subr_vmem.c revision 1.20 1 1.20 yamt /* $NetBSD: subr_vmem.c,v 1.20 2006/11/09 10:08:53 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.18 yamt *
35 1.18 yamt * todo:
36 1.18 yamt * - decide how to import segments for vmem_xalloc.
37 1.18 yamt * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.20 yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.20 2006/11/09 10:08:53 yamt Exp $");
42 1.1 yamt
43 1.1 yamt #define VMEM_DEBUG
44 1.5 yamt #if defined(_KERNEL)
45 1.5 yamt #define QCACHE
46 1.5 yamt #endif /* defined(_KERNEL) */
47 1.1 yamt
48 1.1 yamt #include <sys/param.h>
49 1.1 yamt #include <sys/hash.h>
50 1.1 yamt #include <sys/queue.h>
51 1.1 yamt
52 1.1 yamt #if defined(_KERNEL)
53 1.1 yamt #include <sys/systm.h>
54 1.1 yamt #include <sys/lock.h>
55 1.1 yamt #include <sys/malloc.h>
56 1.1 yamt #include <sys/once.h>
57 1.1 yamt #include <sys/pool.h>
58 1.3 yamt #include <sys/proc.h>
59 1.1 yamt #include <sys/vmem.h>
60 1.1 yamt #else /* defined(_KERNEL) */
61 1.1 yamt #include "../sys/vmem.h"
62 1.1 yamt #endif /* defined(_KERNEL) */
63 1.1 yamt
64 1.1 yamt #if defined(_KERNEL)
65 1.1 yamt #define SIMPLELOCK_DECL(name) struct simplelock name
66 1.1 yamt #else /* defined(_KERNEL) */
67 1.1 yamt #include <errno.h>
68 1.1 yamt #include <assert.h>
69 1.1 yamt #include <stdlib.h>
70 1.1 yamt
71 1.1 yamt #define KASSERT(a) assert(a)
72 1.1 yamt #define SIMPLELOCK_DECL(name) /* nothing */
73 1.1 yamt #define LOCK_ASSERT(a) /* nothing */
74 1.1 yamt #define simple_lock_init(a) /* nothing */
75 1.1 yamt #define simple_lock(a) /* nothing */
76 1.1 yamt #define simple_unlock(a) /* nothing */
77 1.3 yamt #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
78 1.1 yamt #endif /* defined(_KERNEL) */
79 1.1 yamt
80 1.1 yamt struct vmem;
81 1.1 yamt struct vmem_btag;
82 1.1 yamt
83 1.1 yamt #if defined(VMEM_DEBUG)
84 1.1 yamt void vmem_dump(const vmem_t *);
85 1.1 yamt #endif /* defined(VMEM_DEBUG) */
86 1.1 yamt
87 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
88 1.1 yamt #define VMEM_HASHSIZE_INIT 4096 /* XXX */
89 1.1 yamt
90 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
91 1.1 yamt
92 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
93 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
94 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
95 1.1 yamt
96 1.5 yamt #if defined(QCACHE)
97 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
98 1.5 yamt
99 1.5 yamt #define QC_NAME_MAX 16
100 1.5 yamt
101 1.5 yamt struct qcache {
102 1.5 yamt struct pool qc_pool;
103 1.5 yamt struct pool_cache qc_cache;
104 1.5 yamt vmem_t *qc_vmem;
105 1.5 yamt char qc_name[QC_NAME_MAX];
106 1.5 yamt };
107 1.5 yamt typedef struct qcache qcache_t;
108 1.5 yamt #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
109 1.5 yamt #endif /* defined(QCACHE) */
110 1.5 yamt
111 1.1 yamt /* vmem arena */
112 1.1 yamt struct vmem {
113 1.1 yamt SIMPLELOCK_DECL(vm_lock);
114 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
115 1.1 yamt vm_flag_t);
116 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
117 1.1 yamt vmem_t *vm_source;
118 1.1 yamt struct vmem_seglist vm_seglist;
119 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
120 1.1 yamt size_t vm_hashsize;
121 1.1 yamt size_t vm_nbusytag;
122 1.1 yamt struct vmem_hashlist *vm_hashlist;
123 1.1 yamt size_t vm_quantum_mask;
124 1.1 yamt int vm_quantum_shift;
125 1.1 yamt const char *vm_name;
126 1.5 yamt
127 1.5 yamt #if defined(QCACHE)
128 1.5 yamt /* quantum cache */
129 1.5 yamt size_t vm_qcache_max;
130 1.5 yamt struct pool_allocator vm_qcache_allocator;
131 1.5 yamt qcache_t vm_qcache[VMEM_QCACHE_IDX_MAX];
132 1.5 yamt #endif /* defined(QCACHE) */
133 1.1 yamt };
134 1.1 yamt
135 1.1 yamt #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
136 1.1 yamt #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
137 1.1 yamt #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
138 1.1 yamt #define VMEM_ASSERT_LOCKED(vm) \
139 1.1 yamt LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
140 1.1 yamt #define VMEM_ASSERT_UNLOCKED(vm) \
141 1.1 yamt LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
142 1.1 yamt
143 1.1 yamt /* boundary tag */
144 1.1 yamt struct vmem_btag {
145 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
146 1.1 yamt union {
147 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
148 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
149 1.1 yamt } bt_u;
150 1.1 yamt #define bt_hashlist bt_u.u_hashlist
151 1.1 yamt #define bt_freelist bt_u.u_freelist
152 1.1 yamt vmem_addr_t bt_start;
153 1.1 yamt vmem_size_t bt_size;
154 1.1 yamt int bt_type;
155 1.1 yamt };
156 1.1 yamt
157 1.1 yamt #define BT_TYPE_SPAN 1
158 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
159 1.1 yamt #define BT_TYPE_FREE 3
160 1.1 yamt #define BT_TYPE_BUSY 4
161 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
162 1.1 yamt
163 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
164 1.1 yamt
165 1.1 yamt typedef struct vmem_btag bt_t;
166 1.1 yamt
167 1.1 yamt /* ---- misc */
168 1.1 yamt
169 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
170 1.19 yamt (-(-(addr) & -(align)))
171 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
172 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
173 1.19 yamt
174 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
175 1.4 yamt
176 1.1 yamt static int
177 1.1 yamt calc_order(vmem_size_t size)
178 1.1 yamt {
179 1.4 yamt vmem_size_t target;
180 1.1 yamt int i;
181 1.1 yamt
182 1.1 yamt KASSERT(size != 0);
183 1.1 yamt
184 1.1 yamt i = 0;
185 1.4 yamt target = size >> 1;
186 1.4 yamt while (ORDER2SIZE(i) <= target) {
187 1.1 yamt i++;
188 1.1 yamt }
189 1.1 yamt
190 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
191 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
192 1.1 yamt
193 1.1 yamt return i;
194 1.1 yamt }
195 1.1 yamt
196 1.1 yamt #if defined(_KERNEL)
197 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
198 1.1 yamt #endif /* defined(_KERNEL) */
199 1.1 yamt
200 1.1 yamt static void *
201 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
202 1.1 yamt {
203 1.1 yamt
204 1.1 yamt #if defined(_KERNEL)
205 1.1 yamt return malloc(sz, M_VMEM,
206 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
207 1.1 yamt #else /* defined(_KERNEL) */
208 1.1 yamt return malloc(sz);
209 1.1 yamt #endif /* defined(_KERNEL) */
210 1.1 yamt }
211 1.1 yamt
212 1.1 yamt static void
213 1.1 yamt xfree(void *p)
214 1.1 yamt {
215 1.1 yamt
216 1.1 yamt #if defined(_KERNEL)
217 1.1 yamt return free(p, M_VMEM);
218 1.1 yamt #else /* defined(_KERNEL) */
219 1.1 yamt return free(p);
220 1.1 yamt #endif /* defined(_KERNEL) */
221 1.1 yamt }
222 1.1 yamt
223 1.1 yamt /* ---- boundary tag */
224 1.1 yamt
225 1.1 yamt #if defined(_KERNEL)
226 1.1 yamt static struct pool_cache bt_poolcache;
227 1.1 yamt static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
228 1.1 yamt #endif /* defined(_KERNEL) */
229 1.1 yamt
230 1.1 yamt static bt_t *
231 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
232 1.1 yamt {
233 1.1 yamt bt_t *bt;
234 1.1 yamt
235 1.1 yamt #if defined(_KERNEL)
236 1.1 yamt /* XXX bootstrap */
237 1.1 yamt bt = pool_cache_get(&bt_poolcache,
238 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
239 1.1 yamt #else /* defined(_KERNEL) */
240 1.1 yamt bt = malloc(sizeof *bt);
241 1.1 yamt #endif /* defined(_KERNEL) */
242 1.1 yamt
243 1.1 yamt return bt;
244 1.1 yamt }
245 1.1 yamt
246 1.1 yamt static void
247 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
248 1.1 yamt {
249 1.1 yamt
250 1.1 yamt #if defined(_KERNEL)
251 1.1 yamt /* XXX bootstrap */
252 1.1 yamt pool_cache_put(&bt_poolcache, bt);
253 1.1 yamt #else /* defined(_KERNEL) */
254 1.1 yamt free(bt);
255 1.1 yamt #endif /* defined(_KERNEL) */
256 1.1 yamt }
257 1.1 yamt
258 1.1 yamt /*
259 1.1 yamt * freelist[0] ... [1, 1]
260 1.1 yamt * freelist[1] ... [2, 3]
261 1.1 yamt * freelist[2] ... [4, 7]
262 1.1 yamt * freelist[3] ... [8, 15]
263 1.1 yamt * :
264 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
265 1.1 yamt * :
266 1.1 yamt */
267 1.1 yamt
268 1.1 yamt static struct vmem_freelist *
269 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
270 1.1 yamt {
271 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
272 1.1 yamt int idx;
273 1.1 yamt
274 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
275 1.1 yamt KASSERT(size != 0);
276 1.1 yamt
277 1.1 yamt idx = calc_order(qsize);
278 1.1 yamt KASSERT(idx >= 0);
279 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
280 1.1 yamt
281 1.1 yamt return &vm->vm_freelist[idx];
282 1.1 yamt }
283 1.1 yamt
284 1.1 yamt static struct vmem_freelist *
285 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
286 1.1 yamt {
287 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
288 1.1 yamt int idx;
289 1.1 yamt
290 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
291 1.1 yamt KASSERT(size != 0);
292 1.1 yamt
293 1.1 yamt idx = calc_order(qsize);
294 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
295 1.1 yamt idx++;
296 1.1 yamt /* check too large request? */
297 1.1 yamt }
298 1.1 yamt KASSERT(idx >= 0);
299 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
300 1.1 yamt
301 1.1 yamt return &vm->vm_freelist[idx];
302 1.1 yamt }
303 1.1 yamt
304 1.1 yamt /* ---- boundary tag hash */
305 1.1 yamt
306 1.1 yamt static struct vmem_hashlist *
307 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
308 1.1 yamt {
309 1.1 yamt struct vmem_hashlist *list;
310 1.1 yamt unsigned int hash;
311 1.1 yamt
312 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
313 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
314 1.1 yamt
315 1.1 yamt return list;
316 1.1 yamt }
317 1.1 yamt
318 1.1 yamt static bt_t *
319 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
320 1.1 yamt {
321 1.1 yamt struct vmem_hashlist *list;
322 1.1 yamt bt_t *bt;
323 1.1 yamt
324 1.1 yamt list = bt_hashhead(vm, addr);
325 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
326 1.1 yamt if (bt->bt_start == addr) {
327 1.1 yamt break;
328 1.1 yamt }
329 1.1 yamt }
330 1.1 yamt
331 1.1 yamt return bt;
332 1.1 yamt }
333 1.1 yamt
334 1.1 yamt static void
335 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
336 1.1 yamt {
337 1.1 yamt
338 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
339 1.1 yamt vm->vm_nbusytag--;
340 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
341 1.1 yamt }
342 1.1 yamt
343 1.1 yamt static void
344 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
345 1.1 yamt {
346 1.1 yamt struct vmem_hashlist *list;
347 1.1 yamt
348 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
349 1.1 yamt
350 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
351 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
352 1.1 yamt vm->vm_nbusytag++;
353 1.1 yamt }
354 1.1 yamt
355 1.1 yamt /* ---- boundary tag list */
356 1.1 yamt
357 1.1 yamt static void
358 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
359 1.1 yamt {
360 1.1 yamt
361 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
362 1.1 yamt }
363 1.1 yamt
364 1.1 yamt static void
365 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
366 1.1 yamt {
367 1.1 yamt
368 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
369 1.1 yamt }
370 1.1 yamt
371 1.1 yamt static void
372 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
373 1.1 yamt {
374 1.1 yamt
375 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
376 1.1 yamt }
377 1.1 yamt
378 1.1 yamt static void
379 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
380 1.1 yamt {
381 1.1 yamt
382 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
383 1.1 yamt
384 1.1 yamt LIST_REMOVE(bt, bt_freelist);
385 1.1 yamt }
386 1.1 yamt
387 1.1 yamt static void
388 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
389 1.1 yamt {
390 1.1 yamt struct vmem_freelist *list;
391 1.1 yamt
392 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
393 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
394 1.1 yamt }
395 1.1 yamt
396 1.1 yamt /* ---- vmem internal functions */
397 1.1 yamt
398 1.5 yamt #if defined(QCACHE)
399 1.5 yamt static inline vm_flag_t
400 1.5 yamt prf_to_vmf(int prflags)
401 1.5 yamt {
402 1.5 yamt vm_flag_t vmflags;
403 1.5 yamt
404 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
405 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
406 1.5 yamt vmflags = VM_SLEEP;
407 1.5 yamt } else {
408 1.5 yamt vmflags = VM_NOSLEEP;
409 1.5 yamt }
410 1.5 yamt return vmflags;
411 1.5 yamt }
412 1.5 yamt
413 1.5 yamt static inline int
414 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
415 1.5 yamt {
416 1.5 yamt int prflags;
417 1.5 yamt
418 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
419 1.5 yamt prflags = PR_WAITOK;
420 1.7 yamt } else {
421 1.5 yamt prflags = PR_NOWAIT;
422 1.5 yamt }
423 1.5 yamt return prflags;
424 1.5 yamt }
425 1.5 yamt
426 1.5 yamt static size_t
427 1.5 yamt qc_poolpage_size(size_t qcache_max)
428 1.5 yamt {
429 1.5 yamt int i;
430 1.5 yamt
431 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
432 1.5 yamt /* nothing */
433 1.5 yamt }
434 1.5 yamt return ORDER2SIZE(i);
435 1.5 yamt }
436 1.5 yamt
437 1.5 yamt static void *
438 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
439 1.5 yamt {
440 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
441 1.5 yamt vmem_t *vm = qc->qc_vmem;
442 1.5 yamt
443 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
444 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
445 1.5 yamt }
446 1.5 yamt
447 1.5 yamt static void
448 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
449 1.5 yamt {
450 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
451 1.5 yamt vmem_t *vm = qc->qc_vmem;
452 1.5 yamt
453 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
454 1.5 yamt }
455 1.5 yamt
456 1.5 yamt static void
457 1.5 yamt qc_init(vmem_t *vm, size_t qcache_max)
458 1.5 yamt {
459 1.5 yamt struct pool_allocator *pa;
460 1.5 yamt int qcache_idx_max;
461 1.5 yamt int i;
462 1.5 yamt
463 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
464 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
465 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
466 1.5 yamt }
467 1.5 yamt vm->vm_qcache_max = qcache_max;
468 1.5 yamt pa = &vm->vm_qcache_allocator;
469 1.5 yamt memset(pa, 0, sizeof(*pa));
470 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
471 1.5 yamt pa->pa_free = qc_poolpage_free;
472 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
473 1.5 yamt
474 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
475 1.5 yamt for (i = 1; i <= qcache_idx_max; i++) {
476 1.5 yamt qcache_t *qc = &vm->vm_qcache[i - 1];
477 1.5 yamt size_t size = i << vm->vm_quantum_shift;
478 1.5 yamt
479 1.5 yamt qc->qc_vmem = vm;
480 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
481 1.5 yamt vm->vm_name, size);
482 1.15 yamt pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
483 1.15 yamt 0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
484 1.5 yamt pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
485 1.5 yamt }
486 1.5 yamt }
487 1.6 yamt
488 1.6 yamt static boolean_t
489 1.6 yamt qc_reap(vmem_t *vm)
490 1.6 yamt {
491 1.6 yamt int i;
492 1.6 yamt int qcache_idx_max;
493 1.6 yamt boolean_t didsomething = FALSE;
494 1.6 yamt
495 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
496 1.6 yamt for (i = 1; i <= qcache_idx_max; i++) {
497 1.6 yamt qcache_t *qc = &vm->vm_qcache[i - 1];
498 1.6 yamt
499 1.6 yamt if (pool_reclaim(&qc->qc_pool) != 0) {
500 1.6 yamt didsomething = TRUE;
501 1.6 yamt }
502 1.6 yamt }
503 1.6 yamt
504 1.6 yamt return didsomething;
505 1.6 yamt }
506 1.5 yamt #endif /* defined(QCACHE) */
507 1.5 yamt
508 1.1 yamt #if defined(_KERNEL)
509 1.1 yamt static int
510 1.1 yamt vmem_init(void)
511 1.1 yamt {
512 1.1 yamt
513 1.1 yamt pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
514 1.1 yamt return 0;
515 1.1 yamt }
516 1.1 yamt #endif /* defined(_KERNEL) */
517 1.1 yamt
518 1.1 yamt static vmem_addr_t
519 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
520 1.1 yamt int spanbttype)
521 1.1 yamt {
522 1.1 yamt bt_t *btspan;
523 1.1 yamt bt_t *btfree;
524 1.1 yamt
525 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
526 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
527 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
528 1.1 yamt
529 1.1 yamt btspan = bt_alloc(vm, flags);
530 1.1 yamt if (btspan == NULL) {
531 1.1 yamt return VMEM_ADDR_NULL;
532 1.1 yamt }
533 1.1 yamt btfree = bt_alloc(vm, flags);
534 1.1 yamt if (btfree == NULL) {
535 1.1 yamt bt_free(vm, btspan);
536 1.1 yamt return VMEM_ADDR_NULL;
537 1.1 yamt }
538 1.1 yamt
539 1.1 yamt btspan->bt_type = spanbttype;
540 1.1 yamt btspan->bt_start = addr;
541 1.1 yamt btspan->bt_size = size;
542 1.1 yamt
543 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
544 1.1 yamt btfree->bt_start = addr;
545 1.1 yamt btfree->bt_size = size;
546 1.1 yamt
547 1.1 yamt VMEM_LOCK(vm);
548 1.1 yamt bt_insseg_tail(vm, btspan);
549 1.1 yamt bt_insseg(vm, btfree, btspan);
550 1.1 yamt bt_insfree(vm, btfree);
551 1.1 yamt VMEM_UNLOCK(vm);
552 1.1 yamt
553 1.1 yamt return addr;
554 1.1 yamt }
555 1.1 yamt
556 1.1 yamt static int
557 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
558 1.1 yamt {
559 1.1 yamt vmem_addr_t addr;
560 1.1 yamt
561 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
562 1.1 yamt
563 1.1 yamt if (vm->vm_allocfn == NULL) {
564 1.1 yamt return EINVAL;
565 1.1 yamt }
566 1.1 yamt
567 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
568 1.1 yamt if (addr == VMEM_ADDR_NULL) {
569 1.1 yamt return ENOMEM;
570 1.1 yamt }
571 1.1 yamt
572 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
573 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
574 1.1 yamt return ENOMEM;
575 1.1 yamt }
576 1.1 yamt
577 1.1 yamt return 0;
578 1.1 yamt }
579 1.1 yamt
580 1.1 yamt static int
581 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
582 1.1 yamt {
583 1.1 yamt bt_t *bt;
584 1.1 yamt int i;
585 1.1 yamt struct vmem_hashlist *newhashlist;
586 1.1 yamt struct vmem_hashlist *oldhashlist;
587 1.1 yamt size_t oldhashsize;
588 1.1 yamt
589 1.1 yamt KASSERT(newhashsize > 0);
590 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
591 1.1 yamt
592 1.1 yamt newhashlist =
593 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
594 1.1 yamt if (newhashlist == NULL) {
595 1.1 yamt return ENOMEM;
596 1.1 yamt }
597 1.1 yamt for (i = 0; i < newhashsize; i++) {
598 1.1 yamt LIST_INIT(&newhashlist[i]);
599 1.1 yamt }
600 1.1 yamt
601 1.1 yamt VMEM_LOCK(vm);
602 1.1 yamt oldhashlist = vm->vm_hashlist;
603 1.1 yamt oldhashsize = vm->vm_hashsize;
604 1.1 yamt vm->vm_hashlist = newhashlist;
605 1.1 yamt vm->vm_hashsize = newhashsize;
606 1.1 yamt if (oldhashlist == NULL) {
607 1.1 yamt VMEM_UNLOCK(vm);
608 1.1 yamt return 0;
609 1.1 yamt }
610 1.1 yamt for (i = 0; i < oldhashsize; i++) {
611 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
612 1.1 yamt bt_rembusy(vm, bt); /* XXX */
613 1.1 yamt bt_insbusy(vm, bt);
614 1.1 yamt }
615 1.1 yamt }
616 1.1 yamt VMEM_UNLOCK(vm);
617 1.1 yamt
618 1.1 yamt xfree(oldhashlist);
619 1.1 yamt
620 1.1 yamt return 0;
621 1.1 yamt }
622 1.1 yamt
623 1.10 yamt /*
624 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
625 1.10 yamt */
626 1.10 yamt
627 1.10 yamt static vmem_addr_t
628 1.10 yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
629 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
630 1.10 yamt {
631 1.10 yamt vmem_addr_t start;
632 1.10 yamt vmem_addr_t end;
633 1.10 yamt
634 1.10 yamt KASSERT(bt->bt_size >= size);
635 1.10 yamt
636 1.10 yamt /*
637 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
638 1.10 yamt * unsigned integer of the same size.
639 1.10 yamt */
640 1.10 yamt
641 1.10 yamt start = bt->bt_start;
642 1.10 yamt if (start < minaddr) {
643 1.10 yamt start = minaddr;
644 1.10 yamt }
645 1.10 yamt end = BT_END(bt);
646 1.10 yamt if (end > maxaddr - 1) {
647 1.10 yamt end = maxaddr - 1;
648 1.10 yamt }
649 1.10 yamt if (start >= end) {
650 1.10 yamt return VMEM_ADDR_NULL;
651 1.10 yamt }
652 1.19 yamt
653 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
654 1.10 yamt if (start < bt->bt_start) {
655 1.10 yamt start += align;
656 1.10 yamt }
657 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
658 1.10 yamt KASSERT(align < nocross);
659 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
660 1.10 yamt }
661 1.10 yamt if (start < end && end - start >= size) {
662 1.10 yamt KASSERT((start & (align - 1)) == phase);
663 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
664 1.10 yamt KASSERT(minaddr <= start);
665 1.10 yamt KASSERT(maxaddr == 0 || start + size <= maxaddr);
666 1.10 yamt KASSERT(bt->bt_start <= start);
667 1.10 yamt KASSERT(start + size <= BT_END(bt));
668 1.10 yamt return start;
669 1.10 yamt }
670 1.10 yamt return VMEM_ADDR_NULL;
671 1.10 yamt }
672 1.10 yamt
673 1.1 yamt /* ---- vmem API */
674 1.1 yamt
675 1.1 yamt /*
676 1.1 yamt * vmem_create: create an arena.
677 1.1 yamt *
678 1.1 yamt * => must not be called from interrupt context.
679 1.1 yamt */
680 1.1 yamt
681 1.1 yamt vmem_t *
682 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
683 1.1 yamt vmem_size_t quantum,
684 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
685 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
686 1.1 yamt vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
687 1.1 yamt {
688 1.1 yamt vmem_t *vm;
689 1.1 yamt int i;
690 1.1 yamt #if defined(_KERNEL)
691 1.1 yamt static ONCE_DECL(control);
692 1.1 yamt #endif /* defined(_KERNEL) */
693 1.1 yamt
694 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
695 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
696 1.1 yamt
697 1.1 yamt #if defined(_KERNEL)
698 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
699 1.1 yamt return NULL;
700 1.1 yamt }
701 1.1 yamt #endif /* defined(_KERNEL) */
702 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
703 1.1 yamt if (vm == NULL) {
704 1.1 yamt return NULL;
705 1.1 yamt }
706 1.1 yamt
707 1.1 yamt VMEM_LOCK_INIT(vm);
708 1.1 yamt vm->vm_name = name;
709 1.1 yamt vm->vm_quantum_mask = quantum - 1;
710 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
711 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
712 1.1 yamt vm->vm_allocfn = allocfn;
713 1.1 yamt vm->vm_freefn = freefn;
714 1.1 yamt vm->vm_source = source;
715 1.1 yamt vm->vm_nbusytag = 0;
716 1.5 yamt #if defined(QCACHE)
717 1.5 yamt qc_init(vm, qcache_max);
718 1.5 yamt #endif /* defined(QCACHE) */
719 1.1 yamt
720 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
721 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
722 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
723 1.1 yamt }
724 1.1 yamt vm->vm_hashlist = NULL;
725 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
726 1.1 yamt vmem_destroy(vm);
727 1.1 yamt return NULL;
728 1.1 yamt }
729 1.1 yamt
730 1.1 yamt if (size != 0) {
731 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
732 1.1 yamt vmem_destroy(vm);
733 1.1 yamt return NULL;
734 1.1 yamt }
735 1.1 yamt }
736 1.1 yamt
737 1.1 yamt return vm;
738 1.1 yamt }
739 1.1 yamt
740 1.1 yamt void
741 1.1 yamt vmem_destroy(vmem_t *vm)
742 1.1 yamt {
743 1.1 yamt
744 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
745 1.1 yamt
746 1.1 yamt if (vm->vm_hashlist != NULL) {
747 1.1 yamt int i;
748 1.1 yamt
749 1.1 yamt for (i = 0; i < vm->vm_hashsize; i++) {
750 1.1 yamt bt_t *bt;
751 1.1 yamt
752 1.1 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
753 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
754 1.1 yamt bt_free(vm, bt);
755 1.1 yamt }
756 1.1 yamt }
757 1.1 yamt xfree(vm->vm_hashlist);
758 1.1 yamt }
759 1.1 yamt xfree(vm);
760 1.1 yamt }
761 1.1 yamt
762 1.1 yamt vmem_size_t
763 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
764 1.1 yamt {
765 1.1 yamt
766 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
767 1.1 yamt }
768 1.1 yamt
769 1.1 yamt /*
770 1.1 yamt * vmem_alloc:
771 1.1 yamt *
772 1.1 yamt * => caller must ensure appropriate spl,
773 1.1 yamt * if the arena can be accessed from interrupt context.
774 1.1 yamt */
775 1.1 yamt
776 1.1 yamt vmem_addr_t
777 1.1 yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
778 1.1 yamt {
779 1.12 yamt const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
780 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
781 1.1 yamt
782 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
783 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
784 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
785 1.1 yamt
786 1.1 yamt KASSERT(size0 > 0);
787 1.1 yamt KASSERT(size > 0);
788 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
789 1.3 yamt if ((flags & VM_SLEEP) != 0) {
790 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
791 1.3 yamt }
792 1.1 yamt
793 1.5 yamt #if defined(QCACHE)
794 1.5 yamt if (size <= vm->vm_qcache_max) {
795 1.5 yamt int qidx = size >> vm->vm_quantum_shift;
796 1.5 yamt qcache_t *qc = &vm->vm_qcache[qidx - 1];
797 1.5 yamt
798 1.5 yamt return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
799 1.5 yamt vmf_to_prf(flags));
800 1.5 yamt }
801 1.5 yamt #endif /* defined(QCACHE) */
802 1.5 yamt
803 1.10 yamt return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
804 1.10 yamt }
805 1.10 yamt
806 1.10 yamt vmem_addr_t
807 1.10 yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
808 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
809 1.10 yamt vm_flag_t flags)
810 1.10 yamt {
811 1.10 yamt struct vmem_freelist *list;
812 1.10 yamt struct vmem_freelist *first;
813 1.10 yamt struct vmem_freelist *end;
814 1.10 yamt bt_t *bt;
815 1.10 yamt bt_t *btnew;
816 1.10 yamt bt_t *btnew2;
817 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
818 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
819 1.10 yamt vmem_addr_t start;
820 1.10 yamt
821 1.10 yamt KASSERT(size0 > 0);
822 1.10 yamt KASSERT(size > 0);
823 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
824 1.10 yamt if ((flags & VM_SLEEP) != 0) {
825 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
826 1.10 yamt }
827 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
828 1.10 yamt KASSERT((align & (align - 1)) == 0);
829 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
830 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
831 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
832 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
833 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
834 1.10 yamt KASSERT(maxaddr == 0 || minaddr < maxaddr);
835 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
836 1.10 yamt
837 1.10 yamt if (align == 0) {
838 1.10 yamt align = vm->vm_quantum_mask + 1;
839 1.10 yamt }
840 1.1 yamt btnew = bt_alloc(vm, flags);
841 1.1 yamt if (btnew == NULL) {
842 1.1 yamt return VMEM_ADDR_NULL;
843 1.1 yamt }
844 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
845 1.10 yamt if (btnew2 == NULL) {
846 1.10 yamt bt_free(vm, btnew);
847 1.10 yamt return VMEM_ADDR_NULL;
848 1.10 yamt }
849 1.1 yamt
850 1.1 yamt retry_strat:
851 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
852 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
853 1.1 yamt retry:
854 1.1 yamt bt = NULL;
855 1.1 yamt VMEM_LOCK(vm);
856 1.2 yamt if (strat == VM_INSTANTFIT) {
857 1.2 yamt for (list = first; list < end; list++) {
858 1.2 yamt bt = LIST_FIRST(list);
859 1.2 yamt if (bt != NULL) {
860 1.10 yamt start = vmem_fit(bt, size, align, phase,
861 1.10 yamt nocross, minaddr, maxaddr);
862 1.10 yamt if (start != VMEM_ADDR_NULL) {
863 1.10 yamt goto gotit;
864 1.10 yamt }
865 1.2 yamt }
866 1.2 yamt }
867 1.2 yamt } else { /* VM_BESTFIT */
868 1.2 yamt for (list = first; list < end; list++) {
869 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
870 1.2 yamt if (bt->bt_size >= size) {
871 1.10 yamt start = vmem_fit(bt, size, align, phase,
872 1.10 yamt nocross, minaddr, maxaddr);
873 1.10 yamt if (start != VMEM_ADDR_NULL) {
874 1.10 yamt goto gotit;
875 1.10 yamt }
876 1.2 yamt }
877 1.1 yamt }
878 1.1 yamt }
879 1.1 yamt }
880 1.2 yamt VMEM_UNLOCK(vm);
881 1.1 yamt #if 1
882 1.2 yamt if (strat == VM_INSTANTFIT) {
883 1.2 yamt strat = VM_BESTFIT;
884 1.2 yamt goto retry_strat;
885 1.2 yamt }
886 1.1 yamt #endif
887 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
888 1.10 yamt nocross != 0 || minaddr != 0 || maxaddr != 0) {
889 1.10 yamt
890 1.10 yamt /*
891 1.10 yamt * XXX should try to import a region large enough to
892 1.10 yamt * satisfy restrictions?
893 1.10 yamt */
894 1.10 yamt
895 1.20 yamt goto fail;
896 1.10 yamt }
897 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
898 1.2 yamt goto retry;
899 1.1 yamt }
900 1.2 yamt /* XXX */
901 1.20 yamt fail:
902 1.20 yamt bt_free(vm, btnew);
903 1.20 yamt bt_free(vm, btnew2);
904 1.2 yamt return VMEM_ADDR_NULL;
905 1.2 yamt
906 1.2 yamt gotit:
907 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
908 1.1 yamt KASSERT(bt->bt_size >= size);
909 1.1 yamt bt_remfree(vm, bt);
910 1.10 yamt if (bt->bt_start != start) {
911 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
912 1.10 yamt btnew2->bt_start = bt->bt_start;
913 1.10 yamt btnew2->bt_size = start - bt->bt_start;
914 1.10 yamt bt->bt_start = start;
915 1.10 yamt bt->bt_size -= btnew2->bt_size;
916 1.10 yamt bt_insfree(vm, btnew2);
917 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
918 1.10 yamt btnew2 = NULL;
919 1.10 yamt }
920 1.10 yamt KASSERT(bt->bt_start == start);
921 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
922 1.1 yamt /* split */
923 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
924 1.1 yamt btnew->bt_start = bt->bt_start;
925 1.1 yamt btnew->bt_size = size;
926 1.1 yamt bt->bt_start = bt->bt_start + size;
927 1.1 yamt bt->bt_size -= size;
928 1.1 yamt bt_insfree(vm, bt);
929 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
930 1.1 yamt bt_insbusy(vm, btnew);
931 1.1 yamt VMEM_UNLOCK(vm);
932 1.1 yamt } else {
933 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
934 1.1 yamt bt_insbusy(vm, bt);
935 1.1 yamt VMEM_UNLOCK(vm);
936 1.1 yamt bt_free(vm, btnew);
937 1.1 yamt btnew = bt;
938 1.1 yamt }
939 1.10 yamt if (btnew2 != NULL) {
940 1.10 yamt bt_free(vm, btnew2);
941 1.10 yamt }
942 1.1 yamt KASSERT(btnew->bt_size >= size);
943 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
944 1.1 yamt
945 1.1 yamt return btnew->bt_start;
946 1.1 yamt }
947 1.1 yamt
948 1.1 yamt /*
949 1.1 yamt * vmem_free:
950 1.1 yamt *
951 1.1 yamt * => caller must ensure appropriate spl,
952 1.1 yamt * if the arena can be accessed from interrupt context.
953 1.1 yamt */
954 1.1 yamt
955 1.1 yamt void
956 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
957 1.1 yamt {
958 1.1 yamt
959 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
960 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
961 1.1 yamt KASSERT(size > 0);
962 1.1 yamt
963 1.5 yamt #if defined(QCACHE)
964 1.5 yamt if (size <= vm->vm_qcache_max) {
965 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
966 1.5 yamt qcache_t *qc = &vm->vm_qcache[qidx - 1];
967 1.5 yamt
968 1.5 yamt return pool_cache_put(&qc->qc_cache, (void *)addr);
969 1.5 yamt }
970 1.5 yamt #endif /* defined(QCACHE) */
971 1.5 yamt
972 1.10 yamt vmem_xfree(vm, addr, size);
973 1.10 yamt }
974 1.10 yamt
975 1.10 yamt void
976 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
977 1.10 yamt {
978 1.10 yamt bt_t *bt;
979 1.10 yamt bt_t *t;
980 1.10 yamt
981 1.10 yamt VMEM_ASSERT_UNLOCKED(vm);
982 1.10 yamt KASSERT(addr != VMEM_ADDR_NULL);
983 1.10 yamt KASSERT(size > 0);
984 1.10 yamt
985 1.1 yamt VMEM_LOCK(vm);
986 1.1 yamt
987 1.1 yamt bt = bt_lookupbusy(vm, addr);
988 1.1 yamt KASSERT(bt != NULL);
989 1.1 yamt KASSERT(bt->bt_start == addr);
990 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
991 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
992 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
993 1.1 yamt bt_rembusy(vm, bt);
994 1.1 yamt bt->bt_type = BT_TYPE_FREE;
995 1.1 yamt
996 1.1 yamt /* coalesce */
997 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
998 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
999 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
1000 1.1 yamt bt_remfree(vm, t);
1001 1.1 yamt bt_remseg(vm, t);
1002 1.1 yamt bt->bt_size += t->bt_size;
1003 1.1 yamt bt_free(vm, t);
1004 1.1 yamt }
1005 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1006 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1007 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
1008 1.1 yamt bt_remfree(vm, t);
1009 1.1 yamt bt_remseg(vm, t);
1010 1.1 yamt bt->bt_size += t->bt_size;
1011 1.1 yamt bt->bt_start = t->bt_start;
1012 1.1 yamt bt_free(vm, t);
1013 1.1 yamt }
1014 1.1 yamt
1015 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1016 1.1 yamt KASSERT(t != NULL);
1017 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1018 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1019 1.1 yamt t->bt_size == bt->bt_size) {
1020 1.1 yamt vmem_addr_t spanaddr;
1021 1.1 yamt vmem_size_t spansize;
1022 1.1 yamt
1023 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1024 1.1 yamt spanaddr = bt->bt_start;
1025 1.1 yamt spansize = bt->bt_size;
1026 1.1 yamt bt_remseg(vm, bt);
1027 1.1 yamt bt_free(vm, bt);
1028 1.1 yamt bt_remseg(vm, t);
1029 1.1 yamt bt_free(vm, t);
1030 1.1 yamt VMEM_UNLOCK(vm);
1031 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1032 1.1 yamt } else {
1033 1.1 yamt bt_insfree(vm, bt);
1034 1.1 yamt VMEM_UNLOCK(vm);
1035 1.1 yamt }
1036 1.1 yamt }
1037 1.1 yamt
1038 1.1 yamt /*
1039 1.1 yamt * vmem_add:
1040 1.1 yamt *
1041 1.1 yamt * => caller must ensure appropriate spl,
1042 1.1 yamt * if the arena can be accessed from interrupt context.
1043 1.1 yamt */
1044 1.1 yamt
1045 1.1 yamt vmem_addr_t
1046 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1047 1.1 yamt {
1048 1.1 yamt
1049 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1050 1.1 yamt }
1051 1.1 yamt
1052 1.6 yamt /*
1053 1.6 yamt * vmem_reap: reap unused resources.
1054 1.6 yamt *
1055 1.6 yamt * => return TRUE if we successfully reaped something.
1056 1.6 yamt */
1057 1.6 yamt
1058 1.6 yamt boolean_t
1059 1.6 yamt vmem_reap(vmem_t *vm)
1060 1.6 yamt {
1061 1.6 yamt boolean_t didsomething = FALSE;
1062 1.6 yamt
1063 1.6 yamt VMEM_ASSERT_UNLOCKED(vm);
1064 1.6 yamt
1065 1.6 yamt #if defined(QCACHE)
1066 1.6 yamt didsomething = qc_reap(vm);
1067 1.6 yamt #endif /* defined(QCACHE) */
1068 1.6 yamt return didsomething;
1069 1.6 yamt }
1070 1.6 yamt
1071 1.1 yamt /* ---- debug */
1072 1.1 yamt
1073 1.1 yamt #if defined(VMEM_DEBUG)
1074 1.1 yamt
1075 1.1 yamt #if !defined(_KERNEL)
1076 1.1 yamt #include <stdio.h>
1077 1.1 yamt #endif /* !defined(_KERNEL) */
1078 1.1 yamt
1079 1.1 yamt void bt_dump(const bt_t *);
1080 1.1 yamt
1081 1.1 yamt void
1082 1.1 yamt bt_dump(const bt_t *bt)
1083 1.1 yamt {
1084 1.1 yamt
1085 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1086 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1087 1.1 yamt bt->bt_type);
1088 1.1 yamt }
1089 1.1 yamt
1090 1.1 yamt void
1091 1.1 yamt vmem_dump(const vmem_t *vm)
1092 1.1 yamt {
1093 1.1 yamt const bt_t *bt;
1094 1.1 yamt int i;
1095 1.1 yamt
1096 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
1097 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1098 1.1 yamt bt_dump(bt);
1099 1.1 yamt }
1100 1.1 yamt
1101 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1102 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1103 1.1 yamt
1104 1.1 yamt if (LIST_EMPTY(fl)) {
1105 1.1 yamt continue;
1106 1.1 yamt }
1107 1.1 yamt
1108 1.1 yamt printf("freelist[%d]\n", i);
1109 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1110 1.1 yamt bt_dump(bt);
1111 1.1 yamt if (bt->bt_size) {
1112 1.1 yamt }
1113 1.1 yamt }
1114 1.1 yamt }
1115 1.1 yamt }
1116 1.1 yamt
1117 1.1 yamt #if !defined(_KERNEL)
1118 1.1 yamt
1119 1.1 yamt #include <stdlib.h>
1120 1.1 yamt
1121 1.1 yamt int
1122 1.1 yamt main()
1123 1.1 yamt {
1124 1.1 yamt vmem_t *vm;
1125 1.1 yamt vmem_addr_t p;
1126 1.1 yamt struct reg {
1127 1.1 yamt vmem_addr_t p;
1128 1.1 yamt vmem_size_t sz;
1129 1.10 yamt boolean_t x;
1130 1.1 yamt } *reg = NULL;
1131 1.1 yamt int nreg = 0;
1132 1.1 yamt int nalloc = 0;
1133 1.1 yamt int nfree = 0;
1134 1.1 yamt vmem_size_t total = 0;
1135 1.1 yamt #if 1
1136 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1137 1.1 yamt #else
1138 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1139 1.1 yamt #endif
1140 1.1 yamt
1141 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1142 1.1 yamt NULL, NULL, NULL, 0, VM_NOSLEEP);
1143 1.1 yamt if (vm == NULL) {
1144 1.1 yamt printf("vmem_create\n");
1145 1.1 yamt exit(EXIT_FAILURE);
1146 1.1 yamt }
1147 1.1 yamt vmem_dump(vm);
1148 1.1 yamt
1149 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1150 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1151 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1152 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1153 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1154 1.1 yamt vmem_dump(vm);
1155 1.1 yamt for (;;) {
1156 1.1 yamt struct reg *r;
1157 1.10 yamt int t = rand() % 100;
1158 1.1 yamt
1159 1.10 yamt if (t > 45) {
1160 1.10 yamt /* alloc */
1161 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1162 1.10 yamt boolean_t x;
1163 1.10 yamt vmem_size_t align, phase, nocross;
1164 1.10 yamt vmem_addr_t minaddr, maxaddr;
1165 1.10 yamt
1166 1.10 yamt if (t > 70) {
1167 1.10 yamt x = TRUE;
1168 1.10 yamt /* XXX */
1169 1.10 yamt align = 1 << (rand() % 15);
1170 1.10 yamt phase = rand() % 65536;
1171 1.10 yamt nocross = 1 << (rand() % 15);
1172 1.10 yamt if (align <= phase) {
1173 1.10 yamt phase = 0;
1174 1.10 yamt }
1175 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1176 1.19 yamt nocross)) {
1177 1.10 yamt nocross = 0;
1178 1.10 yamt }
1179 1.10 yamt minaddr = rand() % 50000;
1180 1.10 yamt maxaddr = rand() % 70000;
1181 1.10 yamt if (minaddr > maxaddr) {
1182 1.10 yamt minaddr = 0;
1183 1.10 yamt maxaddr = 0;
1184 1.10 yamt }
1185 1.10 yamt printf("=== xalloc %" PRIu64
1186 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1187 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1188 1.10 yamt ", max=%" PRIu64 "\n",
1189 1.10 yamt (uint64_t)sz,
1190 1.10 yamt (uint64_t)align,
1191 1.10 yamt (uint64_t)phase,
1192 1.10 yamt (uint64_t)nocross,
1193 1.10 yamt (uint64_t)minaddr,
1194 1.10 yamt (uint64_t)maxaddr);
1195 1.10 yamt p = vmem_xalloc(vm, sz, align, phase, nocross,
1196 1.10 yamt minaddr, maxaddr, strat|VM_SLEEP);
1197 1.10 yamt } else {
1198 1.10 yamt x = FALSE;
1199 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1200 1.10 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1201 1.10 yamt }
1202 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1203 1.1 yamt vmem_dump(vm);
1204 1.1 yamt if (p == VMEM_ADDR_NULL) {
1205 1.10 yamt if (x) {
1206 1.10 yamt continue;
1207 1.10 yamt }
1208 1.1 yamt break;
1209 1.1 yamt }
1210 1.1 yamt nreg++;
1211 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1212 1.1 yamt r = ®[nreg - 1];
1213 1.1 yamt r->p = p;
1214 1.1 yamt r->sz = sz;
1215 1.10 yamt r->x = x;
1216 1.1 yamt total += sz;
1217 1.1 yamt nalloc++;
1218 1.1 yamt } else if (nreg != 0) {
1219 1.10 yamt /* free */
1220 1.1 yamt r = ®[rand() % nreg];
1221 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1222 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1223 1.10 yamt if (r->x) {
1224 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1225 1.10 yamt } else {
1226 1.10 yamt vmem_free(vm, r->p, r->sz);
1227 1.10 yamt }
1228 1.1 yamt total -= r->sz;
1229 1.1 yamt vmem_dump(vm);
1230 1.1 yamt *r = reg[nreg - 1];
1231 1.1 yamt nreg--;
1232 1.1 yamt nfree++;
1233 1.1 yamt }
1234 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1235 1.1 yamt }
1236 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1237 1.1 yamt (uint64_t)total, nalloc, nfree);
1238 1.1 yamt exit(EXIT_SUCCESS);
1239 1.1 yamt }
1240 1.1 yamt #endif /* !defined(_KERNEL) */
1241 1.1 yamt #endif /* defined(VMEM_DEBUG) */
1242