subr_vmem.c revision 1.12 1 1.12 yamt /* $NetBSD: subr_vmem.c,v 1.12 2006/10/17 08:54:03 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.1 yamt *
35 1.1 yamt * TODO:
36 1.1 yamt * - implement vmem_xalloc/vmem_xfree
37 1.1 yamt */
38 1.1 yamt
39 1.1 yamt #include <sys/cdefs.h>
40 1.12 yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.12 2006/10/17 08:54:03 yamt Exp $");
41 1.1 yamt
42 1.1 yamt #define VMEM_DEBUG
43 1.5 yamt #if defined(_KERNEL)
44 1.5 yamt #define QCACHE
45 1.5 yamt #endif /* defined(_KERNEL) */
46 1.1 yamt
47 1.1 yamt #include <sys/param.h>
48 1.1 yamt #include <sys/hash.h>
49 1.1 yamt #include <sys/queue.h>
50 1.1 yamt
51 1.1 yamt #if defined(_KERNEL)
52 1.1 yamt #include <sys/systm.h>
53 1.1 yamt #include <sys/lock.h>
54 1.1 yamt #include <sys/malloc.h>
55 1.1 yamt #include <sys/once.h>
56 1.1 yamt #include <sys/pool.h>
57 1.3 yamt #include <sys/proc.h>
58 1.1 yamt #include <sys/vmem.h>
59 1.1 yamt #else /* defined(_KERNEL) */
60 1.1 yamt #include "../sys/vmem.h"
61 1.1 yamt #endif /* defined(_KERNEL) */
62 1.1 yamt
63 1.1 yamt #if defined(_KERNEL)
64 1.1 yamt #define SIMPLELOCK_DECL(name) struct simplelock name
65 1.1 yamt #else /* defined(_KERNEL) */
66 1.1 yamt #include <errno.h>
67 1.1 yamt #include <assert.h>
68 1.1 yamt #include <stdlib.h>
69 1.1 yamt
70 1.1 yamt #define KASSERT(a) assert(a)
71 1.1 yamt #define SIMPLELOCK_DECL(name) /* nothing */
72 1.1 yamt #define LOCK_ASSERT(a) /* nothing */
73 1.1 yamt #define simple_lock_init(a) /* nothing */
74 1.1 yamt #define simple_lock(a) /* nothing */
75 1.1 yamt #define simple_unlock(a) /* nothing */
76 1.3 yamt #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
77 1.1 yamt #endif /* defined(_KERNEL) */
78 1.1 yamt
79 1.1 yamt struct vmem;
80 1.1 yamt struct vmem_btag;
81 1.1 yamt
82 1.1 yamt #if defined(VMEM_DEBUG)
83 1.1 yamt void vmem_dump(const vmem_t *);
84 1.1 yamt #endif /* defined(VMEM_DEBUG) */
85 1.1 yamt
86 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
87 1.1 yamt #define VMEM_HASHSIZE_INIT 4096 /* XXX */
88 1.1 yamt
89 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
90 1.1 yamt
91 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
92 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
93 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
94 1.1 yamt
95 1.5 yamt #if defined(QCACHE)
96 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
97 1.5 yamt
98 1.5 yamt #define QC_NAME_MAX 16
99 1.5 yamt
100 1.5 yamt struct qcache {
101 1.5 yamt struct pool qc_pool;
102 1.5 yamt struct pool_cache qc_cache;
103 1.5 yamt vmem_t *qc_vmem;
104 1.5 yamt char qc_name[QC_NAME_MAX];
105 1.5 yamt };
106 1.5 yamt typedef struct qcache qcache_t;
107 1.5 yamt #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
108 1.5 yamt #endif /* defined(QCACHE) */
109 1.5 yamt
110 1.1 yamt /* vmem arena */
111 1.1 yamt struct vmem {
112 1.1 yamt SIMPLELOCK_DECL(vm_lock);
113 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
114 1.1 yamt vm_flag_t);
115 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
116 1.1 yamt vmem_t *vm_source;
117 1.1 yamt struct vmem_seglist vm_seglist;
118 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
119 1.1 yamt size_t vm_hashsize;
120 1.1 yamt size_t vm_nbusytag;
121 1.1 yamt struct vmem_hashlist *vm_hashlist;
122 1.1 yamt size_t vm_quantum_mask;
123 1.1 yamt int vm_quantum_shift;
124 1.1 yamt const char *vm_name;
125 1.5 yamt
126 1.5 yamt #if defined(QCACHE)
127 1.5 yamt /* quantum cache */
128 1.5 yamt size_t vm_qcache_max;
129 1.5 yamt struct pool_allocator vm_qcache_allocator;
130 1.5 yamt qcache_t vm_qcache[VMEM_QCACHE_IDX_MAX];
131 1.5 yamt #endif /* defined(QCACHE) */
132 1.1 yamt };
133 1.1 yamt
134 1.1 yamt #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
135 1.1 yamt #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
136 1.1 yamt #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
137 1.1 yamt #define VMEM_ASSERT_LOCKED(vm) \
138 1.1 yamt LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
139 1.1 yamt #define VMEM_ASSERT_UNLOCKED(vm) \
140 1.1 yamt LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
141 1.1 yamt
142 1.1 yamt /* boundary tag */
143 1.1 yamt struct vmem_btag {
144 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
145 1.1 yamt union {
146 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
147 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
148 1.1 yamt } bt_u;
149 1.1 yamt #define bt_hashlist bt_u.u_hashlist
150 1.1 yamt #define bt_freelist bt_u.u_freelist
151 1.1 yamt vmem_addr_t bt_start;
152 1.1 yamt vmem_size_t bt_size;
153 1.1 yamt int bt_type;
154 1.1 yamt };
155 1.1 yamt
156 1.1 yamt #define BT_TYPE_SPAN 1
157 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
158 1.1 yamt #define BT_TYPE_FREE 3
159 1.1 yamt #define BT_TYPE_BUSY 4
160 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
161 1.1 yamt
162 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
163 1.1 yamt
164 1.1 yamt typedef struct vmem_btag bt_t;
165 1.1 yamt
166 1.1 yamt /* ---- misc */
167 1.1 yamt
168 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
169 1.4 yamt
170 1.1 yamt static int
171 1.1 yamt calc_order(vmem_size_t size)
172 1.1 yamt {
173 1.4 yamt vmem_size_t target;
174 1.1 yamt int i;
175 1.1 yamt
176 1.1 yamt KASSERT(size != 0);
177 1.1 yamt
178 1.1 yamt i = 0;
179 1.4 yamt target = size >> 1;
180 1.4 yamt while (ORDER2SIZE(i) <= target) {
181 1.1 yamt i++;
182 1.1 yamt }
183 1.1 yamt
184 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
185 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
186 1.1 yamt
187 1.1 yamt return i;
188 1.1 yamt }
189 1.1 yamt
190 1.1 yamt #if defined(_KERNEL)
191 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
192 1.1 yamt #endif /* defined(_KERNEL) */
193 1.1 yamt
194 1.1 yamt static void *
195 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
196 1.1 yamt {
197 1.1 yamt
198 1.1 yamt #if defined(_KERNEL)
199 1.1 yamt return malloc(sz, M_VMEM,
200 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
201 1.1 yamt #else /* defined(_KERNEL) */
202 1.1 yamt return malloc(sz);
203 1.1 yamt #endif /* defined(_KERNEL) */
204 1.1 yamt }
205 1.1 yamt
206 1.1 yamt static void
207 1.1 yamt xfree(void *p)
208 1.1 yamt {
209 1.1 yamt
210 1.1 yamt #if defined(_KERNEL)
211 1.1 yamt return free(p, M_VMEM);
212 1.1 yamt #else /* defined(_KERNEL) */
213 1.1 yamt return free(p);
214 1.1 yamt #endif /* defined(_KERNEL) */
215 1.1 yamt }
216 1.1 yamt
217 1.1 yamt /* ---- boundary tag */
218 1.1 yamt
219 1.1 yamt #if defined(_KERNEL)
220 1.1 yamt static struct pool_cache bt_poolcache;
221 1.1 yamt static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
222 1.1 yamt #endif /* defined(_KERNEL) */
223 1.1 yamt
224 1.1 yamt static bt_t *
225 1.9 christos bt_alloc(vmem_t *vm __unused, vm_flag_t flags)
226 1.1 yamt {
227 1.1 yamt bt_t *bt;
228 1.1 yamt
229 1.1 yamt #if defined(_KERNEL)
230 1.1 yamt /* XXX bootstrap */
231 1.1 yamt bt = pool_cache_get(&bt_poolcache,
232 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
233 1.1 yamt #else /* defined(_KERNEL) */
234 1.1 yamt bt = malloc(sizeof *bt);
235 1.1 yamt #endif /* defined(_KERNEL) */
236 1.1 yamt
237 1.1 yamt return bt;
238 1.1 yamt }
239 1.1 yamt
240 1.1 yamt static void
241 1.9 christos bt_free(vmem_t *vm __unused, bt_t *bt)
242 1.1 yamt {
243 1.1 yamt
244 1.1 yamt #if defined(_KERNEL)
245 1.1 yamt /* XXX bootstrap */
246 1.1 yamt pool_cache_put(&bt_poolcache, bt);
247 1.1 yamt #else /* defined(_KERNEL) */
248 1.1 yamt free(bt);
249 1.1 yamt #endif /* defined(_KERNEL) */
250 1.1 yamt }
251 1.1 yamt
252 1.1 yamt /*
253 1.1 yamt * freelist[0] ... [1, 1]
254 1.1 yamt * freelist[1] ... [2, 3]
255 1.1 yamt * freelist[2] ... [4, 7]
256 1.1 yamt * freelist[3] ... [8, 15]
257 1.1 yamt * :
258 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
259 1.1 yamt * :
260 1.1 yamt */
261 1.1 yamt
262 1.1 yamt static struct vmem_freelist *
263 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
264 1.1 yamt {
265 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
266 1.1 yamt int idx;
267 1.1 yamt
268 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
269 1.1 yamt KASSERT(size != 0);
270 1.1 yamt
271 1.1 yamt idx = calc_order(qsize);
272 1.1 yamt KASSERT(idx >= 0);
273 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
274 1.1 yamt
275 1.1 yamt return &vm->vm_freelist[idx];
276 1.1 yamt }
277 1.1 yamt
278 1.1 yamt static struct vmem_freelist *
279 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
280 1.1 yamt {
281 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
282 1.1 yamt int idx;
283 1.1 yamt
284 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
285 1.1 yamt KASSERT(size != 0);
286 1.1 yamt
287 1.1 yamt idx = calc_order(qsize);
288 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
289 1.1 yamt idx++;
290 1.1 yamt /* check too large request? */
291 1.1 yamt }
292 1.1 yamt KASSERT(idx >= 0);
293 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
294 1.1 yamt
295 1.1 yamt return &vm->vm_freelist[idx];
296 1.1 yamt }
297 1.1 yamt
298 1.1 yamt /* ---- boundary tag hash */
299 1.1 yamt
300 1.1 yamt static struct vmem_hashlist *
301 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
302 1.1 yamt {
303 1.1 yamt struct vmem_hashlist *list;
304 1.1 yamt unsigned int hash;
305 1.1 yamt
306 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
307 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
308 1.1 yamt
309 1.1 yamt return list;
310 1.1 yamt }
311 1.1 yamt
312 1.1 yamt static bt_t *
313 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
314 1.1 yamt {
315 1.1 yamt struct vmem_hashlist *list;
316 1.1 yamt bt_t *bt;
317 1.1 yamt
318 1.1 yamt list = bt_hashhead(vm, addr);
319 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
320 1.1 yamt if (bt->bt_start == addr) {
321 1.1 yamt break;
322 1.1 yamt }
323 1.1 yamt }
324 1.1 yamt
325 1.1 yamt return bt;
326 1.1 yamt }
327 1.1 yamt
328 1.1 yamt static void
329 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
330 1.1 yamt {
331 1.1 yamt
332 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
333 1.1 yamt vm->vm_nbusytag--;
334 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
335 1.1 yamt }
336 1.1 yamt
337 1.1 yamt static void
338 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
339 1.1 yamt {
340 1.1 yamt struct vmem_hashlist *list;
341 1.1 yamt
342 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
343 1.1 yamt
344 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
345 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
346 1.1 yamt vm->vm_nbusytag++;
347 1.1 yamt }
348 1.1 yamt
349 1.1 yamt /* ---- boundary tag list */
350 1.1 yamt
351 1.1 yamt static void
352 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
353 1.1 yamt {
354 1.1 yamt
355 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
356 1.1 yamt }
357 1.1 yamt
358 1.1 yamt static void
359 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
360 1.1 yamt {
361 1.1 yamt
362 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
363 1.1 yamt }
364 1.1 yamt
365 1.1 yamt static void
366 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
367 1.1 yamt {
368 1.1 yamt
369 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
370 1.1 yamt }
371 1.1 yamt
372 1.1 yamt static void
373 1.9 christos bt_remfree(vmem_t *vm __unused, bt_t *bt)
374 1.1 yamt {
375 1.1 yamt
376 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
377 1.1 yamt
378 1.1 yamt LIST_REMOVE(bt, bt_freelist);
379 1.1 yamt }
380 1.1 yamt
381 1.1 yamt static void
382 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
383 1.1 yamt {
384 1.1 yamt struct vmem_freelist *list;
385 1.1 yamt
386 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
387 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
388 1.1 yamt }
389 1.1 yamt
390 1.1 yamt /* ---- vmem internal functions */
391 1.1 yamt
392 1.5 yamt #if defined(QCACHE)
393 1.5 yamt static inline vm_flag_t
394 1.5 yamt prf_to_vmf(int prflags)
395 1.5 yamt {
396 1.5 yamt vm_flag_t vmflags;
397 1.5 yamt
398 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
399 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
400 1.5 yamt vmflags = VM_SLEEP;
401 1.5 yamt } else {
402 1.5 yamt vmflags = VM_NOSLEEP;
403 1.5 yamt }
404 1.5 yamt return vmflags;
405 1.5 yamt }
406 1.5 yamt
407 1.5 yamt static inline int
408 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
409 1.5 yamt {
410 1.5 yamt int prflags;
411 1.5 yamt
412 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
413 1.5 yamt prflags = PR_WAITOK;
414 1.7 yamt } else {
415 1.5 yamt prflags = PR_NOWAIT;
416 1.5 yamt }
417 1.5 yamt return prflags;
418 1.5 yamt }
419 1.5 yamt
420 1.5 yamt static size_t
421 1.5 yamt qc_poolpage_size(size_t qcache_max)
422 1.5 yamt {
423 1.5 yamt int i;
424 1.5 yamt
425 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
426 1.5 yamt /* nothing */
427 1.5 yamt }
428 1.5 yamt return ORDER2SIZE(i);
429 1.5 yamt }
430 1.5 yamt
431 1.5 yamt static void *
432 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
433 1.5 yamt {
434 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
435 1.5 yamt vmem_t *vm = qc->qc_vmem;
436 1.5 yamt
437 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
438 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
439 1.5 yamt }
440 1.5 yamt
441 1.5 yamt static void
442 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
443 1.5 yamt {
444 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
445 1.5 yamt vmem_t *vm = qc->qc_vmem;
446 1.5 yamt
447 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
448 1.5 yamt }
449 1.5 yamt
450 1.5 yamt static void
451 1.5 yamt qc_init(vmem_t *vm, size_t qcache_max)
452 1.5 yamt {
453 1.5 yamt struct pool_allocator *pa;
454 1.5 yamt int qcache_idx_max;
455 1.5 yamt int i;
456 1.5 yamt
457 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
458 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
459 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
460 1.5 yamt }
461 1.5 yamt vm->vm_qcache_max = qcache_max;
462 1.5 yamt pa = &vm->vm_qcache_allocator;
463 1.5 yamt memset(pa, 0, sizeof(*pa));
464 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
465 1.5 yamt pa->pa_free = qc_poolpage_free;
466 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
467 1.5 yamt
468 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
469 1.5 yamt for (i = 1; i <= qcache_idx_max; i++) {
470 1.5 yamt qcache_t *qc = &vm->vm_qcache[i - 1];
471 1.5 yamt size_t size = i << vm->vm_quantum_shift;
472 1.5 yamt
473 1.5 yamt qc->qc_vmem = vm;
474 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
475 1.5 yamt vm->vm_name, size);
476 1.5 yamt pool_init(&qc->qc_pool, size, 0, 0,
477 1.5 yamt PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
478 1.5 yamt pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
479 1.5 yamt }
480 1.5 yamt }
481 1.6 yamt
482 1.6 yamt static boolean_t
483 1.6 yamt qc_reap(vmem_t *vm)
484 1.6 yamt {
485 1.6 yamt int i;
486 1.6 yamt int qcache_idx_max;
487 1.6 yamt boolean_t didsomething = FALSE;
488 1.6 yamt
489 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
490 1.6 yamt for (i = 1; i <= qcache_idx_max; i++) {
491 1.6 yamt qcache_t *qc = &vm->vm_qcache[i - 1];
492 1.6 yamt
493 1.6 yamt if (pool_reclaim(&qc->qc_pool) != 0) {
494 1.6 yamt didsomething = TRUE;
495 1.6 yamt }
496 1.6 yamt }
497 1.6 yamt
498 1.6 yamt return didsomething;
499 1.6 yamt }
500 1.5 yamt #endif /* defined(QCACHE) */
501 1.5 yamt
502 1.1 yamt #if defined(_KERNEL)
503 1.1 yamt static int
504 1.1 yamt vmem_init(void)
505 1.1 yamt {
506 1.1 yamt
507 1.1 yamt pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
508 1.1 yamt return 0;
509 1.1 yamt }
510 1.1 yamt #endif /* defined(_KERNEL) */
511 1.1 yamt
512 1.1 yamt static vmem_addr_t
513 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
514 1.1 yamt int spanbttype)
515 1.1 yamt {
516 1.1 yamt bt_t *btspan;
517 1.1 yamt bt_t *btfree;
518 1.1 yamt
519 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
520 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
521 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
522 1.1 yamt
523 1.1 yamt btspan = bt_alloc(vm, flags);
524 1.1 yamt if (btspan == NULL) {
525 1.1 yamt return VMEM_ADDR_NULL;
526 1.1 yamt }
527 1.1 yamt btfree = bt_alloc(vm, flags);
528 1.1 yamt if (btfree == NULL) {
529 1.1 yamt bt_free(vm, btspan);
530 1.1 yamt return VMEM_ADDR_NULL;
531 1.1 yamt }
532 1.1 yamt
533 1.1 yamt btspan->bt_type = spanbttype;
534 1.1 yamt btspan->bt_start = addr;
535 1.1 yamt btspan->bt_size = size;
536 1.1 yamt
537 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
538 1.1 yamt btfree->bt_start = addr;
539 1.1 yamt btfree->bt_size = size;
540 1.1 yamt
541 1.1 yamt VMEM_LOCK(vm);
542 1.1 yamt bt_insseg_tail(vm, btspan);
543 1.1 yamt bt_insseg(vm, btfree, btspan);
544 1.1 yamt bt_insfree(vm, btfree);
545 1.1 yamt VMEM_UNLOCK(vm);
546 1.1 yamt
547 1.1 yamt return addr;
548 1.1 yamt }
549 1.1 yamt
550 1.1 yamt static int
551 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
552 1.1 yamt {
553 1.1 yamt vmem_addr_t addr;
554 1.1 yamt
555 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
556 1.1 yamt
557 1.1 yamt if (vm->vm_allocfn == NULL) {
558 1.1 yamt return EINVAL;
559 1.1 yamt }
560 1.1 yamt
561 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
562 1.1 yamt if (addr == VMEM_ADDR_NULL) {
563 1.1 yamt return ENOMEM;
564 1.1 yamt }
565 1.1 yamt
566 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
567 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
568 1.1 yamt return ENOMEM;
569 1.1 yamt }
570 1.1 yamt
571 1.1 yamt return 0;
572 1.1 yamt }
573 1.1 yamt
574 1.1 yamt static int
575 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
576 1.1 yamt {
577 1.1 yamt bt_t *bt;
578 1.1 yamt int i;
579 1.1 yamt struct vmem_hashlist *newhashlist;
580 1.1 yamt struct vmem_hashlist *oldhashlist;
581 1.1 yamt size_t oldhashsize;
582 1.1 yamt
583 1.1 yamt KASSERT(newhashsize > 0);
584 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
585 1.1 yamt
586 1.1 yamt newhashlist =
587 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
588 1.1 yamt if (newhashlist == NULL) {
589 1.1 yamt return ENOMEM;
590 1.1 yamt }
591 1.1 yamt for (i = 0; i < newhashsize; i++) {
592 1.1 yamt LIST_INIT(&newhashlist[i]);
593 1.1 yamt }
594 1.1 yamt
595 1.1 yamt VMEM_LOCK(vm);
596 1.1 yamt oldhashlist = vm->vm_hashlist;
597 1.1 yamt oldhashsize = vm->vm_hashsize;
598 1.1 yamt vm->vm_hashlist = newhashlist;
599 1.1 yamt vm->vm_hashsize = newhashsize;
600 1.1 yamt if (oldhashlist == NULL) {
601 1.1 yamt VMEM_UNLOCK(vm);
602 1.1 yamt return 0;
603 1.1 yamt }
604 1.1 yamt for (i = 0; i < oldhashsize; i++) {
605 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
606 1.1 yamt bt_rembusy(vm, bt); /* XXX */
607 1.1 yamt bt_insbusy(vm, bt);
608 1.1 yamt }
609 1.1 yamt }
610 1.1 yamt VMEM_UNLOCK(vm);
611 1.1 yamt
612 1.1 yamt xfree(oldhashlist);
613 1.1 yamt
614 1.1 yamt return 0;
615 1.1 yamt }
616 1.1 yamt
617 1.10 yamt /*
618 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
619 1.10 yamt */
620 1.10 yamt
621 1.10 yamt static vmem_addr_t
622 1.10 yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
623 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
624 1.10 yamt {
625 1.10 yamt vmem_addr_t start;
626 1.10 yamt vmem_addr_t end;
627 1.10 yamt
628 1.10 yamt KASSERT(bt->bt_size >= size);
629 1.10 yamt
630 1.10 yamt /*
631 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
632 1.10 yamt * unsigned integer of the same size.
633 1.10 yamt */
634 1.10 yamt
635 1.10 yamt start = bt->bt_start;
636 1.10 yamt if (start < minaddr) {
637 1.10 yamt start = minaddr;
638 1.10 yamt }
639 1.10 yamt end = BT_END(bt);
640 1.10 yamt if (end > maxaddr - 1) {
641 1.10 yamt end = maxaddr - 1;
642 1.10 yamt }
643 1.10 yamt if (start >= end) {
644 1.10 yamt return VMEM_ADDR_NULL;
645 1.10 yamt }
646 1.10 yamt start = -(-(start - phase) & -align) + phase;
647 1.10 yamt if (start < bt->bt_start) {
648 1.10 yamt start += align;
649 1.10 yamt }
650 1.10 yamt if (((start ^ (start + size - 1)) & -nocross) != 0) {
651 1.10 yamt KASSERT(align < nocross);
652 1.10 yamt start = -(-(start - phase) & -nocross) + phase;
653 1.10 yamt }
654 1.10 yamt if (start < end && end - start >= size) {
655 1.10 yamt KASSERT((start & (align - 1)) == phase);
656 1.10 yamt KASSERT(((start ^ (start + size - 1)) & -nocross) == 0);
657 1.10 yamt KASSERT(minaddr <= start);
658 1.10 yamt KASSERT(maxaddr == 0 || start + size <= maxaddr);
659 1.10 yamt KASSERT(bt->bt_start <= start);
660 1.10 yamt KASSERT(start + size <= BT_END(bt));
661 1.10 yamt return start;
662 1.10 yamt }
663 1.10 yamt return VMEM_ADDR_NULL;
664 1.10 yamt }
665 1.10 yamt
666 1.1 yamt /* ---- vmem API */
667 1.1 yamt
668 1.1 yamt /*
669 1.1 yamt * vmem_create: create an arena.
670 1.1 yamt *
671 1.1 yamt * => must not be called from interrupt context.
672 1.1 yamt */
673 1.1 yamt
674 1.1 yamt vmem_t *
675 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
676 1.1 yamt vmem_size_t quantum,
677 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
678 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
679 1.1 yamt vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
680 1.1 yamt {
681 1.1 yamt vmem_t *vm;
682 1.1 yamt int i;
683 1.1 yamt #if defined(_KERNEL)
684 1.1 yamt static ONCE_DECL(control);
685 1.1 yamt #endif /* defined(_KERNEL) */
686 1.1 yamt
687 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
688 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
689 1.1 yamt
690 1.1 yamt #if defined(_KERNEL)
691 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
692 1.1 yamt return NULL;
693 1.1 yamt }
694 1.1 yamt #endif /* defined(_KERNEL) */
695 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
696 1.1 yamt if (vm == NULL) {
697 1.1 yamt return NULL;
698 1.1 yamt }
699 1.1 yamt
700 1.1 yamt VMEM_LOCK_INIT(vm);
701 1.1 yamt vm->vm_name = name;
702 1.1 yamt vm->vm_quantum_mask = quantum - 1;
703 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
704 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
705 1.1 yamt vm->vm_allocfn = allocfn;
706 1.1 yamt vm->vm_freefn = freefn;
707 1.1 yamt vm->vm_source = source;
708 1.1 yamt vm->vm_nbusytag = 0;
709 1.5 yamt #if defined(QCACHE)
710 1.5 yamt qc_init(vm, qcache_max);
711 1.5 yamt #endif /* defined(QCACHE) */
712 1.1 yamt
713 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
714 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
715 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
716 1.1 yamt }
717 1.1 yamt vm->vm_hashlist = NULL;
718 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
719 1.1 yamt vmem_destroy(vm);
720 1.1 yamt return NULL;
721 1.1 yamt }
722 1.1 yamt
723 1.1 yamt if (size != 0) {
724 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
725 1.1 yamt vmem_destroy(vm);
726 1.1 yamt return NULL;
727 1.1 yamt }
728 1.1 yamt }
729 1.1 yamt
730 1.1 yamt return vm;
731 1.1 yamt }
732 1.1 yamt
733 1.1 yamt void
734 1.1 yamt vmem_destroy(vmem_t *vm)
735 1.1 yamt {
736 1.1 yamt
737 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
738 1.1 yamt
739 1.1 yamt if (vm->vm_hashlist != NULL) {
740 1.1 yamt int i;
741 1.1 yamt
742 1.1 yamt for (i = 0; i < vm->vm_hashsize; i++) {
743 1.1 yamt bt_t *bt;
744 1.1 yamt
745 1.1 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
746 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
747 1.1 yamt bt_free(vm, bt);
748 1.1 yamt }
749 1.1 yamt }
750 1.1 yamt xfree(vm->vm_hashlist);
751 1.1 yamt }
752 1.1 yamt xfree(vm);
753 1.1 yamt }
754 1.1 yamt
755 1.1 yamt vmem_size_t
756 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
757 1.1 yamt {
758 1.1 yamt
759 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
760 1.1 yamt }
761 1.1 yamt
762 1.1 yamt /*
763 1.1 yamt * vmem_alloc:
764 1.1 yamt *
765 1.1 yamt * => caller must ensure appropriate spl,
766 1.1 yamt * if the arena can be accessed from interrupt context.
767 1.1 yamt */
768 1.1 yamt
769 1.1 yamt vmem_addr_t
770 1.1 yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
771 1.1 yamt {
772 1.12 yamt const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
773 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
774 1.1 yamt
775 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
776 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
777 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
778 1.1 yamt
779 1.1 yamt KASSERT(size0 > 0);
780 1.1 yamt KASSERT(size > 0);
781 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
782 1.3 yamt if ((flags & VM_SLEEP) != 0) {
783 1.3 yamt ASSERT_SLEEPABLE(NULL, "vmem_alloc");
784 1.3 yamt }
785 1.1 yamt
786 1.5 yamt #if defined(QCACHE)
787 1.5 yamt if (size <= vm->vm_qcache_max) {
788 1.5 yamt int qidx = size >> vm->vm_quantum_shift;
789 1.5 yamt qcache_t *qc = &vm->vm_qcache[qidx - 1];
790 1.5 yamt
791 1.5 yamt return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
792 1.5 yamt vmf_to_prf(flags));
793 1.5 yamt }
794 1.5 yamt #endif /* defined(QCACHE) */
795 1.5 yamt
796 1.10 yamt return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
797 1.10 yamt }
798 1.10 yamt
799 1.10 yamt vmem_addr_t
800 1.10 yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
801 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
802 1.10 yamt vm_flag_t flags)
803 1.10 yamt {
804 1.10 yamt struct vmem_freelist *list;
805 1.10 yamt struct vmem_freelist *first;
806 1.10 yamt struct vmem_freelist *end;
807 1.10 yamt bt_t *bt;
808 1.10 yamt bt_t *btnew;
809 1.10 yamt bt_t *btnew2;
810 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
811 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
812 1.10 yamt vmem_addr_t start;
813 1.10 yamt
814 1.10 yamt KASSERT(size0 > 0);
815 1.10 yamt KASSERT(size > 0);
816 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
817 1.10 yamt if ((flags & VM_SLEEP) != 0) {
818 1.10 yamt ASSERT_SLEEPABLE(NULL, "vmem_alloc");
819 1.10 yamt }
820 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
821 1.10 yamt KASSERT((align & (align - 1)) == 0);
822 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
823 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
824 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
825 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
826 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
827 1.10 yamt KASSERT(maxaddr == 0 || minaddr < maxaddr);
828 1.10 yamt KASSERT(((phase ^ (phase + size - 1)) & -nocross) == 0);
829 1.10 yamt
830 1.10 yamt if (align == 0) {
831 1.10 yamt align = vm->vm_quantum_mask + 1;
832 1.10 yamt }
833 1.1 yamt btnew = bt_alloc(vm, flags);
834 1.1 yamt if (btnew == NULL) {
835 1.1 yamt return VMEM_ADDR_NULL;
836 1.1 yamt }
837 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
838 1.10 yamt if (btnew2 == NULL) {
839 1.10 yamt bt_free(vm, btnew);
840 1.10 yamt return VMEM_ADDR_NULL;
841 1.10 yamt }
842 1.1 yamt
843 1.1 yamt retry_strat:
844 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
845 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
846 1.1 yamt retry:
847 1.1 yamt bt = NULL;
848 1.1 yamt VMEM_LOCK(vm);
849 1.2 yamt if (strat == VM_INSTANTFIT) {
850 1.2 yamt for (list = first; list < end; list++) {
851 1.2 yamt bt = LIST_FIRST(list);
852 1.2 yamt if (bt != NULL) {
853 1.10 yamt start = vmem_fit(bt, size, align, phase,
854 1.10 yamt nocross, minaddr, maxaddr);
855 1.10 yamt if (start != VMEM_ADDR_NULL) {
856 1.10 yamt goto gotit;
857 1.10 yamt }
858 1.2 yamt }
859 1.2 yamt }
860 1.2 yamt } else { /* VM_BESTFIT */
861 1.2 yamt for (list = first; list < end; list++) {
862 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
863 1.2 yamt if (bt->bt_size >= size) {
864 1.10 yamt start = vmem_fit(bt, size, align, phase,
865 1.10 yamt nocross, minaddr, maxaddr);
866 1.10 yamt if (start != VMEM_ADDR_NULL) {
867 1.10 yamt goto gotit;
868 1.10 yamt }
869 1.2 yamt }
870 1.1 yamt }
871 1.1 yamt }
872 1.1 yamt }
873 1.2 yamt VMEM_UNLOCK(vm);
874 1.1 yamt #if 1
875 1.2 yamt if (strat == VM_INSTANTFIT) {
876 1.2 yamt strat = VM_BESTFIT;
877 1.2 yamt goto retry_strat;
878 1.2 yamt }
879 1.1 yamt #endif
880 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
881 1.10 yamt nocross != 0 || minaddr != 0 || maxaddr != 0) {
882 1.10 yamt
883 1.10 yamt /*
884 1.10 yamt * XXX should try to import a region large enough to
885 1.10 yamt * satisfy restrictions?
886 1.10 yamt */
887 1.10 yamt
888 1.10 yamt return VMEM_ADDR_NULL;
889 1.10 yamt }
890 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
891 1.2 yamt goto retry;
892 1.1 yamt }
893 1.2 yamt /* XXX */
894 1.2 yamt return VMEM_ADDR_NULL;
895 1.2 yamt
896 1.2 yamt gotit:
897 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
898 1.1 yamt KASSERT(bt->bt_size >= size);
899 1.1 yamt bt_remfree(vm, bt);
900 1.10 yamt if (bt->bt_start != start) {
901 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
902 1.10 yamt btnew2->bt_start = bt->bt_start;
903 1.10 yamt btnew2->bt_size = start - bt->bt_start;
904 1.10 yamt bt->bt_start = start;
905 1.10 yamt bt->bt_size -= btnew2->bt_size;
906 1.10 yamt bt_insfree(vm, btnew2);
907 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
908 1.10 yamt btnew2 = NULL;
909 1.10 yamt }
910 1.10 yamt KASSERT(bt->bt_start == start);
911 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
912 1.1 yamt /* split */
913 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
914 1.1 yamt btnew->bt_start = bt->bt_start;
915 1.1 yamt btnew->bt_size = size;
916 1.1 yamt bt->bt_start = bt->bt_start + size;
917 1.1 yamt bt->bt_size -= size;
918 1.1 yamt bt_insfree(vm, bt);
919 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
920 1.1 yamt bt_insbusy(vm, btnew);
921 1.1 yamt VMEM_UNLOCK(vm);
922 1.1 yamt } else {
923 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
924 1.1 yamt bt_insbusy(vm, bt);
925 1.1 yamt VMEM_UNLOCK(vm);
926 1.1 yamt bt_free(vm, btnew);
927 1.1 yamt btnew = bt;
928 1.1 yamt }
929 1.10 yamt if (btnew2 != NULL) {
930 1.10 yamt bt_free(vm, btnew2);
931 1.10 yamt }
932 1.1 yamt KASSERT(btnew->bt_size >= size);
933 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
934 1.1 yamt
935 1.1 yamt return btnew->bt_start;
936 1.1 yamt }
937 1.1 yamt
938 1.1 yamt /*
939 1.1 yamt * vmem_free:
940 1.1 yamt *
941 1.1 yamt * => caller must ensure appropriate spl,
942 1.1 yamt * if the arena can be accessed from interrupt context.
943 1.1 yamt */
944 1.1 yamt
945 1.1 yamt void
946 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
947 1.1 yamt {
948 1.1 yamt
949 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
950 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
951 1.1 yamt KASSERT(size > 0);
952 1.1 yamt
953 1.5 yamt #if defined(QCACHE)
954 1.5 yamt if (size <= vm->vm_qcache_max) {
955 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
956 1.5 yamt qcache_t *qc = &vm->vm_qcache[qidx - 1];
957 1.5 yamt
958 1.5 yamt return pool_cache_put(&qc->qc_cache, (void *)addr);
959 1.5 yamt }
960 1.5 yamt #endif /* defined(QCACHE) */
961 1.5 yamt
962 1.10 yamt vmem_xfree(vm, addr, size);
963 1.10 yamt }
964 1.10 yamt
965 1.10 yamt void
966 1.11 dogcow vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size __unused)
967 1.10 yamt {
968 1.10 yamt bt_t *bt;
969 1.10 yamt bt_t *t;
970 1.10 yamt
971 1.10 yamt VMEM_ASSERT_UNLOCKED(vm);
972 1.10 yamt KASSERT(addr != VMEM_ADDR_NULL);
973 1.10 yamt KASSERT(size > 0);
974 1.10 yamt
975 1.1 yamt VMEM_LOCK(vm);
976 1.1 yamt
977 1.1 yamt bt = bt_lookupbusy(vm, addr);
978 1.1 yamt KASSERT(bt != NULL);
979 1.1 yamt KASSERT(bt->bt_start == addr);
980 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
981 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
982 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
983 1.1 yamt bt_rembusy(vm, bt);
984 1.1 yamt bt->bt_type = BT_TYPE_FREE;
985 1.1 yamt
986 1.1 yamt /* coalesce */
987 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
988 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
989 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
990 1.1 yamt bt_remfree(vm, t);
991 1.1 yamt bt_remseg(vm, t);
992 1.1 yamt bt->bt_size += t->bt_size;
993 1.1 yamt bt_free(vm, t);
994 1.1 yamt }
995 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
996 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
997 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
998 1.1 yamt bt_remfree(vm, t);
999 1.1 yamt bt_remseg(vm, t);
1000 1.1 yamt bt->bt_size += t->bt_size;
1001 1.1 yamt bt->bt_start = t->bt_start;
1002 1.1 yamt bt_free(vm, t);
1003 1.1 yamt }
1004 1.1 yamt
1005 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1006 1.1 yamt KASSERT(t != NULL);
1007 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1008 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1009 1.1 yamt t->bt_size == bt->bt_size) {
1010 1.1 yamt vmem_addr_t spanaddr;
1011 1.1 yamt vmem_size_t spansize;
1012 1.1 yamt
1013 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1014 1.1 yamt spanaddr = bt->bt_start;
1015 1.1 yamt spansize = bt->bt_size;
1016 1.1 yamt bt_remseg(vm, bt);
1017 1.1 yamt bt_free(vm, bt);
1018 1.1 yamt bt_remseg(vm, t);
1019 1.1 yamt bt_free(vm, t);
1020 1.1 yamt VMEM_UNLOCK(vm);
1021 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1022 1.1 yamt } else {
1023 1.1 yamt bt_insfree(vm, bt);
1024 1.1 yamt VMEM_UNLOCK(vm);
1025 1.1 yamt }
1026 1.1 yamt }
1027 1.1 yamt
1028 1.1 yamt /*
1029 1.1 yamt * vmem_add:
1030 1.1 yamt *
1031 1.1 yamt * => caller must ensure appropriate spl,
1032 1.1 yamt * if the arena can be accessed from interrupt context.
1033 1.1 yamt */
1034 1.1 yamt
1035 1.1 yamt vmem_addr_t
1036 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1037 1.1 yamt {
1038 1.1 yamt
1039 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1040 1.1 yamt }
1041 1.1 yamt
1042 1.6 yamt /*
1043 1.6 yamt * vmem_reap: reap unused resources.
1044 1.6 yamt *
1045 1.6 yamt * => return TRUE if we successfully reaped something.
1046 1.6 yamt */
1047 1.6 yamt
1048 1.6 yamt boolean_t
1049 1.6 yamt vmem_reap(vmem_t *vm)
1050 1.6 yamt {
1051 1.6 yamt boolean_t didsomething = FALSE;
1052 1.6 yamt
1053 1.6 yamt VMEM_ASSERT_UNLOCKED(vm);
1054 1.6 yamt
1055 1.6 yamt #if defined(QCACHE)
1056 1.6 yamt didsomething = qc_reap(vm);
1057 1.6 yamt #endif /* defined(QCACHE) */
1058 1.6 yamt return didsomething;
1059 1.6 yamt }
1060 1.6 yamt
1061 1.1 yamt /* ---- debug */
1062 1.1 yamt
1063 1.1 yamt #if defined(VMEM_DEBUG)
1064 1.1 yamt
1065 1.1 yamt #if !defined(_KERNEL)
1066 1.1 yamt #include <stdio.h>
1067 1.1 yamt #endif /* !defined(_KERNEL) */
1068 1.1 yamt
1069 1.1 yamt void bt_dump(const bt_t *);
1070 1.1 yamt
1071 1.1 yamt void
1072 1.1 yamt bt_dump(const bt_t *bt)
1073 1.1 yamt {
1074 1.1 yamt
1075 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1076 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1077 1.1 yamt bt->bt_type);
1078 1.1 yamt }
1079 1.1 yamt
1080 1.1 yamt void
1081 1.1 yamt vmem_dump(const vmem_t *vm)
1082 1.1 yamt {
1083 1.1 yamt const bt_t *bt;
1084 1.1 yamt int i;
1085 1.1 yamt
1086 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
1087 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1088 1.1 yamt bt_dump(bt);
1089 1.1 yamt }
1090 1.1 yamt
1091 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1092 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1093 1.1 yamt
1094 1.1 yamt if (LIST_EMPTY(fl)) {
1095 1.1 yamt continue;
1096 1.1 yamt }
1097 1.1 yamt
1098 1.1 yamt printf("freelist[%d]\n", i);
1099 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1100 1.1 yamt bt_dump(bt);
1101 1.1 yamt if (bt->bt_size) {
1102 1.1 yamt }
1103 1.1 yamt }
1104 1.1 yamt }
1105 1.1 yamt }
1106 1.1 yamt
1107 1.1 yamt #if !defined(_KERNEL)
1108 1.1 yamt
1109 1.1 yamt #include <stdlib.h>
1110 1.1 yamt
1111 1.1 yamt int
1112 1.1 yamt main()
1113 1.1 yamt {
1114 1.1 yamt vmem_t *vm;
1115 1.1 yamt vmem_addr_t p;
1116 1.1 yamt struct reg {
1117 1.1 yamt vmem_addr_t p;
1118 1.1 yamt vmem_size_t sz;
1119 1.10 yamt boolean_t x;
1120 1.1 yamt } *reg = NULL;
1121 1.1 yamt int nreg = 0;
1122 1.1 yamt int nalloc = 0;
1123 1.1 yamt int nfree = 0;
1124 1.1 yamt vmem_size_t total = 0;
1125 1.1 yamt #if 1
1126 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1127 1.1 yamt #else
1128 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1129 1.1 yamt #endif
1130 1.1 yamt
1131 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1132 1.1 yamt NULL, NULL, NULL, 0, VM_NOSLEEP);
1133 1.1 yamt if (vm == NULL) {
1134 1.1 yamt printf("vmem_create\n");
1135 1.1 yamt exit(EXIT_FAILURE);
1136 1.1 yamt }
1137 1.1 yamt vmem_dump(vm);
1138 1.1 yamt
1139 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1140 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1141 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1142 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1143 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1144 1.1 yamt vmem_dump(vm);
1145 1.1 yamt for (;;) {
1146 1.1 yamt struct reg *r;
1147 1.10 yamt int t = rand() % 100;
1148 1.1 yamt
1149 1.10 yamt if (t > 45) {
1150 1.10 yamt /* alloc */
1151 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1152 1.10 yamt boolean_t x;
1153 1.10 yamt vmem_size_t align, phase, nocross;
1154 1.10 yamt vmem_addr_t minaddr, maxaddr;
1155 1.10 yamt
1156 1.10 yamt if (t > 70) {
1157 1.10 yamt x = TRUE;
1158 1.10 yamt /* XXX */
1159 1.10 yamt align = 1 << (rand() % 15);
1160 1.10 yamt phase = rand() % 65536;
1161 1.10 yamt nocross = 1 << (rand() % 15);
1162 1.10 yamt if (align <= phase) {
1163 1.10 yamt phase = 0;
1164 1.10 yamt }
1165 1.10 yamt if (((phase ^ (phase + sz)) & -nocross) != 0) {
1166 1.10 yamt nocross = 0;
1167 1.10 yamt }
1168 1.10 yamt minaddr = rand() % 50000;
1169 1.10 yamt maxaddr = rand() % 70000;
1170 1.10 yamt if (minaddr > maxaddr) {
1171 1.10 yamt minaddr = 0;
1172 1.10 yamt maxaddr = 0;
1173 1.10 yamt }
1174 1.10 yamt printf("=== xalloc %" PRIu64
1175 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1176 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1177 1.10 yamt ", max=%" PRIu64 "\n",
1178 1.10 yamt (uint64_t)sz,
1179 1.10 yamt (uint64_t)align,
1180 1.10 yamt (uint64_t)phase,
1181 1.10 yamt (uint64_t)nocross,
1182 1.10 yamt (uint64_t)minaddr,
1183 1.10 yamt (uint64_t)maxaddr);
1184 1.10 yamt p = vmem_xalloc(vm, sz, align, phase, nocross,
1185 1.10 yamt minaddr, maxaddr, strat|VM_SLEEP);
1186 1.10 yamt } else {
1187 1.10 yamt x = FALSE;
1188 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1189 1.10 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1190 1.10 yamt }
1191 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1192 1.1 yamt vmem_dump(vm);
1193 1.1 yamt if (p == VMEM_ADDR_NULL) {
1194 1.10 yamt if (x) {
1195 1.10 yamt continue;
1196 1.10 yamt }
1197 1.1 yamt break;
1198 1.1 yamt }
1199 1.1 yamt nreg++;
1200 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1201 1.1 yamt r = ®[nreg - 1];
1202 1.1 yamt r->p = p;
1203 1.1 yamt r->sz = sz;
1204 1.10 yamt r->x = x;
1205 1.1 yamt total += sz;
1206 1.1 yamt nalloc++;
1207 1.1 yamt } else if (nreg != 0) {
1208 1.10 yamt /* free */
1209 1.1 yamt r = ®[rand() % nreg];
1210 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1211 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1212 1.10 yamt if (r->x) {
1213 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1214 1.10 yamt } else {
1215 1.10 yamt vmem_free(vm, r->p, r->sz);
1216 1.10 yamt }
1217 1.1 yamt total -= r->sz;
1218 1.1 yamt vmem_dump(vm);
1219 1.1 yamt *r = reg[nreg - 1];
1220 1.1 yamt nreg--;
1221 1.1 yamt nfree++;
1222 1.1 yamt }
1223 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1224 1.1 yamt }
1225 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1226 1.1 yamt (uint64_t)total, nalloc, nfree);
1227 1.1 yamt exit(EXIT_SUCCESS);
1228 1.1 yamt }
1229 1.1 yamt #endif /* !defined(_KERNEL) */
1230 1.1 yamt #endif /* defined(VMEM_DEBUG) */
1231