
699 1.103 ad mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
700 1.66 para mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
701 1.88 para mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
702 1.6 yamt
703 1.66 para while (static_bt_count-- > 0) {
704 1.66 para bt_t *bt = &static_bts[static_bt_count];
705 1.66 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
706 1.88 para VMEM_EVCNT_INCR(static_bt_count);
707 1.66 para vmem_btag_freelist_count++;
708 1.6 yamt }
709 1.80 para vmem_bootstrapped = TRUE;
710 1.6 yamt }
711 1.5 yamt
712 1.66 para void
713 1.80 para vmem_subsystem_init(vmem_t *vm)
714 1.1 yamt {
715 1.1 yamt
716 1.80 para kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
717 1.80 para 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
718 1.66 para 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
719 1.66 para IPL_VM);
720 1.66 para
721 1.80 para kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
722 1.80 para 0, 0, PAGE_SIZE,
723 1.66 para uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
724 1.66 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
725 1.88 para
726 1.101 ad pool_init(&vmem_btag_pool, sizeof(bt_t), coherency_unit, 0,
727 1.101 ad PR_PHINPAGE, "vmembt", &pool_allocator_vmem_meta, IPL_VM);
728 1.112 thorpej vmem_btag_pool_initialized = true;
729 1.1 yamt }
730 1.1 yamt #endif /* defined(_KERNEL) */
731 1.1 yamt
732 1.61 dyoung static int
733 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
734 1.1 yamt int spanbttype)
735 1.1 yamt {
736 1.1 yamt bt_t *btspan;
737 1.1 yamt bt_t *btfree;
738 1.1 yamt
739 1.101 ad VMEM_ASSERT_LOCKED(vm);
740 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
741 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
742 1.58 yamt KASSERT(spanbttype == BT_TYPE_SPAN ||
743 1.58 yamt spanbttype == BT_TYPE_SPAN_STATIC);
744 1.1 yamt
745 1.1 yamt btspan = bt_alloc(vm, flags);
746 1.1 yamt if (btspan == NULL) {
747 1.61 dyoung return ENOMEM;
748 1.1 yamt }
749 1.1 yamt btfree = bt_alloc(vm, flags);
750 1.1 yamt if (btfree == NULL) {
751 1.1 yamt bt_free(vm, btspan);
752 1.61 dyoung return ENOMEM;
753 1.1 yamt }
754 1.1 yamt
755 1.1 yamt btspan->bt_type = spanbttype;
756 1.1 yamt btspan->bt_start = addr;
757 1.1 yamt btspan->bt_size = size;
758 1.1 yamt
759 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
760 1.1 yamt btfree->bt_start = addr;
761 1.1 yamt btfree->bt_size = size;
762 1.1 yamt
763 1.1 yamt bt_insseg_tail(vm, btspan);
764 1.1 yamt bt_insseg(vm, btfree, btspan);
765 1.1 yamt bt_insfree(vm, btfree);
766 1.66 para vm->vm_size += size;
767 1.1 yamt
768 1.61 dyoung return 0;
769 1.1 yamt }
770 1.1 yamt
771 1.30 yamt static void
772 1.30 yamt vmem_destroy1(vmem_t *vm)
773 1.30 yamt {
774 1.30 yamt
775 1.30 yamt #if defined(QCACHE)
776 1.30 yamt qc_destroy(vm);
777 1.30 yamt #endif /* defined(QCACHE) */
778 1.101 ad VMEM_LOCK(vm);
779 1.30 yamt
780 1.101 ad for (int i = 0; i < vm->vm_hashsize; i++) {
781 1.101 ad bt_t *bt;
782 1.30 yamt
783 1.101 ad while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
784 1.101 ad KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
785 1.101 ad LIST_REMOVE(bt, bt_hashlist);
786 1.101 ad bt_free(vm, bt);
787 1.66 para }
788 1.66 para }
789 1.66 para
790 1.101 ad /* bt_freetrim() drops the lock. */
791 1.88 para bt_freetrim(vm, 0);
792 1.101 ad if (vm->vm_hashlist != &vm->vm_hash0) {
793 1.101 ad xfree(vm->vm_hashlist,
794 1.101 ad sizeof(struct vmem_hashlist) * vm->vm_hashsize);
795 1.101 ad }
796 1.66 para
797 1.80 para VMEM_CONDVAR_DESTROY(vm);
798 1.31 ad VMEM_LOCK_DESTROY(vm);
799 1.66 para xfree(vm, sizeof(*vm));
800 1.30 yamt }
801 1.30 yamt
802 1.1 yamt static int
803 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
804 1.1 yamt {
805 1.1 yamt vmem_addr_t addr;
806 1.61 dyoung int rc;
807 1.1 yamt
808 1.101 ad VMEM_ASSERT_LOCKED(vm);
809 1.101 ad
810 1.61 dyoung if (vm->vm_importfn == NULL) {
811 1.1 yamt return EINVAL;
812 1.1 yamt }
813 1.1 yamt
814 1.66 para if (vm->vm_flags & VM_LARGEIMPORT) {
815 1.80 para size *= 16;
816 1.66 para }
817 1.66 para
818 1.101 ad VMEM_UNLOCK(vm);
819 1.66 para if (vm->vm_flags & VM_XIMPORT) {
820 1.99 christos rc = __FPTRCAST(vmem_ximport_t *, vm->vm_importfn)(vm->vm_arg,
821 1.98 christos size, &size, flags, &addr);
822 1.66 para } else {
823 1.66 para rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
824 1.69 rmind }
825 1.101 ad VMEM_LOCK(vm);
826 1.101 ad
827 1.69 rmind if (rc) {
828 1.69 rmind return ENOMEM;
829 1.1 yamt }
830 1.1 yamt
831 1.61 dyoung if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
832 1.101 ad VMEM_UNLOCK(vm);
833 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, addr, size);
834 1.101 ad VMEM_LOCK(vm);
835 1.1 yamt return ENOMEM;
836 1.1 yamt }
837 1.1 yamt
838 1.1 yamt return 0;
839 1.1 yamt }
840 1.1 yamt
841 1.110 thorpej #if defined(_KERNEL)
842 1.1 yamt static int
843 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
844 1.1 yamt {
845 1.1 yamt bt_t *bt;
846 1.1 yamt int i;
847 1.1 yamt struct vmem_hashlist *newhashlist;
848 1.1 yamt struct vmem_hashlist *oldhashlist;
849 1.1 yamt size_t oldhashsize;
850 1.1 yamt
851 1.1 yamt KASSERT(newhashsize > 0);
852 1.1 yamt
853 1.101 ad /* Round hash size up to a power of 2. */
854 1.101 ad newhashsize = 1 << (ilog2(newhashsize) + 1);
855 1.101 ad
856 1.1 yamt newhashlist =
857 1.101 ad xmalloc(sizeof(struct vmem_hashlist) * newhashsize, flags);
858 1.1 yamt if (newhashlist == NULL) {
859 1.1 yamt return ENOMEM;
860 1.1 yamt }
861 1.1 yamt for (i = 0; i < newhashsize; i++) {
862 1.1 yamt LIST_INIT(&newhashlist[i]);
863 1.1 yamt }
864 1.1 yamt
865 1.101 ad VMEM_LOCK(vm);
866 1.101 ad /* Decay back to a small hash slowly. */
867 1.101 ad if (vm->vm_maxbusytag >= 2) {
868 1.101 ad vm->vm_maxbusytag = vm->vm_maxbusytag / 2 - 1;
869 1.101 ad if (vm->vm_nbusytag > vm->vm_maxbusytag) {
870 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
871 1.101 ad }
872 1.101 ad } else {
873 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
874 1.30 yamt }
875 1.1 yamt oldhashlist = vm->vm_hashlist;
876 1.1 yamt oldhashsize = vm->vm_hashsize;
877 1.1 yamt vm->vm_hashlist = newhashlist;
878 1.1 yamt vm->vm_hashsize = newhashsize;
879 1.101 ad vm->vm_hashmask = newhashsize - 1;
880 1.1 yamt if (oldhashlist == NULL) {
881 1.1 yamt VMEM_UNLOCK(vm);
882 1.1 yamt return 0;
883 1.1 yamt }
884 1.1 yamt for (i = 0; i < oldhashsize; i++) {
885 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
886 1.1 yamt bt_rembusy(vm, bt); /* XXX */
887 1.1 yamt bt_insbusy(vm, bt);
888 1.1 yamt }
889 1.1 yamt }
890 1.1 yamt VMEM_UNLOCK(vm);
891 1.1 yamt
892 1.66 para if (oldhashlist != &vm->vm_hash0) {
893 1.66 para xfree(oldhashlist,
894 1.101 ad sizeof(struct vmem_hashlist) * oldhashsize);
895 1.66 para }
896 1.1 yamt
897 1.1 yamt return 0;
898 1.1 yamt }
899 1.110 thorpej #endif /* _KERNEL */
900 1.1 yamt
901 1.10 yamt /*
902 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
903 1.59 yamt *
904 1.59 yamt * it's a caller's responsibility to ensure the region is big enough
905 1.59 yamt * before calling us.
906 1.10 yamt */
907 1.10 yamt
908 1.61 dyoung static int
909 1.76 joerg vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
910 1.60 dyoung vmem_size_t phase, vmem_size_t nocross,
911 1.61 dyoung vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
912 1.10 yamt {
913 1.10 yamt vmem_addr_t start;
914 1.10 yamt vmem_addr_t end;
915 1.10 yamt
916 1.60 dyoung KASSERT(size > 0);
917 1.59 yamt KASSERT(bt->bt_size >= size); /* caller's responsibility */
918 1.10 yamt
919 1.10 yamt /*
920 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
921 1.10 yamt * unsigned integer of the same size.
922 1.10 yamt */
923 1.10 yamt
924 1.10 yamt start = bt->bt_start;
925 1.10 yamt if (start < minaddr) {
926 1.10 yamt start = minaddr;
927 1.10 yamt }
928 1.10 yamt end = BT_END(bt);
929 1.60 dyoung if (end > maxaddr) {
930 1.60 dyoung end = maxaddr;
931 1.10 yamt }
932 1.60 dyoung if (start > end) {
933 1.61 dyoung return ENOMEM;
934 1.10 yamt }
935 1.19 yamt
936 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
937 1.10 yamt if (start < bt->bt_start) {
938 1.10 yamt start += align;
939 1.10 yamt }
940 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
941 1.10 yamt KASSERT(align < nocross);
942 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
943 1.10 yamt }
944 1.60 dyoung if (start <= end && end - start >= size - 1) {
945 1.10 yamt KASSERT((start & (align - 1)) == phase);
946 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
947 1.10 yamt KASSERT(minaddr <= start);
948 1.60 dyoung KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
949 1.10 yamt KASSERT(bt->bt_start <= start);
950 1.60 dyoung KASSERT(BT_END(bt) - start >= size - 1);
951 1.61 dyoung *addrp = start;
952 1.61 dyoung return 0;
953 1.10 yamt }
954 1.61 dyoung return ENOMEM;
955 1.10 yamt }
956 1.10 yamt
957 1.80 para /* ---- vmem API */
958 1.1 yamt
959 1.1 yamt /*
960 1.102 ad * vmem_init: creates a vmem arena.
961 1.1 yamt */
962 1.1 yamt
963 1.80 para vmem_t *
964 1.80 para vmem_init(vmem_t *vm, const char *name,
965 1.80 para vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
966 1.80 para vmem_import_t *importfn, vmem_release_t *releasefn,
967 1.80 para vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
968 1.1 yamt {
969 1.1 yamt int i;
970 1.1 yamt
971 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
972 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
973 1.62 rmind KASSERT(quantum > 0);
974 1.1 yamt
975 1.1 yamt #if defined(_KERNEL)
976 1.80 para /* XXX: SMP, we get called early... */
977 1.80 para if (!vmem_bootstrapped) {
978 1.80 para vmem_bootstrap();
979 1.80 para }
980 1.66 para #endif /* defined(_KERNEL) */
981 1.80 para
982 1.80 para if (vm == NULL) {
983 1.66 para vm = xmalloc(sizeof(*vm), flags);
984 1.1 yamt }
985 1.1 yamt if (vm == NULL) {
986 1.1 yamt return NULL;
987 1.1 yamt }
988 1.1 yamt
989 1.66 para VMEM_CONDVAR_INIT(vm, "vmem");
990 1.31 ad VMEM_LOCK_INIT(vm, ipl);
991 1.66 para vm->vm_flags = flags;
992 1.66 para vm->vm_nfreetags = 0;
993 1.66 para LIST_INIT(&vm->vm_freetags);
994 1.64 yamt strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
995 1.1 yamt vm->vm_quantum_mask = quantum - 1;
996 1.62 rmind vm->vm_quantum_shift = SIZE2ORDER(quantum);
997 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
998 1.61 dyoung vm->vm_importfn = importfn;
999 1.61 dyoung vm->vm_releasefn = releasefn;
1000 1.61 dyoung vm->vm_arg = arg;
1001 1.1 yamt vm->vm_nbusytag = 0;
1002 1.101 ad vm->vm_maxbusytag = 0;
1003 1.66 para vm->vm_size = 0;
1004 1.66 para vm->vm_inuse = 0;
1005 1.5 yamt #if defined(QCACHE)
1006 1.31 ad qc_init(vm, qcache_max, ipl);
1007 1.5 yamt #endif /* defined(QCACHE) */
1008 1.1 yamt
1009 1.87 christos TAILQ_INIT(&vm->vm_seglist);
1010 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1011 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
1012 1.1 yamt }
1013 1.101 ad memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
1014 1.80 para vm->vm_hashsize = 1;
1015 1.101 ad vm->vm_hashmask = vm->vm_hashsize - 1;
1016 1.80 para vm->vm_hashlist = &vm->vm_hash0;
1017 1.1 yamt
1018 1.1 yamt if (size != 0) {
1019 1.61 dyoung if (vmem_add(vm, base, size, flags) != 0) {
1020 1.30 yamt vmem_destroy1(vm);
1021 1.1 yamt return NULL;
1022 1.1 yamt }
1023 1.1 yamt }
1024 1.1 yamt
1025 1.30 yamt #if defined(_KERNEL)
1026 1.66 para if (flags & VM_BOOTSTRAP) {
1027 1.94 chs bt_refill(vm);
1028 1.66 para }
1029 1.66 para
1030 1.30 yamt mutex_enter(&vmem_list_lock);
1031 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1032 1.30 yamt mutex_exit(&vmem_list_lock);
1033 1.30 yamt #endif /* defined(_KERNEL) */
1034 1.30 yamt
1035 1.1 yamt return vm;
1036 1.1 yamt }
1037 1.1 yamt
1038 1.66 para
1039 1.66 para
1040 1.66 para /*
1041 1.66 para * vmem_create: create an arena.
1042 1.66 para *
1043 1.66 para * => must not be called from interrupt context.
1044 1.66 para */
1045 1.66 para
1046 1.66 para vmem_t *
1047 1.66 para vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1048 1.66 para vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1049 1.67 rmind vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1050 1.66 para {
1051 1.66 para
1052 1.66 para KASSERT((flags & (VM_XIMPORT)) == 0);
1053 1.66 para
1054 1.80 para return vmem_init(NULL, name, base, size, quantum,
1055 1.66 para importfn, releasefn, source, qcache_max, flags, ipl);
1056 1.66 para }
1057 1.66 para
1058 1.66 para /*
1059 1.66 para * vmem_xcreate: create an arena takes alternative import func.
1060 1.66 para *
1061 1.66 para * => must not be called from interrupt context.
1062 1.66 para */
1063 1.66 para
1064 1.66 para vmem_t *
1065 1.66 para vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1066 1.66 para vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1067 1.67 rmind vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1068 1.66 para {
1069 1.66 para
1070 1.66 para KASSERT((flags & (VM_XIMPORT)) == 0);
1071 1.66 para
1072 1.80 para return vmem_init(NULL, name, base, size, quantum,
1073 1.99 christos __FPTRCAST(vmem_import_t *, importfn), releasefn, source,
1074 1.66 para qcache_max, flags | VM_XIMPORT, ipl);
1075 1.66 para }
1076 1.66 para
1077 1.1 yamt void
1078 1.1 yamt vmem_destroy(vmem_t *vm)
1079 1.1 yamt {
1080 1.1 yamt
1081 1.30 yamt #if defined(_KERNEL)
1082 1.30 yamt mutex_enter(&vmem_list_lock);
1083 1.30 yamt LIST_REMOVE(vm, vm_alllist);
1084 1.30 yamt mutex_exit(&vmem_list_lock);
1085 1.30 yamt #endif /* defined(_KERNEL) */
1086 1.1 yamt
1087 1.30 yamt vmem_destroy1(vm);
1088 1.1 yamt }
1089 1.1 yamt
1090 1.1 yamt vmem_size_t
1091 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1092 1.1 yamt {
1093 1.1 yamt
1094 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1095 1.1 yamt }
1096 1.1 yamt
1097 1.1 yamt /*
1098 1.83 yamt * vmem_alloc: allocate resource from the arena.
1099 1.1 yamt */
1100 1.1 yamt
1101 1.61 dyoung int
1102 1.61 dyoung vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1103 1.1 yamt {
1104 1.86 martin const vm_flag_t strat __diagused = flags & VM_FITMASK;
1105 1.96 chs int error;
1106 1.1 yamt
1107 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1108 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1109 1.1 yamt
1110 1.1 yamt KASSERT(size > 0);
1111 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1112 1.3 yamt if ((flags & VM_SLEEP) != 0) {
1113 1.42 yamt ASSERT_SLEEPABLE();
1114 1.3 yamt }
1115 1.1 yamt
1116 1.5 yamt #if defined(QCACHE)
1117 1.5 yamt if (size <= vm->vm_qcache_max) {
1118 1.61 dyoung void *p;
1119 1.38 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1120 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1121 1.5 yamt
1122 1.61 dyoung p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1123 1.61 dyoung if (addrp != NULL)
1124 1.61 dyoung *addrp = (vmem_addr_t)p;
1125 1.96 chs error = (p == NULL) ? ENOMEM : 0;
1126 1.96 chs goto out;
1127 1.5 yamt }
1128 1.5 yamt #endif /* defined(QCACHE) */
1129 1.5 yamt
1130 1.96 chs error = vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1131 1.61 dyoung flags, addrp);
1132 1.110 thorpej #if defined(QCACHE)
1133 1.110 thorpej out:
1134 1.110 thorpej #endif /* defined(QCACHE) */
1135 1.107 riastrad KASSERTMSG(error || addrp == NULL ||
1136 1.107 riastrad (*addrp & vm->vm_quantum_mask) == 0,
1137 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1138 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1139 1.96 chs KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1140 1.96 chs return error;
1141 1.10 yamt }
1142 1.10 yamt
1143 1.61 dyoung int
1144 1.111 thorpej vmem_xalloc_addr(vmem_t *vm, const vmem_addr_t addr, const vmem_size_t size,
1145 1.111 thorpej vm_flag_t flags)
1146 1.111 thorpej {
1147 1.111 thorpej vmem_addr_t result;
1148 1.111 thorpej int error;
1149 1.111 thorpej
1150 1.111 thorpej KASSERT((addr & vm->vm_quantum_mask) == 0);
1151 1.111 thorpej KASSERT(size != 0);
1152 1.111 thorpej
1153 1.111 thorpej flags = (flags & ~VM_INSTANTFIT) | VM_BESTFIT;
1154 1.111 thorpej
1155 1.111 thorpej error = vmem_xalloc(vm, size, 0, 0, 0, addr, addr + size - 1,
1156 1.111 thorpej flags, &result);
1157 1.111 thorpej
1158 1.111 thorpej KASSERT(error || result == addr);
1159 1.111 thorpej KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1160 1.111 thorpej return error;
1161 1.111 thorpej }
1162 1.111 thorpej
1163 1.111 thorpej int
1164 1.60 dyoung vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1165 1.60 dyoung const vmem_size_t phase, const vmem_size_t nocross,
1166 1.61 dyoung const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1167 1.61 dyoung vmem_addr_t *addrp)
1168 1.10 yamt {
1169 1.10 yamt struct vmem_freelist *list;
1170 1.10 yamt struct vmem_freelist *first;
1171 1.10 yamt struct vmem_freelist *end;
1172 1.10 yamt bt_t *bt;
1173 1.10 yamt bt_t *btnew;
1174 1.10 yamt bt_t *btnew2;
1175 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
1176 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
1177 1.10 yamt vmem_addr_t start;
1178 1.61 dyoung int rc;
1179 1.10 yamt
1180 1.10 yamt KASSERT(size0 > 0);
1181 1.10 yamt KASSERT(size > 0);
1182 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1183 1.10 yamt if ((flags & VM_SLEEP) != 0) {
1184 1.42 yamt ASSERT_SLEEPABLE();
1185 1.10 yamt }
1186 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
1187 1.10 yamt KASSERT((align & (align - 1)) == 0);
1188 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
1189 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
1190 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
1191 1.109 riastrad KASSERT(align == 0 || phase < align);
1192 1.109 riastrad KASSERT(phase == 0 || phase < align);
1193 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
1194 1.60 dyoung KASSERT(minaddr <= maxaddr);
1195 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1196 1.10 yamt
1197 1.10 yamt if (align == 0) {
1198 1.10 yamt align = vm->vm_quantum_mask + 1;
1199 1.10 yamt }
1200 1.59 yamt
1201 1.59 yamt /*
1202 1.59 yamt * allocate boundary tags before acquiring the vmem lock.
1203 1.59 yamt */
1204 1.101 ad VMEM_LOCK(vm);
1205 1.1 yamt btnew = bt_alloc(vm, flags);
1206 1.1 yamt if (btnew == NULL) {
1207 1.101 ad VMEM_UNLOCK(vm);
1208 1.61 dyoung return ENOMEM;
1209 1.1 yamt }
1210 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1211 1.10 yamt if (btnew2 == NULL) {
1212 1.10 yamt bt_free(vm, btnew);
1213 1.101 ad VMEM_UNLOCK(vm);
1214 1.61 dyoung return ENOMEM;
1215 1.10 yamt }
1216 1.1 yamt
1217 1.59 yamt /*
1218 1.59 yamt * choose a free block from which we allocate.
1219 1.59 yamt */
1220 1.1 yamt retry_strat:
1221 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
1222 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
1223 1.1 yamt retry:
1224 1.1 yamt bt = NULL;
1225 1.55 yamt vmem_check(vm);
1226 1.2 yamt if (strat == VM_INSTANTFIT) {
1227 1.59 yamt /*
1228 1.59 yamt * just choose the first block which satisfies our restrictions.
1229 1.59 yamt *
1230 1.59 yamt * note that we don't need to check the size of the blocks
1231 1.59 yamt * because any blocks found on these list should be larger than
1232 1.59 yamt * the given size.
1233 1.59 yamt */
1234 1.2 yamt for (list = first; list < end; list++) {
1235 1.2 yamt bt = LIST_FIRST(list);
1236 1.2 yamt if (bt != NULL) {
1237 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
1238 1.61 dyoung nocross, minaddr, maxaddr, &start);
1239 1.61 dyoung if (rc == 0) {
1240 1.10 yamt goto gotit;
1241 1.10 yamt }
1242 1.59 yamt /*
1243 1.59 yamt * don't bother to follow the bt_freelist link
1244 1.59 yamt * here. the list can be very long and we are
1245 1.59 yamt * told to run fast. blocks from the later free
1246 1.59 yamt * lists are larger and have better chances to
1247 1.59 yamt * satisfy our restrictions.
1248 1.59 yamt */
1249 1.2 yamt }
1250 1.2 yamt }
1251 1.2 yamt } else { /* VM_BESTFIT */
1252 1.59 yamt /*
1253 1.59 yamt * we assume that, for space efficiency, it's better to
1254 1.59 yamt * allocate from a smaller block. thus we will start searching
1255 1.59 yamt * from the lower-order list than VM_INSTANTFIT.
1256 1.59 yamt * however, don't bother to find the smallest block in a free
1257 1.59 yamt * list because the list can be very long. we can revisit it
1258 1.59 yamt * if/when it turns out to be a problem.
1259 1.59 yamt *
1260 1.59 yamt * note that the 'first' list can contain blocks smaller than
1261 1.59 yamt * the requested size. thus we need to check bt_size.
1262 1.59 yamt */
1263 1.2 yamt for (list = first; list < end; list++) {
1264 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
1265 1.2 yamt if (bt->bt_size >= size) {
1266 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
1267 1.61 dyoung nocross, minaddr, maxaddr, &start);
1268 1.61 dyoung if (rc == 0) {
1269 1.10 yamt goto gotit;
1270 1.10 yamt }
1271 1.2 yamt }
1272 1.1 yamt }
1273 1.1 yamt }
1274 1.1 yamt }
1275 1.1 yamt #if 1
1276 1.2 yamt if (strat == VM_INSTANTFIT) {
1277 1.2 yamt strat = VM_BESTFIT;
1278 1.2 yamt goto retry_strat;
1279 1.2 yamt }
1280 1.1 yamt #endif
1281 1.69 rmind if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1282 1.10 yamt
1283 1.10 yamt /*
1284 1.10 yamt * XXX should try to import a region large enough to
1285 1.10 yamt * satisfy restrictions?
1286 1.10 yamt */
1287 1.10 yamt
1288 1.20 yamt goto fail;
1289 1.10 yamt }
1290 1.60 dyoung /* XXX eeek, minaddr & maxaddr not respected */
1291 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
1292 1.2 yamt goto retry;
1293 1.1 yamt }
1294 1.2 yamt /* XXX */
1295 1.66 para
1296 1.68 para if ((flags & VM_SLEEP) != 0) {
1297 1.94 chs vmem_kick_pdaemon();
1298 1.68 para VMEM_CONDVAR_WAIT(vm);
1299 1.68 para goto retry;
1300 1.68 para }
1301 1.20 yamt fail:
1302 1.20 yamt bt_free(vm, btnew);
1303 1.20 yamt bt_free(vm, btnew2);
1304 1.101 ad VMEM_UNLOCK(vm);
1305 1.61 dyoung return ENOMEM;
1306 1.2 yamt
1307 1.2 yamt gotit:
1308 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
1309 1.1 yamt KASSERT(bt->bt_size >= size);
1310 1.1 yamt bt_remfree(vm, bt);
1311 1.55 yamt vmem_check(vm);
1312 1.10 yamt if (bt->bt_start != start) {
1313 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
1314 1.10 yamt btnew2->bt_start = bt->bt_start;
1315 1.10 yamt btnew2->bt_size = start - bt->bt_start;
1316 1.10 yamt bt->bt_start = start;
1317 1.10 yamt bt->bt_size -= btnew2->bt_size;
1318 1.10 yamt bt_insfree(vm, btnew2);
1319 1.87 christos bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1320 1.10 yamt btnew2 = NULL;
1321 1.55 yamt vmem_check(vm);
1322 1.10 yamt }
1323 1.10 yamt KASSERT(bt->bt_start == start);
1324 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1325 1.1 yamt /* split */
1326 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1327 1.1 yamt btnew->bt_start = bt->bt_start;
1328 1.1 yamt btnew->bt_size = size;
1329 1.1 yamt bt->bt_start = bt->bt_start + size;
1330 1.1 yamt bt->bt_size -= size;
1331 1.1 yamt bt_insfree(vm, bt);
1332 1.87 christos bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1333 1.1 yamt bt_insbusy(vm, btnew);
1334 1.55 yamt vmem_check(vm);
1335 1.1 yamt } else {
1336 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1337 1.1 yamt bt_insbusy(vm, bt);
1338 1.55 yamt vmem_check(vm);
1339 1.1 yamt bt_free(vm, btnew);
1340 1.1 yamt btnew = bt;
1341 1.1 yamt }
1342 1.10 yamt if (btnew2 != NULL) {
1343 1.10 yamt bt_free(vm, btnew2);
1344 1.10 yamt }
1345 1.1 yamt KASSERT(btnew->bt_size >= size);
1346 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1347 1.61 dyoung if (addrp != NULL)
1348 1.61 dyoung *addrp = btnew->bt_start;
1349 1.101 ad VMEM_UNLOCK(vm);
1350 1.107 riastrad KASSERTMSG(addrp == NULL ||
1351 1.107 riastrad (*addrp & vm->vm_quantum_mask) == 0,
1352 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1353 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1354 1.61 dyoung return 0;
1355 1.1 yamt }
1356 1.1 yamt
1357 1.1 yamt /*
1358 1.83 yamt * vmem_free: free the resource to the arena.
1359 1.1 yamt */
1360 1.1 yamt
1361 1.1 yamt void
1362 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1363 1.1 yamt {
1364 1.1 yamt
1365 1.1 yamt KASSERT(size > 0);
1366 1.107 riastrad KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1367 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1368 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1369 1.1 yamt
1370 1.5 yamt #if defined(QCACHE)
1371 1.5 yamt if (size <= vm->vm_qcache_max) {
1372 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1373 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1374 1.5 yamt
1375 1.63 rmind pool_cache_put(qc->qc_cache, (void *)addr);
1376 1.63 rmind return;
1377 1.5 yamt }
1378 1.5 yamt #endif /* defined(QCACHE) */
1379 1.5 yamt
1380 1.10 yamt vmem_xfree(vm, addr, size);
1381 1.10 yamt }
1382 1.10 yamt
1383 1.10 yamt void
1384 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1385 1.10 yamt {
1386 1.10 yamt bt_t *bt;
1387 1.10 yamt
1388 1.10 yamt KASSERT(size > 0);
1389 1.107 riastrad KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1390 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1391 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1392 1.10 yamt
1393 1.1 yamt VMEM_LOCK(vm);
1394 1.1 yamt
1395 1.1 yamt bt = bt_lookupbusy(vm, addr);
1396 1.107 riastrad KASSERTMSG(bt != NULL, "vmem %s addr 0x%jx size 0x%jx",
1397 1.107 riastrad vm->vm_name, (uintmax_t)addr, (uintmax_t)size);
1398 1.1 yamt KASSERT(bt->bt_start == addr);
1399 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1400 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1401 1.105 riastrad
1402 1.104 thorpej /* vmem_xfree_bt() drops the lock. */
1403 1.104 thorpej vmem_xfree_bt(vm, bt);
1404 1.104 thorpej }
1405 1.104 thorpej
1406 1.104 thorpej void
1407 1.104 thorpej vmem_xfreeall(vmem_t *vm)
1408 1.104 thorpej {
1409 1.104 thorpej bt_t *bt;
1410 1.104 thorpej
1411 1.110 thorpej #if defined(QCACHE)
1412 1.104 thorpej /* This can't be used if the arena has a quantum cache. */
1413 1.104 thorpej KASSERT(vm->vm_qcache_max == 0);
1414 1.110 thorpej #endif /* defined(QCACHE) */
1415 1.104 thorpej
1416 1.104 thorpej for (;;) {
1417 1.104 thorpej VMEM_LOCK(vm);
1418 1.104 thorpej TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1419 1.104 thorpej if (bt->bt_type == BT_TYPE_BUSY)
1420 1.104 thorpej break;
1421 1.104 thorpej }
1422 1.104 thorpej if (bt != NULL) {
1423 1.104 thorpej /* vmem_xfree_bt() drops the lock. */
1424 1.104 thorpej vmem_xfree_bt(vm, bt);
1425 1.104 thorpej } else {
1426 1.104 thorpej VMEM_UNLOCK(vm);
1427 1.104 thorpej return;
1428 1.104 thorpej }
1429 1.104 thorpej }
1430 1.104 thorpej }
1431 1.104 thorpej
1432 1.104 thorpej static void
1433 1.104 thorpej vmem_xfree_bt(vmem_t *vm, bt_t *bt)
1434 1.104 thorpej {
1435 1.104 thorpej bt_t *t;
1436 1.104 thorpej
1437 1.104 thorpej VMEM_ASSERT_LOCKED(vm);
1438 1.104 thorpej
1439 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1440 1.1 yamt bt_rembusy(vm, bt);
1441 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1442 1.1 yamt
1443 1.1 yamt /* coalesce */
1444 1.87 christos t = TAILQ_NEXT(bt, bt_seglist);
1445 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1446 1.60 dyoung KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1447 1.1 yamt bt_remfree(vm, t);
1448 1.1 yamt bt_remseg(vm, t);
1449 1.1 yamt bt->bt_size += t->bt_size;
1450 1.101 ad bt_free(vm, t);
1451 1.1 yamt }
1452 1.87 christos t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1453 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1454 1.60 dyoung KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1455 1.1 yamt bt_remfree(vm, t);
1456 1.1 yamt bt_remseg(vm, t);
1457 1.1 yamt bt->bt_size += t->bt_size;
1458 1.1 yamt bt->bt_start = t->bt_start;
1459 1.101 ad bt_free(vm, t);
1460 1.1 yamt }
1461 1.1 yamt
1462 1.87 christos t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1463 1.1 yamt KASSERT(t != NULL);
1464 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1465 1.61 dyoung if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1466 1.1 yamt t->bt_size == bt->bt_size) {
1467 1.1 yamt vmem_addr_t spanaddr;
1468 1.1 yamt vmem_size_t spansize;
1469 1.1 yamt
1470 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1471 1.1 yamt spanaddr = bt->bt_start;
1472 1.1 yamt spansize = bt->bt_size;
1473 1.1 yamt bt_remseg(vm, bt);
1474 1.101 ad bt_free(vm, bt);
1475 1.1 yamt bt_remseg(vm, t);
1476 1.101 ad bt_free(vm, t);
1477 1.66 para vm->vm_size -= spansize;
1478 1.68 para VMEM_CONDVAR_BROADCAST(vm);
1479 1.101 ad /* bt_freetrim() drops the lock. */
1480 1.101 ad bt_freetrim(vm, BT_MAXFREE);
1481 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1482 1.1 yamt } else {
1483 1.1 yamt bt_insfree(vm, bt);
1484 1.68 para VMEM_CONDVAR_BROADCAST(vm);
1485 1.101 ad /* bt_freetrim() drops the lock. */
1486 1.101 ad bt_freetrim(vm, BT_MAXFREE);
1487 1.1 yamt }
1488 1.1 yamt }
1489 1.1 yamt
1490 1.1 yamt /*
1491 1.1 yamt * vmem_add:
1492 1.1 yamt *
1493 1.1 yamt * => caller must ensure appropriate spl,
1494 1.1 yamt * if the arena can be accessed from interrupt context.
1495 1.1 yamt */
1496 1.1 yamt
1497 1.61 dyoung int
1498 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1499 1.1 yamt {
1500 1.101 ad int rv;
1501 1.1 yamt
1502 1.101 ad VMEM_LOCK(vm);
1503 1.101 ad rv = vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1504 1.101 ad VMEM_UNLOCK(vm);
1505 1.101 ad
1506 1.101 ad return rv;
1507 1.1 yamt }
1508 1.1 yamt
1509 1.6 yamt /*
1510 1.66 para * vmem_size: information about arenas size
1511 1.6 yamt *
1512 1.66 para * => return free/allocated size in arena
1513 1.6 yamt */
1514 1.66 para vmem_size_t
1515 1.66 para vmem_size(vmem_t *vm, int typemask)
1516 1.6 yamt {
1517 1.6 yamt
1518 1.66 para switch (typemask) {
1519 1.66 para case VMEM_ALLOC:
1520 1.66 para return vm->vm_inuse;
1521 1.66 para case VMEM_FREE:
1522 1.66 para return vm->vm_size - vm->vm_inuse;
1523 1.66 para case VMEM_FREE|VMEM_ALLOC:
1524 1.66 para return vm->vm_size;
1525 1.66 para default:
1526 1.66 para panic("vmem_size");
1527 1.66 para }
1528 1.6 yamt }
1529 1.6 yamt
1530 1.30 yamt /* ---- rehash */
1531 1.30 yamt
1532 1.30 yamt #if defined(_KERNEL)
1533 1.30 yamt static struct callout vmem_rehash_ch;
1534 1.30 yamt static int vmem_rehash_interval;
1535 1.30 yamt static struct workqueue *vmem_rehash_wq;
1536 1.30 yamt static struct work vmem_rehash_wk;
1537 1.30 yamt
1538 1.30 yamt static void
1539 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1540 1.30 yamt {
1541 1.30 yamt vmem_t *vm;
1542 1.30 yamt
1543 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1544 1.30 yamt mutex_enter(&vmem_list_lock);
1545 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1546 1.30 yamt size_t desired;
1547 1.30 yamt size_t current;
1548 1.30 yamt
1549 1.101 ad desired = atomic_load_relaxed(&vm->vm_maxbusytag);
1550 1.101 ad current = atomic_load_relaxed(&vm->vm_hashsize);
1551 1.30 yamt
1552 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1553 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1554 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1555 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1556 1.30 yamt }
1557 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1558 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1559 1.30 yamt }
1560 1.30 yamt }
1561 1.30 yamt mutex_exit(&vmem_list_lock);
1562 1.30 yamt
1563 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1564 1.30 yamt }
1565 1.30 yamt
1566 1.30 yamt static void
1567 1.30 yamt vmem_rehash_all_kick(void *dummy)
1568 1.30 yamt {
1569 1.30 yamt
1570 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1571 1.30 yamt }
1572 1.30 yamt
1573 1.30 yamt void
1574 1.30 yamt vmem_rehash_start(void)
1575 1.30 yamt {
1576 1.30 yamt int error;
1577 1.30 yamt
1578 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1579 1.41 ad vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1580 1.30 yamt if (error) {
1581 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1582 1.30 yamt }
1583 1.41 ad callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1584 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1585 1.30 yamt
1586 1.30 yamt vmem_rehash_interval = hz * 10;
1587 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1588 1.30 yamt }
1589 1.30 yamt #endif /* defined(_KERNEL) */
1590 1.30 yamt
1591 1.1 yamt /* ---- debug */
1592 1.1 yamt
1593 1.55 yamt #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1594 1.55 yamt
1595 1.82 christos static void bt_dump(const bt_t *, void (*)(const char *, ...)
1596 1.82 christos __printflike(1, 2));
1597 1.55 yamt
1598 1.55 yamt static const char *
1599 1.55 yamt bt_type_string(int type)
1600 1.55 yamt {
1601 1.55 yamt static const char * const table[] = {
1602 1.55 yamt [BT_TYPE_BUSY] = "busy",
1603 1.55 yamt [BT_TYPE_FREE] = "free",
1604 1.55 yamt [BT_TYPE_SPAN] = "span",
1605 1.55 yamt [BT_TYPE_SPAN_STATIC] = "static span",
1606 1.55 yamt };
1607 1.55 yamt
1608 1.55 yamt if (type >= __arraycount(table)) {
1609 1.55 yamt return "BOGUS";
1610 1.55 yamt }
1611 1.55 yamt return table[type];
1612 1.55 yamt }
1613 1.55 yamt
1614 1.55 yamt static void
1615 1.55 yamt bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1616 1.55 yamt {
1617 1.55 yamt
1618 1.55 yamt (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1619 1.55 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1620 1.55 yamt bt->bt_type, bt_type_string(bt->bt_type));
1621 1.55 yamt }
1622 1.55 yamt
1623 1.55 yamt static void
1624 1.82 christos vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1625 1.55 yamt {
1626 1.55 yamt const bt_t *bt;
1627 1.55 yamt int i;
1628 1.55 yamt
1629 1.55 yamt (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1630 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1631 1.55 yamt bt_dump(bt, pr);
1632 1.55 yamt }
1633 1.55 yamt
1634 1.55 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1635 1.55 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1636 1.55 yamt
1637 1.55 yamt if (LIST_EMPTY(fl)) {
1638 1.55 yamt continue;
1639 1.55 yamt }
1640 1.55 yamt
1641 1.55 yamt (*pr)("freelist[%d]\n", i);
1642 1.55 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1643 1.55 yamt bt_dump(bt, pr);
1644 1.55 yamt }
1645 1.55 yamt }
1646 1.55 yamt }
1647 1.55 yamt
1648 1.55 yamt #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1649 1.55 yamt
1650 1.37 yamt #if defined(DDB)
1651 1.37 yamt static bt_t *
1652 1.37 yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1653 1.37 yamt {
1654 1.39 yamt bt_t *bt;
1655 1.37 yamt
1656 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1657 1.39 yamt if (BT_ISSPAN_P(bt)) {
1658 1.39 yamt continue;
1659 1.39 yamt }
1660 1.60 dyoung if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1661 1.39 yamt return bt;
1662 1.37 yamt }
1663 1.37 yamt }
1664 1.37 yamt
1665 1.37 yamt return NULL;
1666 1.37 yamt }
1667 1.37 yamt
1668 1.37 yamt void
1669 1.37 yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1670 1.37 yamt {
1671 1.37 yamt vmem_t *vm;
1672 1.37 yamt
1673 1.37 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1674 1.37 yamt bt_t *bt;
1675 1.37 yamt
1676 1.37 yamt bt = vmem_whatis_lookup(vm, addr);
1677 1.37 yamt if (bt == NULL) {
1678 1.37 yamt continue;
1679 1.37 yamt }
1680 1.39 yamt (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1681 1.37 yamt (void *)addr, (void *)bt->bt_start,
1682 1.39 yamt (size_t)(addr - bt->bt_start), vm->vm_name,
1683 1.39 yamt (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1684 1.37 yamt }
1685 1.37 yamt }
1686 1.43 cegger
1687 1.55 yamt void
1688 1.55 yamt vmem_printall(const char *modif, void (*pr)(const char *, ...))
1689 1.43 cegger {
1690 1.55 yamt const vmem_t *vm;
1691 1.43 cegger
1692 1.47 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1693 1.55 yamt vmem_dump(vm, pr);
1694 1.43 cegger }
1695 1.43 cegger }
1696 1.43 cegger
1697 1.43 cegger void
1698 1.43 cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1699 1.43 cegger {
1700 1.55 yamt const vmem_t *vm = (const void *)addr;
1701 1.43 cegger
1702 1.55 yamt vmem_dump(vm, pr);
1703 1.43 cegger }
1704 1.37 yamt #endif /* defined(DDB) */
1705 1.37 yamt
1706 1.60 dyoung #if defined(_KERNEL)
1707 1.60 dyoung #define vmem_printf printf
1708 1.60 dyoung #else
1709 1.1 yamt #include <stdio.h>
1710 1.60 dyoung #include <stdarg.h>
1711 1.60 dyoung
1712 1.60 dyoung static void
1713 1.60 dyoung vmem_printf(const char *fmt, ...)
1714 1.60 dyoung {
1715 1.60 dyoung va_list ap;
1716 1.60 dyoung va_start(ap, fmt);
1717 1.60 dyoung vprintf(fmt, ap);
1718 1.60 dyoung va_end(ap);
1719 1.60 dyoung }
1720 1.60 dyoung #endif
1721 1.1 yamt
1722 1.55 yamt #if defined(VMEM_SANITY)
1723 1.1 yamt
1724 1.55 yamt static bool
1725 1.55 yamt vmem_check_sanity(vmem_t *vm)
1726 1.1 yamt {
1727 1.55 yamt const bt_t *bt, *bt2;
1728 1.1 yamt
1729 1.55 yamt KASSERT(vm != NULL);
1730 1.1 yamt
1731 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1732 1.60 dyoung if (bt->bt_start > BT_END(bt)) {
1733 1.55 yamt printf("corrupted tag\n");
1734 1.60 dyoung bt_dump(bt, vmem_printf);
1735 1.55 yamt return false;
1736 1.55 yamt }
1737 1.55 yamt }
1738 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1739 1.87 christos TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1740 1.55 yamt if (bt == bt2) {
1741 1.55 yamt continue;
1742 1.55 yamt }
1743 1.55 yamt if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1744 1.55 yamt continue;
1745 1.55 yamt }
1746 1.60 dyoung if (bt->bt_start <= BT_END(bt2) &&
1747 1.60 dyoung bt2->bt_start <= BT_END(bt)) {
1748 1.55 yamt printf("overwrapped tags\n");
1749 1.60 dyoung bt_dump(bt, vmem_printf);
1750 1.60 dyoung bt_dump(bt2, vmem_printf);
1751 1.55 yamt return false;
1752 1.55 yamt }
1753 1.55 yamt }
1754 1.1 yamt }
1755 1.1 yamt
1756 1.55 yamt return true;
1757 1.55 yamt }
1758 1.1 yamt
1759 1.55 yamt static void
1760 1.55 yamt vmem_check(vmem_t *vm)
1761 1.55 yamt {
1762 1.1 yamt
1763 1.55 yamt if (!vmem_check_sanity(vm)) {
1764 1.55 yamt panic("insanity vmem %p", vm);
1765 1.1 yamt }
1766 1.1 yamt }
1767 1.1 yamt
1768 1.55 yamt #endif /* defined(VMEM_SANITY) */
1769 1.1 yamt
1770 1.55 yamt #if defined(UNITTEST)
1771 1.1 yamt int
1772 1.57 cegger main(void)
1773 1.1 yamt {
1774 1.61 dyoung int rc;
1775 1.1 yamt vmem_t *vm;
1776 1.1 yamt vmem_addr_t p;
1777 1.1 yamt struct reg {
1778 1.1 yamt vmem_addr_t p;
1779 1.1 yamt vmem_size_t sz;
1780 1.25 thorpej bool x;
1781 1.1 yamt } *reg = NULL;
1782 1.1 yamt int nreg = 0;
1783 1.1 yamt int nalloc = 0;
1784 1.1 yamt int nfree = 0;
1785 1.1 yamt vmem_size_t total = 0;
1786 1.1 yamt #if 1
1787 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1788 1.1 yamt #else
1789 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1790 1.1 yamt #endif
1791 1.1 yamt
1792 1.61 dyoung vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1793 1.61 dyoung #ifdef _KERNEL
1794 1.61 dyoung IPL_NONE
1795 1.61 dyoung #else
1796 1.61 dyoung 0
1797 1.61 dyoung #endif
1798 1.61 dyoung );
1799 1.1 yamt if (vm == NULL) {
1800 1.1 yamt printf("vmem_create\n");
1801 1.1 yamt exit(EXIT_FAILURE);
1802 1.1 yamt }
1803 1.60 dyoung vmem_dump(vm, vmem_printf);
1804 1.1 yamt
1805 1.61 dyoung rc = vmem_add(vm, 0, 50, VM_SLEEP);
1806 1.61 dyoung assert(rc == 0);
1807 1.61 dyoung rc = vmem_add(vm, 100, 200, VM_SLEEP);
1808 1.61 dyoung assert(rc == 0);
1809 1.61 dyoung rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1810 1.61 dyoung assert(rc == 0);
1811 1.61 dyoung rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1812 1.61 dyoung assert(rc == 0);
1813 1.61 dyoung rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1814 1.61 dyoung assert(rc == 0);
1815 1.61 dyoung rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1816 1.61 dyoung assert(rc == 0);
1817 1.61 dyoung rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1818 1.61 dyoung assert(rc == 0);
1819 1.61 dyoung rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1820 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1821 1.61 dyoung assert(rc != 0);
1822 1.61 dyoung rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1823 1.61 dyoung assert(rc == 0 && p == 0);
1824 1.61 dyoung vmem_xfree(vm, p, 50);
1825 1.61 dyoung rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1826 1.61 dyoung assert(rc == 0 && p == 0);
1827 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1828 1.61 dyoung 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1829 1.61 dyoung assert(rc != 0);
1830 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1831 1.61 dyoung 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1832 1.61 dyoung assert(rc != 0);
1833 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1834 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1835 1.61 dyoung assert(rc == 0);
1836 1.60 dyoung vmem_dump(vm, vmem_printf);
1837 1.1 yamt for (;;) {
1838 1.1 yamt struct reg *r;
1839 1.10 yamt int t = rand() % 100;
1840 1.1 yamt
1841 1.10 yamt if (t > 45) {
1842 1.10 yamt /* alloc */
1843 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1844 1.25 thorpej bool x;
1845 1.10 yamt vmem_size_t align, phase, nocross;
1846 1.10 yamt vmem_addr_t minaddr, maxaddr;
1847 1.10 yamt
1848 1.10 yamt if (t > 70) {
1849 1.26 thorpej x = true;
1850 1.10 yamt /* XXX */
1851 1.10 yamt align = 1 << (rand() % 15);
1852 1.10 yamt phase = rand() % 65536;
1853 1.10 yamt nocross = 1 << (rand() % 15);
1854 1.10 yamt if (align <= phase) {
1855 1.10 yamt phase = 0;
1856 1.10 yamt }
1857 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1858 1.19 yamt nocross)) {
1859 1.10 yamt nocross = 0;
1860 1.10 yamt }
1861 1.60 dyoung do {
1862 1.60 dyoung minaddr = rand() % 50000;
1863 1.60 dyoung maxaddr = rand() % 70000;
1864 1.60 dyoung } while (minaddr > maxaddr);
1865 1.10 yamt printf("=== xalloc %" PRIu64
1866 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1867 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1868 1.10 yamt ", max=%" PRIu64 "\n",
1869 1.10 yamt (uint64_t)sz,
1870 1.10 yamt (uint64_t)align,
1871 1.10 yamt (uint64_t)phase,
1872 1.10 yamt (uint64_t)nocross,
1873 1.10 yamt (uint64_t)minaddr,
1874 1.10 yamt (uint64_t)maxaddr);
1875 1.61 dyoung rc = vmem_xalloc(vm, sz, align, phase, nocross,
1876 1.61 dyoung minaddr, maxaddr, strat|VM_SLEEP, &p);
1877 1.10 yamt } else {
1878 1.26 thorpej x = false;
1879 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1880 1.61 dyoung rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1881 1.10 yamt }
1882 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1883 1.60 dyoung vmem_dump(vm, vmem_printf);
1884 1.61 dyoung if (rc != 0) {
1885 1.10 yamt if (x) {
1886 1.10 yamt continue;
1887 1.10 yamt }
1888 1.1 yamt break;
1889 1.1 yamt }
1890 1.1 yamt nreg++;
1891 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1892 1.1 yamt r = ®[nreg - 1];
1893 1.1 yamt r->p = p;
1894 1.1 yamt r->sz = sz;
1895 1.10 yamt r->x = x;
1896 1.1 yamt total += sz;
1897 1.1 yamt nalloc++;
1898 1.1 yamt } else if (nreg != 0) {
1899 1.10 yamt /* free */
1900 1.1 yamt r = ®[rand() % nreg];
1901 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1902 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1903 1.10 yamt if (r->x) {
1904 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1905 1.10 yamt } else {
1906 1.10 yamt vmem_free(vm, r->p, r->sz);
1907 1.10 yamt }
1908 1.1 yamt total -= r->sz;
1909 1.60 dyoung vmem_dump(vm, vmem_printf);
1910 1.1 yamt *r = reg[nreg - 1];
1911 1.1 yamt nreg--;
1912 1.1 yamt nfree++;
1913 1.1 yamt }
1914 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1915 1.1 yamt }
1916 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1917 1.1 yamt (uint64_t)total, nalloc, nfree);
1918 1.1 yamt exit(EXIT_SUCCESS);
1919 1.1 yamt }
1920 1.55 yamt #endif /* defined(UNITTEST) */
1921