subr_vmem.c revision 1.117 1 1.117 riastrad /* $NetBSD: subr_vmem.c,v 1.117 2024/12/06 19:17:44 riastradh Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.55 yamt * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.88 para *
35 1.88 para * locking & the boundary tag pool:
36 1.88 para * - A pool(9) is used for vmem boundary tags
37 1.88 para * - During a pool get call the global vmem_btag_refill_lock is taken,
38 1.88 para * to serialize access to the allocation reserve, but no other
39 1.88 para * vmem arena locks.
40 1.88 para * - During pool_put calls no vmem mutexes are locked.
41 1.88 para * - pool_drain doesn't hold the pool's mutex while releasing memory to
42 1.108 andvar * its backing therefore no interference with any vmem mutexes.
43 1.88 para * - The boundary tag pool is forced to put page headers into pool pages
44 1.88 para * (PR_PHINPAGE) and not off page to avoid pool recursion.
45 1.88 para * (due to sizeof(bt_t) it should be the case anyway)
46 1.1 yamt */
47 1.1 yamt
48 1.1 yamt #include <sys/cdefs.h>
49 1.117 riastrad __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.117 2024/12/06 19:17:44 riastradh Exp $");
50 1.1 yamt
51 1.93 pooka #if defined(_KERNEL) && defined(_KERNEL_OPT)
52 1.37 yamt #include "opt_ddb.h"
53 1.93 pooka #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
54 1.1 yamt
55 1.1 yamt #include <sys/param.h>
56 1.117 riastrad #include <sys/types.h>
57 1.117 riastrad
58 1.117 riastrad #include <sys/bitops.h>
59 1.1 yamt #include <sys/hash.h>
60 1.1 yamt #include <sys/queue.h>
61 1.1 yamt
62 1.1 yamt #if defined(_KERNEL)
63 1.117 riastrad
64 1.117 riastrad #include <sys/atomic.h>
65 1.117 riastrad #include <sys/callout.h>
66 1.30 yamt #include <sys/kernel.h> /* hz */
67 1.66 para #include <sys/kmem.h>
68 1.1 yamt #include <sys/pool.h>
69 1.117 riastrad #include <sys/systm.h>
70 1.1 yamt #include <sys/vmem.h>
71 1.80 para #include <sys/vmem_impl.h>
72 1.30 yamt #include <sys/workqueue.h>
73 1.117 riastrad
74 1.66 para #include <uvm/uvm.h>
75 1.66 para #include <uvm/uvm_extern.h>
76 1.66 para #include <uvm/uvm_km.h>
77 1.66 para #include <uvm/uvm_page.h>
78 1.66 para #include <uvm/uvm_pdaemon.h>
79 1.117 riastrad
80 1.1 yamt #else /* defined(_KERNEL) */
81 1.117 riastrad
82 1.117 riastrad #include <assert.h>
83 1.117 riastrad #include <errno.h>
84 1.80 para #include <stdio.h>
85 1.80 para #include <stdlib.h>
86 1.80 para #include <string.h>
87 1.117 riastrad
88 1.1 yamt #include "../sys/vmem.h"
89 1.80 para #include "../sys/vmem_impl.h"
90 1.117 riastrad
91 1.1 yamt #endif /* defined(_KERNEL) */
92 1.1 yamt
93 1.117 riastrad #if defined(_KERNEL)
94 1.66 para
95 1.66 para #include <sys/evcnt.h>
96 1.117 riastrad
97 1.66 para #define VMEM_EVCNT_DEFINE(name) \
98 1.66 para struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
99 1.88 para "vmem", #name); \
100 1.117 riastrad EVCNT_ATTACH_STATIC(vmem_evcnt_##name)
101 1.117 riastrad #define VMEM_EVCNT_INCR(ev) (vmem_evcnt_##ev.ev_count++)
102 1.117 riastrad #define VMEM_EVCNT_DECR(ev) (vmem_evcnt_##ev.ev_count--)
103 1.66 para
104 1.117 riastrad VMEM_EVCNT_DEFINE(static_bt_count);
105 1.117 riastrad VMEM_EVCNT_DEFINE(static_bt_inuse);
106 1.66 para
107 1.80 para #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
108 1.80 para #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
109 1.80 para #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
110 1.80 para #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
111 1.66 para
112 1.1 yamt #else /* defined(_KERNEL) */
113 1.1 yamt
114 1.117 riastrad #define VMEM_EVCNT_INCR(ev) __nothing
115 1.117 riastrad #define VMEM_EVCNT_DECR(ev) __nothing
116 1.66 para
117 1.117 riastrad #define VMEM_CONDVAR_INIT(vm, wchan) __nothing
118 1.117 riastrad #define VMEM_CONDVAR_DESTROY(vm) __nothing
119 1.117 riastrad #define VMEM_CONDVAR_WAIT(vm) __nothing
120 1.117 riastrad #define VMEM_CONDVAR_BROADCAST(vm) __nothing
121 1.80 para
122 1.79 para #define UNITTEST
123 1.79 para #define KASSERT(a) assert(a)
124 1.110 thorpej #define KASSERTMSG(a, m, ...) assert(a)
125 1.117 riastrad #define mutex_init(a, b, c) __nothing
126 1.117 riastrad #define mutex_destroy(a) __nothing
127 1.117 riastrad #define mutex_enter(a) __nothing
128 1.55 yamt #define mutex_tryenter(a) true
129 1.117 riastrad #define mutex_exit(a) __nothing
130 1.110 thorpej #define mutex_owned(a) true
131 1.117 riastrad #define ASSERT_SLEEPABLE() __nothing
132 1.117 riastrad #define panic(...) (printf(__VA_ARGS__), abort())
133 1.117 riastrad
134 1.1 yamt #endif /* defined(_KERNEL) */
135 1.1 yamt
136 1.55 yamt #if defined(VMEM_SANITY)
137 1.55 yamt static void vmem_check(vmem_t *);
138 1.55 yamt #else /* defined(VMEM_SANITY) */
139 1.117 riastrad #define vmem_check(vm) __nothing
140 1.55 yamt #endif /* defined(VMEM_SANITY) */
141 1.1 yamt
142 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
143 1.54 yamt #define VMEM_HASHSIZE_MAX 65536 /* XXX */
144 1.66 para #define VMEM_HASHSIZE_INIT 1
145 1.1 yamt
146 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
147 1.1 yamt
148 1.80 para #if defined(_KERNEL)
149 1.80 para static bool vmem_bootstrapped = false;
150 1.80 para static kmutex_t vmem_list_lock;
151 1.80 para static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
152 1.80 para #endif /* defined(_KERNEL) */
153 1.79 para
154 1.80 para /* ---- misc */
155 1.1 yamt
156 1.110 thorpej #define VMEM_LOCK(vm) mutex_enter(&(vm)->vm_lock)
157 1.110 thorpej #define VMEM_TRYLOCK(vm) mutex_tryenter(&(vm)->vm_lock)
158 1.110 thorpej #define VMEM_UNLOCK(vm) mutex_exit(&(vm)->vm_lock)
159 1.110 thorpej #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&(vm)->vm_lock, MUTEX_DEFAULT, (ipl))
160 1.110 thorpej #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&(vm)->vm_lock)
161 1.110 thorpej #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&(vm)->vm_lock))
162 1.1 yamt
163 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
164 1.19 yamt (-(-(addr) & -(align)))
165 1.62 rmind
166 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
167 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
168 1.19 yamt
169 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
170 1.62 rmind #define SIZE2ORDER(size) ((int)ilog2(size))
171 1.4 yamt
172 1.110 thorpej static void
173 1.110 thorpej vmem_kick_pdaemon(void)
174 1.110 thorpej {
175 1.110 thorpej #if defined(_KERNEL)
176 1.110 thorpej uvm_kick_pdaemon();
177 1.110 thorpej #endif
178 1.110 thorpej }
179 1.110 thorpej
180 1.110 thorpej static void vmem_xfree_bt(vmem_t *, bt_t *);
181 1.110 thorpej
182 1.62 rmind #if !defined(_KERNEL)
183 1.62 rmind #define xmalloc(sz, flags) malloc(sz)
184 1.67 rmind #define xfree(p, sz) free(p)
185 1.62 rmind #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
186 1.62 rmind #define bt_free(vm, bt) free(bt)
187 1.117 riastrad #define bt_freetrim(vm, l) __nothing
188 1.66 para #else /* defined(_KERNEL) */
189 1.1 yamt
190 1.67 rmind #define xmalloc(sz, flags) \
191 1.80 para kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
192 1.80 para #define xfree(p, sz) kmem_free(p, sz);
193 1.66 para
194 1.75 para /*
195 1.75 para * BT_RESERVE calculation:
196 1.106 andvar * we allocate memory for boundary tags with vmem; therefore we have
197 1.105 riastrad * to keep a reserve of bts used to allocated memory for bts.
198 1.75 para * This reserve is 4 for each arena involved in allocating vmems memory.
199 1.75 para * BT_MAXFREE: don't cache excessive counts of bts in arenas
200 1.75 para */
201 1.75 para #define STATIC_BT_COUNT 200
202 1.75 para #define BT_MINRESERVE 4
203 1.66 para #define BT_MAXFREE 64
204 1.66 para
205 1.66 para static struct vmem_btag static_bts[STATIC_BT_COUNT];
206 1.66 para static int static_bt_count = STATIC_BT_COUNT;
207 1.66 para
208 1.80 para static struct vmem kmem_va_meta_arena_store;
209 1.66 para vmem_t *kmem_va_meta_arena;
210 1.80 para static struct vmem kmem_meta_arena_store;
211 1.88 para vmem_t *kmem_meta_arena = NULL;
212 1.66 para
213 1.88 para static kmutex_t vmem_btag_refill_lock;
214 1.66 para static kmutex_t vmem_btag_lock;
215 1.66 para static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
216 1.66 para static size_t vmem_btag_freelist_count = 0;
217 1.88 para static struct pool vmem_btag_pool;
218 1.112 thorpej static bool vmem_btag_pool_initialized __read_mostly;
219 1.66 para
220 1.1 yamt /* ---- boundary tag */
221 1.1 yamt
222 1.94 chs static int bt_refill(vmem_t *vm);
223 1.101 ad static int bt_refill_locked(vmem_t *vm);
224 1.66 para
225 1.88 para static void *
226 1.88 para pool_page_alloc_vmem_meta(struct pool *pp, int flags)
227 1.66 para {
228 1.88 para const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
229 1.66 para vmem_addr_t va;
230 1.88 para int ret;
231 1.66 para
232 1.88 para ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
233 1.88 para (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
234 1.77 para
235 1.88 para return ret ? NULL : (void *)va;
236 1.88 para }
237 1.66 para
238 1.88 para static void
239 1.88 para pool_page_free_vmem_meta(struct pool *pp, void *v)
240 1.88 para {
241 1.66 para
242 1.88 para vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
243 1.88 para }
244 1.66 para
245 1.88 para /* allocator for vmem-pool metadata */
246 1.88 para struct pool_allocator pool_allocator_vmem_meta = {
247 1.88 para .pa_alloc = pool_page_alloc_vmem_meta,
248 1.88 para .pa_free = pool_page_free_vmem_meta,
249 1.88 para .pa_pagesz = 0
250 1.88 para };
251 1.66 para
252 1.66 para static int
253 1.101 ad bt_refill_locked(vmem_t *vm)
254 1.66 para {
255 1.66 para bt_t *bt;
256 1.66 para
257 1.101 ad VMEM_ASSERT_LOCKED(vm);
258 1.101 ad
259 1.88 para if (vm->vm_nfreetags > BT_MINRESERVE) {
260 1.88 para return 0;
261 1.77 para }
262 1.66 para
263 1.66 para mutex_enter(&vmem_btag_lock);
264 1.66 para while (!LIST_EMPTY(&vmem_btag_freelist) &&
265 1.115 thorpej vm->vm_nfreetags <= BT_MINRESERVE &&
266 1.115 thorpej (vm->vm_flags & VM_PRIVTAGS) == 0) {
267 1.66 para bt = LIST_FIRST(&vmem_btag_freelist);
268 1.66 para LIST_REMOVE(bt, bt_freelist);
269 1.114 thorpej bt->bt_flags = 0;
270 1.66 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
271 1.66 para vm->vm_nfreetags++;
272 1.66 para vmem_btag_freelist_count--;
273 1.88 para VMEM_EVCNT_INCR(static_bt_inuse);
274 1.66 para }
275 1.66 para mutex_exit(&vmem_btag_lock);
276 1.66 para
277 1.88 para while (vm->vm_nfreetags <= BT_MINRESERVE) {
278 1.88 para VMEM_UNLOCK(vm);
279 1.112 thorpej KASSERT(vmem_btag_pool_initialized);
280 1.88 para mutex_enter(&vmem_btag_refill_lock);
281 1.91 para bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
282 1.88 para mutex_exit(&vmem_btag_refill_lock);
283 1.88 para VMEM_LOCK(vm);
284 1.91 para if (bt == NULL)
285 1.88 para break;
286 1.114 thorpej bt->bt_flags = 0;
287 1.88 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
288 1.88 para vm->vm_nfreetags++;
289 1.88 para }
290 1.88 para
291 1.92 para if (vm->vm_nfreetags <= BT_MINRESERVE) {
292 1.66 para return ENOMEM;
293 1.66 para }
294 1.88 para
295 1.88 para if (kmem_meta_arena != NULL) {
296 1.101 ad VMEM_UNLOCK(vm);
297 1.94 chs (void)bt_refill(kmem_arena);
298 1.94 chs (void)bt_refill(kmem_va_meta_arena);
299 1.94 chs (void)bt_refill(kmem_meta_arena);
300 1.101 ad VMEM_LOCK(vm);
301 1.88 para }
302 1.66 para
303 1.66 para return 0;
304 1.66 para }
305 1.1 yamt
306 1.101 ad static int
307 1.101 ad bt_refill(vmem_t *vm)
308 1.101 ad {
309 1.101 ad int rv;
310 1.101 ad
311 1.101 ad VMEM_LOCK(vm);
312 1.101 ad rv = bt_refill_locked(vm);
313 1.101 ad VMEM_UNLOCK(vm);
314 1.101 ad return rv;
315 1.101 ad }
316 1.101 ad
317 1.88 para static bt_t *
318 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
319 1.1 yamt {
320 1.66 para bt_t *bt;
321 1.101 ad
322 1.101 ad VMEM_ASSERT_LOCKED(vm);
323 1.101 ad
324 1.88 para while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
325 1.101 ad if (bt_refill_locked(vm)) {
326 1.94 chs if ((flags & VM_NOSLEEP) != 0) {
327 1.94 chs return NULL;
328 1.94 chs }
329 1.94 chs
330 1.94 chs /*
331 1.94 chs * It would be nice to wait for something specific here
332 1.94 chs * but there are multiple ways that a retry could
333 1.94 chs * succeed and we can't wait for multiple things
334 1.94 chs * simultaneously. So we'll just sleep for an arbitrary
335 1.94 chs * short period of time and retry regardless.
336 1.94 chs * This should be a very rare case.
337 1.94 chs */
338 1.94 chs
339 1.94 chs vmem_kick_pdaemon();
340 1.101 ad kpause("btalloc", false, 1, &vm->vm_lock);
341 1.66 para }
342 1.66 para }
343 1.66 para bt = LIST_FIRST(&vm->vm_freetags);
344 1.66 para LIST_REMOVE(bt, bt_freelist);
345 1.66 para vm->vm_nfreetags--;
346 1.66 para
347 1.66 para return bt;
348 1.1 yamt }
349 1.1 yamt
350 1.88 para static void
351 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
352 1.1 yamt {
353 1.66 para
354 1.101 ad VMEM_ASSERT_LOCKED(vm);
355 1.101 ad
356 1.66 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
357 1.66 para vm->vm_nfreetags++;
358 1.88 para }
359 1.88 para
360 1.88 para static void
361 1.88 para bt_freetrim(vmem_t *vm, int freelimit)
362 1.88 para {
363 1.113 thorpej bt_t *bt, *next_bt;
364 1.88 para LIST_HEAD(, vmem_btag) tofree;
365 1.88 para
366 1.101 ad VMEM_ASSERT_LOCKED(vm);
367 1.101 ad
368 1.88 para LIST_INIT(&tofree);
369 1.88 para
370 1.113 thorpej LIST_FOREACH_SAFE(bt, &vm->vm_freetags, bt_freelist, next_bt) {
371 1.113 thorpej if (vm->vm_nfreetags <= freelimit) {
372 1.113 thorpej break;
373 1.113 thorpej }
374 1.115 thorpej if (bt->bt_flags & BT_F_PRIVATE) {
375 1.115 thorpej continue;
376 1.115 thorpej }
377 1.66 para LIST_REMOVE(bt, bt_freelist);
378 1.66 para vm->vm_nfreetags--;
379 1.88 para if (bt >= static_bts
380 1.90 mlelstv && bt < &static_bts[STATIC_BT_COUNT]) {
381 1.88 para mutex_enter(&vmem_btag_lock);
382 1.88 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
383 1.88 para vmem_btag_freelist_count++;
384 1.88 para mutex_exit(&vmem_btag_lock);
385 1.88 para VMEM_EVCNT_DECR(static_bt_inuse);
386 1.88 para } else {
387 1.88 para LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
388 1.88 para }
389 1.66 para }
390 1.88 para
391 1.66 para VMEM_UNLOCK(vm);
392 1.88 para while (!LIST_EMPTY(&tofree)) {
393 1.113 thorpej bt = LIST_FIRST(&tofree);
394 1.113 thorpej LIST_REMOVE(bt, bt_freelist);
395 1.113 thorpej pool_put(&vmem_btag_pool, bt);
396 1.88 para }
397 1.1 yamt }
398 1.115 thorpej
399 1.115 thorpej /*
400 1.115 thorpej * Add private boundary tags (statically-allocated by the caller)
401 1.115 thorpej * to a vmem arena's free tag list.
402 1.115 thorpej */
403 1.115 thorpej void
404 1.115 thorpej vmem_add_bts(vmem_t *vm, struct vmem_btag *bts, unsigned int nbts)
405 1.115 thorpej {
406 1.115 thorpej VMEM_LOCK(vm);
407 1.115 thorpej while (nbts != 0) {
408 1.115 thorpej bts->bt_flags = BT_F_PRIVATE;
409 1.115 thorpej LIST_INSERT_HEAD(&vm->vm_freetags, bts, bt_freelist);
410 1.115 thorpej vm->vm_nfreetags++;
411 1.115 thorpej bts++;
412 1.115 thorpej nbts--;
413 1.115 thorpej }
414 1.115 thorpej VMEM_UNLOCK(vm);
415 1.115 thorpej }
416 1.67 rmind #endif /* defined(_KERNEL) */
417 1.62 rmind
418 1.1 yamt /*
419 1.67 rmind * freelist[0] ... [1, 1]
420 1.1 yamt * freelist[1] ... [2, 3]
421 1.1 yamt * freelist[2] ... [4, 7]
422 1.1 yamt * freelist[3] ... [8, 15]
423 1.1 yamt * :
424 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
425 1.1 yamt * :
426 1.1 yamt */
427 1.1 yamt
428 1.1 yamt static struct vmem_freelist *
429 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
430 1.1 yamt {
431 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
432 1.62 rmind const int idx = SIZE2ORDER(qsize);
433 1.1 yamt
434 1.109 riastrad KASSERT(size != 0);
435 1.109 riastrad KASSERT(qsize != 0);
436 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
437 1.1 yamt KASSERT(idx >= 0);
438 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
439 1.1 yamt
440 1.1 yamt return &vm->vm_freelist[idx];
441 1.1 yamt }
442 1.1 yamt
443 1.59 yamt /*
444 1.59 yamt * bt_freehead_toalloc: return the freelist for the given size and allocation
445 1.59 yamt * strategy.
446 1.59 yamt *
447 1.59 yamt * for VM_INSTANTFIT, return the list in which any blocks are large enough
448 1.59 yamt * for the requested size. otherwise, return the list which can have blocks
449 1.59 yamt * large enough for the requested size.
450 1.59 yamt */
451 1.59 yamt
452 1.1 yamt static struct vmem_freelist *
453 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
454 1.1 yamt {
455 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
456 1.62 rmind int idx = SIZE2ORDER(qsize);
457 1.1 yamt
458 1.109 riastrad KASSERT(size != 0);
459 1.109 riastrad KASSERT(qsize != 0);
460 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
461 1.1 yamt
462 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
463 1.1 yamt idx++;
464 1.1 yamt /* check too large request? */
465 1.1 yamt }
466 1.1 yamt KASSERT(idx >= 0);
467 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
468 1.1 yamt
469 1.1 yamt return &vm->vm_freelist[idx];
470 1.1 yamt }
471 1.1 yamt
472 1.1 yamt /* ---- boundary tag hash */
473 1.1 yamt
474 1.1 yamt static struct vmem_hashlist *
475 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
476 1.1 yamt {
477 1.1 yamt struct vmem_hashlist *list;
478 1.1 yamt unsigned int hash;
479 1.1 yamt
480 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
481 1.101 ad list = &vm->vm_hashlist[hash & vm->vm_hashmask];
482 1.1 yamt
483 1.1 yamt return list;
484 1.1 yamt }
485 1.1 yamt
486 1.1 yamt static bt_t *
487 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
488 1.1 yamt {
489 1.1 yamt struct vmem_hashlist *list;
490 1.1 yamt bt_t *bt;
491 1.1 yamt
492 1.95 msaitoh list = bt_hashhead(vm, addr);
493 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
494 1.1 yamt if (bt->bt_start == addr) {
495 1.1 yamt break;
496 1.1 yamt }
497 1.1 yamt }
498 1.1 yamt
499 1.1 yamt return bt;
500 1.1 yamt }
501 1.1 yamt
502 1.1 yamt static void
503 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
504 1.1 yamt {
505 1.1 yamt
506 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
507 1.73 para vm->vm_inuse -= bt->bt_size;
508 1.1 yamt vm->vm_nbusytag--;
509 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
510 1.1 yamt }
511 1.1 yamt
512 1.1 yamt static void
513 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
514 1.1 yamt {
515 1.1 yamt struct vmem_hashlist *list;
516 1.1 yamt
517 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
518 1.1 yamt
519 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
520 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
521 1.101 ad if (++vm->vm_nbusytag > vm->vm_maxbusytag) {
522 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
523 1.101 ad }
524 1.73 para vm->vm_inuse += bt->bt_size;
525 1.1 yamt }
526 1.1 yamt
527 1.1 yamt /* ---- boundary tag list */
528 1.1 yamt
529 1.1 yamt static void
530 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
531 1.1 yamt {
532 1.1 yamt
533 1.87 christos TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
534 1.1 yamt }
535 1.1 yamt
536 1.1 yamt static void
537 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
538 1.1 yamt {
539 1.1 yamt
540 1.87 christos TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
541 1.1 yamt }
542 1.1 yamt
543 1.1 yamt static void
544 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
545 1.1 yamt {
546 1.1 yamt
547 1.87 christos TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
548 1.1 yamt }
549 1.1 yamt
550 1.1 yamt static void
551 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
552 1.1 yamt {
553 1.1 yamt
554 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
555 1.1 yamt
556 1.1 yamt LIST_REMOVE(bt, bt_freelist);
557 1.1 yamt }
558 1.1 yamt
559 1.1 yamt static void
560 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
561 1.1 yamt {
562 1.1 yamt struct vmem_freelist *list;
563 1.1 yamt
564 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
565 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
566 1.1 yamt }
567 1.1 yamt
568 1.1 yamt /* ---- vmem internal functions */
569 1.1 yamt
570 1.5 yamt #if defined(QCACHE)
571 1.5 yamt static inline vm_flag_t
572 1.5 yamt prf_to_vmf(int prflags)
573 1.5 yamt {
574 1.5 yamt vm_flag_t vmflags;
575 1.5 yamt
576 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
577 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
578 1.5 yamt vmflags = VM_SLEEP;
579 1.5 yamt } else {
580 1.5 yamt vmflags = VM_NOSLEEP;
581 1.5 yamt }
582 1.5 yamt return vmflags;
583 1.5 yamt }
584 1.5 yamt
585 1.5 yamt static inline int
586 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
587 1.5 yamt {
588 1.5 yamt int prflags;
589 1.5 yamt
590 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
591 1.5 yamt prflags = PR_WAITOK;
592 1.7 yamt } else {
593 1.5 yamt prflags = PR_NOWAIT;
594 1.5 yamt }
595 1.5 yamt return prflags;
596 1.5 yamt }
597 1.5 yamt
598 1.5 yamt static size_t
599 1.5 yamt qc_poolpage_size(size_t qcache_max)
600 1.5 yamt {
601 1.5 yamt int i;
602 1.5 yamt
603 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
604 1.5 yamt /* nothing */
605 1.5 yamt }
606 1.5 yamt return ORDER2SIZE(i);
607 1.5 yamt }
608 1.5 yamt
609 1.5 yamt static void *
610 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
611 1.5 yamt {
612 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
613 1.5 yamt vmem_t *vm = qc->qc_vmem;
614 1.61 dyoung vmem_addr_t addr;
615 1.5 yamt
616 1.61 dyoung if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
617 1.61 dyoung prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
618 1.61 dyoung return NULL;
619 1.61 dyoung return (void *)addr;
620 1.5 yamt }
621 1.5 yamt
622 1.5 yamt static void
623 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
624 1.5 yamt {
625 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
626 1.5 yamt vmem_t *vm = qc->qc_vmem;
627 1.5 yamt
628 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
629 1.5 yamt }
630 1.5 yamt
631 1.5 yamt static void
632 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
633 1.5 yamt {
634 1.22 yamt qcache_t *prevqc;
635 1.5 yamt struct pool_allocator *pa;
636 1.5 yamt int qcache_idx_max;
637 1.5 yamt int i;
638 1.5 yamt
639 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
640 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
641 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
642 1.5 yamt }
643 1.5 yamt vm->vm_qcache_max = qcache_max;
644 1.5 yamt pa = &vm->vm_qcache_allocator;
645 1.5 yamt memset(pa, 0, sizeof(*pa));
646 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
647 1.5 yamt pa->pa_free = qc_poolpage_free;
648 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
649 1.5 yamt
650 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
651 1.22 yamt prevqc = NULL;
652 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
653 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
654 1.5 yamt size_t size = i << vm->vm_quantum_shift;
655 1.66 para pool_cache_t pc;
656 1.5 yamt
657 1.5 yamt qc->qc_vmem = vm;
658 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
659 1.5 yamt vm->vm_name, size);
660 1.66 para
661 1.80 para pc = pool_cache_init(size,
662 1.80 para ORDER2SIZE(vm->vm_quantum_shift), 0,
663 1.80 para PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
664 1.80 para qc->qc_name, pa, ipl, NULL, NULL, NULL);
665 1.80 para
666 1.80 para KASSERT(pc);
667 1.80 para
668 1.66 para qc->qc_cache = pc;
669 1.35 ad KASSERT(qc->qc_cache != NULL); /* XXX */
670 1.22 yamt if (prevqc != NULL &&
671 1.35 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
672 1.35 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
673 1.80 para pool_cache_destroy(qc->qc_cache);
674 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
675 1.27 ad continue;
676 1.22 yamt }
677 1.35 ad qc->qc_cache->pc_pool.pr_qcache = qc;
678 1.22 yamt vm->vm_qcache[i - 1] = qc;
679 1.22 yamt prevqc = qc;
680 1.5 yamt }
681 1.5 yamt }
682 1.6 yamt
683 1.23 yamt static void
684 1.23 yamt qc_destroy(vmem_t *vm)
685 1.23 yamt {
686 1.23 yamt const qcache_t *prevqc;
687 1.23 yamt int i;
688 1.23 yamt int qcache_idx_max;
689 1.23 yamt
690 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
691 1.23 yamt prevqc = NULL;
692 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
693 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
694 1.23 yamt
695 1.23 yamt if (prevqc == qc) {
696 1.23 yamt continue;
697 1.23 yamt }
698 1.80 para pool_cache_destroy(qc->qc_cache);
699 1.23 yamt prevqc = qc;
700 1.23 yamt }
701 1.23 yamt }
702 1.66 para #endif
703 1.23 yamt
704 1.66 para #if defined(_KERNEL)
705 1.80 para static void
706 1.66 para vmem_bootstrap(void)
707 1.6 yamt {
708 1.6 yamt
709 1.103 ad mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
710 1.66 para mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
711 1.88 para mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
712 1.6 yamt
713 1.66 para while (static_bt_count-- > 0) {
714 1.66 para bt_t *bt = &static_bts[static_bt_count];
715 1.66 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
716 1.88 para VMEM_EVCNT_INCR(static_bt_count);
717 1.66 para vmem_btag_freelist_count++;
718 1.6 yamt }
719 1.80 para vmem_bootstrapped = TRUE;
720 1.6 yamt }
721 1.5 yamt
722 1.66 para void
723 1.80 para vmem_subsystem_init(vmem_t *vm)
724 1.1 yamt {
725 1.1 yamt
726 1.80 para kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
727 1.80 para 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
728 1.66 para 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
729 1.66 para IPL_VM);
730 1.66 para
731 1.80 para kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
732 1.80 para 0, 0, PAGE_SIZE,
733 1.66 para uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
734 1.66 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
735 1.88 para
736 1.101 ad pool_init(&vmem_btag_pool, sizeof(bt_t), coherency_unit, 0,
737 1.101 ad PR_PHINPAGE, "vmembt", &pool_allocator_vmem_meta, IPL_VM);
738 1.112 thorpej vmem_btag_pool_initialized = true;
739 1.1 yamt }
740 1.1 yamt #endif /* defined(_KERNEL) */
741 1.1 yamt
742 1.61 dyoung static int
743 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
744 1.1 yamt int spanbttype)
745 1.1 yamt {
746 1.1 yamt bt_t *btspan;
747 1.1 yamt bt_t *btfree;
748 1.1 yamt
749 1.101 ad VMEM_ASSERT_LOCKED(vm);
750 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
751 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
752 1.58 yamt KASSERT(spanbttype == BT_TYPE_SPAN ||
753 1.58 yamt spanbttype == BT_TYPE_SPAN_STATIC);
754 1.1 yamt
755 1.1 yamt btspan = bt_alloc(vm, flags);
756 1.1 yamt if (btspan == NULL) {
757 1.61 dyoung return ENOMEM;
758 1.1 yamt }
759 1.1 yamt btfree = bt_alloc(vm, flags);
760 1.1 yamt if (btfree == NULL) {
761 1.1 yamt bt_free(vm, btspan);
762 1.61 dyoung return ENOMEM;
763 1.1 yamt }
764 1.1 yamt
765 1.1 yamt btspan->bt_type = spanbttype;
766 1.1 yamt btspan->bt_start = addr;
767 1.1 yamt btspan->bt_size = size;
768 1.1 yamt
769 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
770 1.1 yamt btfree->bt_start = addr;
771 1.1 yamt btfree->bt_size = size;
772 1.1 yamt
773 1.1 yamt bt_insseg_tail(vm, btspan);
774 1.1 yamt bt_insseg(vm, btfree, btspan);
775 1.1 yamt bt_insfree(vm, btfree);
776 1.66 para vm->vm_size += size;
777 1.1 yamt
778 1.61 dyoung return 0;
779 1.1 yamt }
780 1.1 yamt
781 1.30 yamt static void
782 1.30 yamt vmem_destroy1(vmem_t *vm)
783 1.30 yamt {
784 1.30 yamt
785 1.30 yamt #if defined(QCACHE)
786 1.30 yamt qc_destroy(vm);
787 1.30 yamt #endif /* defined(QCACHE) */
788 1.101 ad VMEM_LOCK(vm);
789 1.30 yamt
790 1.101 ad for (int i = 0; i < vm->vm_hashsize; i++) {
791 1.101 ad bt_t *bt;
792 1.30 yamt
793 1.101 ad while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
794 1.101 ad KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
795 1.101 ad LIST_REMOVE(bt, bt_hashlist);
796 1.101 ad bt_free(vm, bt);
797 1.66 para }
798 1.66 para }
799 1.66 para
800 1.101 ad /* bt_freetrim() drops the lock. */
801 1.88 para bt_freetrim(vm, 0);
802 1.101 ad if (vm->vm_hashlist != &vm->vm_hash0) {
803 1.101 ad xfree(vm->vm_hashlist,
804 1.101 ad sizeof(struct vmem_hashlist) * vm->vm_hashsize);
805 1.101 ad }
806 1.66 para
807 1.80 para VMEM_CONDVAR_DESTROY(vm);
808 1.31 ad VMEM_LOCK_DESTROY(vm);
809 1.66 para xfree(vm, sizeof(*vm));
810 1.30 yamt }
811 1.30 yamt
812 1.1 yamt static int
813 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
814 1.1 yamt {
815 1.1 yamt vmem_addr_t addr;
816 1.61 dyoung int rc;
817 1.1 yamt
818 1.101 ad VMEM_ASSERT_LOCKED(vm);
819 1.101 ad
820 1.61 dyoung if (vm->vm_importfn == NULL) {
821 1.1 yamt return EINVAL;
822 1.1 yamt }
823 1.1 yamt
824 1.66 para if (vm->vm_flags & VM_LARGEIMPORT) {
825 1.80 para size *= 16;
826 1.66 para }
827 1.66 para
828 1.101 ad VMEM_UNLOCK(vm);
829 1.66 para if (vm->vm_flags & VM_XIMPORT) {
830 1.99 christos rc = __FPTRCAST(vmem_ximport_t *, vm->vm_importfn)(vm->vm_arg,
831 1.98 christos size, &size, flags, &addr);
832 1.66 para } else {
833 1.66 para rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
834 1.69 rmind }
835 1.101 ad VMEM_LOCK(vm);
836 1.101 ad
837 1.69 rmind if (rc) {
838 1.69 rmind return ENOMEM;
839 1.1 yamt }
840 1.1 yamt
841 1.61 dyoung if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
842 1.101 ad VMEM_UNLOCK(vm);
843 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, addr, size);
844 1.101 ad VMEM_LOCK(vm);
845 1.1 yamt return ENOMEM;
846 1.1 yamt }
847 1.1 yamt
848 1.1 yamt return 0;
849 1.1 yamt }
850 1.1 yamt
851 1.110 thorpej #if defined(_KERNEL)
852 1.1 yamt static int
853 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
854 1.1 yamt {
855 1.1 yamt bt_t *bt;
856 1.1 yamt int i;
857 1.1 yamt struct vmem_hashlist *newhashlist;
858 1.1 yamt struct vmem_hashlist *oldhashlist;
859 1.1 yamt size_t oldhashsize;
860 1.1 yamt
861 1.1 yamt KASSERT(newhashsize > 0);
862 1.1 yamt
863 1.101 ad /* Round hash size up to a power of 2. */
864 1.101 ad newhashsize = 1 << (ilog2(newhashsize) + 1);
865 1.101 ad
866 1.1 yamt newhashlist =
867 1.101 ad xmalloc(sizeof(struct vmem_hashlist) * newhashsize, flags);
868 1.1 yamt if (newhashlist == NULL) {
869 1.1 yamt return ENOMEM;
870 1.1 yamt }
871 1.1 yamt for (i = 0; i < newhashsize; i++) {
872 1.1 yamt LIST_INIT(&newhashlist[i]);
873 1.1 yamt }
874 1.1 yamt
875 1.101 ad VMEM_LOCK(vm);
876 1.101 ad /* Decay back to a small hash slowly. */
877 1.101 ad if (vm->vm_maxbusytag >= 2) {
878 1.101 ad vm->vm_maxbusytag = vm->vm_maxbusytag / 2 - 1;
879 1.101 ad if (vm->vm_nbusytag > vm->vm_maxbusytag) {
880 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
881 1.101 ad }
882 1.101 ad } else {
883 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
884 1.30 yamt }
885 1.1 yamt oldhashlist = vm->vm_hashlist;
886 1.1 yamt oldhashsize = vm->vm_hashsize;
887 1.1 yamt vm->vm_hashlist = newhashlist;
888 1.1 yamt vm->vm_hashsize = newhashsize;
889 1.101 ad vm->vm_hashmask = newhashsize - 1;
890 1.1 yamt if (oldhashlist == NULL) {
891 1.1 yamt VMEM_UNLOCK(vm);
892 1.1 yamt return 0;
893 1.1 yamt }
894 1.1 yamt for (i = 0; i < oldhashsize; i++) {
895 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
896 1.1 yamt bt_rembusy(vm, bt); /* XXX */
897 1.1 yamt bt_insbusy(vm, bt);
898 1.1 yamt }
899 1.1 yamt }
900 1.1 yamt VMEM_UNLOCK(vm);
901 1.1 yamt
902 1.66 para if (oldhashlist != &vm->vm_hash0) {
903 1.66 para xfree(oldhashlist,
904 1.101 ad sizeof(struct vmem_hashlist) * oldhashsize);
905 1.66 para }
906 1.1 yamt
907 1.1 yamt return 0;
908 1.1 yamt }
909 1.110 thorpej #endif /* _KERNEL */
910 1.1 yamt
911 1.10 yamt /*
912 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
913 1.59 yamt *
914 1.59 yamt * it's a caller's responsibility to ensure the region is big enough
915 1.59 yamt * before calling us.
916 1.10 yamt */
917 1.10 yamt
918 1.61 dyoung static int
919 1.76 joerg vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
920 1.60 dyoung vmem_size_t phase, vmem_size_t nocross,
921 1.61 dyoung vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
922 1.10 yamt {
923 1.10 yamt vmem_addr_t start;
924 1.10 yamt vmem_addr_t end;
925 1.10 yamt
926 1.60 dyoung KASSERT(size > 0);
927 1.59 yamt KASSERT(bt->bt_size >= size); /* caller's responsibility */
928 1.10 yamt
929 1.10 yamt /*
930 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
931 1.10 yamt * unsigned integer of the same size.
932 1.10 yamt */
933 1.10 yamt
934 1.10 yamt start = bt->bt_start;
935 1.10 yamt if (start < minaddr) {
936 1.10 yamt start = minaddr;
937 1.10 yamt }
938 1.10 yamt end = BT_END(bt);
939 1.60 dyoung if (end > maxaddr) {
940 1.60 dyoung end = maxaddr;
941 1.10 yamt }
942 1.60 dyoung if (start > end) {
943 1.61 dyoung return ENOMEM;
944 1.10 yamt }
945 1.19 yamt
946 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
947 1.10 yamt if (start < bt->bt_start) {
948 1.10 yamt start += align;
949 1.10 yamt }
950 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
951 1.10 yamt KASSERT(align < nocross);
952 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
953 1.10 yamt }
954 1.60 dyoung if (start <= end && end - start >= size - 1) {
955 1.10 yamt KASSERT((start & (align - 1)) == phase);
956 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
957 1.10 yamt KASSERT(minaddr <= start);
958 1.60 dyoung KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
959 1.10 yamt KASSERT(bt->bt_start <= start);
960 1.60 dyoung KASSERT(BT_END(bt) - start >= size - 1);
961 1.61 dyoung *addrp = start;
962 1.61 dyoung return 0;
963 1.10 yamt }
964 1.61 dyoung return ENOMEM;
965 1.10 yamt }
966 1.10 yamt
967 1.80 para /* ---- vmem API */
968 1.1 yamt
969 1.1 yamt /*
970 1.102 ad * vmem_init: creates a vmem arena.
971 1.1 yamt */
972 1.1 yamt
973 1.80 para vmem_t *
974 1.80 para vmem_init(vmem_t *vm, const char *name,
975 1.80 para vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
976 1.80 para vmem_import_t *importfn, vmem_release_t *releasefn,
977 1.80 para vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
978 1.1 yamt {
979 1.1 yamt int i;
980 1.1 yamt
981 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
982 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
983 1.62 rmind KASSERT(quantum > 0);
984 1.116 thorpej KASSERT(powerof2(quantum));
985 1.116 thorpej
986 1.116 thorpej /*
987 1.116 thorpej * If private tags are going to be used, they must
988 1.116 thorpej * be added to the arena before the first span is
989 1.116 thorpej * added.
990 1.116 thorpej */
991 1.116 thorpej KASSERT((flags & VM_PRIVTAGS) == 0 || size == 0);
992 1.1 yamt
993 1.1 yamt #if defined(_KERNEL)
994 1.80 para /* XXX: SMP, we get called early... */
995 1.80 para if (!vmem_bootstrapped) {
996 1.80 para vmem_bootstrap();
997 1.80 para }
998 1.66 para #endif /* defined(_KERNEL) */
999 1.80 para
1000 1.80 para if (vm == NULL) {
1001 1.66 para vm = xmalloc(sizeof(*vm), flags);
1002 1.1 yamt }
1003 1.1 yamt if (vm == NULL) {
1004 1.1 yamt return NULL;
1005 1.1 yamt }
1006 1.1 yamt
1007 1.66 para VMEM_CONDVAR_INIT(vm, "vmem");
1008 1.31 ad VMEM_LOCK_INIT(vm, ipl);
1009 1.66 para vm->vm_flags = flags;
1010 1.66 para vm->vm_nfreetags = 0;
1011 1.66 para LIST_INIT(&vm->vm_freetags);
1012 1.64 yamt strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
1013 1.1 yamt vm->vm_quantum_mask = quantum - 1;
1014 1.62 rmind vm->vm_quantum_shift = SIZE2ORDER(quantum);
1015 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
1016 1.61 dyoung vm->vm_importfn = importfn;
1017 1.61 dyoung vm->vm_releasefn = releasefn;
1018 1.61 dyoung vm->vm_arg = arg;
1019 1.1 yamt vm->vm_nbusytag = 0;
1020 1.101 ad vm->vm_maxbusytag = 0;
1021 1.66 para vm->vm_size = 0;
1022 1.66 para vm->vm_inuse = 0;
1023 1.5 yamt #if defined(QCACHE)
1024 1.31 ad qc_init(vm, qcache_max, ipl);
1025 1.5 yamt #endif /* defined(QCACHE) */
1026 1.1 yamt
1027 1.87 christos TAILQ_INIT(&vm->vm_seglist);
1028 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1029 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
1030 1.1 yamt }
1031 1.101 ad memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
1032 1.80 para vm->vm_hashsize = 1;
1033 1.101 ad vm->vm_hashmask = vm->vm_hashsize - 1;
1034 1.80 para vm->vm_hashlist = &vm->vm_hash0;
1035 1.1 yamt
1036 1.1 yamt if (size != 0) {
1037 1.61 dyoung if (vmem_add(vm, base, size, flags) != 0) {
1038 1.30 yamt vmem_destroy1(vm);
1039 1.1 yamt return NULL;
1040 1.1 yamt }
1041 1.1 yamt }
1042 1.1 yamt
1043 1.30 yamt #if defined(_KERNEL)
1044 1.66 para if (flags & VM_BOOTSTRAP) {
1045 1.94 chs bt_refill(vm);
1046 1.66 para }
1047 1.66 para
1048 1.30 yamt mutex_enter(&vmem_list_lock);
1049 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1050 1.30 yamt mutex_exit(&vmem_list_lock);
1051 1.30 yamt #endif /* defined(_KERNEL) */
1052 1.30 yamt
1053 1.1 yamt return vm;
1054 1.1 yamt }
1055 1.1 yamt
1056 1.66 para
1057 1.66 para
1058 1.66 para /*
1059 1.66 para * vmem_create: create an arena.
1060 1.66 para *
1061 1.66 para * => must not be called from interrupt context.
1062 1.66 para */
1063 1.66 para
1064 1.66 para vmem_t *
1065 1.66 para vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1066 1.66 para vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1067 1.67 rmind vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1068 1.66 para {
1069 1.66 para
1070 1.66 para KASSERT((flags & (VM_XIMPORT)) == 0);
1071 1.66 para
1072 1.80 para return vmem_init(NULL, name, base, size, quantum,
1073 1.66 para importfn, releasefn, source, qcache_max, flags, ipl);
1074 1.66 para }
1075 1.66 para
1076 1.66 para /*
1077 1.66 para * vmem_xcreate: create an arena takes alternative import func.
1078 1.66 para *
1079 1.66 para * => must not be called from interrupt context.
1080 1.66 para */
1081 1.66 para
1082 1.66 para vmem_t *
1083 1.66 para vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1084 1.66 para vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1085 1.67 rmind vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1086 1.66 para {
1087 1.66 para
1088 1.66 para KASSERT((flags & (VM_XIMPORT)) == 0);
1089 1.66 para
1090 1.80 para return vmem_init(NULL, name, base, size, quantum,
1091 1.99 christos __FPTRCAST(vmem_import_t *, importfn), releasefn, source,
1092 1.66 para qcache_max, flags | VM_XIMPORT, ipl);
1093 1.66 para }
1094 1.66 para
1095 1.1 yamt void
1096 1.1 yamt vmem_destroy(vmem_t *vm)
1097 1.1 yamt {
1098 1.1 yamt
1099 1.30 yamt #if defined(_KERNEL)
1100 1.30 yamt mutex_enter(&vmem_list_lock);
1101 1.30 yamt LIST_REMOVE(vm, vm_alllist);
1102 1.30 yamt mutex_exit(&vmem_list_lock);
1103 1.30 yamt #endif /* defined(_KERNEL) */
1104 1.1 yamt
1105 1.30 yamt vmem_destroy1(vm);
1106 1.1 yamt }
1107 1.1 yamt
1108 1.1 yamt vmem_size_t
1109 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1110 1.1 yamt {
1111 1.1 yamt
1112 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1113 1.1 yamt }
1114 1.1 yamt
1115 1.1 yamt /*
1116 1.83 yamt * vmem_alloc: allocate resource from the arena.
1117 1.1 yamt */
1118 1.1 yamt
1119 1.61 dyoung int
1120 1.61 dyoung vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1121 1.1 yamt {
1122 1.86 martin const vm_flag_t strat __diagused = flags & VM_FITMASK;
1123 1.96 chs int error;
1124 1.1 yamt
1125 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1126 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1127 1.1 yamt
1128 1.1 yamt KASSERT(size > 0);
1129 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1130 1.3 yamt if ((flags & VM_SLEEP) != 0) {
1131 1.42 yamt ASSERT_SLEEPABLE();
1132 1.3 yamt }
1133 1.1 yamt
1134 1.5 yamt #if defined(QCACHE)
1135 1.5 yamt if (size <= vm->vm_qcache_max) {
1136 1.61 dyoung void *p;
1137 1.38 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1138 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1139 1.5 yamt
1140 1.61 dyoung p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1141 1.61 dyoung if (addrp != NULL)
1142 1.61 dyoung *addrp = (vmem_addr_t)p;
1143 1.96 chs error = (p == NULL) ? ENOMEM : 0;
1144 1.96 chs goto out;
1145 1.5 yamt }
1146 1.5 yamt #endif /* defined(QCACHE) */
1147 1.5 yamt
1148 1.96 chs error = vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1149 1.61 dyoung flags, addrp);
1150 1.110 thorpej #if defined(QCACHE)
1151 1.110 thorpej out:
1152 1.110 thorpej #endif /* defined(QCACHE) */
1153 1.107 riastrad KASSERTMSG(error || addrp == NULL ||
1154 1.107 riastrad (*addrp & vm->vm_quantum_mask) == 0,
1155 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1156 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1157 1.96 chs KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1158 1.96 chs return error;
1159 1.10 yamt }
1160 1.10 yamt
1161 1.61 dyoung int
1162 1.111 thorpej vmem_xalloc_addr(vmem_t *vm, const vmem_addr_t addr, const vmem_size_t size,
1163 1.111 thorpej vm_flag_t flags)
1164 1.111 thorpej {
1165 1.111 thorpej vmem_addr_t result;
1166 1.111 thorpej int error;
1167 1.111 thorpej
1168 1.111 thorpej KASSERT((addr & vm->vm_quantum_mask) == 0);
1169 1.111 thorpej KASSERT(size != 0);
1170 1.111 thorpej
1171 1.111 thorpej flags = (flags & ~VM_INSTANTFIT) | VM_BESTFIT;
1172 1.111 thorpej
1173 1.111 thorpej error = vmem_xalloc(vm, size, 0, 0, 0, addr, addr + size - 1,
1174 1.111 thorpej flags, &result);
1175 1.111 thorpej
1176 1.111 thorpej KASSERT(error || result == addr);
1177 1.111 thorpej KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1178 1.111 thorpej return error;
1179 1.111 thorpej }
1180 1.111 thorpej
1181 1.111 thorpej int
1182 1.60 dyoung vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1183 1.60 dyoung const vmem_size_t phase, const vmem_size_t nocross,
1184 1.61 dyoung const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1185 1.61 dyoung vmem_addr_t *addrp)
1186 1.10 yamt {
1187 1.10 yamt struct vmem_freelist *list;
1188 1.10 yamt struct vmem_freelist *first;
1189 1.10 yamt struct vmem_freelist *end;
1190 1.10 yamt bt_t *bt;
1191 1.10 yamt bt_t *btnew;
1192 1.10 yamt bt_t *btnew2;
1193 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
1194 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
1195 1.10 yamt vmem_addr_t start;
1196 1.61 dyoung int rc;
1197 1.10 yamt
1198 1.10 yamt KASSERT(size0 > 0);
1199 1.10 yamt KASSERT(size > 0);
1200 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1201 1.10 yamt if ((flags & VM_SLEEP) != 0) {
1202 1.42 yamt ASSERT_SLEEPABLE();
1203 1.10 yamt }
1204 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
1205 1.10 yamt KASSERT((align & (align - 1)) == 0);
1206 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
1207 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
1208 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
1209 1.109 riastrad KASSERT(align == 0 || phase < align);
1210 1.109 riastrad KASSERT(phase == 0 || phase < align);
1211 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
1212 1.60 dyoung KASSERT(minaddr <= maxaddr);
1213 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1214 1.10 yamt
1215 1.10 yamt if (align == 0) {
1216 1.10 yamt align = vm->vm_quantum_mask + 1;
1217 1.10 yamt }
1218 1.59 yamt
1219 1.59 yamt /*
1220 1.59 yamt * allocate boundary tags before acquiring the vmem lock.
1221 1.59 yamt */
1222 1.101 ad VMEM_LOCK(vm);
1223 1.1 yamt btnew = bt_alloc(vm, flags);
1224 1.1 yamt if (btnew == NULL) {
1225 1.101 ad VMEM_UNLOCK(vm);
1226 1.61 dyoung return ENOMEM;
1227 1.1 yamt }
1228 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1229 1.10 yamt if (btnew2 == NULL) {
1230 1.10 yamt bt_free(vm, btnew);
1231 1.101 ad VMEM_UNLOCK(vm);
1232 1.61 dyoung return ENOMEM;
1233 1.10 yamt }
1234 1.1 yamt
1235 1.59 yamt /*
1236 1.59 yamt * choose a free block from which we allocate.
1237 1.59 yamt */
1238 1.1 yamt retry_strat:
1239 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
1240 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
1241 1.1 yamt retry:
1242 1.1 yamt bt = NULL;
1243 1.55 yamt vmem_check(vm);
1244 1.2 yamt if (strat == VM_INSTANTFIT) {
1245 1.59 yamt /*
1246 1.59 yamt * just choose the first block which satisfies our restrictions.
1247 1.59 yamt *
1248 1.59 yamt * note that we don't need to check the size of the blocks
1249 1.59 yamt * because any blocks found on these list should be larger than
1250 1.59 yamt * the given size.
1251 1.59 yamt */
1252 1.2 yamt for (list = first; list < end; list++) {
1253 1.2 yamt bt = LIST_FIRST(list);
1254 1.2 yamt if (bt != NULL) {
1255 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
1256 1.61 dyoung nocross, minaddr, maxaddr, &start);
1257 1.61 dyoung if (rc == 0) {
1258 1.10 yamt goto gotit;
1259 1.10 yamt }
1260 1.59 yamt /*
1261 1.59 yamt * don't bother to follow the bt_freelist link
1262 1.59 yamt * here. the list can be very long and we are
1263 1.59 yamt * told to run fast. blocks from the later free
1264 1.59 yamt * lists are larger and have better chances to
1265 1.59 yamt * satisfy our restrictions.
1266 1.59 yamt */
1267 1.2 yamt }
1268 1.2 yamt }
1269 1.2 yamt } else { /* VM_BESTFIT */
1270 1.59 yamt /*
1271 1.59 yamt * we assume that, for space efficiency, it's better to
1272 1.59 yamt * allocate from a smaller block. thus we will start searching
1273 1.59 yamt * from the lower-order list than VM_INSTANTFIT.
1274 1.59 yamt * however, don't bother to find the smallest block in a free
1275 1.59 yamt * list because the list can be very long. we can revisit it
1276 1.59 yamt * if/when it turns out to be a problem.
1277 1.59 yamt *
1278 1.59 yamt * note that the 'first' list can contain blocks smaller than
1279 1.59 yamt * the requested size. thus we need to check bt_size.
1280 1.59 yamt */
1281 1.2 yamt for (list = first; list < end; list++) {
1282 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
1283 1.2 yamt if (bt->bt_size >= size) {
1284 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
1285 1.61 dyoung nocross, minaddr, maxaddr, &start);
1286 1.61 dyoung if (rc == 0) {
1287 1.10 yamt goto gotit;
1288 1.10 yamt }
1289 1.2 yamt }
1290 1.1 yamt }
1291 1.1 yamt }
1292 1.1 yamt }
1293 1.1 yamt #if 1
1294 1.2 yamt if (strat == VM_INSTANTFIT) {
1295 1.2 yamt strat = VM_BESTFIT;
1296 1.2 yamt goto retry_strat;
1297 1.2 yamt }
1298 1.1 yamt #endif
1299 1.69 rmind if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1300 1.10 yamt
1301 1.10 yamt /*
1302 1.10 yamt * XXX should try to import a region large enough to
1303 1.10 yamt * satisfy restrictions?
1304 1.10 yamt */
1305 1.10 yamt
1306 1.20 yamt goto fail;
1307 1.10 yamt }
1308 1.60 dyoung /* XXX eeek, minaddr & maxaddr not respected */
1309 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
1310 1.2 yamt goto retry;
1311 1.1 yamt }
1312 1.2 yamt /* XXX */
1313 1.66 para
1314 1.68 para if ((flags & VM_SLEEP) != 0) {
1315 1.94 chs vmem_kick_pdaemon();
1316 1.68 para VMEM_CONDVAR_WAIT(vm);
1317 1.68 para goto retry;
1318 1.68 para }
1319 1.20 yamt fail:
1320 1.20 yamt bt_free(vm, btnew);
1321 1.20 yamt bt_free(vm, btnew2);
1322 1.101 ad VMEM_UNLOCK(vm);
1323 1.61 dyoung return ENOMEM;
1324 1.2 yamt
1325 1.2 yamt gotit:
1326 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
1327 1.1 yamt KASSERT(bt->bt_size >= size);
1328 1.1 yamt bt_remfree(vm, bt);
1329 1.55 yamt vmem_check(vm);
1330 1.10 yamt if (bt->bt_start != start) {
1331 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
1332 1.10 yamt btnew2->bt_start = bt->bt_start;
1333 1.10 yamt btnew2->bt_size = start - bt->bt_start;
1334 1.10 yamt bt->bt_start = start;
1335 1.10 yamt bt->bt_size -= btnew2->bt_size;
1336 1.10 yamt bt_insfree(vm, btnew2);
1337 1.87 christos bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1338 1.10 yamt btnew2 = NULL;
1339 1.55 yamt vmem_check(vm);
1340 1.10 yamt }
1341 1.10 yamt KASSERT(bt->bt_start == start);
1342 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1343 1.1 yamt /* split */
1344 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1345 1.1 yamt btnew->bt_start = bt->bt_start;
1346 1.1 yamt btnew->bt_size = size;
1347 1.1 yamt bt->bt_start = bt->bt_start + size;
1348 1.1 yamt bt->bt_size -= size;
1349 1.1 yamt bt_insfree(vm, bt);
1350 1.87 christos bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1351 1.1 yamt bt_insbusy(vm, btnew);
1352 1.55 yamt vmem_check(vm);
1353 1.1 yamt } else {
1354 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1355 1.1 yamt bt_insbusy(vm, bt);
1356 1.55 yamt vmem_check(vm);
1357 1.1 yamt bt_free(vm, btnew);
1358 1.1 yamt btnew = bt;
1359 1.1 yamt }
1360 1.10 yamt if (btnew2 != NULL) {
1361 1.10 yamt bt_free(vm, btnew2);
1362 1.10 yamt }
1363 1.1 yamt KASSERT(btnew->bt_size >= size);
1364 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1365 1.61 dyoung if (addrp != NULL)
1366 1.61 dyoung *addrp = btnew->bt_start;
1367 1.101 ad VMEM_UNLOCK(vm);
1368 1.107 riastrad KASSERTMSG(addrp == NULL ||
1369 1.107 riastrad (*addrp & vm->vm_quantum_mask) == 0,
1370 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1371 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1372 1.61 dyoung return 0;
1373 1.1 yamt }
1374 1.1 yamt
1375 1.1 yamt /*
1376 1.83 yamt * vmem_free: free the resource to the arena.
1377 1.1 yamt */
1378 1.1 yamt
1379 1.1 yamt void
1380 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1381 1.1 yamt {
1382 1.1 yamt
1383 1.1 yamt KASSERT(size > 0);
1384 1.107 riastrad KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1385 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1386 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1387 1.1 yamt
1388 1.5 yamt #if defined(QCACHE)
1389 1.5 yamt if (size <= vm->vm_qcache_max) {
1390 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1391 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1392 1.5 yamt
1393 1.63 rmind pool_cache_put(qc->qc_cache, (void *)addr);
1394 1.63 rmind return;
1395 1.5 yamt }
1396 1.5 yamt #endif /* defined(QCACHE) */
1397 1.5 yamt
1398 1.10 yamt vmem_xfree(vm, addr, size);
1399 1.10 yamt }
1400 1.10 yamt
1401 1.10 yamt void
1402 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1403 1.10 yamt {
1404 1.10 yamt bt_t *bt;
1405 1.10 yamt
1406 1.10 yamt KASSERT(size > 0);
1407 1.107 riastrad KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1408 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1409 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1410 1.10 yamt
1411 1.1 yamt VMEM_LOCK(vm);
1412 1.1 yamt
1413 1.1 yamt bt = bt_lookupbusy(vm, addr);
1414 1.107 riastrad KASSERTMSG(bt != NULL, "vmem %s addr 0x%jx size 0x%jx",
1415 1.107 riastrad vm->vm_name, (uintmax_t)addr, (uintmax_t)size);
1416 1.1 yamt KASSERT(bt->bt_start == addr);
1417 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1418 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1419 1.105 riastrad
1420 1.104 thorpej /* vmem_xfree_bt() drops the lock. */
1421 1.104 thorpej vmem_xfree_bt(vm, bt);
1422 1.104 thorpej }
1423 1.104 thorpej
1424 1.104 thorpej void
1425 1.104 thorpej vmem_xfreeall(vmem_t *vm)
1426 1.104 thorpej {
1427 1.104 thorpej bt_t *bt;
1428 1.104 thorpej
1429 1.110 thorpej #if defined(QCACHE)
1430 1.104 thorpej /* This can't be used if the arena has a quantum cache. */
1431 1.104 thorpej KASSERT(vm->vm_qcache_max == 0);
1432 1.110 thorpej #endif /* defined(QCACHE) */
1433 1.104 thorpej
1434 1.104 thorpej for (;;) {
1435 1.104 thorpej VMEM_LOCK(vm);
1436 1.104 thorpej TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1437 1.104 thorpej if (bt->bt_type == BT_TYPE_BUSY)
1438 1.104 thorpej break;
1439 1.104 thorpej }
1440 1.104 thorpej if (bt != NULL) {
1441 1.104 thorpej /* vmem_xfree_bt() drops the lock. */
1442 1.104 thorpej vmem_xfree_bt(vm, bt);
1443 1.104 thorpej } else {
1444 1.104 thorpej VMEM_UNLOCK(vm);
1445 1.104 thorpej return;
1446 1.104 thorpej }
1447 1.104 thorpej }
1448 1.104 thorpej }
1449 1.104 thorpej
1450 1.104 thorpej static void
1451 1.104 thorpej vmem_xfree_bt(vmem_t *vm, bt_t *bt)
1452 1.104 thorpej {
1453 1.104 thorpej bt_t *t;
1454 1.104 thorpej
1455 1.104 thorpej VMEM_ASSERT_LOCKED(vm);
1456 1.104 thorpej
1457 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1458 1.1 yamt bt_rembusy(vm, bt);
1459 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1460 1.1 yamt
1461 1.1 yamt /* coalesce */
1462 1.87 christos t = TAILQ_NEXT(bt, bt_seglist);
1463 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1464 1.60 dyoung KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1465 1.1 yamt bt_remfree(vm, t);
1466 1.1 yamt bt_remseg(vm, t);
1467 1.1 yamt bt->bt_size += t->bt_size;
1468 1.101 ad bt_free(vm, t);
1469 1.1 yamt }
1470 1.87 christos t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1471 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1472 1.60 dyoung KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1473 1.1 yamt bt_remfree(vm, t);
1474 1.1 yamt bt_remseg(vm, t);
1475 1.1 yamt bt->bt_size += t->bt_size;
1476 1.1 yamt bt->bt_start = t->bt_start;
1477 1.101 ad bt_free(vm, t);
1478 1.1 yamt }
1479 1.1 yamt
1480 1.87 christos t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1481 1.1 yamt KASSERT(t != NULL);
1482 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1483 1.61 dyoung if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1484 1.1 yamt t->bt_size == bt->bt_size) {
1485 1.1 yamt vmem_addr_t spanaddr;
1486 1.1 yamt vmem_size_t spansize;
1487 1.1 yamt
1488 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1489 1.1 yamt spanaddr = bt->bt_start;
1490 1.1 yamt spansize = bt->bt_size;
1491 1.1 yamt bt_remseg(vm, bt);
1492 1.101 ad bt_free(vm, bt);
1493 1.1 yamt bt_remseg(vm, t);
1494 1.101 ad bt_free(vm, t);
1495 1.66 para vm->vm_size -= spansize;
1496 1.68 para VMEM_CONDVAR_BROADCAST(vm);
1497 1.101 ad /* bt_freetrim() drops the lock. */
1498 1.101 ad bt_freetrim(vm, BT_MAXFREE);
1499 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1500 1.1 yamt } else {
1501 1.1 yamt bt_insfree(vm, bt);
1502 1.68 para VMEM_CONDVAR_BROADCAST(vm);
1503 1.101 ad /* bt_freetrim() drops the lock. */
1504 1.101 ad bt_freetrim(vm, BT_MAXFREE);
1505 1.1 yamt }
1506 1.1 yamt }
1507 1.1 yamt
1508 1.1 yamt /*
1509 1.1 yamt * vmem_add:
1510 1.1 yamt *
1511 1.1 yamt * => caller must ensure appropriate spl,
1512 1.1 yamt * if the arena can be accessed from interrupt context.
1513 1.1 yamt */
1514 1.1 yamt
1515 1.61 dyoung int
1516 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1517 1.1 yamt {
1518 1.101 ad int rv;
1519 1.1 yamt
1520 1.101 ad VMEM_LOCK(vm);
1521 1.101 ad rv = vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1522 1.101 ad VMEM_UNLOCK(vm);
1523 1.101 ad
1524 1.101 ad return rv;
1525 1.1 yamt }
1526 1.1 yamt
1527 1.6 yamt /*
1528 1.66 para * vmem_size: information about arenas size
1529 1.6 yamt *
1530 1.66 para * => return free/allocated size in arena
1531 1.6 yamt */
1532 1.66 para vmem_size_t
1533 1.66 para vmem_size(vmem_t *vm, int typemask)
1534 1.6 yamt {
1535 1.6 yamt
1536 1.66 para switch (typemask) {
1537 1.66 para case VMEM_ALLOC:
1538 1.66 para return vm->vm_inuse;
1539 1.66 para case VMEM_FREE:
1540 1.66 para return vm->vm_size - vm->vm_inuse;
1541 1.66 para case VMEM_FREE|VMEM_ALLOC:
1542 1.66 para return vm->vm_size;
1543 1.66 para default:
1544 1.66 para panic("vmem_size");
1545 1.66 para }
1546 1.6 yamt }
1547 1.6 yamt
1548 1.30 yamt /* ---- rehash */
1549 1.30 yamt
1550 1.30 yamt #if defined(_KERNEL)
1551 1.30 yamt static struct callout vmem_rehash_ch;
1552 1.30 yamt static int vmem_rehash_interval;
1553 1.30 yamt static struct workqueue *vmem_rehash_wq;
1554 1.30 yamt static struct work vmem_rehash_wk;
1555 1.30 yamt
1556 1.30 yamt static void
1557 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1558 1.30 yamt {
1559 1.30 yamt vmem_t *vm;
1560 1.30 yamt
1561 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1562 1.30 yamt mutex_enter(&vmem_list_lock);
1563 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1564 1.30 yamt size_t desired;
1565 1.30 yamt size_t current;
1566 1.30 yamt
1567 1.101 ad desired = atomic_load_relaxed(&vm->vm_maxbusytag);
1568 1.101 ad current = atomic_load_relaxed(&vm->vm_hashsize);
1569 1.30 yamt
1570 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1571 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1572 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1573 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1574 1.30 yamt }
1575 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1576 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1577 1.30 yamt }
1578 1.30 yamt }
1579 1.30 yamt mutex_exit(&vmem_list_lock);
1580 1.30 yamt
1581 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1582 1.30 yamt }
1583 1.30 yamt
1584 1.30 yamt static void
1585 1.30 yamt vmem_rehash_all_kick(void *dummy)
1586 1.30 yamt {
1587 1.30 yamt
1588 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1589 1.30 yamt }
1590 1.30 yamt
1591 1.30 yamt void
1592 1.30 yamt vmem_rehash_start(void)
1593 1.30 yamt {
1594 1.30 yamt int error;
1595 1.30 yamt
1596 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1597 1.41 ad vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1598 1.30 yamt if (error) {
1599 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1600 1.30 yamt }
1601 1.41 ad callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1602 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1603 1.30 yamt
1604 1.30 yamt vmem_rehash_interval = hz * 10;
1605 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1606 1.30 yamt }
1607 1.30 yamt #endif /* defined(_KERNEL) */
1608 1.30 yamt
1609 1.1 yamt /* ---- debug */
1610 1.1 yamt
1611 1.55 yamt #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1612 1.55 yamt
1613 1.82 christos static void bt_dump(const bt_t *, void (*)(const char *, ...)
1614 1.82 christos __printflike(1, 2));
1615 1.55 yamt
1616 1.55 yamt static const char *
1617 1.55 yamt bt_type_string(int type)
1618 1.55 yamt {
1619 1.55 yamt static const char * const table[] = {
1620 1.55 yamt [BT_TYPE_BUSY] = "busy",
1621 1.55 yamt [BT_TYPE_FREE] = "free",
1622 1.55 yamt [BT_TYPE_SPAN] = "span",
1623 1.55 yamt [BT_TYPE_SPAN_STATIC] = "static span",
1624 1.55 yamt };
1625 1.55 yamt
1626 1.55 yamt if (type >= __arraycount(table)) {
1627 1.55 yamt return "BOGUS";
1628 1.55 yamt }
1629 1.55 yamt return table[type];
1630 1.55 yamt }
1631 1.55 yamt
1632 1.55 yamt static void
1633 1.55 yamt bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1634 1.55 yamt {
1635 1.55 yamt
1636 1.55 yamt (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1637 1.55 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1638 1.55 yamt bt->bt_type, bt_type_string(bt->bt_type));
1639 1.55 yamt }
1640 1.55 yamt
1641 1.55 yamt static void
1642 1.82 christos vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1643 1.55 yamt {
1644 1.55 yamt const bt_t *bt;
1645 1.55 yamt int i;
1646 1.55 yamt
1647 1.55 yamt (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1648 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1649 1.55 yamt bt_dump(bt, pr);
1650 1.55 yamt }
1651 1.55 yamt
1652 1.55 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1653 1.55 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1654 1.55 yamt
1655 1.55 yamt if (LIST_EMPTY(fl)) {
1656 1.55 yamt continue;
1657 1.55 yamt }
1658 1.55 yamt
1659 1.55 yamt (*pr)("freelist[%d]\n", i);
1660 1.55 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1661 1.55 yamt bt_dump(bt, pr);
1662 1.55 yamt }
1663 1.55 yamt }
1664 1.55 yamt }
1665 1.55 yamt
1666 1.55 yamt #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1667 1.55 yamt
1668 1.37 yamt #if defined(DDB)
1669 1.37 yamt static bt_t *
1670 1.37 yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1671 1.37 yamt {
1672 1.39 yamt bt_t *bt;
1673 1.37 yamt
1674 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1675 1.39 yamt if (BT_ISSPAN_P(bt)) {
1676 1.39 yamt continue;
1677 1.39 yamt }
1678 1.60 dyoung if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1679 1.39 yamt return bt;
1680 1.37 yamt }
1681 1.37 yamt }
1682 1.37 yamt
1683 1.37 yamt return NULL;
1684 1.37 yamt }
1685 1.37 yamt
1686 1.37 yamt void
1687 1.37 yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1688 1.37 yamt {
1689 1.37 yamt vmem_t *vm;
1690 1.37 yamt
1691 1.37 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1692 1.37 yamt bt_t *bt;
1693 1.37 yamt
1694 1.37 yamt bt = vmem_whatis_lookup(vm, addr);
1695 1.37 yamt if (bt == NULL) {
1696 1.37 yamt continue;
1697 1.37 yamt }
1698 1.39 yamt (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1699 1.37 yamt (void *)addr, (void *)bt->bt_start,
1700 1.39 yamt (size_t)(addr - bt->bt_start), vm->vm_name,
1701 1.39 yamt (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1702 1.37 yamt }
1703 1.37 yamt }
1704 1.43 cegger
1705 1.55 yamt void
1706 1.55 yamt vmem_printall(const char *modif, void (*pr)(const char *, ...))
1707 1.43 cegger {
1708 1.55 yamt const vmem_t *vm;
1709 1.43 cegger
1710 1.47 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1711 1.55 yamt vmem_dump(vm, pr);
1712 1.43 cegger }
1713 1.43 cegger }
1714 1.43 cegger
1715 1.43 cegger void
1716 1.43 cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1717 1.43 cegger {
1718 1.55 yamt const vmem_t *vm = (const void *)addr;
1719 1.43 cegger
1720 1.55 yamt vmem_dump(vm, pr);
1721 1.43 cegger }
1722 1.37 yamt #endif /* defined(DDB) */
1723 1.37 yamt
1724 1.60 dyoung #if defined(_KERNEL)
1725 1.60 dyoung #define vmem_printf printf
1726 1.60 dyoung #else
1727 1.1 yamt #include <stdio.h>
1728 1.60 dyoung #include <stdarg.h>
1729 1.60 dyoung
1730 1.60 dyoung static void
1731 1.60 dyoung vmem_printf(const char *fmt, ...)
1732 1.60 dyoung {
1733 1.60 dyoung va_list ap;
1734 1.60 dyoung va_start(ap, fmt);
1735 1.60 dyoung vprintf(fmt, ap);
1736 1.60 dyoung va_end(ap);
1737 1.60 dyoung }
1738 1.60 dyoung #endif
1739 1.1 yamt
1740 1.55 yamt #if defined(VMEM_SANITY)
1741 1.1 yamt
1742 1.55 yamt static bool
1743 1.55 yamt vmem_check_sanity(vmem_t *vm)
1744 1.1 yamt {
1745 1.55 yamt const bt_t *bt, *bt2;
1746 1.1 yamt
1747 1.55 yamt KASSERT(vm != NULL);
1748 1.1 yamt
1749 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1750 1.60 dyoung if (bt->bt_start > BT_END(bt)) {
1751 1.55 yamt printf("corrupted tag\n");
1752 1.60 dyoung bt_dump(bt, vmem_printf);
1753 1.55 yamt return false;
1754 1.55 yamt }
1755 1.55 yamt }
1756 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1757 1.87 christos TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1758 1.55 yamt if (bt == bt2) {
1759 1.55 yamt continue;
1760 1.55 yamt }
1761 1.55 yamt if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1762 1.55 yamt continue;
1763 1.55 yamt }
1764 1.60 dyoung if (bt->bt_start <= BT_END(bt2) &&
1765 1.60 dyoung bt2->bt_start <= BT_END(bt)) {
1766 1.55 yamt printf("overwrapped tags\n");
1767 1.60 dyoung bt_dump(bt, vmem_printf);
1768 1.60 dyoung bt_dump(bt2, vmem_printf);
1769 1.55 yamt return false;
1770 1.55 yamt }
1771 1.55 yamt }
1772 1.1 yamt }
1773 1.1 yamt
1774 1.55 yamt return true;
1775 1.55 yamt }
1776 1.1 yamt
1777 1.55 yamt static void
1778 1.55 yamt vmem_check(vmem_t *vm)
1779 1.55 yamt {
1780 1.1 yamt
1781 1.55 yamt if (!vmem_check_sanity(vm)) {
1782 1.55 yamt panic("insanity vmem %p", vm);
1783 1.1 yamt }
1784 1.1 yamt }
1785 1.1 yamt
1786 1.55 yamt #endif /* defined(VMEM_SANITY) */
1787 1.1 yamt
1788 1.55 yamt #if defined(UNITTEST)
1789 1.1 yamt int
1790 1.57 cegger main(void)
1791 1.1 yamt {
1792 1.61 dyoung int rc;
1793 1.1 yamt vmem_t *vm;
1794 1.1 yamt vmem_addr_t p;
1795 1.1 yamt struct reg {
1796 1.1 yamt vmem_addr_t p;
1797 1.1 yamt vmem_size_t sz;
1798 1.25 thorpej bool x;
1799 1.1 yamt } *reg = NULL;
1800 1.1 yamt int nreg = 0;
1801 1.1 yamt int nalloc = 0;
1802 1.1 yamt int nfree = 0;
1803 1.1 yamt vmem_size_t total = 0;
1804 1.1 yamt #if 1
1805 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1806 1.1 yamt #else
1807 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1808 1.1 yamt #endif
1809 1.1 yamt
1810 1.61 dyoung vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1811 1.61 dyoung #ifdef _KERNEL
1812 1.61 dyoung IPL_NONE
1813 1.61 dyoung #else
1814 1.61 dyoung 0
1815 1.61 dyoung #endif
1816 1.61 dyoung );
1817 1.1 yamt if (vm == NULL) {
1818 1.1 yamt printf("vmem_create\n");
1819 1.1 yamt exit(EXIT_FAILURE);
1820 1.1 yamt }
1821 1.60 dyoung vmem_dump(vm, vmem_printf);
1822 1.1 yamt
1823 1.61 dyoung rc = vmem_add(vm, 0, 50, VM_SLEEP);
1824 1.61 dyoung assert(rc == 0);
1825 1.61 dyoung rc = vmem_add(vm, 100, 200, VM_SLEEP);
1826 1.61 dyoung assert(rc == 0);
1827 1.61 dyoung rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1828 1.61 dyoung assert(rc == 0);
1829 1.61 dyoung rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1830 1.61 dyoung assert(rc == 0);
1831 1.61 dyoung rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1832 1.61 dyoung assert(rc == 0);
1833 1.61 dyoung rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1834 1.61 dyoung assert(rc == 0);
1835 1.61 dyoung rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1836 1.61 dyoung assert(rc == 0);
1837 1.61 dyoung rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1838 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1839 1.61 dyoung assert(rc != 0);
1840 1.61 dyoung rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1841 1.61 dyoung assert(rc == 0 && p == 0);
1842 1.61 dyoung vmem_xfree(vm, p, 50);
1843 1.61 dyoung rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1844 1.61 dyoung assert(rc == 0 && p == 0);
1845 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1846 1.61 dyoung 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1847 1.61 dyoung assert(rc != 0);
1848 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1849 1.61 dyoung 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1850 1.61 dyoung assert(rc != 0);
1851 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1852 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1853 1.61 dyoung assert(rc == 0);
1854 1.60 dyoung vmem_dump(vm, vmem_printf);
1855 1.1 yamt for (;;) {
1856 1.1 yamt struct reg *r;
1857 1.10 yamt int t = rand() % 100;
1858 1.1 yamt
1859 1.10 yamt if (t > 45) {
1860 1.10 yamt /* alloc */
1861 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1862 1.25 thorpej bool x;
1863 1.10 yamt vmem_size_t align, phase, nocross;
1864 1.10 yamt vmem_addr_t minaddr, maxaddr;
1865 1.10 yamt
1866 1.10 yamt if (t > 70) {
1867 1.26 thorpej x = true;
1868 1.10 yamt /* XXX */
1869 1.10 yamt align = 1 << (rand() % 15);
1870 1.10 yamt phase = rand() % 65536;
1871 1.10 yamt nocross = 1 << (rand() % 15);
1872 1.10 yamt if (align <= phase) {
1873 1.10 yamt phase = 0;
1874 1.10 yamt }
1875 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1876 1.19 yamt nocross)) {
1877 1.10 yamt nocross = 0;
1878 1.10 yamt }
1879 1.60 dyoung do {
1880 1.60 dyoung minaddr = rand() % 50000;
1881 1.60 dyoung maxaddr = rand() % 70000;
1882 1.60 dyoung } while (minaddr > maxaddr);
1883 1.10 yamt printf("=== xalloc %" PRIu64
1884 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1885 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1886 1.10 yamt ", max=%" PRIu64 "\n",
1887 1.10 yamt (uint64_t)sz,
1888 1.10 yamt (uint64_t)align,
1889 1.10 yamt (uint64_t)phase,
1890 1.10 yamt (uint64_t)nocross,
1891 1.10 yamt (uint64_t)minaddr,
1892 1.10 yamt (uint64_t)maxaddr);
1893 1.61 dyoung rc = vmem_xalloc(vm, sz, align, phase, nocross,
1894 1.61 dyoung minaddr, maxaddr, strat|VM_SLEEP, &p);
1895 1.10 yamt } else {
1896 1.26 thorpej x = false;
1897 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1898 1.61 dyoung rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1899 1.10 yamt }
1900 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1901 1.60 dyoung vmem_dump(vm, vmem_printf);
1902 1.61 dyoung if (rc != 0) {
1903 1.10 yamt if (x) {
1904 1.10 yamt continue;
1905 1.10 yamt }
1906 1.1 yamt break;
1907 1.1 yamt }
1908 1.1 yamt nreg++;
1909 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1910 1.1 yamt r = ®[nreg - 1];
1911 1.1 yamt r->p = p;
1912 1.1 yamt r->sz = sz;
1913 1.10 yamt r->x = x;
1914 1.1 yamt total += sz;
1915 1.1 yamt nalloc++;
1916 1.1 yamt } else if (nreg != 0) {
1917 1.10 yamt /* free */
1918 1.1 yamt r = ®[rand() % nreg];
1919 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1920 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1921 1.10 yamt if (r->x) {
1922 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1923 1.10 yamt } else {
1924 1.10 yamt vmem_free(vm, r->p, r->sz);
1925 1.10 yamt }
1926 1.1 yamt total -= r->sz;
1927 1.60 dyoung vmem_dump(vm, vmem_printf);
1928 1.1 yamt *r = reg[nreg - 1];
1929 1.1 yamt nreg--;
1930 1.1 yamt nfree++;
1931 1.1 yamt }
1932 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1933 1.1 yamt }
1934 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1935 1.1 yamt (uint64_t)total, nalloc, nfree);
1936 1.1 yamt exit(EXIT_SUCCESS);
1937 1.1 yamt }
1938 1.55 yamt #endif /* defined(UNITTEST) */
1939