subr_vmem.c revision 1.2 1 1.1 yamt /* $NetBSD: subr_vmem.c,v 1.2 2006/06/26 10:23:20 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.1 yamt *
35 1.1 yamt * TODO:
36 1.1 yamt * - implement quantum cache
37 1.1 yamt * - implement vmem_xalloc/vmem_xfree
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.1 yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.2 2006/06/26 10:23:20 yamt Exp $");
42 1.1 yamt
43 1.1 yamt #define VMEM_DEBUG
44 1.1 yamt
45 1.1 yamt #include <sys/param.h>
46 1.1 yamt #include <sys/hash.h>
47 1.1 yamt #include <sys/queue.h>
48 1.1 yamt
49 1.1 yamt #if defined(_KERNEL)
50 1.1 yamt #include <sys/systm.h>
51 1.1 yamt #include <sys/lock.h>
52 1.1 yamt #include <sys/malloc.h>
53 1.1 yamt #include <sys/once.h>
54 1.1 yamt #include <sys/pool.h>
55 1.1 yamt #include <sys/vmem.h>
56 1.1 yamt #else /* defined(_KERNEL) */
57 1.1 yamt #include "../sys/vmem.h"
58 1.1 yamt #endif /* defined(_KERNEL) */
59 1.1 yamt
60 1.1 yamt #if defined(_KERNEL)
61 1.1 yamt #define SIMPLELOCK_DECL(name) struct simplelock name
62 1.1 yamt #else /* defined(_KERNEL) */
63 1.1 yamt #include <errno.h>
64 1.1 yamt #include <assert.h>
65 1.1 yamt #include <stdlib.h>
66 1.1 yamt
67 1.1 yamt #define KASSERT(a) assert(a)
68 1.1 yamt #define SIMPLELOCK_DECL(name) /* nothing */
69 1.1 yamt #define LOCK_ASSERT(a) /* nothing */
70 1.1 yamt #define simple_lock_init(a) /* nothing */
71 1.1 yamt #define simple_lock(a) /* nothing */
72 1.1 yamt #define simple_unlock(a) /* nothing */
73 1.1 yamt #endif /* defined(_KERNEL) */
74 1.1 yamt
75 1.1 yamt struct vmem;
76 1.1 yamt struct vmem_btag;
77 1.1 yamt
78 1.1 yamt #if defined(VMEM_DEBUG)
79 1.1 yamt void vmem_dump(const vmem_t *);
80 1.1 yamt #endif /* defined(VMEM_DEBUG) */
81 1.1 yamt
82 1.1 yamt #define VMEM_MAXORDER 20
83 1.1 yamt #define VMEM_HASHSIZE_INIT 4096 /* XXX */
84 1.1 yamt
85 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
86 1.1 yamt
87 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
88 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
89 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
90 1.1 yamt
91 1.1 yamt /* vmem arena */
92 1.1 yamt struct vmem {
93 1.1 yamt SIMPLELOCK_DECL(vm_lock);
94 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
95 1.1 yamt vm_flag_t);
96 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
97 1.1 yamt vmem_t *vm_source;
98 1.1 yamt struct vmem_seglist vm_seglist;
99 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
100 1.1 yamt size_t vm_hashsize;
101 1.1 yamt size_t vm_nbusytag;
102 1.1 yamt struct vmem_hashlist *vm_hashlist;
103 1.1 yamt size_t vm_qcache_max;
104 1.1 yamt size_t vm_quantum_mask;
105 1.1 yamt int vm_quantum_shift;
106 1.1 yamt /* XXX qcache */
107 1.1 yamt const char *vm_name;
108 1.1 yamt };
109 1.1 yamt
110 1.1 yamt #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
111 1.1 yamt #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
112 1.1 yamt #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
113 1.1 yamt #define VMEM_ASSERT_LOCKED(vm) \
114 1.1 yamt LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
115 1.1 yamt #define VMEM_ASSERT_UNLOCKED(vm) \
116 1.1 yamt LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
117 1.1 yamt
118 1.1 yamt /* boundary tag */
119 1.1 yamt struct vmem_btag {
120 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
121 1.1 yamt union {
122 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
123 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
124 1.1 yamt } bt_u;
125 1.1 yamt #define bt_hashlist bt_u.u_hashlist
126 1.1 yamt #define bt_freelist bt_u.u_freelist
127 1.1 yamt vmem_addr_t bt_start;
128 1.1 yamt vmem_size_t bt_size;
129 1.1 yamt int bt_type;
130 1.1 yamt };
131 1.1 yamt
132 1.1 yamt #define BT_TYPE_SPAN 1
133 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
134 1.1 yamt #define BT_TYPE_FREE 3
135 1.1 yamt #define BT_TYPE_BUSY 4
136 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
137 1.1 yamt
138 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
139 1.1 yamt
140 1.1 yamt typedef struct vmem_btag bt_t;
141 1.1 yamt
142 1.1 yamt /* ---- misc */
143 1.1 yamt
144 1.1 yamt static int
145 1.1 yamt calc_order(vmem_size_t size)
146 1.1 yamt {
147 1.1 yamt int i;
148 1.1 yamt
149 1.1 yamt KASSERT(size != 0);
150 1.1 yamt
151 1.1 yamt i = 0;
152 1.1 yamt while (1 << (i + 1) <= size) {
153 1.1 yamt i++;
154 1.1 yamt }
155 1.1 yamt
156 1.1 yamt KASSERT(1 << i <= size);
157 1.1 yamt KASSERT(size < 1 << (i + 1));
158 1.1 yamt
159 1.1 yamt return i;
160 1.1 yamt }
161 1.1 yamt
162 1.1 yamt #if defined(_KERNEL)
163 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
164 1.1 yamt #endif /* defined(_KERNEL) */
165 1.1 yamt
166 1.1 yamt static void *
167 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
168 1.1 yamt {
169 1.1 yamt
170 1.1 yamt #if defined(_KERNEL)
171 1.1 yamt return malloc(sz, M_VMEM,
172 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
173 1.1 yamt #else /* defined(_KERNEL) */
174 1.1 yamt return malloc(sz);
175 1.1 yamt #endif /* defined(_KERNEL) */
176 1.1 yamt }
177 1.1 yamt
178 1.1 yamt static void
179 1.1 yamt xfree(void *p)
180 1.1 yamt {
181 1.1 yamt
182 1.1 yamt #if defined(_KERNEL)
183 1.1 yamt return free(p, M_VMEM);
184 1.1 yamt #else /* defined(_KERNEL) */
185 1.1 yamt return free(p);
186 1.1 yamt #endif /* defined(_KERNEL) */
187 1.1 yamt }
188 1.1 yamt
189 1.1 yamt /* ---- boundary tag */
190 1.1 yamt
191 1.1 yamt #if defined(_KERNEL)
192 1.1 yamt static struct pool_cache bt_poolcache;
193 1.1 yamt static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
194 1.1 yamt #endif /* defined(_KERNEL) */
195 1.1 yamt
196 1.1 yamt static bt_t *
197 1.1 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
198 1.1 yamt {
199 1.1 yamt bt_t *bt;
200 1.1 yamt
201 1.1 yamt #if defined(_KERNEL)
202 1.1 yamt /* XXX bootstrap */
203 1.1 yamt bt = pool_cache_get(&bt_poolcache,
204 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
205 1.1 yamt #else /* defined(_KERNEL) */
206 1.1 yamt bt = malloc(sizeof *bt);
207 1.1 yamt #endif /* defined(_KERNEL) */
208 1.1 yamt
209 1.1 yamt return bt;
210 1.1 yamt }
211 1.1 yamt
212 1.1 yamt static void
213 1.1 yamt bt_free(vmem_t *vm, bt_t *bt)
214 1.1 yamt {
215 1.1 yamt
216 1.1 yamt #if defined(_KERNEL)
217 1.1 yamt /* XXX bootstrap */
218 1.1 yamt pool_cache_put(&bt_poolcache, bt);
219 1.1 yamt #else /* defined(_KERNEL) */
220 1.1 yamt free(bt);
221 1.1 yamt #endif /* defined(_KERNEL) */
222 1.1 yamt }
223 1.1 yamt
224 1.1 yamt /*
225 1.1 yamt * freelist[0] ... [1, 1]
226 1.1 yamt * freelist[1] ... [2, 3]
227 1.1 yamt * freelist[2] ... [4, 7]
228 1.1 yamt * freelist[3] ... [8, 15]
229 1.1 yamt * :
230 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
231 1.1 yamt * :
232 1.1 yamt */
233 1.1 yamt
234 1.1 yamt static struct vmem_freelist *
235 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
236 1.1 yamt {
237 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
238 1.1 yamt int idx;
239 1.1 yamt
240 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
241 1.1 yamt KASSERT(size != 0);
242 1.1 yamt
243 1.1 yamt idx = calc_order(qsize);
244 1.1 yamt KASSERT(idx >= 0);
245 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
246 1.1 yamt
247 1.1 yamt return &vm->vm_freelist[idx];
248 1.1 yamt }
249 1.1 yamt
250 1.1 yamt static struct vmem_freelist *
251 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
252 1.1 yamt {
253 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
254 1.1 yamt int idx;
255 1.1 yamt
256 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
257 1.1 yamt KASSERT(size != 0);
258 1.1 yamt
259 1.1 yamt idx = calc_order(qsize);
260 1.1 yamt if (strat == VM_INSTANTFIT && 1 << idx != qsize) {
261 1.1 yamt idx++;
262 1.1 yamt /* check too large request? */
263 1.1 yamt }
264 1.1 yamt KASSERT(idx >= 0);
265 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
266 1.1 yamt
267 1.1 yamt return &vm->vm_freelist[idx];
268 1.1 yamt }
269 1.1 yamt
270 1.1 yamt /* ---- boundary tag hash */
271 1.1 yamt
272 1.1 yamt static struct vmem_hashlist *
273 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
274 1.1 yamt {
275 1.1 yamt struct vmem_hashlist *list;
276 1.1 yamt unsigned int hash;
277 1.1 yamt
278 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
279 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
280 1.1 yamt
281 1.1 yamt return list;
282 1.1 yamt }
283 1.1 yamt
284 1.1 yamt static bt_t *
285 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
286 1.1 yamt {
287 1.1 yamt struct vmem_hashlist *list;
288 1.1 yamt bt_t *bt;
289 1.1 yamt
290 1.1 yamt list = bt_hashhead(vm, addr);
291 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
292 1.1 yamt if (bt->bt_start == addr) {
293 1.1 yamt break;
294 1.1 yamt }
295 1.1 yamt }
296 1.1 yamt
297 1.1 yamt return bt;
298 1.1 yamt }
299 1.1 yamt
300 1.1 yamt static void
301 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
302 1.1 yamt {
303 1.1 yamt
304 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
305 1.1 yamt vm->vm_nbusytag--;
306 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
307 1.1 yamt }
308 1.1 yamt
309 1.1 yamt static void
310 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
311 1.1 yamt {
312 1.1 yamt struct vmem_hashlist *list;
313 1.1 yamt
314 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
315 1.1 yamt
316 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
317 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
318 1.1 yamt vm->vm_nbusytag++;
319 1.1 yamt }
320 1.1 yamt
321 1.1 yamt /* ---- boundary tag list */
322 1.1 yamt
323 1.1 yamt static void
324 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
325 1.1 yamt {
326 1.1 yamt
327 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
328 1.1 yamt }
329 1.1 yamt
330 1.1 yamt static void
331 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
332 1.1 yamt {
333 1.1 yamt
334 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
335 1.1 yamt }
336 1.1 yamt
337 1.1 yamt static void
338 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
339 1.1 yamt {
340 1.1 yamt
341 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
342 1.1 yamt }
343 1.1 yamt
344 1.1 yamt static void
345 1.1 yamt bt_remfree(vmem_t *vm, bt_t *bt)
346 1.1 yamt {
347 1.1 yamt
348 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
349 1.1 yamt
350 1.1 yamt LIST_REMOVE(bt, bt_freelist);
351 1.1 yamt }
352 1.1 yamt
353 1.1 yamt static void
354 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
355 1.1 yamt {
356 1.1 yamt struct vmem_freelist *list;
357 1.1 yamt
358 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
359 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
360 1.1 yamt }
361 1.1 yamt
362 1.1 yamt /* ---- vmem internal functions */
363 1.1 yamt
364 1.1 yamt #if defined(_KERNEL)
365 1.1 yamt static int
366 1.1 yamt vmem_init(void)
367 1.1 yamt {
368 1.1 yamt
369 1.1 yamt pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
370 1.1 yamt return 0;
371 1.1 yamt }
372 1.1 yamt #endif /* defined(_KERNEL) */
373 1.1 yamt
374 1.1 yamt static vmem_addr_t
375 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
376 1.1 yamt int spanbttype)
377 1.1 yamt {
378 1.1 yamt bt_t *btspan;
379 1.1 yamt bt_t *btfree;
380 1.1 yamt
381 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
382 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
383 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
384 1.1 yamt
385 1.1 yamt btspan = bt_alloc(vm, flags);
386 1.1 yamt if (btspan == NULL) {
387 1.1 yamt return VMEM_ADDR_NULL;
388 1.1 yamt }
389 1.1 yamt btfree = bt_alloc(vm, flags);
390 1.1 yamt if (btfree == NULL) {
391 1.1 yamt bt_free(vm, btspan);
392 1.1 yamt return VMEM_ADDR_NULL;
393 1.1 yamt }
394 1.1 yamt
395 1.1 yamt btspan->bt_type = spanbttype;
396 1.1 yamt btspan->bt_start = addr;
397 1.1 yamt btspan->bt_size = size;
398 1.1 yamt
399 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
400 1.1 yamt btfree->bt_start = addr;
401 1.1 yamt btfree->bt_size = size;
402 1.1 yamt
403 1.1 yamt VMEM_LOCK(vm);
404 1.1 yamt bt_insseg_tail(vm, btspan);
405 1.1 yamt bt_insseg(vm, btfree, btspan);
406 1.1 yamt bt_insfree(vm, btfree);
407 1.1 yamt VMEM_UNLOCK(vm);
408 1.1 yamt
409 1.1 yamt return addr;
410 1.1 yamt }
411 1.1 yamt
412 1.1 yamt static int
413 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
414 1.1 yamt {
415 1.1 yamt vmem_addr_t addr;
416 1.1 yamt
417 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
418 1.1 yamt
419 1.1 yamt if (vm->vm_allocfn == NULL) {
420 1.1 yamt return EINVAL;
421 1.1 yamt }
422 1.1 yamt
423 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
424 1.1 yamt if (addr == VMEM_ADDR_NULL) {
425 1.1 yamt return ENOMEM;
426 1.1 yamt }
427 1.1 yamt
428 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
429 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
430 1.1 yamt return ENOMEM;
431 1.1 yamt }
432 1.1 yamt
433 1.1 yamt return 0;
434 1.1 yamt }
435 1.1 yamt
436 1.1 yamt static int
437 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
438 1.1 yamt {
439 1.1 yamt bt_t *bt;
440 1.1 yamt int i;
441 1.1 yamt struct vmem_hashlist *newhashlist;
442 1.1 yamt struct vmem_hashlist *oldhashlist;
443 1.1 yamt size_t oldhashsize;
444 1.1 yamt
445 1.1 yamt KASSERT(newhashsize > 0);
446 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
447 1.1 yamt
448 1.1 yamt newhashlist =
449 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
450 1.1 yamt if (newhashlist == NULL) {
451 1.1 yamt return ENOMEM;
452 1.1 yamt }
453 1.1 yamt for (i = 0; i < newhashsize; i++) {
454 1.1 yamt LIST_INIT(&newhashlist[i]);
455 1.1 yamt }
456 1.1 yamt
457 1.1 yamt VMEM_LOCK(vm);
458 1.1 yamt oldhashlist = vm->vm_hashlist;
459 1.1 yamt oldhashsize = vm->vm_hashsize;
460 1.1 yamt vm->vm_hashlist = newhashlist;
461 1.1 yamt vm->vm_hashsize = newhashsize;
462 1.1 yamt if (oldhashlist == NULL) {
463 1.1 yamt VMEM_UNLOCK(vm);
464 1.1 yamt return 0;
465 1.1 yamt }
466 1.1 yamt for (i = 0; i < oldhashsize; i++) {
467 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
468 1.1 yamt bt_rembusy(vm, bt); /* XXX */
469 1.1 yamt bt_insbusy(vm, bt);
470 1.1 yamt }
471 1.1 yamt }
472 1.1 yamt VMEM_UNLOCK(vm);
473 1.1 yamt
474 1.1 yamt xfree(oldhashlist);
475 1.1 yamt
476 1.1 yamt return 0;
477 1.1 yamt }
478 1.1 yamt
479 1.1 yamt /* ---- vmem API */
480 1.1 yamt
481 1.1 yamt /*
482 1.1 yamt * vmem_create: create an arena.
483 1.1 yamt *
484 1.1 yamt * => must not be called from interrupt context.
485 1.1 yamt */
486 1.1 yamt
487 1.1 yamt vmem_t *
488 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
489 1.1 yamt vmem_size_t quantum,
490 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
491 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
492 1.1 yamt vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
493 1.1 yamt {
494 1.1 yamt vmem_t *vm;
495 1.1 yamt int i;
496 1.1 yamt #if defined(_KERNEL)
497 1.1 yamt static ONCE_DECL(control);
498 1.1 yamt #endif /* defined(_KERNEL) */
499 1.1 yamt
500 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
501 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
502 1.1 yamt
503 1.1 yamt #if defined(_KERNEL)
504 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
505 1.1 yamt return NULL;
506 1.1 yamt }
507 1.1 yamt #endif /* defined(_KERNEL) */
508 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
509 1.1 yamt if (vm == NULL) {
510 1.1 yamt return NULL;
511 1.1 yamt }
512 1.1 yamt
513 1.1 yamt VMEM_LOCK_INIT(vm);
514 1.1 yamt vm->vm_name = name;
515 1.1 yamt vm->vm_quantum_mask = quantum - 1;
516 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
517 1.1 yamt KASSERT((1 << vm->vm_quantum_shift) == quantum);
518 1.1 yamt vm->vm_allocfn = allocfn;
519 1.1 yamt vm->vm_freefn = freefn;
520 1.1 yamt vm->vm_source = source;
521 1.1 yamt vm->vm_qcache_max = qcache_max;
522 1.1 yamt vm->vm_nbusytag = 0;
523 1.1 yamt
524 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
525 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
526 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
527 1.1 yamt }
528 1.1 yamt vm->vm_hashlist = NULL;
529 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
530 1.1 yamt vmem_destroy(vm);
531 1.1 yamt return NULL;
532 1.1 yamt }
533 1.1 yamt
534 1.1 yamt if (size != 0) {
535 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
536 1.1 yamt vmem_destroy(vm);
537 1.1 yamt return NULL;
538 1.1 yamt }
539 1.1 yamt }
540 1.1 yamt
541 1.1 yamt return vm;
542 1.1 yamt }
543 1.1 yamt
544 1.1 yamt void
545 1.1 yamt vmem_destroy(vmem_t *vm)
546 1.1 yamt {
547 1.1 yamt
548 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
549 1.1 yamt
550 1.1 yamt if (vm->vm_hashlist != NULL) {
551 1.1 yamt int i;
552 1.1 yamt
553 1.1 yamt for (i = 0; i < vm->vm_hashsize; i++) {
554 1.1 yamt bt_t *bt;
555 1.1 yamt
556 1.1 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
557 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
558 1.1 yamt bt_free(vm, bt);
559 1.1 yamt }
560 1.1 yamt }
561 1.1 yamt xfree(vm->vm_hashlist);
562 1.1 yamt }
563 1.1 yamt xfree(vm);
564 1.1 yamt }
565 1.1 yamt
566 1.1 yamt vmem_size_t
567 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
568 1.1 yamt {
569 1.1 yamt
570 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
571 1.1 yamt }
572 1.1 yamt
573 1.1 yamt /*
574 1.1 yamt * vmem_alloc:
575 1.1 yamt *
576 1.1 yamt * => caller must ensure appropriate spl,
577 1.1 yamt * if the arena can be accessed from interrupt context.
578 1.1 yamt */
579 1.1 yamt
580 1.1 yamt vmem_addr_t
581 1.1 yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
582 1.1 yamt {
583 1.1 yamt struct vmem_freelist *list;
584 1.1 yamt struct vmem_freelist *first;
585 1.1 yamt struct vmem_freelist *end;
586 1.1 yamt bt_t *bt;
587 1.1 yamt bt_t *btnew;
588 1.1 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
589 1.1 yamt vm_flag_t strat = flags & VM_FITMASK;
590 1.1 yamt
591 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
592 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
593 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
594 1.1 yamt
595 1.1 yamt KASSERT(size0 > 0);
596 1.1 yamt KASSERT(size > 0);
597 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
598 1.1 yamt
599 1.1 yamt btnew = bt_alloc(vm, flags);
600 1.1 yamt if (btnew == NULL) {
601 1.1 yamt return VMEM_ADDR_NULL;
602 1.1 yamt }
603 1.1 yamt
604 1.1 yamt retry_strat:
605 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
606 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
607 1.1 yamt retry:
608 1.1 yamt bt = NULL;
609 1.1 yamt VMEM_LOCK(vm);
610 1.2 yamt if (strat == VM_INSTANTFIT) {
611 1.2 yamt for (list = first; list < end; list++) {
612 1.2 yamt bt = LIST_FIRST(list);
613 1.2 yamt if (bt != NULL) {
614 1.2 yamt goto gotit;
615 1.2 yamt }
616 1.2 yamt }
617 1.2 yamt } else { /* VM_BESTFIT */
618 1.2 yamt for (list = first; list < end; list++) {
619 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
620 1.2 yamt if (bt->bt_size >= size) {
621 1.2 yamt goto gotit;
622 1.2 yamt }
623 1.1 yamt }
624 1.1 yamt }
625 1.1 yamt }
626 1.2 yamt VMEM_UNLOCK(vm);
627 1.1 yamt #if 1
628 1.2 yamt if (strat == VM_INSTANTFIT) {
629 1.2 yamt strat = VM_BESTFIT;
630 1.2 yamt goto retry_strat;
631 1.2 yamt }
632 1.1 yamt #endif
633 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
634 1.2 yamt goto retry;
635 1.1 yamt }
636 1.2 yamt /* XXX */
637 1.2 yamt return VMEM_ADDR_NULL;
638 1.2 yamt
639 1.2 yamt gotit:
640 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
641 1.1 yamt KASSERT(bt->bt_size >= size);
642 1.1 yamt bt_remfree(vm, bt);
643 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
644 1.1 yamt /* split */
645 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
646 1.1 yamt btnew->bt_start = bt->bt_start;
647 1.1 yamt btnew->bt_size = size;
648 1.1 yamt bt->bt_start = bt->bt_start + size;
649 1.1 yamt bt->bt_size -= size;
650 1.1 yamt bt_insfree(vm, bt);
651 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
652 1.1 yamt bt_insbusy(vm, btnew);
653 1.1 yamt VMEM_UNLOCK(vm);
654 1.1 yamt } else {
655 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
656 1.1 yamt bt_insbusy(vm, bt);
657 1.1 yamt VMEM_UNLOCK(vm);
658 1.1 yamt bt_free(vm, btnew);
659 1.1 yamt btnew = bt;
660 1.1 yamt }
661 1.1 yamt KASSERT(btnew->bt_size >= size);
662 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
663 1.1 yamt
664 1.1 yamt return btnew->bt_start;
665 1.1 yamt }
666 1.1 yamt
667 1.1 yamt /*
668 1.1 yamt * vmem_free:
669 1.1 yamt *
670 1.1 yamt * => caller must ensure appropriate spl,
671 1.1 yamt * if the arena can be accessed from interrupt context.
672 1.1 yamt */
673 1.1 yamt
674 1.1 yamt void
675 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
676 1.1 yamt {
677 1.1 yamt bt_t *bt;
678 1.1 yamt bt_t *t;
679 1.1 yamt
680 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
681 1.1 yamt
682 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
683 1.1 yamt KASSERT(size > 0);
684 1.1 yamt
685 1.1 yamt VMEM_LOCK(vm);
686 1.1 yamt
687 1.1 yamt bt = bt_lookupbusy(vm, addr);
688 1.1 yamt KASSERT(bt != NULL);
689 1.1 yamt KASSERT(bt->bt_start == addr);
690 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
691 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
692 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
693 1.1 yamt bt_rembusy(vm, bt);
694 1.1 yamt bt->bt_type = BT_TYPE_FREE;
695 1.1 yamt
696 1.1 yamt /* coalesce */
697 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
698 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
699 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
700 1.1 yamt bt_remfree(vm, t);
701 1.1 yamt bt_remseg(vm, t);
702 1.1 yamt bt->bt_size += t->bt_size;
703 1.1 yamt bt_free(vm, t);
704 1.1 yamt }
705 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
706 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
707 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
708 1.1 yamt bt_remfree(vm, t);
709 1.1 yamt bt_remseg(vm, t);
710 1.1 yamt bt->bt_size += t->bt_size;
711 1.1 yamt bt->bt_start = t->bt_start;
712 1.1 yamt bt_free(vm, t);
713 1.1 yamt }
714 1.1 yamt
715 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
716 1.1 yamt KASSERT(t != NULL);
717 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
718 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
719 1.1 yamt t->bt_size == bt->bt_size) {
720 1.1 yamt vmem_addr_t spanaddr;
721 1.1 yamt vmem_size_t spansize;
722 1.1 yamt
723 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
724 1.1 yamt spanaddr = bt->bt_start;
725 1.1 yamt spansize = bt->bt_size;
726 1.1 yamt bt_remseg(vm, bt);
727 1.1 yamt bt_free(vm, bt);
728 1.1 yamt bt_remseg(vm, t);
729 1.1 yamt bt_free(vm, t);
730 1.1 yamt VMEM_UNLOCK(vm);
731 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
732 1.1 yamt } else {
733 1.1 yamt bt_insfree(vm, bt);
734 1.1 yamt VMEM_UNLOCK(vm);
735 1.1 yamt }
736 1.1 yamt }
737 1.1 yamt
738 1.1 yamt /*
739 1.1 yamt * vmem_add:
740 1.1 yamt *
741 1.1 yamt * => caller must ensure appropriate spl,
742 1.1 yamt * if the arena can be accessed from interrupt context.
743 1.1 yamt */
744 1.1 yamt
745 1.1 yamt vmem_addr_t
746 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
747 1.1 yamt {
748 1.1 yamt
749 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
750 1.1 yamt }
751 1.1 yamt
752 1.1 yamt /* ---- debug */
753 1.1 yamt
754 1.1 yamt #if defined(VMEM_DEBUG)
755 1.1 yamt
756 1.1 yamt #if !defined(_KERNEL)
757 1.1 yamt #include <stdio.h>
758 1.1 yamt #endif /* !defined(_KERNEL) */
759 1.1 yamt
760 1.1 yamt void bt_dump(const bt_t *);
761 1.1 yamt
762 1.1 yamt void
763 1.1 yamt bt_dump(const bt_t *bt)
764 1.1 yamt {
765 1.1 yamt
766 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
767 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
768 1.1 yamt bt->bt_type);
769 1.1 yamt }
770 1.1 yamt
771 1.1 yamt void
772 1.1 yamt vmem_dump(const vmem_t *vm)
773 1.1 yamt {
774 1.1 yamt const bt_t *bt;
775 1.1 yamt int i;
776 1.1 yamt
777 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
778 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
779 1.1 yamt bt_dump(bt);
780 1.1 yamt }
781 1.1 yamt
782 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
783 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
784 1.1 yamt
785 1.1 yamt if (LIST_EMPTY(fl)) {
786 1.1 yamt continue;
787 1.1 yamt }
788 1.1 yamt
789 1.1 yamt printf("freelist[%d]\n", i);
790 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
791 1.1 yamt bt_dump(bt);
792 1.1 yamt if (bt->bt_size) {
793 1.1 yamt }
794 1.1 yamt }
795 1.1 yamt }
796 1.1 yamt }
797 1.1 yamt
798 1.1 yamt #if !defined(_KERNEL)
799 1.1 yamt
800 1.1 yamt #include <stdlib.h>
801 1.1 yamt
802 1.1 yamt int
803 1.1 yamt main()
804 1.1 yamt {
805 1.1 yamt vmem_t *vm;
806 1.1 yamt vmem_addr_t p;
807 1.1 yamt struct reg {
808 1.1 yamt vmem_addr_t p;
809 1.1 yamt vmem_size_t sz;
810 1.1 yamt } *reg = NULL;
811 1.1 yamt int nreg = 0;
812 1.1 yamt int nalloc = 0;
813 1.1 yamt int nfree = 0;
814 1.1 yamt vmem_size_t total = 0;
815 1.1 yamt #if 1
816 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
817 1.1 yamt #else
818 1.1 yamt vm_flag_t strat = VM_BESTFIT;
819 1.1 yamt #endif
820 1.1 yamt
821 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
822 1.1 yamt NULL, NULL, NULL, 0, VM_NOSLEEP);
823 1.1 yamt if (vm == NULL) {
824 1.1 yamt printf("vmem_create\n");
825 1.1 yamt exit(EXIT_FAILURE);
826 1.1 yamt }
827 1.1 yamt vmem_dump(vm);
828 1.1 yamt
829 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
830 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
831 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
832 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
833 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
834 1.1 yamt vmem_dump(vm);
835 1.1 yamt for (;;) {
836 1.1 yamt struct reg *r;
837 1.1 yamt
838 1.1 yamt if (rand() % 100 > 40) {
839 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
840 1.1 yamt
841 1.1 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
842 1.1 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
843 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
844 1.1 yamt vmem_dump(vm);
845 1.1 yamt if (p == VMEM_ADDR_NULL) {
846 1.1 yamt break;
847 1.1 yamt }
848 1.1 yamt nreg++;
849 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
850 1.1 yamt r = ®[nreg - 1];
851 1.1 yamt r->p = p;
852 1.1 yamt r->sz = sz;
853 1.1 yamt total += sz;
854 1.1 yamt nalloc++;
855 1.1 yamt } else if (nreg != 0) {
856 1.1 yamt r = ®[rand() % nreg];
857 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
858 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
859 1.1 yamt vmem_free(vm, r->p, r->sz);
860 1.1 yamt total -= r->sz;
861 1.1 yamt vmem_dump(vm);
862 1.1 yamt *r = reg[nreg - 1];
863 1.1 yamt nreg--;
864 1.1 yamt nfree++;
865 1.1 yamt }
866 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
867 1.1 yamt }
868 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
869 1.1 yamt (uint64_t)total, nalloc, nfree);
870 1.1 yamt exit(EXIT_SUCCESS);
871 1.1 yamt }
872 1.1 yamt #endif /* !defined(_KERNEL) */
873 1.1 yamt #endif /* defined(VMEM_DEBUG) */
874