subr_vmem.c revision 1.16 1 1.12 yamt /* $NetBSD: subr_vmem.c,v 1.16 2006/10/27 15:05:16 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.1 yamt */
35 1.1 yamt
36 1.1 yamt #include <sys/cdefs.h>
37 1.12 yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.16 2006/10/27 15:05:16 yamt Exp $");
38 1.1 yamt
39 1.1 yamt #define VMEM_DEBUG
40 1.5 yamt #if defined(_KERNEL)
41 1.5 yamt #define QCACHE
42 1.5 yamt #endif /* defined(_KERNEL) */
43 1.1 yamt
44 1.1 yamt #include <sys/param.h>
45 1.1 yamt #include <sys/hash.h>
46 1.1 yamt #include <sys/queue.h>
47 1.1 yamt
48 1.1 yamt #if defined(_KERNEL)
49 1.1 yamt #include <sys/systm.h>
50 1.1 yamt #include <sys/lock.h>
51 1.1 yamt #include <sys/malloc.h>
52 1.1 yamt #include <sys/once.h>
53 1.1 yamt #include <sys/pool.h>
54 1.3 yamt #include <sys/proc.h>
55 1.1 yamt #include <sys/vmem.h>
56 1.1 yamt #else /* defined(_KERNEL) */
57 1.1 yamt #include "../sys/vmem.h"
58 1.1 yamt #endif /* defined(_KERNEL) */
59 1.1 yamt
60 1.1 yamt #if defined(_KERNEL)
61 1.1 yamt #define SIMPLELOCK_DECL(name) struct simplelock name
62 1.1 yamt #else /* defined(_KERNEL) */
63 1.1 yamt #include <errno.h>
64 1.1 yamt #include <assert.h>
65 1.1 yamt #include <stdlib.h>
66 1.1 yamt
67 1.1 yamt #define KASSERT(a) assert(a)
68 1.1 yamt #define SIMPLELOCK_DECL(name) /* nothing */
69 1.1 yamt #define LOCK_ASSERT(a) /* nothing */
70 1.1 yamt #define simple_lock_init(a) /* nothing */
71 1.1 yamt #define simple_lock(a) /* nothing */
72 1.1 yamt #define simple_unlock(a) /* nothing */
73 1.3 yamt #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
74 1.1 yamt #endif /* defined(_KERNEL) */
75 1.1 yamt
76 1.1 yamt struct vmem;
77 1.1 yamt struct vmem_btag;
78 1.1 yamt
79 1.1 yamt #if defined(VMEM_DEBUG)
80 1.1 yamt void vmem_dump(const vmem_t *);
81 1.1 yamt #endif /* defined(VMEM_DEBUG) */
82 1.1 yamt
83 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
84 1.1 yamt #define VMEM_HASHSIZE_INIT 4096 /* XXX */
85 1.1 yamt
86 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
87 1.1 yamt
88 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
89 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
90 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
91 1.1 yamt
92 1.5 yamt #if defined(QCACHE)
93 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
94 1.5 yamt
95 1.5 yamt #define QC_NAME_MAX 16
96 1.5 yamt
97 1.5 yamt struct qcache {
98 1.5 yamt struct pool qc_pool;
99 1.5 yamt struct pool_cache qc_cache;
100 1.5 yamt vmem_t *qc_vmem;
101 1.5 yamt char qc_name[QC_NAME_MAX];
102 1.5 yamt };
103 1.5 yamt typedef struct qcache qcache_t;
104 1.5 yamt #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
105 1.5 yamt #endif /* defined(QCACHE) */
106 1.5 yamt
107 1.1 yamt /* vmem arena */
108 1.1 yamt struct vmem {
109 1.1 yamt SIMPLELOCK_DECL(vm_lock);
110 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
111 1.1 yamt vm_flag_t);
112 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
113 1.1 yamt vmem_t *vm_source;
114 1.1 yamt struct vmem_seglist vm_seglist;
115 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
116 1.1 yamt size_t vm_hashsize;
117 1.1 yamt size_t vm_nbusytag;
118 1.1 yamt struct vmem_hashlist *vm_hashlist;
119 1.1 yamt size_t vm_quantum_mask;
120 1.1 yamt int vm_quantum_shift;
121 1.1 yamt const char *vm_name;
122 1.5 yamt
123 1.5 yamt #if defined(QCACHE)
124 1.5 yamt /* quantum cache */
125 1.5 yamt size_t vm_qcache_max;
126 1.5 yamt struct pool_allocator vm_qcache_allocator;
127 1.5 yamt qcache_t vm_qcache[VMEM_QCACHE_IDX_MAX];
128 1.5 yamt #endif /* defined(QCACHE) */
129 1.1 yamt };
130 1.1 yamt
131 1.1 yamt #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
132 1.1 yamt #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
133 1.1 yamt #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
134 1.1 yamt #define VMEM_ASSERT_LOCKED(vm) \
135 1.1 yamt LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
136 1.1 yamt #define VMEM_ASSERT_UNLOCKED(vm) \
137 1.1 yamt LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
138 1.1 yamt
139 1.1 yamt /* boundary tag */
140 1.1 yamt struct vmem_btag {
141 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
142 1.1 yamt union {
143 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
144 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
145 1.1 yamt } bt_u;
146 1.1 yamt #define bt_hashlist bt_u.u_hashlist
147 1.1 yamt #define bt_freelist bt_u.u_freelist
148 1.1 yamt vmem_addr_t bt_start;
149 1.1 yamt vmem_size_t bt_size;
150 1.1 yamt int bt_type;
151 1.1 yamt };
152 1.1 yamt
153 1.1 yamt #define BT_TYPE_SPAN 1
154 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
155 1.1 yamt #define BT_TYPE_FREE 3
156 1.1 yamt #define BT_TYPE_BUSY 4
157 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
158 1.1 yamt
159 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
160 1.1 yamt
161 1.1 yamt typedef struct vmem_btag bt_t;
162 1.1 yamt
163 1.1 yamt /* ---- misc */
164 1.1 yamt
165 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
166 1.4 yamt
167 1.1 yamt static int
168 1.1 yamt calc_order(vmem_size_t size)
169 1.1 yamt {
170 1.4 yamt vmem_size_t target;
171 1.1 yamt int i;
172 1.1 yamt
173 1.1 yamt KASSERT(size != 0);
174 1.1 yamt
175 1.1 yamt i = 0;
176 1.4 yamt target = size >> 1;
177 1.4 yamt while (ORDER2SIZE(i) <= target) {
178 1.1 yamt i++;
179 1.1 yamt }
180 1.1 yamt
181 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
182 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
183 1.1 yamt
184 1.1 yamt return i;
185 1.1 yamt }
186 1.1 yamt
187 1.1 yamt #if defined(_KERNEL)
188 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
189 1.1 yamt #endif /* defined(_KERNEL) */
190 1.1 yamt
191 1.1 yamt static void *
192 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
193 1.1 yamt {
194 1.1 yamt
195 1.1 yamt #if defined(_KERNEL)
196 1.1 yamt return malloc(sz, M_VMEM,
197 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
198 1.1 yamt #else /* defined(_KERNEL) */
199 1.1 yamt return malloc(sz);
200 1.1 yamt #endif /* defined(_KERNEL) */
201 1.1 yamt }
202 1.1 yamt
203 1.1 yamt static void
204 1.1 yamt xfree(void *p)
205 1.1 yamt {
206 1.1 yamt
207 1.1 yamt #if defined(_KERNEL)
208 1.1 yamt return free(p, M_VMEM);
209 1.1 yamt #else /* defined(_KERNEL) */
210 1.1 yamt return free(p);
211 1.1 yamt #endif /* defined(_KERNEL) */
212 1.1 yamt }
213 1.1 yamt
214 1.1 yamt /* ---- boundary tag */
215 1.1 yamt
216 1.1 yamt #if defined(_KERNEL)
217 1.1 yamt static struct pool_cache bt_poolcache;
218 1.1 yamt static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
219 1.1 yamt #endif /* defined(_KERNEL) */
220 1.1 yamt
221 1.1 yamt static bt_t *
222 1.9 christos bt_alloc(vmem_t *vm __unused, vm_flag_t flags)
223 1.1 yamt {
224 1.1 yamt bt_t *bt;
225 1.1 yamt
226 1.1 yamt #if defined(_KERNEL)
227 1.1 yamt /* XXX bootstrap */
228 1.1 yamt bt = pool_cache_get(&bt_poolcache,
229 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
230 1.1 yamt #else /* defined(_KERNEL) */
231 1.1 yamt bt = malloc(sizeof *bt);
232 1.1 yamt #endif /* defined(_KERNEL) */
233 1.1 yamt
234 1.1 yamt return bt;
235 1.1 yamt }
236 1.1 yamt
237 1.1 yamt static void
238 1.9 christos bt_free(vmem_t *vm __unused, bt_t *bt)
239 1.1 yamt {
240 1.1 yamt
241 1.1 yamt #if defined(_KERNEL)
242 1.1 yamt /* XXX bootstrap */
243 1.1 yamt pool_cache_put(&bt_poolcache, bt);
244 1.1 yamt #else /* defined(_KERNEL) */
245 1.1 yamt free(bt);
246 1.1 yamt #endif /* defined(_KERNEL) */
247 1.1 yamt }
248 1.1 yamt
249 1.1 yamt /*
250 1.1 yamt * freelist[0] ... [1, 1]
251 1.1 yamt * freelist[1] ... [2, 3]
252 1.1 yamt * freelist[2] ... [4, 7]
253 1.1 yamt * freelist[3] ... [8, 15]
254 1.1 yamt * :
255 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
256 1.1 yamt * :
257 1.1 yamt */
258 1.1 yamt
259 1.1 yamt static struct vmem_freelist *
260 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
261 1.1 yamt {
262 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
263 1.1 yamt int idx;
264 1.1 yamt
265 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
266 1.1 yamt KASSERT(size != 0);
267 1.1 yamt
268 1.1 yamt idx = calc_order(qsize);
269 1.1 yamt KASSERT(idx >= 0);
270 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
271 1.1 yamt
272 1.1 yamt return &vm->vm_freelist[idx];
273 1.1 yamt }
274 1.1 yamt
275 1.1 yamt static struct vmem_freelist *
276 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
277 1.1 yamt {
278 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
279 1.1 yamt int idx;
280 1.1 yamt
281 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
282 1.1 yamt KASSERT(size != 0);
283 1.1 yamt
284 1.1 yamt idx = calc_order(qsize);
285 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
286 1.1 yamt idx++;
287 1.1 yamt /* check too large request? */
288 1.1 yamt }
289 1.1 yamt KASSERT(idx >= 0);
290 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
291 1.1 yamt
292 1.1 yamt return &vm->vm_freelist[idx];
293 1.1 yamt }
294 1.1 yamt
295 1.1 yamt /* ---- boundary tag hash */
296 1.1 yamt
297 1.1 yamt static struct vmem_hashlist *
298 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
299 1.1 yamt {
300 1.1 yamt struct vmem_hashlist *list;
301 1.1 yamt unsigned int hash;
302 1.1 yamt
303 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
304 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
305 1.1 yamt
306 1.1 yamt return list;
307 1.1 yamt }
308 1.1 yamt
309 1.1 yamt static bt_t *
310 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
311 1.1 yamt {
312 1.1 yamt struct vmem_hashlist *list;
313 1.1 yamt bt_t *bt;
314 1.1 yamt
315 1.1 yamt list = bt_hashhead(vm, addr);
316 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
317 1.1 yamt if (bt->bt_start == addr) {
318 1.1 yamt break;
319 1.1 yamt }
320 1.1 yamt }
321 1.1 yamt
322 1.1 yamt return bt;
323 1.1 yamt }
324 1.1 yamt
325 1.1 yamt static void
326 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
327 1.1 yamt {
328 1.1 yamt
329 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
330 1.1 yamt vm->vm_nbusytag--;
331 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
332 1.1 yamt }
333 1.1 yamt
334 1.1 yamt static void
335 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
336 1.1 yamt {
337 1.1 yamt struct vmem_hashlist *list;
338 1.1 yamt
339 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
340 1.1 yamt
341 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
342 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
343 1.1 yamt vm->vm_nbusytag++;
344 1.1 yamt }
345 1.1 yamt
346 1.1 yamt /* ---- boundary tag list */
347 1.1 yamt
348 1.1 yamt static void
349 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
350 1.1 yamt {
351 1.1 yamt
352 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
353 1.1 yamt }
354 1.1 yamt
355 1.1 yamt static void
356 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
357 1.1 yamt {
358 1.1 yamt
359 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
360 1.1 yamt }
361 1.1 yamt
362 1.1 yamt static void
363 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
364 1.1 yamt {
365 1.1 yamt
366 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
367 1.1 yamt }
368 1.1 yamt
369 1.1 yamt static void
370 1.9 christos bt_remfree(vmem_t *vm __unused, bt_t *bt)
371 1.1 yamt {
372 1.1 yamt
373 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
374 1.1 yamt
375 1.1 yamt LIST_REMOVE(bt, bt_freelist);
376 1.1 yamt }
377 1.1 yamt
378 1.1 yamt static void
379 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
380 1.1 yamt {
381 1.1 yamt struct vmem_freelist *list;
382 1.1 yamt
383 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
384 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
385 1.1 yamt }
386 1.1 yamt
387 1.1 yamt /* ---- vmem internal functions */
388 1.1 yamt
389 1.5 yamt #if defined(QCACHE)
390 1.5 yamt static inline vm_flag_t
391 1.5 yamt prf_to_vmf(int prflags)
392 1.5 yamt {
393 1.5 yamt vm_flag_t vmflags;
394 1.5 yamt
395 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
396 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
397 1.5 yamt vmflags = VM_SLEEP;
398 1.5 yamt } else {
399 1.5 yamt vmflags = VM_NOSLEEP;
400 1.5 yamt }
401 1.5 yamt return vmflags;
402 1.5 yamt }
403 1.5 yamt
404 1.5 yamt static inline int
405 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
406 1.5 yamt {
407 1.5 yamt int prflags;
408 1.5 yamt
409 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
410 1.5 yamt prflags = PR_WAITOK;
411 1.7 yamt } else {
412 1.5 yamt prflags = PR_NOWAIT;
413 1.5 yamt }
414 1.5 yamt return prflags;
415 1.5 yamt }
416 1.5 yamt
417 1.5 yamt static size_t
418 1.5 yamt qc_poolpage_size(size_t qcache_max)
419 1.5 yamt {
420 1.5 yamt int i;
421 1.5 yamt
422 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
423 1.5 yamt /* nothing */
424 1.5 yamt }
425 1.5 yamt return ORDER2SIZE(i);
426 1.5 yamt }
427 1.5 yamt
428 1.5 yamt static void *
429 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
430 1.5 yamt {
431 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
432 1.5 yamt vmem_t *vm = qc->qc_vmem;
433 1.5 yamt
434 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
435 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
436 1.5 yamt }
437 1.5 yamt
438 1.5 yamt static void
439 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
440 1.5 yamt {
441 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
442 1.5 yamt vmem_t *vm = qc->qc_vmem;
443 1.5 yamt
444 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
445 1.5 yamt }
446 1.5 yamt
447 1.5 yamt static void
448 1.5 yamt qc_init(vmem_t *vm, size_t qcache_max)
449 1.5 yamt {
450 1.5 yamt struct pool_allocator *pa;
451 1.5 yamt int qcache_idx_max;
452 1.5 yamt int i;
453 1.5 yamt
454 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
455 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
456 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
457 1.5 yamt }
458 1.5 yamt vm->vm_qcache_max = qcache_max;
459 1.5 yamt pa = &vm->vm_qcache_allocator;
460 1.5 yamt memset(pa, 0, sizeof(*pa));
461 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
462 1.5 yamt pa->pa_free = qc_poolpage_free;
463 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
464 1.5 yamt
465 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
466 1.5 yamt for (i = 1; i <= qcache_idx_max; i++) {
467 1.5 yamt qcache_t *qc = &vm->vm_qcache[i - 1];
468 1.5 yamt size_t size = i << vm->vm_quantum_shift;
469 1.5 yamt
470 1.5 yamt qc->qc_vmem = vm;
471 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
472 1.5 yamt vm->vm_name, size);
473 1.15 yamt pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
474 1.15 yamt 0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
475 1.5 yamt pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
476 1.5 yamt }
477 1.5 yamt }
478 1.6 yamt
479 1.6 yamt static boolean_t
480 1.6 yamt qc_reap(vmem_t *vm)
481 1.6 yamt {
482 1.6 yamt int i;
483 1.6 yamt int qcache_idx_max;
484 1.6 yamt boolean_t didsomething = FALSE;
485 1.6 yamt
486 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
487 1.6 yamt for (i = 1; i <= qcache_idx_max; i++) {
488 1.6 yamt qcache_t *qc = &vm->vm_qcache[i - 1];
489 1.6 yamt
490 1.6 yamt if (pool_reclaim(&qc->qc_pool) != 0) {
491 1.6 yamt didsomething = TRUE;
492 1.6 yamt }
493 1.6 yamt }
494 1.6 yamt
495 1.6 yamt return didsomething;
496 1.6 yamt }
497 1.5 yamt #endif /* defined(QCACHE) */
498 1.5 yamt
499 1.1 yamt #if defined(_KERNEL)
500 1.1 yamt static int
501 1.1 yamt vmem_init(void)
502 1.1 yamt {
503 1.1 yamt
504 1.1 yamt pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
505 1.1 yamt return 0;
506 1.1 yamt }
507 1.1 yamt #endif /* defined(_KERNEL) */
508 1.1 yamt
509 1.1 yamt static vmem_addr_t
510 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
511 1.1 yamt int spanbttype)
512 1.1 yamt {
513 1.1 yamt bt_t *btspan;
514 1.1 yamt bt_t *btfree;
515 1.1 yamt
516 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
517 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
518 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
519 1.1 yamt
520 1.1 yamt btspan = bt_alloc(vm, flags);
521 1.1 yamt if (btspan == NULL) {
522 1.1 yamt return VMEM_ADDR_NULL;
523 1.1 yamt }
524 1.1 yamt btfree = bt_alloc(vm, flags);
525 1.1 yamt if (btfree == NULL) {
526 1.1 yamt bt_free(vm, btspan);
527 1.1 yamt return VMEM_ADDR_NULL;
528 1.1 yamt }
529 1.1 yamt
530 1.1 yamt btspan->bt_type = spanbttype;
531 1.1 yamt btspan->bt_start = addr;
532 1.1 yamt btspan->bt_size = size;
533 1.1 yamt
534 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
535 1.1 yamt btfree->bt_start = addr;
536 1.1 yamt btfree->bt_size = size;
537 1.1 yamt
538 1.1 yamt VMEM_LOCK(vm);
539 1.1 yamt bt_insseg_tail(vm, btspan);
540 1.1 yamt bt_insseg(vm, btfree, btspan);
541 1.1 yamt bt_insfree(vm, btfree);
542 1.1 yamt VMEM_UNLOCK(vm);
543 1.1 yamt
544 1.1 yamt return addr;
545 1.1 yamt }
546 1.1 yamt
547 1.1 yamt static int
548 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
549 1.1 yamt {
550 1.1 yamt vmem_addr_t addr;
551 1.1 yamt
552 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
553 1.1 yamt
554 1.1 yamt if (vm->vm_allocfn == NULL) {
555 1.1 yamt return EINVAL;
556 1.1 yamt }
557 1.1 yamt
558 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
559 1.1 yamt if (addr == VMEM_ADDR_NULL) {
560 1.1 yamt return ENOMEM;
561 1.1 yamt }
562 1.1 yamt
563 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
564 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
565 1.1 yamt return ENOMEM;
566 1.1 yamt }
567 1.1 yamt
568 1.1 yamt return 0;
569 1.1 yamt }
570 1.1 yamt
571 1.1 yamt static int
572 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
573 1.1 yamt {
574 1.1 yamt bt_t *bt;
575 1.1 yamt int i;
576 1.1 yamt struct vmem_hashlist *newhashlist;
577 1.1 yamt struct vmem_hashlist *oldhashlist;
578 1.1 yamt size_t oldhashsize;
579 1.1 yamt
580 1.1 yamt KASSERT(newhashsize > 0);
581 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
582 1.1 yamt
583 1.1 yamt newhashlist =
584 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
585 1.1 yamt if (newhashlist == NULL) {
586 1.1 yamt return ENOMEM;
587 1.1 yamt }
588 1.1 yamt for (i = 0; i < newhashsize; i++) {
589 1.1 yamt LIST_INIT(&newhashlist[i]);
590 1.1 yamt }
591 1.1 yamt
592 1.1 yamt VMEM_LOCK(vm);
593 1.1 yamt oldhashlist = vm->vm_hashlist;
594 1.1 yamt oldhashsize = vm->vm_hashsize;
595 1.1 yamt vm->vm_hashlist = newhashlist;
596 1.1 yamt vm->vm_hashsize = newhashsize;
597 1.1 yamt if (oldhashlist == NULL) {
598 1.1 yamt VMEM_UNLOCK(vm);
599 1.1 yamt return 0;
600 1.1 yamt }
601 1.1 yamt for (i = 0; i < oldhashsize; i++) {
602 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
603 1.1 yamt bt_rembusy(vm, bt); /* XXX */
604 1.1 yamt bt_insbusy(vm, bt);
605 1.1 yamt }
606 1.1 yamt }
607 1.1 yamt VMEM_UNLOCK(vm);
608 1.1 yamt
609 1.1 yamt xfree(oldhashlist);
610 1.1 yamt
611 1.1 yamt return 0;
612 1.1 yamt }
613 1.1 yamt
614 1.10 yamt /*
615 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
616 1.10 yamt */
617 1.10 yamt
618 1.10 yamt static vmem_addr_t
619 1.10 yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
620 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
621 1.10 yamt {
622 1.10 yamt vmem_addr_t start;
623 1.10 yamt vmem_addr_t end;
624 1.10 yamt
625 1.10 yamt KASSERT(bt->bt_size >= size);
626 1.10 yamt
627 1.10 yamt /*
628 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
629 1.10 yamt * unsigned integer of the same size.
630 1.10 yamt */
631 1.10 yamt
632 1.10 yamt start = bt->bt_start;
633 1.10 yamt if (start < minaddr) {
634 1.10 yamt start = minaddr;
635 1.10 yamt }
636 1.10 yamt end = BT_END(bt);
637 1.10 yamt if (end > maxaddr - 1) {
638 1.10 yamt end = maxaddr - 1;
639 1.10 yamt }
640 1.10 yamt if (start >= end) {
641 1.10 yamt return VMEM_ADDR_NULL;
642 1.10 yamt }
643 1.10 yamt start = -(-(start - phase) & -align) + phase;
644 1.10 yamt if (start < bt->bt_start) {
645 1.10 yamt start += align;
646 1.10 yamt }
647 1.10 yamt if (((start ^ (start + size - 1)) & -nocross) != 0) {
648 1.10 yamt KASSERT(align < nocross);
649 1.10 yamt start = -(-(start - phase) & -nocross) + phase;
650 1.10 yamt }
651 1.10 yamt if (start < end && end - start >= size) {
652 1.10 yamt KASSERT((start & (align - 1)) == phase);
653 1.10 yamt KASSERT(((start ^ (start + size - 1)) & -nocross) == 0);
654 1.10 yamt KASSERT(minaddr <= start);
655 1.10 yamt KASSERT(maxaddr == 0 || start + size <= maxaddr);
656 1.10 yamt KASSERT(bt->bt_start <= start);
657 1.10 yamt KASSERT(start + size <= BT_END(bt));
658 1.10 yamt return start;
659 1.10 yamt }
660 1.10 yamt return VMEM_ADDR_NULL;
661 1.10 yamt }
662 1.10 yamt
663 1.1 yamt /* ---- vmem API */
664 1.1 yamt
665 1.1 yamt /*
666 1.1 yamt * vmem_create: create an arena.
667 1.1 yamt *
668 1.1 yamt * => must not be called from interrupt context.
669 1.1 yamt */
670 1.1 yamt
671 1.1 yamt vmem_t *
672 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
673 1.1 yamt vmem_size_t quantum,
674 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
675 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
676 1.1 yamt vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
677 1.1 yamt {
678 1.1 yamt vmem_t *vm;
679 1.1 yamt int i;
680 1.1 yamt #if defined(_KERNEL)
681 1.1 yamt static ONCE_DECL(control);
682 1.1 yamt #endif /* defined(_KERNEL) */
683 1.1 yamt
684 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
685 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
686 1.1 yamt
687 1.1 yamt #if defined(_KERNEL)
688 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
689 1.1 yamt return NULL;
690 1.1 yamt }
691 1.1 yamt #endif /* defined(_KERNEL) */
692 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
693 1.1 yamt if (vm == NULL) {
694 1.1 yamt return NULL;
695 1.1 yamt }
696 1.1 yamt
697 1.1 yamt VMEM_LOCK_INIT(vm);
698 1.1 yamt vm->vm_name = name;
699 1.1 yamt vm->vm_quantum_mask = quantum - 1;
700 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
701 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
702 1.1 yamt vm->vm_allocfn = allocfn;
703 1.1 yamt vm->vm_freefn = freefn;
704 1.1 yamt vm->vm_source = source;
705 1.1 yamt vm->vm_nbusytag = 0;
706 1.5 yamt #if defined(QCACHE)
707 1.5 yamt qc_init(vm, qcache_max);
708 1.5 yamt #endif /* defined(QCACHE) */
709 1.1 yamt
710 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
711 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
712 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
713 1.1 yamt }
714 1.1 yamt vm->vm_hashlist = NULL;
715 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
716 1.1 yamt vmem_destroy(vm);
717 1.1 yamt return NULL;
718 1.1 yamt }
719 1.1 yamt
720 1.1 yamt if (size != 0) {
721 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
722 1.1 yamt vmem_destroy(vm);
723 1.1 yamt return NULL;
724 1.1 yamt }
725 1.1 yamt }
726 1.1 yamt
727 1.1 yamt return vm;
728 1.1 yamt }
729 1.1 yamt
730 1.1 yamt void
731 1.1 yamt vmem_destroy(vmem_t *vm)
732 1.1 yamt {
733 1.1 yamt
734 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
735 1.1 yamt
736 1.1 yamt if (vm->vm_hashlist != NULL) {
737 1.1 yamt int i;
738 1.1 yamt
739 1.1 yamt for (i = 0; i < vm->vm_hashsize; i++) {
740 1.1 yamt bt_t *bt;
741 1.1 yamt
742 1.1 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
743 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
744 1.1 yamt bt_free(vm, bt);
745 1.1 yamt }
746 1.1 yamt }
747 1.1 yamt xfree(vm->vm_hashlist);
748 1.1 yamt }
749 1.1 yamt xfree(vm);
750 1.1 yamt }
751 1.1 yamt
752 1.1 yamt vmem_size_t
753 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
754 1.1 yamt {
755 1.1 yamt
756 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
757 1.1 yamt }
758 1.1 yamt
759 1.1 yamt /*
760 1.1 yamt * vmem_alloc:
761 1.1 yamt *
762 1.1 yamt * => caller must ensure appropriate spl,
763 1.1 yamt * if the arena can be accessed from interrupt context.
764 1.1 yamt */
765 1.1 yamt
766 1.1 yamt vmem_addr_t
767 1.1 yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
768 1.1 yamt {
769 1.12 yamt const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
770 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
771 1.1 yamt
772 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
773 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
774 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
775 1.1 yamt
776 1.1 yamt KASSERT(size0 > 0);
777 1.1 yamt KASSERT(size > 0);
778 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
779 1.3 yamt if ((flags & VM_SLEEP) != 0) {
780 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
781 1.3 yamt }
782 1.1 yamt
783 1.5 yamt #if defined(QCACHE)
784 1.5 yamt if (size <= vm->vm_qcache_max) {
785 1.5 yamt int qidx = size >> vm->vm_quantum_shift;
786 1.5 yamt qcache_t *qc = &vm->vm_qcache[qidx - 1];
787 1.5 yamt
788 1.5 yamt return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
789 1.5 yamt vmf_to_prf(flags));
790 1.5 yamt }
791 1.5 yamt #endif /* defined(QCACHE) */
792 1.5 yamt
793 1.10 yamt return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
794 1.10 yamt }
795 1.10 yamt
796 1.10 yamt vmem_addr_t
797 1.10 yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
798 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
799 1.10 yamt vm_flag_t flags)
800 1.10 yamt {
801 1.10 yamt struct vmem_freelist *list;
802 1.10 yamt struct vmem_freelist *first;
803 1.10 yamt struct vmem_freelist *end;
804 1.10 yamt bt_t *bt;
805 1.10 yamt bt_t *btnew;
806 1.10 yamt bt_t *btnew2;
807 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
808 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
809 1.10 yamt vmem_addr_t start;
810 1.10 yamt
811 1.10 yamt KASSERT(size0 > 0);
812 1.10 yamt KASSERT(size > 0);
813 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
814 1.10 yamt if ((flags & VM_SLEEP) != 0) {
815 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
816 1.10 yamt }
817 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
818 1.10 yamt KASSERT((align & (align - 1)) == 0);
819 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
820 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
821 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
822 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
823 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
824 1.10 yamt KASSERT(maxaddr == 0 || minaddr < maxaddr);
825 1.10 yamt KASSERT(((phase ^ (phase + size - 1)) & -nocross) == 0);
826 1.10 yamt
827 1.10 yamt if (align == 0) {
828 1.10 yamt align = vm->vm_quantum_mask + 1;
829 1.10 yamt }
830 1.1 yamt btnew = bt_alloc(vm, flags);
831 1.1 yamt if (btnew == NULL) {
832 1.1 yamt return VMEM_ADDR_NULL;
833 1.1 yamt }
834 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
835 1.10 yamt if (btnew2 == NULL) {
836 1.10 yamt bt_free(vm, btnew);
837 1.10 yamt return VMEM_ADDR_NULL;
838 1.10 yamt }
839 1.1 yamt
840 1.1 yamt retry_strat:
841 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
842 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
843 1.1 yamt retry:
844 1.1 yamt bt = NULL;
845 1.1 yamt VMEM_LOCK(vm);
846 1.2 yamt if (strat == VM_INSTANTFIT) {
847 1.2 yamt for (list = first; list < end; list++) {
848 1.2 yamt bt = LIST_FIRST(list);
849 1.2 yamt if (bt != NULL) {
850 1.10 yamt start = vmem_fit(bt, size, align, phase,
851 1.10 yamt nocross, minaddr, maxaddr);
852 1.10 yamt if (start != VMEM_ADDR_NULL) {
853 1.10 yamt goto gotit;
854 1.10 yamt }
855 1.2 yamt }
856 1.2 yamt }
857 1.2 yamt } else { /* VM_BESTFIT */
858 1.2 yamt for (list = first; list < end; list++) {
859 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
860 1.2 yamt if (bt->bt_size >= size) {
861 1.10 yamt start = vmem_fit(bt, size, align, phase,
862 1.10 yamt nocross, minaddr, maxaddr);
863 1.10 yamt if (start != VMEM_ADDR_NULL) {
864 1.10 yamt goto gotit;
865 1.10 yamt }
866 1.2 yamt }
867 1.1 yamt }
868 1.1 yamt }
869 1.1 yamt }
870 1.2 yamt VMEM_UNLOCK(vm);
871 1.1 yamt #if 1
872 1.2 yamt if (strat == VM_INSTANTFIT) {
873 1.2 yamt strat = VM_BESTFIT;
874 1.2 yamt goto retry_strat;
875 1.2 yamt }
876 1.1 yamt #endif
877 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
878 1.10 yamt nocross != 0 || minaddr != 0 || maxaddr != 0) {
879 1.10 yamt
880 1.10 yamt /*
881 1.10 yamt * XXX should try to import a region large enough to
882 1.10 yamt * satisfy restrictions?
883 1.10 yamt */
884 1.10 yamt
885 1.10 yamt return VMEM_ADDR_NULL;
886 1.10 yamt }
887 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
888 1.2 yamt goto retry;
889 1.1 yamt }
890 1.2 yamt /* XXX */
891 1.2 yamt return VMEM_ADDR_NULL;
892 1.2 yamt
893 1.2 yamt gotit:
894 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
895 1.1 yamt KASSERT(bt->bt_size >= size);
896 1.1 yamt bt_remfree(vm, bt);
897 1.10 yamt if (bt->bt_start != start) {
898 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
899 1.10 yamt btnew2->bt_start = bt->bt_start;
900 1.10 yamt btnew2->bt_size = start - bt->bt_start;
901 1.10 yamt bt->bt_start = start;
902 1.10 yamt bt->bt_size -= btnew2->bt_size;
903 1.10 yamt bt_insfree(vm, btnew2);
904 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
905 1.10 yamt btnew2 = NULL;
906 1.10 yamt }
907 1.10 yamt KASSERT(bt->bt_start == start);
908 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
909 1.1 yamt /* split */
910 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
911 1.1 yamt btnew->bt_start = bt->bt_start;
912 1.1 yamt btnew->bt_size = size;
913 1.1 yamt bt->bt_start = bt->bt_start + size;
914 1.1 yamt bt->bt_size -= size;
915 1.1 yamt bt_insfree(vm, bt);
916 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
917 1.1 yamt bt_insbusy(vm, btnew);
918 1.1 yamt VMEM_UNLOCK(vm);
919 1.1 yamt } else {
920 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
921 1.1 yamt bt_insbusy(vm, bt);
922 1.1 yamt VMEM_UNLOCK(vm);
923 1.1 yamt bt_free(vm, btnew);
924 1.1 yamt btnew = bt;
925 1.1 yamt }
926 1.10 yamt if (btnew2 != NULL) {
927 1.10 yamt bt_free(vm, btnew2);
928 1.10 yamt }
929 1.1 yamt KASSERT(btnew->bt_size >= size);
930 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
931 1.1 yamt
932 1.1 yamt return btnew->bt_start;
933 1.1 yamt }
934 1.1 yamt
935 1.1 yamt /*
936 1.1 yamt * vmem_free:
937 1.1 yamt *
938 1.1 yamt * => caller must ensure appropriate spl,
939 1.1 yamt * if the arena can be accessed from interrupt context.
940 1.1 yamt */
941 1.1 yamt
942 1.1 yamt void
943 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
944 1.1 yamt {
945 1.1 yamt
946 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
947 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
948 1.1 yamt KASSERT(size > 0);
949 1.1 yamt
950 1.5 yamt #if defined(QCACHE)
951 1.5 yamt if (size <= vm->vm_qcache_max) {
952 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
953 1.5 yamt qcache_t *qc = &vm->vm_qcache[qidx - 1];
954 1.5 yamt
955 1.5 yamt return pool_cache_put(&qc->qc_cache, (void *)addr);
956 1.5 yamt }
957 1.5 yamt #endif /* defined(QCACHE) */
958 1.5 yamt
959 1.10 yamt vmem_xfree(vm, addr, size);
960 1.10 yamt }
961 1.10 yamt
962 1.10 yamt void
963 1.11 dogcow vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size __unused)
964 1.10 yamt {
965 1.10 yamt bt_t *bt;
966 1.10 yamt bt_t *t;
967 1.10 yamt
968 1.10 yamt VMEM_ASSERT_UNLOCKED(vm);
969 1.10 yamt KASSERT(addr != VMEM_ADDR_NULL);
970 1.10 yamt KASSERT(size > 0);
971 1.10 yamt
972 1.1 yamt VMEM_LOCK(vm);
973 1.1 yamt
974 1.1 yamt bt = bt_lookupbusy(vm, addr);
975 1.1 yamt KASSERT(bt != NULL);
976 1.1 yamt KASSERT(bt->bt_start == addr);
977 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
978 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
979 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
980 1.1 yamt bt_rembusy(vm, bt);
981 1.1 yamt bt->bt_type = BT_TYPE_FREE;
982 1.1 yamt
983 1.1 yamt /* coalesce */
984 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
985 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
986 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
987 1.1 yamt bt_remfree(vm, t);
988 1.1 yamt bt_remseg(vm, t);
989 1.1 yamt bt->bt_size += t->bt_size;
990 1.1 yamt bt_free(vm, t);
991 1.1 yamt }
992 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
993 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
994 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
995 1.1 yamt bt_remfree(vm, t);
996 1.1 yamt bt_remseg(vm, t);
997 1.1 yamt bt->bt_size += t->bt_size;
998 1.1 yamt bt->bt_start = t->bt_start;
999 1.1 yamt bt_free(vm, t);
1000 1.1 yamt }
1001 1.1 yamt
1002 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1003 1.1 yamt KASSERT(t != NULL);
1004 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1005 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1006 1.1 yamt t->bt_size == bt->bt_size) {
1007 1.1 yamt vmem_addr_t spanaddr;
1008 1.1 yamt vmem_size_t spansize;
1009 1.1 yamt
1010 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1011 1.1 yamt spanaddr = bt->bt_start;
1012 1.1 yamt spansize = bt->bt_size;
1013 1.1 yamt bt_remseg(vm, bt);
1014 1.1 yamt bt_free(vm, bt);
1015 1.1 yamt bt_remseg(vm, t);
1016 1.1 yamt bt_free(vm, t);
1017 1.1 yamt VMEM_UNLOCK(vm);
1018 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1019 1.1 yamt } else {
1020 1.1 yamt bt_insfree(vm, bt);
1021 1.1 yamt VMEM_UNLOCK(vm);
1022 1.1 yamt }
1023 1.1 yamt }
1024 1.1 yamt
1025 1.1 yamt /*
1026 1.1 yamt * vmem_add:
1027 1.1 yamt *
1028 1.1 yamt * => caller must ensure appropriate spl,
1029 1.1 yamt * if the arena can be accessed from interrupt context.
1030 1.1 yamt */
1031 1.1 yamt
1032 1.1 yamt vmem_addr_t
1033 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1034 1.1 yamt {
1035 1.1 yamt
1036 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1037 1.1 yamt }
1038 1.1 yamt
1039 1.6 yamt /*
1040 1.6 yamt * vmem_reap: reap unused resources.
1041 1.6 yamt *
1042 1.6 yamt * => return TRUE if we successfully reaped something.
1043 1.6 yamt */
1044 1.6 yamt
1045 1.6 yamt boolean_t
1046 1.6 yamt vmem_reap(vmem_t *vm)
1047 1.6 yamt {
1048 1.6 yamt boolean_t didsomething = FALSE;
1049 1.6 yamt
1050 1.6 yamt VMEM_ASSERT_UNLOCKED(vm);
1051 1.6 yamt
1052 1.6 yamt #if defined(QCACHE)
1053 1.6 yamt didsomething = qc_reap(vm);
1054 1.6 yamt #endif /* defined(QCACHE) */
1055 1.6 yamt return didsomething;
1056 1.6 yamt }
1057 1.6 yamt
1058 1.1 yamt /* ---- debug */
1059 1.1 yamt
1060 1.1 yamt #if defined(VMEM_DEBUG)
1061 1.1 yamt
1062 1.1 yamt #if !defined(_KERNEL)
1063 1.1 yamt #include <stdio.h>
1064 1.1 yamt #endif /* !defined(_KERNEL) */
1065 1.1 yamt
1066 1.1 yamt void bt_dump(const bt_t *);
1067 1.1 yamt
1068 1.1 yamt void
1069 1.1 yamt bt_dump(const bt_t *bt)
1070 1.1 yamt {
1071 1.1 yamt
1072 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1073 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1074 1.1 yamt bt->bt_type);
1075 1.1 yamt }
1076 1.1 yamt
1077 1.1 yamt void
1078 1.1 yamt vmem_dump(const vmem_t *vm)
1079 1.1 yamt {
1080 1.1 yamt const bt_t *bt;
1081 1.1 yamt int i;
1082 1.1 yamt
1083 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
1084 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1085 1.1 yamt bt_dump(bt);
1086 1.1 yamt }
1087 1.1 yamt
1088 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1089 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1090 1.1 yamt
1091 1.1 yamt if (LIST_EMPTY(fl)) {
1092 1.1 yamt continue;
1093 1.1 yamt }
1094 1.1 yamt
1095 1.1 yamt printf("freelist[%d]\n", i);
1096 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1097 1.1 yamt bt_dump(bt);
1098 1.1 yamt if (bt->bt_size) {
1099 1.1 yamt }
1100 1.1 yamt }
1101 1.1 yamt }
1102 1.1 yamt }
1103 1.1 yamt
1104 1.1 yamt #if !defined(_KERNEL)
1105 1.1 yamt
1106 1.1 yamt #include <stdlib.h>
1107 1.1 yamt
1108 1.1 yamt int
1109 1.1 yamt main()
1110 1.1 yamt {
1111 1.1 yamt vmem_t *vm;
1112 1.1 yamt vmem_addr_t p;
1113 1.1 yamt struct reg {
1114 1.1 yamt vmem_addr_t p;
1115 1.1 yamt vmem_size_t sz;
1116 1.10 yamt boolean_t x;
1117 1.1 yamt } *reg = NULL;
1118 1.1 yamt int nreg = 0;
1119 1.1 yamt int nalloc = 0;
1120 1.1 yamt int nfree = 0;
1121 1.1 yamt vmem_size_t total = 0;
1122 1.1 yamt #if 1
1123 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1124 1.1 yamt #else
1125 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1126 1.1 yamt #endif
1127 1.1 yamt
1128 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1129 1.1 yamt NULL, NULL, NULL, 0, VM_NOSLEEP);
1130 1.1 yamt if (vm == NULL) {
1131 1.1 yamt printf("vmem_create\n");
1132 1.1 yamt exit(EXIT_FAILURE);
1133 1.1 yamt }
1134 1.1 yamt vmem_dump(vm);
1135 1.1 yamt
1136 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1137 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1138 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1139 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1140 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1141 1.1 yamt vmem_dump(vm);
1142 1.1 yamt for (;;) {
1143 1.1 yamt struct reg *r;
1144 1.10 yamt int t = rand() % 100;
1145 1.1 yamt
1146 1.10 yamt if (t > 45) {
1147 1.10 yamt /* alloc */
1148 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1149 1.10 yamt boolean_t x;
1150 1.10 yamt vmem_size_t align, phase, nocross;
1151 1.10 yamt vmem_addr_t minaddr, maxaddr;
1152 1.10 yamt
1153 1.10 yamt if (t > 70) {
1154 1.10 yamt x = TRUE;
1155 1.10 yamt /* XXX */
1156 1.10 yamt align = 1 << (rand() % 15);
1157 1.10 yamt phase = rand() % 65536;
1158 1.10 yamt nocross = 1 << (rand() % 15);
1159 1.10 yamt if (align <= phase) {
1160 1.10 yamt phase = 0;
1161 1.10 yamt }
1162 1.10 yamt if (((phase ^ (phase + sz)) & -nocross) != 0) {
1163 1.10 yamt nocross = 0;
1164 1.10 yamt }
1165 1.10 yamt minaddr = rand() % 50000;
1166 1.10 yamt maxaddr = rand() % 70000;
1167 1.10 yamt if (minaddr > maxaddr) {
1168 1.10 yamt minaddr = 0;
1169 1.10 yamt maxaddr = 0;
1170 1.10 yamt }
1171 1.10 yamt printf("=== xalloc %" PRIu64
1172 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1173 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1174 1.10 yamt ", max=%" PRIu64 "\n",
1175 1.10 yamt (uint64_t)sz,
1176 1.10 yamt (uint64_t)align,
1177 1.10 yamt (uint64_t)phase,
1178 1.10 yamt (uint64_t)nocross,
1179 1.10 yamt (uint64_t)minaddr,
1180 1.10 yamt (uint64_t)maxaddr);
1181 1.10 yamt p = vmem_xalloc(vm, sz, align, phase, nocross,
1182 1.10 yamt minaddr, maxaddr, strat|VM_SLEEP);
1183 1.10 yamt } else {
1184 1.10 yamt x = FALSE;
1185 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1186 1.10 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1187 1.10 yamt }
1188 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1189 1.1 yamt vmem_dump(vm);
1190 1.1 yamt if (p == VMEM_ADDR_NULL) {
1191 1.10 yamt if (x) {
1192 1.10 yamt continue;
1193 1.10 yamt }
1194 1.1 yamt break;
1195 1.1 yamt }
1196 1.1 yamt nreg++;
1197 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1198 1.1 yamt r = ®[nreg - 1];
1199 1.1 yamt r->p = p;
1200 1.1 yamt r->sz = sz;
1201 1.10 yamt r->x = x;
1202 1.1 yamt total += sz;
1203 1.1 yamt nalloc++;
1204 1.1 yamt } else if (nreg != 0) {
1205 1.10 yamt /* free */
1206 1.1 yamt r = ®[rand() % nreg];
1207 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1208 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1209 1.10 yamt if (r->x) {
1210 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1211 1.10 yamt } else {
1212 1.10 yamt vmem_free(vm, r->p, r->sz);
1213 1.10 yamt }
1214 1.1 yamt total -= r->sz;
1215 1.1 yamt vmem_dump(vm);
1216 1.1 yamt *r = reg[nreg - 1];
1217 1.1 yamt nreg--;
1218 1.1 yamt nfree++;
1219 1.1 yamt }
1220 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1221 1.1 yamt }
1222 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1223 1.1 yamt (uint64_t)total, nalloc, nfree);
1224 1.1 yamt exit(EXIT_SUCCESS);
1225 1.1 yamt }
1226 1.1 yamt #endif /* !defined(_KERNEL) */
1227 1.1 yamt #endif /* defined(VMEM_DEBUG) */
1228