Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.12
      1  1.12      yamt /*	$NetBSD: subr_vmem.c,v 1.12 2006/10/17 08:54:03 yamt Exp $	*/
      2   1.1      yamt 
      3   1.1      yamt /*-
      4   1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
      5   1.1      yamt  * All rights reserved.
      6   1.1      yamt  *
      7   1.1      yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1      yamt  * modification, are permitted provided that the following conditions
      9   1.1      yamt  * are met:
     10   1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1      yamt  *
     16   1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1      yamt  * SUCH DAMAGE.
     27   1.1      yamt  */
     28   1.1      yamt 
     29   1.1      yamt /*
     30   1.1      yamt  * reference:
     31   1.1      yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32   1.1      yamt  *	to Many CPUs and Arbitrary Resources
     33   1.1      yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34   1.1      yamt  *
     35   1.1      yamt  * TODO:
     36   1.1      yamt  * -	implement vmem_xalloc/vmem_xfree
     37   1.1      yamt  */
     38   1.1      yamt 
     39   1.1      yamt #include <sys/cdefs.h>
     40  1.12      yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.12 2006/10/17 08:54:03 yamt Exp $");
     41   1.1      yamt 
     42   1.1      yamt #define	VMEM_DEBUG
     43   1.5      yamt #if defined(_KERNEL)
     44   1.5      yamt #define	QCACHE
     45   1.5      yamt #endif /* defined(_KERNEL) */
     46   1.1      yamt 
     47   1.1      yamt #include <sys/param.h>
     48   1.1      yamt #include <sys/hash.h>
     49   1.1      yamt #include <sys/queue.h>
     50   1.1      yamt 
     51   1.1      yamt #if defined(_KERNEL)
     52   1.1      yamt #include <sys/systm.h>
     53   1.1      yamt #include <sys/lock.h>
     54   1.1      yamt #include <sys/malloc.h>
     55   1.1      yamt #include <sys/once.h>
     56   1.1      yamt #include <sys/pool.h>
     57   1.3      yamt #include <sys/proc.h>
     58   1.1      yamt #include <sys/vmem.h>
     59   1.1      yamt #else /* defined(_KERNEL) */
     60   1.1      yamt #include "../sys/vmem.h"
     61   1.1      yamt #endif /* defined(_KERNEL) */
     62   1.1      yamt 
     63   1.1      yamt #if defined(_KERNEL)
     64   1.1      yamt #define	SIMPLELOCK_DECL(name)	struct simplelock name
     65   1.1      yamt #else /* defined(_KERNEL) */
     66   1.1      yamt #include <errno.h>
     67   1.1      yamt #include <assert.h>
     68   1.1      yamt #include <stdlib.h>
     69   1.1      yamt 
     70   1.1      yamt #define	KASSERT(a)		assert(a)
     71   1.1      yamt #define	SIMPLELOCK_DECL(name)	/* nothing */
     72   1.1      yamt #define	LOCK_ASSERT(a)		/* nothing */
     73   1.1      yamt #define	simple_lock_init(a)	/* nothing */
     74   1.1      yamt #define	simple_lock(a)		/* nothing */
     75   1.1      yamt #define	simple_unlock(a)	/* nothing */
     76   1.3      yamt #define	ASSERT_SLEEPABLE(lk, msg) /* nothing */
     77   1.1      yamt #endif /* defined(_KERNEL) */
     78   1.1      yamt 
     79   1.1      yamt struct vmem;
     80   1.1      yamt struct vmem_btag;
     81   1.1      yamt 
     82   1.1      yamt #if defined(VMEM_DEBUG)
     83   1.1      yamt void vmem_dump(const vmem_t *);
     84   1.1      yamt #endif /* defined(VMEM_DEBUG) */
     85   1.1      yamt 
     86   1.4      yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     87   1.1      yamt #define	VMEM_HASHSIZE_INIT	4096	/* XXX */
     88   1.1      yamt 
     89   1.1      yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
     90   1.1      yamt 
     91   1.1      yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
     92   1.1      yamt LIST_HEAD(vmem_freelist, vmem_btag);
     93   1.1      yamt LIST_HEAD(vmem_hashlist, vmem_btag);
     94   1.1      yamt 
     95   1.5      yamt #if defined(QCACHE)
     96   1.5      yamt #define	VMEM_QCACHE_IDX_MAX	32
     97   1.5      yamt 
     98   1.5      yamt #define	QC_NAME_MAX	16
     99   1.5      yamt 
    100   1.5      yamt struct qcache {
    101   1.5      yamt 	struct pool qc_pool;
    102   1.5      yamt 	struct pool_cache qc_cache;
    103   1.5      yamt 	vmem_t *qc_vmem;
    104   1.5      yamt 	char qc_name[QC_NAME_MAX];
    105   1.5      yamt };
    106   1.5      yamt typedef struct qcache qcache_t;
    107   1.5      yamt #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool))
    108   1.5      yamt #endif /* defined(QCACHE) */
    109   1.5      yamt 
    110   1.1      yamt /* vmem arena */
    111   1.1      yamt struct vmem {
    112   1.1      yamt 	SIMPLELOCK_DECL(vm_lock);
    113   1.1      yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    114   1.1      yamt 	    vm_flag_t);
    115   1.1      yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    116   1.1      yamt 	vmem_t *vm_source;
    117   1.1      yamt 	struct vmem_seglist vm_seglist;
    118   1.1      yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    119   1.1      yamt 	size_t vm_hashsize;
    120   1.1      yamt 	size_t vm_nbusytag;
    121   1.1      yamt 	struct vmem_hashlist *vm_hashlist;
    122   1.1      yamt 	size_t vm_quantum_mask;
    123   1.1      yamt 	int vm_quantum_shift;
    124   1.1      yamt 	const char *vm_name;
    125   1.5      yamt 
    126   1.5      yamt #if defined(QCACHE)
    127   1.5      yamt 	/* quantum cache */
    128   1.5      yamt 	size_t vm_qcache_max;
    129   1.5      yamt 	struct pool_allocator vm_qcache_allocator;
    130   1.5      yamt 	qcache_t vm_qcache[VMEM_QCACHE_IDX_MAX];
    131   1.5      yamt #endif /* defined(QCACHE) */
    132   1.1      yamt };
    133   1.1      yamt 
    134   1.1      yamt #define	VMEM_LOCK(vm)	simple_lock(&vm->vm_lock)
    135   1.1      yamt #define	VMEM_UNLOCK(vm)	simple_unlock(&vm->vm_lock)
    136   1.1      yamt #define	VMEM_LOCK_INIT(vm)	simple_lock_init(&vm->vm_lock);
    137   1.1      yamt #define	VMEM_ASSERT_LOCKED(vm) \
    138   1.1      yamt 	LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
    139   1.1      yamt #define	VMEM_ASSERT_UNLOCKED(vm) \
    140   1.1      yamt 	LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
    141   1.1      yamt 
    142   1.1      yamt /* boundary tag */
    143   1.1      yamt struct vmem_btag {
    144   1.1      yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    145   1.1      yamt 	union {
    146   1.1      yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    147   1.1      yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    148   1.1      yamt 	} bt_u;
    149   1.1      yamt #define	bt_hashlist	bt_u.u_hashlist
    150   1.1      yamt #define	bt_freelist	bt_u.u_freelist
    151   1.1      yamt 	vmem_addr_t bt_start;
    152   1.1      yamt 	vmem_size_t bt_size;
    153   1.1      yamt 	int bt_type;
    154   1.1      yamt };
    155   1.1      yamt 
    156   1.1      yamt #define	BT_TYPE_SPAN		1
    157   1.1      yamt #define	BT_TYPE_SPAN_STATIC	2
    158   1.1      yamt #define	BT_TYPE_FREE		3
    159   1.1      yamt #define	BT_TYPE_BUSY		4
    160   1.1      yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    161   1.1      yamt 
    162   1.1      yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    163   1.1      yamt 
    164   1.1      yamt typedef struct vmem_btag bt_t;
    165   1.1      yamt 
    166   1.1      yamt /* ---- misc */
    167   1.1      yamt 
    168   1.4      yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    169   1.4      yamt 
    170   1.1      yamt static int
    171   1.1      yamt calc_order(vmem_size_t size)
    172   1.1      yamt {
    173   1.4      yamt 	vmem_size_t target;
    174   1.1      yamt 	int i;
    175   1.1      yamt 
    176   1.1      yamt 	KASSERT(size != 0);
    177   1.1      yamt 
    178   1.1      yamt 	i = 0;
    179   1.4      yamt 	target = size >> 1;
    180   1.4      yamt 	while (ORDER2SIZE(i) <= target) {
    181   1.1      yamt 		i++;
    182   1.1      yamt 	}
    183   1.1      yamt 
    184   1.4      yamt 	KASSERT(ORDER2SIZE(i) <= size);
    185   1.4      yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    186   1.1      yamt 
    187   1.1      yamt 	return i;
    188   1.1      yamt }
    189   1.1      yamt 
    190   1.1      yamt #if defined(_KERNEL)
    191   1.1      yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    192   1.1      yamt #endif /* defined(_KERNEL) */
    193   1.1      yamt 
    194   1.1      yamt static void *
    195   1.1      yamt xmalloc(size_t sz, vm_flag_t flags)
    196   1.1      yamt {
    197   1.1      yamt 
    198   1.1      yamt #if defined(_KERNEL)
    199   1.1      yamt 	return malloc(sz, M_VMEM,
    200   1.1      yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    201   1.1      yamt #else /* defined(_KERNEL) */
    202   1.1      yamt 	return malloc(sz);
    203   1.1      yamt #endif /* defined(_KERNEL) */
    204   1.1      yamt }
    205   1.1      yamt 
    206   1.1      yamt static void
    207   1.1      yamt xfree(void *p)
    208   1.1      yamt {
    209   1.1      yamt 
    210   1.1      yamt #if defined(_KERNEL)
    211   1.1      yamt 	return free(p, M_VMEM);
    212   1.1      yamt #else /* defined(_KERNEL) */
    213   1.1      yamt 	return free(p);
    214   1.1      yamt #endif /* defined(_KERNEL) */
    215   1.1      yamt }
    216   1.1      yamt 
    217   1.1      yamt /* ---- boundary tag */
    218   1.1      yamt 
    219   1.1      yamt #if defined(_KERNEL)
    220   1.1      yamt static struct pool_cache bt_poolcache;
    221   1.1      yamt static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
    222   1.1      yamt #endif /* defined(_KERNEL) */
    223   1.1      yamt 
    224   1.1      yamt static bt_t *
    225   1.9  christos bt_alloc(vmem_t *vm __unused, vm_flag_t flags)
    226   1.1      yamt {
    227   1.1      yamt 	bt_t *bt;
    228   1.1      yamt 
    229   1.1      yamt #if defined(_KERNEL)
    230   1.1      yamt 	/* XXX bootstrap */
    231   1.1      yamt 	bt = pool_cache_get(&bt_poolcache,
    232   1.1      yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    233   1.1      yamt #else /* defined(_KERNEL) */
    234   1.1      yamt 	bt = malloc(sizeof *bt);
    235   1.1      yamt #endif /* defined(_KERNEL) */
    236   1.1      yamt 
    237   1.1      yamt 	return bt;
    238   1.1      yamt }
    239   1.1      yamt 
    240   1.1      yamt static void
    241   1.9  christos bt_free(vmem_t *vm __unused, bt_t *bt)
    242   1.1      yamt {
    243   1.1      yamt 
    244   1.1      yamt #if defined(_KERNEL)
    245   1.1      yamt 	/* XXX bootstrap */
    246   1.1      yamt 	pool_cache_put(&bt_poolcache, bt);
    247   1.1      yamt #else /* defined(_KERNEL) */
    248   1.1      yamt 	free(bt);
    249   1.1      yamt #endif /* defined(_KERNEL) */
    250   1.1      yamt }
    251   1.1      yamt 
    252   1.1      yamt /*
    253   1.1      yamt  * freelist[0] ... [1, 1]
    254   1.1      yamt  * freelist[1] ... [2, 3]
    255   1.1      yamt  * freelist[2] ... [4, 7]
    256   1.1      yamt  * freelist[3] ... [8, 15]
    257   1.1      yamt  *  :
    258   1.1      yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    259   1.1      yamt  *  :
    260   1.1      yamt  */
    261   1.1      yamt 
    262   1.1      yamt static struct vmem_freelist *
    263   1.1      yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    264   1.1      yamt {
    265   1.1      yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    266   1.1      yamt 	int idx;
    267   1.1      yamt 
    268   1.1      yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    269   1.1      yamt 	KASSERT(size != 0);
    270   1.1      yamt 
    271   1.1      yamt 	idx = calc_order(qsize);
    272   1.1      yamt 	KASSERT(idx >= 0);
    273   1.1      yamt 	KASSERT(idx < VMEM_MAXORDER);
    274   1.1      yamt 
    275   1.1      yamt 	return &vm->vm_freelist[idx];
    276   1.1      yamt }
    277   1.1      yamt 
    278   1.1      yamt static struct vmem_freelist *
    279   1.1      yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    280   1.1      yamt {
    281   1.1      yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    282   1.1      yamt 	int idx;
    283   1.1      yamt 
    284   1.1      yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    285   1.1      yamt 	KASSERT(size != 0);
    286   1.1      yamt 
    287   1.1      yamt 	idx = calc_order(qsize);
    288   1.4      yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    289   1.1      yamt 		idx++;
    290   1.1      yamt 		/* check too large request? */
    291   1.1      yamt 	}
    292   1.1      yamt 	KASSERT(idx >= 0);
    293   1.1      yamt 	KASSERT(idx < VMEM_MAXORDER);
    294   1.1      yamt 
    295   1.1      yamt 	return &vm->vm_freelist[idx];
    296   1.1      yamt }
    297   1.1      yamt 
    298   1.1      yamt /* ---- boundary tag hash */
    299   1.1      yamt 
    300   1.1      yamt static struct vmem_hashlist *
    301   1.1      yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    302   1.1      yamt {
    303   1.1      yamt 	struct vmem_hashlist *list;
    304   1.1      yamt 	unsigned int hash;
    305   1.1      yamt 
    306   1.1      yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    307   1.1      yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    308   1.1      yamt 
    309   1.1      yamt 	return list;
    310   1.1      yamt }
    311   1.1      yamt 
    312   1.1      yamt static bt_t *
    313   1.1      yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    314   1.1      yamt {
    315   1.1      yamt 	struct vmem_hashlist *list;
    316   1.1      yamt 	bt_t *bt;
    317   1.1      yamt 
    318   1.1      yamt 	list = bt_hashhead(vm, addr);
    319   1.1      yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    320   1.1      yamt 		if (bt->bt_start == addr) {
    321   1.1      yamt 			break;
    322   1.1      yamt 		}
    323   1.1      yamt 	}
    324   1.1      yamt 
    325   1.1      yamt 	return bt;
    326   1.1      yamt }
    327   1.1      yamt 
    328   1.1      yamt static void
    329   1.1      yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    330   1.1      yamt {
    331   1.1      yamt 
    332   1.1      yamt 	KASSERT(vm->vm_nbusytag > 0);
    333   1.1      yamt 	vm->vm_nbusytag--;
    334   1.1      yamt 	LIST_REMOVE(bt, bt_hashlist);
    335   1.1      yamt }
    336   1.1      yamt 
    337   1.1      yamt static void
    338   1.1      yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    339   1.1      yamt {
    340   1.1      yamt 	struct vmem_hashlist *list;
    341   1.1      yamt 
    342   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    343   1.1      yamt 
    344   1.1      yamt 	list = bt_hashhead(vm, bt->bt_start);
    345   1.1      yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    346   1.1      yamt 	vm->vm_nbusytag++;
    347   1.1      yamt }
    348   1.1      yamt 
    349   1.1      yamt /* ---- boundary tag list */
    350   1.1      yamt 
    351   1.1      yamt static void
    352   1.1      yamt bt_remseg(vmem_t *vm, bt_t *bt)
    353   1.1      yamt {
    354   1.1      yamt 
    355   1.1      yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    356   1.1      yamt }
    357   1.1      yamt 
    358   1.1      yamt static void
    359   1.1      yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    360   1.1      yamt {
    361   1.1      yamt 
    362   1.1      yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    363   1.1      yamt }
    364   1.1      yamt 
    365   1.1      yamt static void
    366   1.1      yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    367   1.1      yamt {
    368   1.1      yamt 
    369   1.1      yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    370   1.1      yamt }
    371   1.1      yamt 
    372   1.1      yamt static void
    373   1.9  christos bt_remfree(vmem_t *vm __unused, bt_t *bt)
    374   1.1      yamt {
    375   1.1      yamt 
    376   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    377   1.1      yamt 
    378   1.1      yamt 	LIST_REMOVE(bt, bt_freelist);
    379   1.1      yamt }
    380   1.1      yamt 
    381   1.1      yamt static void
    382   1.1      yamt bt_insfree(vmem_t *vm, bt_t *bt)
    383   1.1      yamt {
    384   1.1      yamt 	struct vmem_freelist *list;
    385   1.1      yamt 
    386   1.1      yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    387   1.1      yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    388   1.1      yamt }
    389   1.1      yamt 
    390   1.1      yamt /* ---- vmem internal functions */
    391   1.1      yamt 
    392   1.5      yamt #if defined(QCACHE)
    393   1.5      yamt static inline vm_flag_t
    394   1.5      yamt prf_to_vmf(int prflags)
    395   1.5      yamt {
    396   1.5      yamt 	vm_flag_t vmflags;
    397   1.5      yamt 
    398   1.5      yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    399   1.5      yamt 	if ((prflags & PR_WAITOK) != 0) {
    400   1.5      yamt 		vmflags = VM_SLEEP;
    401   1.5      yamt 	} else {
    402   1.5      yamt 		vmflags = VM_NOSLEEP;
    403   1.5      yamt 	}
    404   1.5      yamt 	return vmflags;
    405   1.5      yamt }
    406   1.5      yamt 
    407   1.5      yamt static inline int
    408   1.5      yamt vmf_to_prf(vm_flag_t vmflags)
    409   1.5      yamt {
    410   1.5      yamt 	int prflags;
    411   1.5      yamt 
    412   1.7      yamt 	if ((vmflags & VM_SLEEP) != 0) {
    413   1.5      yamt 		prflags = PR_WAITOK;
    414   1.7      yamt 	} else {
    415   1.5      yamt 		prflags = PR_NOWAIT;
    416   1.5      yamt 	}
    417   1.5      yamt 	return prflags;
    418   1.5      yamt }
    419   1.5      yamt 
    420   1.5      yamt static size_t
    421   1.5      yamt qc_poolpage_size(size_t qcache_max)
    422   1.5      yamt {
    423   1.5      yamt 	int i;
    424   1.5      yamt 
    425   1.5      yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    426   1.5      yamt 		/* nothing */
    427   1.5      yamt 	}
    428   1.5      yamt 	return ORDER2SIZE(i);
    429   1.5      yamt }
    430   1.5      yamt 
    431   1.5      yamt static void *
    432   1.5      yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    433   1.5      yamt {
    434   1.5      yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    435   1.5      yamt 	vmem_t *vm = qc->qc_vmem;
    436   1.5      yamt 
    437   1.5      yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    438   1.5      yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    439   1.5      yamt }
    440   1.5      yamt 
    441   1.5      yamt static void
    442   1.5      yamt qc_poolpage_free(struct pool *pool, void *addr)
    443   1.5      yamt {
    444   1.5      yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    445   1.5      yamt 	vmem_t *vm = qc->qc_vmem;
    446   1.5      yamt 
    447   1.5      yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    448   1.5      yamt }
    449   1.5      yamt 
    450   1.5      yamt static void
    451   1.5      yamt qc_init(vmem_t *vm, size_t qcache_max)
    452   1.5      yamt {
    453   1.5      yamt 	struct pool_allocator *pa;
    454   1.5      yamt 	int qcache_idx_max;
    455   1.5      yamt 	int i;
    456   1.5      yamt 
    457   1.5      yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    458   1.5      yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    459   1.5      yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    460   1.5      yamt 	}
    461   1.5      yamt 	vm->vm_qcache_max = qcache_max;
    462   1.5      yamt 	pa = &vm->vm_qcache_allocator;
    463   1.5      yamt 	memset(pa, 0, sizeof(*pa));
    464   1.5      yamt 	pa->pa_alloc = qc_poolpage_alloc;
    465   1.5      yamt 	pa->pa_free = qc_poolpage_free;
    466   1.5      yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    467   1.5      yamt 
    468   1.5      yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    469   1.5      yamt 	for (i = 1; i <= qcache_idx_max; i++) {
    470   1.5      yamt 		qcache_t *qc = &vm->vm_qcache[i - 1];
    471   1.5      yamt 		size_t size = i << vm->vm_quantum_shift;
    472   1.5      yamt 
    473   1.5      yamt 		qc->qc_vmem = vm;
    474   1.8    martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    475   1.5      yamt 		    vm->vm_name, size);
    476   1.5      yamt 		pool_init(&qc->qc_pool, size, 0, 0,
    477   1.5      yamt 		    PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
    478   1.5      yamt 		pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
    479   1.5      yamt 	}
    480   1.5      yamt }
    481   1.6      yamt 
    482   1.6      yamt static boolean_t
    483   1.6      yamt qc_reap(vmem_t *vm)
    484   1.6      yamt {
    485   1.6      yamt 	int i;
    486   1.6      yamt 	int qcache_idx_max;
    487   1.6      yamt 	boolean_t didsomething = FALSE;
    488   1.6      yamt 
    489   1.6      yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    490   1.6      yamt 	for (i = 1; i <= qcache_idx_max; i++) {
    491   1.6      yamt 		qcache_t *qc = &vm->vm_qcache[i - 1];
    492   1.6      yamt 
    493   1.6      yamt 		if (pool_reclaim(&qc->qc_pool) != 0) {
    494   1.6      yamt 			didsomething = TRUE;
    495   1.6      yamt 		}
    496   1.6      yamt 	}
    497   1.6      yamt 
    498   1.6      yamt 	return didsomething;
    499   1.6      yamt }
    500   1.5      yamt #endif /* defined(QCACHE) */
    501   1.5      yamt 
    502   1.1      yamt #if defined(_KERNEL)
    503   1.1      yamt static int
    504   1.1      yamt vmem_init(void)
    505   1.1      yamt {
    506   1.1      yamt 
    507   1.1      yamt 	pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
    508   1.1      yamt 	return 0;
    509   1.1      yamt }
    510   1.1      yamt #endif /* defined(_KERNEL) */
    511   1.1      yamt 
    512   1.1      yamt static vmem_addr_t
    513   1.1      yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    514   1.1      yamt     int spanbttype)
    515   1.1      yamt {
    516   1.1      yamt 	bt_t *btspan;
    517   1.1      yamt 	bt_t *btfree;
    518   1.1      yamt 
    519   1.1      yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    520   1.1      yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    521   1.1      yamt 	VMEM_ASSERT_UNLOCKED(vm);
    522   1.1      yamt 
    523   1.1      yamt 	btspan = bt_alloc(vm, flags);
    524   1.1      yamt 	if (btspan == NULL) {
    525   1.1      yamt 		return VMEM_ADDR_NULL;
    526   1.1      yamt 	}
    527   1.1      yamt 	btfree = bt_alloc(vm, flags);
    528   1.1      yamt 	if (btfree == NULL) {
    529   1.1      yamt 		bt_free(vm, btspan);
    530   1.1      yamt 		return VMEM_ADDR_NULL;
    531   1.1      yamt 	}
    532   1.1      yamt 
    533   1.1      yamt 	btspan->bt_type = spanbttype;
    534   1.1      yamt 	btspan->bt_start = addr;
    535   1.1      yamt 	btspan->bt_size = size;
    536   1.1      yamt 
    537   1.1      yamt 	btfree->bt_type = BT_TYPE_FREE;
    538   1.1      yamt 	btfree->bt_start = addr;
    539   1.1      yamt 	btfree->bt_size = size;
    540   1.1      yamt 
    541   1.1      yamt 	VMEM_LOCK(vm);
    542   1.1      yamt 	bt_insseg_tail(vm, btspan);
    543   1.1      yamt 	bt_insseg(vm, btfree, btspan);
    544   1.1      yamt 	bt_insfree(vm, btfree);
    545   1.1      yamt 	VMEM_UNLOCK(vm);
    546   1.1      yamt 
    547   1.1      yamt 	return addr;
    548   1.1      yamt }
    549   1.1      yamt 
    550   1.1      yamt static int
    551   1.1      yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    552   1.1      yamt {
    553   1.1      yamt 	vmem_addr_t addr;
    554   1.1      yamt 
    555   1.1      yamt 	VMEM_ASSERT_UNLOCKED(vm);
    556   1.1      yamt 
    557   1.1      yamt 	if (vm->vm_allocfn == NULL) {
    558   1.1      yamt 		return EINVAL;
    559   1.1      yamt 	}
    560   1.1      yamt 
    561   1.1      yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    562   1.1      yamt 	if (addr == VMEM_ADDR_NULL) {
    563   1.1      yamt 		return ENOMEM;
    564   1.1      yamt 	}
    565   1.1      yamt 
    566   1.1      yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    567   1.1      yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    568   1.1      yamt 		return ENOMEM;
    569   1.1      yamt 	}
    570   1.1      yamt 
    571   1.1      yamt 	return 0;
    572   1.1      yamt }
    573   1.1      yamt 
    574   1.1      yamt static int
    575   1.1      yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    576   1.1      yamt {
    577   1.1      yamt 	bt_t *bt;
    578   1.1      yamt 	int i;
    579   1.1      yamt 	struct vmem_hashlist *newhashlist;
    580   1.1      yamt 	struct vmem_hashlist *oldhashlist;
    581   1.1      yamt 	size_t oldhashsize;
    582   1.1      yamt 
    583   1.1      yamt 	KASSERT(newhashsize > 0);
    584   1.1      yamt 	VMEM_ASSERT_UNLOCKED(vm);
    585   1.1      yamt 
    586   1.1      yamt 	newhashlist =
    587   1.1      yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    588   1.1      yamt 	if (newhashlist == NULL) {
    589   1.1      yamt 		return ENOMEM;
    590   1.1      yamt 	}
    591   1.1      yamt 	for (i = 0; i < newhashsize; i++) {
    592   1.1      yamt 		LIST_INIT(&newhashlist[i]);
    593   1.1      yamt 	}
    594   1.1      yamt 
    595   1.1      yamt 	VMEM_LOCK(vm);
    596   1.1      yamt 	oldhashlist = vm->vm_hashlist;
    597   1.1      yamt 	oldhashsize = vm->vm_hashsize;
    598   1.1      yamt 	vm->vm_hashlist = newhashlist;
    599   1.1      yamt 	vm->vm_hashsize = newhashsize;
    600   1.1      yamt 	if (oldhashlist == NULL) {
    601   1.1      yamt 		VMEM_UNLOCK(vm);
    602   1.1      yamt 		return 0;
    603   1.1      yamt 	}
    604   1.1      yamt 	for (i = 0; i < oldhashsize; i++) {
    605   1.1      yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    606   1.1      yamt 			bt_rembusy(vm, bt); /* XXX */
    607   1.1      yamt 			bt_insbusy(vm, bt);
    608   1.1      yamt 		}
    609   1.1      yamt 	}
    610   1.1      yamt 	VMEM_UNLOCK(vm);
    611   1.1      yamt 
    612   1.1      yamt 	xfree(oldhashlist);
    613   1.1      yamt 
    614   1.1      yamt 	return 0;
    615   1.1      yamt }
    616   1.1      yamt 
    617  1.10      yamt /*
    618  1.10      yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    619  1.10      yamt  */
    620  1.10      yamt 
    621  1.10      yamt static vmem_addr_t
    622  1.10      yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    623  1.10      yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    624  1.10      yamt {
    625  1.10      yamt 	vmem_addr_t start;
    626  1.10      yamt 	vmem_addr_t end;
    627  1.10      yamt 
    628  1.10      yamt 	KASSERT(bt->bt_size >= size);
    629  1.10      yamt 
    630  1.10      yamt 	/*
    631  1.10      yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    632  1.10      yamt 	 * unsigned integer of the same size.
    633  1.10      yamt 	 */
    634  1.10      yamt 
    635  1.10      yamt 	start = bt->bt_start;
    636  1.10      yamt 	if (start < minaddr) {
    637  1.10      yamt 		start = minaddr;
    638  1.10      yamt 	}
    639  1.10      yamt 	end = BT_END(bt);
    640  1.10      yamt 	if (end > maxaddr - 1) {
    641  1.10      yamt 		end = maxaddr - 1;
    642  1.10      yamt 	}
    643  1.10      yamt 	if (start >= end) {
    644  1.10      yamt 		return VMEM_ADDR_NULL;
    645  1.10      yamt 	}
    646  1.10      yamt 	start = -(-(start - phase) & -align) + phase;
    647  1.10      yamt 	if (start < bt->bt_start) {
    648  1.10      yamt 		start += align;
    649  1.10      yamt 	}
    650  1.10      yamt 	if (((start ^ (start + size - 1)) & -nocross) != 0) {
    651  1.10      yamt 		KASSERT(align < nocross);
    652  1.10      yamt 		start = -(-(start - phase) & -nocross) + phase;
    653  1.10      yamt 	}
    654  1.10      yamt 	if (start < end && end - start >= size) {
    655  1.10      yamt 		KASSERT((start & (align - 1)) == phase);
    656  1.10      yamt 		KASSERT(((start ^ (start + size - 1)) & -nocross) == 0);
    657  1.10      yamt 		KASSERT(minaddr <= start);
    658  1.10      yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    659  1.10      yamt 		KASSERT(bt->bt_start <= start);
    660  1.10      yamt 		KASSERT(start + size <= BT_END(bt));
    661  1.10      yamt 		return start;
    662  1.10      yamt 	}
    663  1.10      yamt 	return VMEM_ADDR_NULL;
    664  1.10      yamt }
    665  1.10      yamt 
    666   1.1      yamt /* ---- vmem API */
    667   1.1      yamt 
    668   1.1      yamt /*
    669   1.1      yamt  * vmem_create: create an arena.
    670   1.1      yamt  *
    671   1.1      yamt  * => must not be called from interrupt context.
    672   1.1      yamt  */
    673   1.1      yamt 
    674   1.1      yamt vmem_t *
    675   1.1      yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    676   1.1      yamt     vmem_size_t quantum,
    677   1.1      yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    678   1.1      yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    679   1.1      yamt     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
    680   1.1      yamt {
    681   1.1      yamt 	vmem_t *vm;
    682   1.1      yamt 	int i;
    683   1.1      yamt #if defined(_KERNEL)
    684   1.1      yamt 	static ONCE_DECL(control);
    685   1.1      yamt #endif /* defined(_KERNEL) */
    686   1.1      yamt 
    687   1.1      yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    688   1.1      yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    689   1.1      yamt 
    690   1.1      yamt #if defined(_KERNEL)
    691   1.1      yamt 	if (RUN_ONCE(&control, vmem_init)) {
    692   1.1      yamt 		return NULL;
    693   1.1      yamt 	}
    694   1.1      yamt #endif /* defined(_KERNEL) */
    695   1.1      yamt 	vm = xmalloc(sizeof(*vm), flags);
    696   1.1      yamt 	if (vm == NULL) {
    697   1.1      yamt 		return NULL;
    698   1.1      yamt 	}
    699   1.1      yamt 
    700   1.1      yamt 	VMEM_LOCK_INIT(vm);
    701   1.1      yamt 	vm->vm_name = name;
    702   1.1      yamt 	vm->vm_quantum_mask = quantum - 1;
    703   1.1      yamt 	vm->vm_quantum_shift = calc_order(quantum);
    704   1.4      yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    705   1.1      yamt 	vm->vm_allocfn = allocfn;
    706   1.1      yamt 	vm->vm_freefn = freefn;
    707   1.1      yamt 	vm->vm_source = source;
    708   1.1      yamt 	vm->vm_nbusytag = 0;
    709   1.5      yamt #if defined(QCACHE)
    710   1.5      yamt 	qc_init(vm, qcache_max);
    711   1.5      yamt #endif /* defined(QCACHE) */
    712   1.1      yamt 
    713   1.1      yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    714   1.1      yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    715   1.1      yamt 		LIST_INIT(&vm->vm_freelist[i]);
    716   1.1      yamt 	}
    717   1.1      yamt 	vm->vm_hashlist = NULL;
    718   1.1      yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    719   1.1      yamt 		vmem_destroy(vm);
    720   1.1      yamt 		return NULL;
    721   1.1      yamt 	}
    722   1.1      yamt 
    723   1.1      yamt 	if (size != 0) {
    724   1.1      yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    725   1.1      yamt 			vmem_destroy(vm);
    726   1.1      yamt 			return NULL;
    727   1.1      yamt 		}
    728   1.1      yamt 	}
    729   1.1      yamt 
    730   1.1      yamt 	return vm;
    731   1.1      yamt }
    732   1.1      yamt 
    733   1.1      yamt void
    734   1.1      yamt vmem_destroy(vmem_t *vm)
    735   1.1      yamt {
    736   1.1      yamt 
    737   1.1      yamt 	VMEM_ASSERT_UNLOCKED(vm);
    738   1.1      yamt 
    739   1.1      yamt 	if (vm->vm_hashlist != NULL) {
    740   1.1      yamt 		int i;
    741   1.1      yamt 
    742   1.1      yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    743   1.1      yamt 			bt_t *bt;
    744   1.1      yamt 
    745   1.1      yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    746   1.1      yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    747   1.1      yamt 				bt_free(vm, bt);
    748   1.1      yamt 			}
    749   1.1      yamt 		}
    750   1.1      yamt 		xfree(vm->vm_hashlist);
    751   1.1      yamt 	}
    752   1.1      yamt 	xfree(vm);
    753   1.1      yamt }
    754   1.1      yamt 
    755   1.1      yamt vmem_size_t
    756   1.1      yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    757   1.1      yamt {
    758   1.1      yamt 
    759   1.1      yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    760   1.1      yamt }
    761   1.1      yamt 
    762   1.1      yamt /*
    763   1.1      yamt  * vmem_alloc:
    764   1.1      yamt  *
    765   1.1      yamt  * => caller must ensure appropriate spl,
    766   1.1      yamt  *    if the arena can be accessed from interrupt context.
    767   1.1      yamt  */
    768   1.1      yamt 
    769   1.1      yamt vmem_addr_t
    770   1.1      yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
    771   1.1      yamt {
    772  1.12      yamt 	const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
    773  1.12      yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    774   1.1      yamt 
    775   1.1      yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    776   1.1      yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    777   1.1      yamt 	VMEM_ASSERT_UNLOCKED(vm);
    778   1.1      yamt 
    779   1.1      yamt 	KASSERT(size0 > 0);
    780   1.1      yamt 	KASSERT(size > 0);
    781   1.1      yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    782   1.3      yamt 	if ((flags & VM_SLEEP) != 0) {
    783   1.3      yamt 		ASSERT_SLEEPABLE(NULL, "vmem_alloc");
    784   1.3      yamt 	}
    785   1.1      yamt 
    786   1.5      yamt #if defined(QCACHE)
    787   1.5      yamt 	if (size <= vm->vm_qcache_max) {
    788   1.5      yamt 		int qidx = size >> vm->vm_quantum_shift;
    789   1.5      yamt 		qcache_t *qc = &vm->vm_qcache[qidx - 1];
    790   1.5      yamt 
    791   1.5      yamt 		return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
    792   1.5      yamt 		    vmf_to_prf(flags));
    793   1.5      yamt 	}
    794   1.5      yamt #endif /* defined(QCACHE) */
    795   1.5      yamt 
    796  1.10      yamt 	return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
    797  1.10      yamt }
    798  1.10      yamt 
    799  1.10      yamt vmem_addr_t
    800  1.10      yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
    801  1.10      yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
    802  1.10      yamt     vm_flag_t flags)
    803  1.10      yamt {
    804  1.10      yamt 	struct vmem_freelist *list;
    805  1.10      yamt 	struct vmem_freelist *first;
    806  1.10      yamt 	struct vmem_freelist *end;
    807  1.10      yamt 	bt_t *bt;
    808  1.10      yamt 	bt_t *btnew;
    809  1.10      yamt 	bt_t *btnew2;
    810  1.10      yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
    811  1.10      yamt 	vm_flag_t strat = flags & VM_FITMASK;
    812  1.10      yamt 	vmem_addr_t start;
    813  1.10      yamt 
    814  1.10      yamt 	KASSERT(size0 > 0);
    815  1.10      yamt 	KASSERT(size > 0);
    816  1.10      yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    817  1.10      yamt 	if ((flags & VM_SLEEP) != 0) {
    818  1.10      yamt 		ASSERT_SLEEPABLE(NULL, "vmem_alloc");
    819  1.10      yamt 	}
    820  1.10      yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
    821  1.10      yamt 	KASSERT((align & (align - 1)) == 0);
    822  1.10      yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
    823  1.10      yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
    824  1.10      yamt 	KASSERT((nocross & (nocross - 1)) == 0);
    825  1.10      yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
    826  1.10      yamt 	KASSERT(nocross == 0 || nocross >= size);
    827  1.10      yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
    828  1.10      yamt 	KASSERT(((phase ^ (phase + size - 1)) & -nocross) == 0);
    829  1.10      yamt 
    830  1.10      yamt 	if (align == 0) {
    831  1.10      yamt 		align = vm->vm_quantum_mask + 1;
    832  1.10      yamt 	}
    833   1.1      yamt 	btnew = bt_alloc(vm, flags);
    834   1.1      yamt 	if (btnew == NULL) {
    835   1.1      yamt 		return VMEM_ADDR_NULL;
    836   1.1      yamt 	}
    837  1.10      yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
    838  1.10      yamt 	if (btnew2 == NULL) {
    839  1.10      yamt 		bt_free(vm, btnew);
    840  1.10      yamt 		return VMEM_ADDR_NULL;
    841  1.10      yamt 	}
    842   1.1      yamt 
    843   1.1      yamt retry_strat:
    844   1.1      yamt 	first = bt_freehead_toalloc(vm, size, strat);
    845   1.1      yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
    846   1.1      yamt retry:
    847   1.1      yamt 	bt = NULL;
    848   1.1      yamt 	VMEM_LOCK(vm);
    849   1.2      yamt 	if (strat == VM_INSTANTFIT) {
    850   1.2      yamt 		for (list = first; list < end; list++) {
    851   1.2      yamt 			bt = LIST_FIRST(list);
    852   1.2      yamt 			if (bt != NULL) {
    853  1.10      yamt 				start = vmem_fit(bt, size, align, phase,
    854  1.10      yamt 				    nocross, minaddr, maxaddr);
    855  1.10      yamt 				if (start != VMEM_ADDR_NULL) {
    856  1.10      yamt 					goto gotit;
    857  1.10      yamt 				}
    858   1.2      yamt 			}
    859   1.2      yamt 		}
    860   1.2      yamt 	} else { /* VM_BESTFIT */
    861   1.2      yamt 		for (list = first; list < end; list++) {
    862   1.2      yamt 			LIST_FOREACH(bt, list, bt_freelist) {
    863   1.2      yamt 				if (bt->bt_size >= size) {
    864  1.10      yamt 					start = vmem_fit(bt, size, align, phase,
    865  1.10      yamt 					    nocross, minaddr, maxaddr);
    866  1.10      yamt 					if (start != VMEM_ADDR_NULL) {
    867  1.10      yamt 						goto gotit;
    868  1.10      yamt 					}
    869   1.2      yamt 				}
    870   1.1      yamt 			}
    871   1.1      yamt 		}
    872   1.1      yamt 	}
    873   1.2      yamt 	VMEM_UNLOCK(vm);
    874   1.1      yamt #if 1
    875   1.2      yamt 	if (strat == VM_INSTANTFIT) {
    876   1.2      yamt 		strat = VM_BESTFIT;
    877   1.2      yamt 		goto retry_strat;
    878   1.2      yamt 	}
    879   1.1      yamt #endif
    880  1.10      yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
    881  1.10      yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
    882  1.10      yamt 
    883  1.10      yamt 		/*
    884  1.10      yamt 		 * XXX should try to import a region large enough to
    885  1.10      yamt 		 * satisfy restrictions?
    886  1.10      yamt 		 */
    887  1.10      yamt 
    888  1.10      yamt 		return VMEM_ADDR_NULL;
    889  1.10      yamt 	}
    890   1.2      yamt 	if (vmem_import(vm, size, flags) == 0) {
    891   1.2      yamt 		goto retry;
    892   1.1      yamt 	}
    893   1.2      yamt 	/* XXX */
    894   1.2      yamt 	return VMEM_ADDR_NULL;
    895   1.2      yamt 
    896   1.2      yamt gotit:
    897   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    898   1.1      yamt 	KASSERT(bt->bt_size >= size);
    899   1.1      yamt 	bt_remfree(vm, bt);
    900  1.10      yamt 	if (bt->bt_start != start) {
    901  1.10      yamt 		btnew2->bt_type = BT_TYPE_FREE;
    902  1.10      yamt 		btnew2->bt_start = bt->bt_start;
    903  1.10      yamt 		btnew2->bt_size = start - bt->bt_start;
    904  1.10      yamt 		bt->bt_start = start;
    905  1.10      yamt 		bt->bt_size -= btnew2->bt_size;
    906  1.10      yamt 		bt_insfree(vm, btnew2);
    907  1.10      yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
    908  1.10      yamt 		btnew2 = NULL;
    909  1.10      yamt 	}
    910  1.10      yamt 	KASSERT(bt->bt_start == start);
    911   1.1      yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
    912   1.1      yamt 		/* split */
    913   1.1      yamt 		btnew->bt_type = BT_TYPE_BUSY;
    914   1.1      yamt 		btnew->bt_start = bt->bt_start;
    915   1.1      yamt 		btnew->bt_size = size;
    916   1.1      yamt 		bt->bt_start = bt->bt_start + size;
    917   1.1      yamt 		bt->bt_size -= size;
    918   1.1      yamt 		bt_insfree(vm, bt);
    919   1.1      yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
    920   1.1      yamt 		bt_insbusy(vm, btnew);
    921   1.1      yamt 		VMEM_UNLOCK(vm);
    922   1.1      yamt 	} else {
    923   1.1      yamt 		bt->bt_type = BT_TYPE_BUSY;
    924   1.1      yamt 		bt_insbusy(vm, bt);
    925   1.1      yamt 		VMEM_UNLOCK(vm);
    926   1.1      yamt 		bt_free(vm, btnew);
    927   1.1      yamt 		btnew = bt;
    928   1.1      yamt 	}
    929  1.10      yamt 	if (btnew2 != NULL) {
    930  1.10      yamt 		bt_free(vm, btnew2);
    931  1.10      yamt 	}
    932   1.1      yamt 	KASSERT(btnew->bt_size >= size);
    933   1.1      yamt 	btnew->bt_type = BT_TYPE_BUSY;
    934   1.1      yamt 
    935   1.1      yamt 	return btnew->bt_start;
    936   1.1      yamt }
    937   1.1      yamt 
    938   1.1      yamt /*
    939   1.1      yamt  * vmem_free:
    940   1.1      yamt  *
    941   1.1      yamt  * => caller must ensure appropriate spl,
    942   1.1      yamt  *    if the arena can be accessed from interrupt context.
    943   1.1      yamt  */
    944   1.1      yamt 
    945   1.1      yamt void
    946   1.1      yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    947   1.1      yamt {
    948   1.1      yamt 
    949   1.1      yamt 	VMEM_ASSERT_UNLOCKED(vm);
    950   1.1      yamt 	KASSERT(addr != VMEM_ADDR_NULL);
    951   1.1      yamt 	KASSERT(size > 0);
    952   1.1      yamt 
    953   1.5      yamt #if defined(QCACHE)
    954   1.5      yamt 	if (size <= vm->vm_qcache_max) {
    955   1.5      yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
    956   1.5      yamt 		qcache_t *qc = &vm->vm_qcache[qidx - 1];
    957   1.5      yamt 
    958   1.5      yamt 		return pool_cache_put(&qc->qc_cache, (void *)addr);
    959   1.5      yamt 	}
    960   1.5      yamt #endif /* defined(QCACHE) */
    961   1.5      yamt 
    962  1.10      yamt 	vmem_xfree(vm, addr, size);
    963  1.10      yamt }
    964  1.10      yamt 
    965  1.10      yamt void
    966  1.11    dogcow vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size __unused)
    967  1.10      yamt {
    968  1.10      yamt 	bt_t *bt;
    969  1.10      yamt 	bt_t *t;
    970  1.10      yamt 
    971  1.10      yamt 	VMEM_ASSERT_UNLOCKED(vm);
    972  1.10      yamt 	KASSERT(addr != VMEM_ADDR_NULL);
    973  1.10      yamt 	KASSERT(size > 0);
    974  1.10      yamt 
    975   1.1      yamt 	VMEM_LOCK(vm);
    976   1.1      yamt 
    977   1.1      yamt 	bt = bt_lookupbusy(vm, addr);
    978   1.1      yamt 	KASSERT(bt != NULL);
    979   1.1      yamt 	KASSERT(bt->bt_start == addr);
    980   1.1      yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
    981   1.1      yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
    982   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    983   1.1      yamt 	bt_rembusy(vm, bt);
    984   1.1      yamt 	bt->bt_type = BT_TYPE_FREE;
    985   1.1      yamt 
    986   1.1      yamt 	/* coalesce */
    987   1.1      yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
    988   1.1      yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
    989   1.1      yamt 		KASSERT(BT_END(bt) == t->bt_start);
    990   1.1      yamt 		bt_remfree(vm, t);
    991   1.1      yamt 		bt_remseg(vm, t);
    992   1.1      yamt 		bt->bt_size += t->bt_size;
    993   1.1      yamt 		bt_free(vm, t);
    994   1.1      yamt 	}
    995   1.1      yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
    996   1.1      yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
    997   1.1      yamt 		KASSERT(BT_END(t) == bt->bt_start);
    998   1.1      yamt 		bt_remfree(vm, t);
    999   1.1      yamt 		bt_remseg(vm, t);
   1000   1.1      yamt 		bt->bt_size += t->bt_size;
   1001   1.1      yamt 		bt->bt_start = t->bt_start;
   1002   1.1      yamt 		bt_free(vm, t);
   1003   1.1      yamt 	}
   1004   1.1      yamt 
   1005   1.1      yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1006   1.1      yamt 	KASSERT(t != NULL);
   1007   1.1      yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1008   1.1      yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1009   1.1      yamt 	    t->bt_size == bt->bt_size) {
   1010   1.1      yamt 		vmem_addr_t spanaddr;
   1011   1.1      yamt 		vmem_size_t spansize;
   1012   1.1      yamt 
   1013   1.1      yamt 		KASSERT(t->bt_start == bt->bt_start);
   1014   1.1      yamt 		spanaddr = bt->bt_start;
   1015   1.1      yamt 		spansize = bt->bt_size;
   1016   1.1      yamt 		bt_remseg(vm, bt);
   1017   1.1      yamt 		bt_free(vm, bt);
   1018   1.1      yamt 		bt_remseg(vm, t);
   1019   1.1      yamt 		bt_free(vm, t);
   1020   1.1      yamt 		VMEM_UNLOCK(vm);
   1021   1.1      yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1022   1.1      yamt 	} else {
   1023   1.1      yamt 		bt_insfree(vm, bt);
   1024   1.1      yamt 		VMEM_UNLOCK(vm);
   1025   1.1      yamt 	}
   1026   1.1      yamt }
   1027   1.1      yamt 
   1028   1.1      yamt /*
   1029   1.1      yamt  * vmem_add:
   1030   1.1      yamt  *
   1031   1.1      yamt  * => caller must ensure appropriate spl,
   1032   1.1      yamt  *    if the arena can be accessed from interrupt context.
   1033   1.1      yamt  */
   1034   1.1      yamt 
   1035   1.1      yamt vmem_addr_t
   1036   1.1      yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1037   1.1      yamt {
   1038   1.1      yamt 
   1039   1.1      yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1040   1.1      yamt }
   1041   1.1      yamt 
   1042   1.6      yamt /*
   1043   1.6      yamt  * vmem_reap: reap unused resources.
   1044   1.6      yamt  *
   1045   1.6      yamt  * => return TRUE if we successfully reaped something.
   1046   1.6      yamt  */
   1047   1.6      yamt 
   1048   1.6      yamt boolean_t
   1049   1.6      yamt vmem_reap(vmem_t *vm)
   1050   1.6      yamt {
   1051   1.6      yamt 	boolean_t didsomething = FALSE;
   1052   1.6      yamt 
   1053   1.6      yamt 	VMEM_ASSERT_UNLOCKED(vm);
   1054   1.6      yamt 
   1055   1.6      yamt #if defined(QCACHE)
   1056   1.6      yamt 	didsomething = qc_reap(vm);
   1057   1.6      yamt #endif /* defined(QCACHE) */
   1058   1.6      yamt 	return didsomething;
   1059   1.6      yamt }
   1060   1.6      yamt 
   1061   1.1      yamt /* ---- debug */
   1062   1.1      yamt 
   1063   1.1      yamt #if defined(VMEM_DEBUG)
   1064   1.1      yamt 
   1065   1.1      yamt #if !defined(_KERNEL)
   1066   1.1      yamt #include <stdio.h>
   1067   1.1      yamt #endif /* !defined(_KERNEL) */
   1068   1.1      yamt 
   1069   1.1      yamt void bt_dump(const bt_t *);
   1070   1.1      yamt 
   1071   1.1      yamt void
   1072   1.1      yamt bt_dump(const bt_t *bt)
   1073   1.1      yamt {
   1074   1.1      yamt 
   1075   1.1      yamt 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
   1076   1.1      yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1077   1.1      yamt 	    bt->bt_type);
   1078   1.1      yamt }
   1079   1.1      yamt 
   1080   1.1      yamt void
   1081   1.1      yamt vmem_dump(const vmem_t *vm)
   1082   1.1      yamt {
   1083   1.1      yamt 	const bt_t *bt;
   1084   1.1      yamt 	int i;
   1085   1.1      yamt 
   1086   1.1      yamt 	printf("vmem %p '%s'\n", vm, vm->vm_name);
   1087   1.1      yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1088   1.1      yamt 		bt_dump(bt);
   1089   1.1      yamt 	}
   1090   1.1      yamt 
   1091   1.1      yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1092   1.1      yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1093   1.1      yamt 
   1094   1.1      yamt 		if (LIST_EMPTY(fl)) {
   1095   1.1      yamt 			continue;
   1096   1.1      yamt 		}
   1097   1.1      yamt 
   1098   1.1      yamt 		printf("freelist[%d]\n", i);
   1099   1.1      yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1100   1.1      yamt 			bt_dump(bt);
   1101   1.1      yamt 			if (bt->bt_size) {
   1102   1.1      yamt 			}
   1103   1.1      yamt 		}
   1104   1.1      yamt 	}
   1105   1.1      yamt }
   1106   1.1      yamt 
   1107   1.1      yamt #if !defined(_KERNEL)
   1108   1.1      yamt 
   1109   1.1      yamt #include <stdlib.h>
   1110   1.1      yamt 
   1111   1.1      yamt int
   1112   1.1      yamt main()
   1113   1.1      yamt {
   1114   1.1      yamt 	vmem_t *vm;
   1115   1.1      yamt 	vmem_addr_t p;
   1116   1.1      yamt 	struct reg {
   1117   1.1      yamt 		vmem_addr_t p;
   1118   1.1      yamt 		vmem_size_t sz;
   1119  1.10      yamt 		boolean_t x;
   1120   1.1      yamt 	} *reg = NULL;
   1121   1.1      yamt 	int nreg = 0;
   1122   1.1      yamt 	int nalloc = 0;
   1123   1.1      yamt 	int nfree = 0;
   1124   1.1      yamt 	vmem_size_t total = 0;
   1125   1.1      yamt #if 1
   1126   1.1      yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1127   1.1      yamt #else
   1128   1.1      yamt 	vm_flag_t strat = VM_BESTFIT;
   1129   1.1      yamt #endif
   1130   1.1      yamt 
   1131   1.1      yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1132   1.1      yamt 	    NULL, NULL, NULL, 0, VM_NOSLEEP);
   1133   1.1      yamt 	if (vm == NULL) {
   1134   1.1      yamt 		printf("vmem_create\n");
   1135   1.1      yamt 		exit(EXIT_FAILURE);
   1136   1.1      yamt 	}
   1137   1.1      yamt 	vmem_dump(vm);
   1138   1.1      yamt 
   1139   1.1      yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1140   1.1      yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1141   1.1      yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1142   1.1      yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1143   1.1      yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1144   1.1      yamt 	vmem_dump(vm);
   1145   1.1      yamt 	for (;;) {
   1146   1.1      yamt 		struct reg *r;
   1147  1.10      yamt 		int t = rand() % 100;
   1148   1.1      yamt 
   1149  1.10      yamt 		if (t > 45) {
   1150  1.10      yamt 			/* alloc */
   1151   1.1      yamt 			vmem_size_t sz = rand() % 500 + 1;
   1152  1.10      yamt 			boolean_t x;
   1153  1.10      yamt 			vmem_size_t align, phase, nocross;
   1154  1.10      yamt 			vmem_addr_t minaddr, maxaddr;
   1155  1.10      yamt 
   1156  1.10      yamt 			if (t > 70) {
   1157  1.10      yamt 				x = TRUE;
   1158  1.10      yamt 				/* XXX */
   1159  1.10      yamt 				align = 1 << (rand() % 15);
   1160  1.10      yamt 				phase = rand() % 65536;
   1161  1.10      yamt 				nocross = 1 << (rand() % 15);
   1162  1.10      yamt 				if (align <= phase) {
   1163  1.10      yamt 					phase = 0;
   1164  1.10      yamt 				}
   1165  1.10      yamt 				if (((phase ^ (phase + sz)) & -nocross) != 0) {
   1166  1.10      yamt 					nocross = 0;
   1167  1.10      yamt 				}
   1168  1.10      yamt 				minaddr = rand() % 50000;
   1169  1.10      yamt 				maxaddr = rand() % 70000;
   1170  1.10      yamt 				if (minaddr > maxaddr) {
   1171  1.10      yamt 					minaddr = 0;
   1172  1.10      yamt 					maxaddr = 0;
   1173  1.10      yamt 				}
   1174  1.10      yamt 				printf("=== xalloc %" PRIu64
   1175  1.10      yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1176  1.10      yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1177  1.10      yamt 				    ", max=%" PRIu64 "\n",
   1178  1.10      yamt 				    (uint64_t)sz,
   1179  1.10      yamt 				    (uint64_t)align,
   1180  1.10      yamt 				    (uint64_t)phase,
   1181  1.10      yamt 				    (uint64_t)nocross,
   1182  1.10      yamt 				    (uint64_t)minaddr,
   1183  1.10      yamt 				    (uint64_t)maxaddr);
   1184  1.10      yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1185  1.10      yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1186  1.10      yamt 			} else {
   1187  1.10      yamt 				x = FALSE;
   1188  1.10      yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1189  1.10      yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1190  1.10      yamt 			}
   1191   1.1      yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1192   1.1      yamt 			vmem_dump(vm);
   1193   1.1      yamt 			if (p == VMEM_ADDR_NULL) {
   1194  1.10      yamt 				if (x) {
   1195  1.10      yamt 					continue;
   1196  1.10      yamt 				}
   1197   1.1      yamt 				break;
   1198   1.1      yamt 			}
   1199   1.1      yamt 			nreg++;
   1200   1.1      yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1201   1.1      yamt 			r = &reg[nreg - 1];
   1202   1.1      yamt 			r->p = p;
   1203   1.1      yamt 			r->sz = sz;
   1204  1.10      yamt 			r->x = x;
   1205   1.1      yamt 			total += sz;
   1206   1.1      yamt 			nalloc++;
   1207   1.1      yamt 		} else if (nreg != 0) {
   1208  1.10      yamt 			/* free */
   1209   1.1      yamt 			r = &reg[rand() % nreg];
   1210   1.1      yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1211   1.1      yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1212  1.10      yamt 			if (r->x) {
   1213  1.10      yamt 				vmem_xfree(vm, r->p, r->sz);
   1214  1.10      yamt 			} else {
   1215  1.10      yamt 				vmem_free(vm, r->p, r->sz);
   1216  1.10      yamt 			}
   1217   1.1      yamt 			total -= r->sz;
   1218   1.1      yamt 			vmem_dump(vm);
   1219   1.1      yamt 			*r = reg[nreg - 1];
   1220   1.1      yamt 			nreg--;
   1221   1.1      yamt 			nfree++;
   1222   1.1      yamt 		}
   1223   1.1      yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1224   1.1      yamt 	}
   1225   1.1      yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1226   1.1      yamt 	    (uint64_t)total, nalloc, nfree);
   1227   1.1      yamt 	exit(EXIT_SUCCESS);
   1228   1.1      yamt }
   1229   1.1      yamt #endif /* !defined(_KERNEL) */
   1230   1.1      yamt #endif /* defined(VMEM_DEBUG) */
   1231