Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.23
      1  1.23    yamt /*	$NetBSD: subr_vmem.c,v 1.23 2006/11/18 07:51:34 yamt Exp $	*/
      2   1.1    yamt 
      3   1.1    yamt /*-
      4   1.1    yamt  * Copyright (c)2006 YAMAMOTO Takashi,
      5   1.1    yamt  * All rights reserved.
      6   1.1    yamt  *
      7   1.1    yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1    yamt  * modification, are permitted provided that the following conditions
      9   1.1    yamt  * are met:
     10   1.1    yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1    yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1    yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1    yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1    yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1    yamt  *
     16   1.1    yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1    yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1    yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1    yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1    yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1    yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1    yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1    yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1    yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1    yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1    yamt  * SUCH DAMAGE.
     27   1.1    yamt  */
     28   1.1    yamt 
     29   1.1    yamt /*
     30   1.1    yamt  * reference:
     31   1.1    yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32   1.1    yamt  *	to Many CPUs and Arbitrary Resources
     33   1.1    yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34  1.18    yamt  *
     35  1.18    yamt  * todo:
     36  1.18    yamt  * -	decide how to import segments for vmem_xalloc.
     37  1.18    yamt  * -	don't rely on malloc(9).
     38   1.1    yamt  */
     39   1.1    yamt 
     40   1.1    yamt #include <sys/cdefs.h>
     41  1.23    yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.23 2006/11/18 07:51:34 yamt Exp $");
     42   1.1    yamt 
     43   1.1    yamt #define	VMEM_DEBUG
     44   1.5    yamt #if defined(_KERNEL)
     45   1.5    yamt #define	QCACHE
     46   1.5    yamt #endif /* defined(_KERNEL) */
     47   1.1    yamt 
     48   1.1    yamt #include <sys/param.h>
     49   1.1    yamt #include <sys/hash.h>
     50   1.1    yamt #include <sys/queue.h>
     51   1.1    yamt 
     52   1.1    yamt #if defined(_KERNEL)
     53   1.1    yamt #include <sys/systm.h>
     54   1.1    yamt #include <sys/lock.h>
     55   1.1    yamt #include <sys/malloc.h>
     56   1.1    yamt #include <sys/once.h>
     57   1.1    yamt #include <sys/pool.h>
     58   1.3    yamt #include <sys/proc.h>
     59   1.1    yamt #include <sys/vmem.h>
     60   1.1    yamt #else /* defined(_KERNEL) */
     61   1.1    yamt #include "../sys/vmem.h"
     62   1.1    yamt #endif /* defined(_KERNEL) */
     63   1.1    yamt 
     64   1.1    yamt #if defined(_KERNEL)
     65   1.1    yamt #define	SIMPLELOCK_DECL(name)	struct simplelock name
     66   1.1    yamt #else /* defined(_KERNEL) */
     67   1.1    yamt #include <errno.h>
     68   1.1    yamt #include <assert.h>
     69   1.1    yamt #include <stdlib.h>
     70   1.1    yamt 
     71   1.1    yamt #define	KASSERT(a)		assert(a)
     72   1.1    yamt #define	SIMPLELOCK_DECL(name)	/* nothing */
     73   1.1    yamt #define	LOCK_ASSERT(a)		/* nothing */
     74   1.1    yamt #define	simple_lock_init(a)	/* nothing */
     75   1.1    yamt #define	simple_lock(a)		/* nothing */
     76   1.1    yamt #define	simple_unlock(a)	/* nothing */
     77   1.3    yamt #define	ASSERT_SLEEPABLE(lk, msg) /* nothing */
     78   1.1    yamt #endif /* defined(_KERNEL) */
     79   1.1    yamt 
     80   1.1    yamt struct vmem;
     81   1.1    yamt struct vmem_btag;
     82   1.1    yamt 
     83   1.1    yamt #if defined(VMEM_DEBUG)
     84   1.1    yamt void vmem_dump(const vmem_t *);
     85   1.1    yamt #endif /* defined(VMEM_DEBUG) */
     86   1.1    yamt 
     87   1.4    yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     88   1.1    yamt #define	VMEM_HASHSIZE_INIT	4096	/* XXX */
     89   1.1    yamt 
     90   1.1    yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
     91   1.1    yamt 
     92   1.1    yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
     93   1.1    yamt LIST_HEAD(vmem_freelist, vmem_btag);
     94   1.1    yamt LIST_HEAD(vmem_hashlist, vmem_btag);
     95   1.1    yamt 
     96   1.5    yamt #if defined(QCACHE)
     97   1.5    yamt #define	VMEM_QCACHE_IDX_MAX	32
     98   1.5    yamt 
     99   1.5    yamt #define	QC_NAME_MAX	16
    100   1.5    yamt 
    101   1.5    yamt struct qcache {
    102   1.5    yamt 	struct pool qc_pool;
    103   1.5    yamt 	struct pool_cache qc_cache;
    104   1.5    yamt 	vmem_t *qc_vmem;
    105   1.5    yamt 	char qc_name[QC_NAME_MAX];
    106   1.5    yamt };
    107   1.5    yamt typedef struct qcache qcache_t;
    108   1.5    yamt #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool))
    109   1.5    yamt #endif /* defined(QCACHE) */
    110   1.5    yamt 
    111   1.1    yamt /* vmem arena */
    112   1.1    yamt struct vmem {
    113   1.1    yamt 	SIMPLELOCK_DECL(vm_lock);
    114   1.1    yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    115   1.1    yamt 	    vm_flag_t);
    116   1.1    yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    117   1.1    yamt 	vmem_t *vm_source;
    118   1.1    yamt 	struct vmem_seglist vm_seglist;
    119   1.1    yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    120   1.1    yamt 	size_t vm_hashsize;
    121   1.1    yamt 	size_t vm_nbusytag;
    122   1.1    yamt 	struct vmem_hashlist *vm_hashlist;
    123   1.1    yamt 	size_t vm_quantum_mask;
    124   1.1    yamt 	int vm_quantum_shift;
    125   1.1    yamt 	const char *vm_name;
    126   1.5    yamt 
    127   1.5    yamt #if defined(QCACHE)
    128   1.5    yamt 	/* quantum cache */
    129   1.5    yamt 	size_t vm_qcache_max;
    130   1.5    yamt 	struct pool_allocator vm_qcache_allocator;
    131  1.22    yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    132  1.22    yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    133   1.5    yamt #endif /* defined(QCACHE) */
    134   1.1    yamt };
    135   1.1    yamt 
    136   1.1    yamt #define	VMEM_LOCK(vm)	simple_lock(&vm->vm_lock)
    137   1.1    yamt #define	VMEM_UNLOCK(vm)	simple_unlock(&vm->vm_lock)
    138   1.1    yamt #define	VMEM_LOCK_INIT(vm)	simple_lock_init(&vm->vm_lock);
    139   1.1    yamt #define	VMEM_ASSERT_LOCKED(vm) \
    140   1.1    yamt 	LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
    141   1.1    yamt #define	VMEM_ASSERT_UNLOCKED(vm) \
    142   1.1    yamt 	LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
    143   1.1    yamt 
    144   1.1    yamt /* boundary tag */
    145   1.1    yamt struct vmem_btag {
    146   1.1    yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    147   1.1    yamt 	union {
    148   1.1    yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    149   1.1    yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    150   1.1    yamt 	} bt_u;
    151   1.1    yamt #define	bt_hashlist	bt_u.u_hashlist
    152   1.1    yamt #define	bt_freelist	bt_u.u_freelist
    153   1.1    yamt 	vmem_addr_t bt_start;
    154   1.1    yamt 	vmem_size_t bt_size;
    155   1.1    yamt 	int bt_type;
    156   1.1    yamt };
    157   1.1    yamt 
    158   1.1    yamt #define	BT_TYPE_SPAN		1
    159   1.1    yamt #define	BT_TYPE_SPAN_STATIC	2
    160   1.1    yamt #define	BT_TYPE_FREE		3
    161   1.1    yamt #define	BT_TYPE_BUSY		4
    162   1.1    yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    163   1.1    yamt 
    164   1.1    yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    165   1.1    yamt 
    166   1.1    yamt typedef struct vmem_btag bt_t;
    167   1.1    yamt 
    168   1.1    yamt /* ---- misc */
    169   1.1    yamt 
    170  1.19    yamt #define	VMEM_ALIGNUP(addr, align) \
    171  1.19    yamt 	(-(-(addr) & -(align)))
    172  1.19    yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    173  1.19    yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    174  1.19    yamt 
    175   1.4    yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    176   1.4    yamt 
    177   1.1    yamt static int
    178   1.1    yamt calc_order(vmem_size_t size)
    179   1.1    yamt {
    180   1.4    yamt 	vmem_size_t target;
    181   1.1    yamt 	int i;
    182   1.1    yamt 
    183   1.1    yamt 	KASSERT(size != 0);
    184   1.1    yamt 
    185   1.1    yamt 	i = 0;
    186   1.4    yamt 	target = size >> 1;
    187   1.4    yamt 	while (ORDER2SIZE(i) <= target) {
    188   1.1    yamt 		i++;
    189   1.1    yamt 	}
    190   1.1    yamt 
    191   1.4    yamt 	KASSERT(ORDER2SIZE(i) <= size);
    192   1.4    yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    193   1.1    yamt 
    194   1.1    yamt 	return i;
    195   1.1    yamt }
    196   1.1    yamt 
    197   1.1    yamt #if defined(_KERNEL)
    198   1.1    yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    199   1.1    yamt #endif /* defined(_KERNEL) */
    200   1.1    yamt 
    201   1.1    yamt static void *
    202   1.1    yamt xmalloc(size_t sz, vm_flag_t flags)
    203   1.1    yamt {
    204   1.1    yamt 
    205   1.1    yamt #if defined(_KERNEL)
    206   1.1    yamt 	return malloc(sz, M_VMEM,
    207   1.1    yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    208   1.1    yamt #else /* defined(_KERNEL) */
    209   1.1    yamt 	return malloc(sz);
    210   1.1    yamt #endif /* defined(_KERNEL) */
    211   1.1    yamt }
    212   1.1    yamt 
    213   1.1    yamt static void
    214   1.1    yamt xfree(void *p)
    215   1.1    yamt {
    216   1.1    yamt 
    217   1.1    yamt #if defined(_KERNEL)
    218   1.1    yamt 	return free(p, M_VMEM);
    219   1.1    yamt #else /* defined(_KERNEL) */
    220   1.1    yamt 	return free(p);
    221   1.1    yamt #endif /* defined(_KERNEL) */
    222   1.1    yamt }
    223   1.1    yamt 
    224   1.1    yamt /* ---- boundary tag */
    225   1.1    yamt 
    226   1.1    yamt #if defined(_KERNEL)
    227   1.1    yamt static struct pool_cache bt_poolcache;
    228   1.1    yamt static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
    229   1.1    yamt #endif /* defined(_KERNEL) */
    230   1.1    yamt 
    231   1.1    yamt static bt_t *
    232  1.17    yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    233   1.1    yamt {
    234   1.1    yamt 	bt_t *bt;
    235   1.1    yamt 
    236   1.1    yamt #if defined(_KERNEL)
    237  1.21    yamt 	int s;
    238  1.21    yamt 
    239   1.1    yamt 	/* XXX bootstrap */
    240  1.21    yamt 	s = splvm();
    241   1.1    yamt 	bt = pool_cache_get(&bt_poolcache,
    242   1.1    yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    243  1.21    yamt 	splx(s);
    244   1.1    yamt #else /* defined(_KERNEL) */
    245   1.1    yamt 	bt = malloc(sizeof *bt);
    246   1.1    yamt #endif /* defined(_KERNEL) */
    247   1.1    yamt 
    248   1.1    yamt 	return bt;
    249   1.1    yamt }
    250   1.1    yamt 
    251   1.1    yamt static void
    252  1.17    yamt bt_free(vmem_t *vm, bt_t *bt)
    253   1.1    yamt {
    254   1.1    yamt 
    255   1.1    yamt #if defined(_KERNEL)
    256  1.21    yamt 	int s;
    257  1.21    yamt 
    258   1.1    yamt 	/* XXX bootstrap */
    259  1.21    yamt 	s = splvm();
    260   1.1    yamt 	pool_cache_put(&bt_poolcache, bt);
    261  1.21    yamt 	splx(s);
    262   1.1    yamt #else /* defined(_KERNEL) */
    263   1.1    yamt 	free(bt);
    264   1.1    yamt #endif /* defined(_KERNEL) */
    265   1.1    yamt }
    266   1.1    yamt 
    267   1.1    yamt /*
    268   1.1    yamt  * freelist[0] ... [1, 1]
    269   1.1    yamt  * freelist[1] ... [2, 3]
    270   1.1    yamt  * freelist[2] ... [4, 7]
    271   1.1    yamt  * freelist[3] ... [8, 15]
    272   1.1    yamt  *  :
    273   1.1    yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    274   1.1    yamt  *  :
    275   1.1    yamt  */
    276   1.1    yamt 
    277   1.1    yamt static struct vmem_freelist *
    278   1.1    yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    279   1.1    yamt {
    280   1.1    yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    281   1.1    yamt 	int idx;
    282   1.1    yamt 
    283   1.1    yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    284   1.1    yamt 	KASSERT(size != 0);
    285   1.1    yamt 
    286   1.1    yamt 	idx = calc_order(qsize);
    287   1.1    yamt 	KASSERT(idx >= 0);
    288   1.1    yamt 	KASSERT(idx < VMEM_MAXORDER);
    289   1.1    yamt 
    290   1.1    yamt 	return &vm->vm_freelist[idx];
    291   1.1    yamt }
    292   1.1    yamt 
    293   1.1    yamt static struct vmem_freelist *
    294   1.1    yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    295   1.1    yamt {
    296   1.1    yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    297   1.1    yamt 	int idx;
    298   1.1    yamt 
    299   1.1    yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    300   1.1    yamt 	KASSERT(size != 0);
    301   1.1    yamt 
    302   1.1    yamt 	idx = calc_order(qsize);
    303   1.4    yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    304   1.1    yamt 		idx++;
    305   1.1    yamt 		/* check too large request? */
    306   1.1    yamt 	}
    307   1.1    yamt 	KASSERT(idx >= 0);
    308   1.1    yamt 	KASSERT(idx < VMEM_MAXORDER);
    309   1.1    yamt 
    310   1.1    yamt 	return &vm->vm_freelist[idx];
    311   1.1    yamt }
    312   1.1    yamt 
    313   1.1    yamt /* ---- boundary tag hash */
    314   1.1    yamt 
    315   1.1    yamt static struct vmem_hashlist *
    316   1.1    yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    317   1.1    yamt {
    318   1.1    yamt 	struct vmem_hashlist *list;
    319   1.1    yamt 	unsigned int hash;
    320   1.1    yamt 
    321   1.1    yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    322   1.1    yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    323   1.1    yamt 
    324   1.1    yamt 	return list;
    325   1.1    yamt }
    326   1.1    yamt 
    327   1.1    yamt static bt_t *
    328   1.1    yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    329   1.1    yamt {
    330   1.1    yamt 	struct vmem_hashlist *list;
    331   1.1    yamt 	bt_t *bt;
    332   1.1    yamt 
    333   1.1    yamt 	list = bt_hashhead(vm, addr);
    334   1.1    yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    335   1.1    yamt 		if (bt->bt_start == addr) {
    336   1.1    yamt 			break;
    337   1.1    yamt 		}
    338   1.1    yamt 	}
    339   1.1    yamt 
    340   1.1    yamt 	return bt;
    341   1.1    yamt }
    342   1.1    yamt 
    343   1.1    yamt static void
    344   1.1    yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    345   1.1    yamt {
    346   1.1    yamt 
    347   1.1    yamt 	KASSERT(vm->vm_nbusytag > 0);
    348   1.1    yamt 	vm->vm_nbusytag--;
    349   1.1    yamt 	LIST_REMOVE(bt, bt_hashlist);
    350   1.1    yamt }
    351   1.1    yamt 
    352   1.1    yamt static void
    353   1.1    yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    354   1.1    yamt {
    355   1.1    yamt 	struct vmem_hashlist *list;
    356   1.1    yamt 
    357   1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    358   1.1    yamt 
    359   1.1    yamt 	list = bt_hashhead(vm, bt->bt_start);
    360   1.1    yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    361   1.1    yamt 	vm->vm_nbusytag++;
    362   1.1    yamt }
    363   1.1    yamt 
    364   1.1    yamt /* ---- boundary tag list */
    365   1.1    yamt 
    366   1.1    yamt static void
    367   1.1    yamt bt_remseg(vmem_t *vm, bt_t *bt)
    368   1.1    yamt {
    369   1.1    yamt 
    370   1.1    yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    371   1.1    yamt }
    372   1.1    yamt 
    373   1.1    yamt static void
    374   1.1    yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    375   1.1    yamt {
    376   1.1    yamt 
    377   1.1    yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    378   1.1    yamt }
    379   1.1    yamt 
    380   1.1    yamt static void
    381   1.1    yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    382   1.1    yamt {
    383   1.1    yamt 
    384   1.1    yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    385   1.1    yamt }
    386   1.1    yamt 
    387   1.1    yamt static void
    388  1.17    yamt bt_remfree(vmem_t *vm, bt_t *bt)
    389   1.1    yamt {
    390   1.1    yamt 
    391   1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    392   1.1    yamt 
    393   1.1    yamt 	LIST_REMOVE(bt, bt_freelist);
    394   1.1    yamt }
    395   1.1    yamt 
    396   1.1    yamt static void
    397   1.1    yamt bt_insfree(vmem_t *vm, bt_t *bt)
    398   1.1    yamt {
    399   1.1    yamt 	struct vmem_freelist *list;
    400   1.1    yamt 
    401   1.1    yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    402   1.1    yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    403   1.1    yamt }
    404   1.1    yamt 
    405   1.1    yamt /* ---- vmem internal functions */
    406   1.1    yamt 
    407   1.5    yamt #if defined(QCACHE)
    408   1.5    yamt static inline vm_flag_t
    409   1.5    yamt prf_to_vmf(int prflags)
    410   1.5    yamt {
    411   1.5    yamt 	vm_flag_t vmflags;
    412   1.5    yamt 
    413   1.5    yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    414   1.5    yamt 	if ((prflags & PR_WAITOK) != 0) {
    415   1.5    yamt 		vmflags = VM_SLEEP;
    416   1.5    yamt 	} else {
    417   1.5    yamt 		vmflags = VM_NOSLEEP;
    418   1.5    yamt 	}
    419   1.5    yamt 	return vmflags;
    420   1.5    yamt }
    421   1.5    yamt 
    422   1.5    yamt static inline int
    423   1.5    yamt vmf_to_prf(vm_flag_t vmflags)
    424   1.5    yamt {
    425   1.5    yamt 	int prflags;
    426   1.5    yamt 
    427   1.7    yamt 	if ((vmflags & VM_SLEEP) != 0) {
    428   1.5    yamt 		prflags = PR_WAITOK;
    429   1.7    yamt 	} else {
    430   1.5    yamt 		prflags = PR_NOWAIT;
    431   1.5    yamt 	}
    432   1.5    yamt 	return prflags;
    433   1.5    yamt }
    434   1.5    yamt 
    435   1.5    yamt static size_t
    436   1.5    yamt qc_poolpage_size(size_t qcache_max)
    437   1.5    yamt {
    438   1.5    yamt 	int i;
    439   1.5    yamt 
    440   1.5    yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    441   1.5    yamt 		/* nothing */
    442   1.5    yamt 	}
    443   1.5    yamt 	return ORDER2SIZE(i);
    444   1.5    yamt }
    445   1.5    yamt 
    446   1.5    yamt static void *
    447   1.5    yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    448   1.5    yamt {
    449   1.5    yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    450   1.5    yamt 	vmem_t *vm = qc->qc_vmem;
    451   1.5    yamt 
    452   1.5    yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    453   1.5    yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    454   1.5    yamt }
    455   1.5    yamt 
    456   1.5    yamt static void
    457   1.5    yamt qc_poolpage_free(struct pool *pool, void *addr)
    458   1.5    yamt {
    459   1.5    yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    460   1.5    yamt 	vmem_t *vm = qc->qc_vmem;
    461   1.5    yamt 
    462   1.5    yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    463   1.5    yamt }
    464   1.5    yamt 
    465   1.5    yamt static void
    466   1.5    yamt qc_init(vmem_t *vm, size_t qcache_max)
    467   1.5    yamt {
    468  1.22    yamt 	qcache_t *prevqc;
    469   1.5    yamt 	struct pool_allocator *pa;
    470   1.5    yamt 	int qcache_idx_max;
    471   1.5    yamt 	int i;
    472   1.5    yamt 
    473   1.5    yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    474   1.5    yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    475   1.5    yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    476   1.5    yamt 	}
    477   1.5    yamt 	vm->vm_qcache_max = qcache_max;
    478   1.5    yamt 	pa = &vm->vm_qcache_allocator;
    479   1.5    yamt 	memset(pa, 0, sizeof(*pa));
    480   1.5    yamt 	pa->pa_alloc = qc_poolpage_alloc;
    481   1.5    yamt 	pa->pa_free = qc_poolpage_free;
    482   1.5    yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    483   1.5    yamt 
    484   1.5    yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    485  1.22    yamt 	prevqc = NULL;
    486  1.22    yamt 	for (i = qcache_idx_max; i > 0; i--) {
    487  1.22    yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    488   1.5    yamt 		size_t size = i << vm->vm_quantum_shift;
    489   1.5    yamt 
    490   1.5    yamt 		qc->qc_vmem = vm;
    491   1.8  martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    492   1.5    yamt 		    vm->vm_name, size);
    493  1.15    yamt 		pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
    494  1.15    yamt 		    0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
    495  1.22    yamt 		if (prevqc != NULL &&
    496  1.22    yamt 		    qc->qc_pool.pr_itemsperpage ==
    497  1.22    yamt 		    prevqc->qc_pool.pr_itemsperpage) {
    498  1.22    yamt 			pool_destroy(&qc->qc_pool);
    499  1.22    yamt 			vm->vm_qcache[i - 1] = prevqc;
    500  1.22    yamt 		}
    501   1.5    yamt 		pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
    502  1.22    yamt 		vm->vm_qcache[i - 1] = qc;
    503  1.22    yamt 		prevqc = qc;
    504   1.5    yamt 	}
    505   1.5    yamt }
    506   1.6    yamt 
    507  1.23    yamt static void
    508  1.23    yamt qc_destroy(vmem_t *vm)
    509  1.23    yamt {
    510  1.23    yamt 	const qcache_t *prevqc;
    511  1.23    yamt 	int i;
    512  1.23    yamt 	int qcache_idx_max;
    513  1.23    yamt 
    514  1.23    yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    515  1.23    yamt 	prevqc = NULL;
    516  1.23    yamt 	for (i = 1; i <= qcache_idx_max; i++) {
    517  1.23    yamt 		qcache_t *qc = vm->vm_qcache[i - 1];
    518  1.23    yamt 
    519  1.23    yamt 		if (prevqc == qc) {
    520  1.23    yamt 			continue;
    521  1.23    yamt 		}
    522  1.23    yamt 		pool_cache_destroy(&qc->qc_cache);
    523  1.23    yamt 		pool_destroy(&qc->qc_pool);
    524  1.23    yamt 		prevqc = qc;
    525  1.23    yamt 	}
    526  1.23    yamt }
    527  1.23    yamt 
    528   1.6    yamt static boolean_t
    529   1.6    yamt qc_reap(vmem_t *vm)
    530   1.6    yamt {
    531  1.22    yamt 	const qcache_t *prevqc;
    532   1.6    yamt 	int i;
    533   1.6    yamt 	int qcache_idx_max;
    534   1.6    yamt 	boolean_t didsomething = FALSE;
    535   1.6    yamt 
    536   1.6    yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    537  1.22    yamt 	prevqc = NULL;
    538   1.6    yamt 	for (i = 1; i <= qcache_idx_max; i++) {
    539  1.22    yamt 		qcache_t *qc = vm->vm_qcache[i - 1];
    540   1.6    yamt 
    541  1.22    yamt 		if (prevqc == qc) {
    542  1.22    yamt 			continue;
    543  1.22    yamt 		}
    544   1.6    yamt 		if (pool_reclaim(&qc->qc_pool) != 0) {
    545   1.6    yamt 			didsomething = TRUE;
    546   1.6    yamt 		}
    547  1.22    yamt 		prevqc = qc;
    548   1.6    yamt 	}
    549   1.6    yamt 
    550   1.6    yamt 	return didsomething;
    551   1.6    yamt }
    552   1.5    yamt #endif /* defined(QCACHE) */
    553   1.5    yamt 
    554   1.1    yamt #if defined(_KERNEL)
    555   1.1    yamt static int
    556   1.1    yamt vmem_init(void)
    557   1.1    yamt {
    558   1.1    yamt 
    559   1.1    yamt 	pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
    560   1.1    yamt 	return 0;
    561   1.1    yamt }
    562   1.1    yamt #endif /* defined(_KERNEL) */
    563   1.1    yamt 
    564   1.1    yamt static vmem_addr_t
    565   1.1    yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    566   1.1    yamt     int spanbttype)
    567   1.1    yamt {
    568   1.1    yamt 	bt_t *btspan;
    569   1.1    yamt 	bt_t *btfree;
    570   1.1    yamt 
    571   1.1    yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    572   1.1    yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    573   1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    574   1.1    yamt 
    575   1.1    yamt 	btspan = bt_alloc(vm, flags);
    576   1.1    yamt 	if (btspan == NULL) {
    577   1.1    yamt 		return VMEM_ADDR_NULL;
    578   1.1    yamt 	}
    579   1.1    yamt 	btfree = bt_alloc(vm, flags);
    580   1.1    yamt 	if (btfree == NULL) {
    581   1.1    yamt 		bt_free(vm, btspan);
    582   1.1    yamt 		return VMEM_ADDR_NULL;
    583   1.1    yamt 	}
    584   1.1    yamt 
    585   1.1    yamt 	btspan->bt_type = spanbttype;
    586   1.1    yamt 	btspan->bt_start = addr;
    587   1.1    yamt 	btspan->bt_size = size;
    588   1.1    yamt 
    589   1.1    yamt 	btfree->bt_type = BT_TYPE_FREE;
    590   1.1    yamt 	btfree->bt_start = addr;
    591   1.1    yamt 	btfree->bt_size = size;
    592   1.1    yamt 
    593   1.1    yamt 	VMEM_LOCK(vm);
    594   1.1    yamt 	bt_insseg_tail(vm, btspan);
    595   1.1    yamt 	bt_insseg(vm, btfree, btspan);
    596   1.1    yamt 	bt_insfree(vm, btfree);
    597   1.1    yamt 	VMEM_UNLOCK(vm);
    598   1.1    yamt 
    599   1.1    yamt 	return addr;
    600   1.1    yamt }
    601   1.1    yamt 
    602   1.1    yamt static int
    603   1.1    yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    604   1.1    yamt {
    605   1.1    yamt 	vmem_addr_t addr;
    606   1.1    yamt 
    607   1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    608   1.1    yamt 
    609   1.1    yamt 	if (vm->vm_allocfn == NULL) {
    610   1.1    yamt 		return EINVAL;
    611   1.1    yamt 	}
    612   1.1    yamt 
    613   1.1    yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    614   1.1    yamt 	if (addr == VMEM_ADDR_NULL) {
    615   1.1    yamt 		return ENOMEM;
    616   1.1    yamt 	}
    617   1.1    yamt 
    618   1.1    yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    619   1.1    yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    620   1.1    yamt 		return ENOMEM;
    621   1.1    yamt 	}
    622   1.1    yamt 
    623   1.1    yamt 	return 0;
    624   1.1    yamt }
    625   1.1    yamt 
    626   1.1    yamt static int
    627   1.1    yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    628   1.1    yamt {
    629   1.1    yamt 	bt_t *bt;
    630   1.1    yamt 	int i;
    631   1.1    yamt 	struct vmem_hashlist *newhashlist;
    632   1.1    yamt 	struct vmem_hashlist *oldhashlist;
    633   1.1    yamt 	size_t oldhashsize;
    634   1.1    yamt 
    635   1.1    yamt 	KASSERT(newhashsize > 0);
    636   1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    637   1.1    yamt 
    638   1.1    yamt 	newhashlist =
    639   1.1    yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    640   1.1    yamt 	if (newhashlist == NULL) {
    641   1.1    yamt 		return ENOMEM;
    642   1.1    yamt 	}
    643   1.1    yamt 	for (i = 0; i < newhashsize; i++) {
    644   1.1    yamt 		LIST_INIT(&newhashlist[i]);
    645   1.1    yamt 	}
    646   1.1    yamt 
    647   1.1    yamt 	VMEM_LOCK(vm);
    648   1.1    yamt 	oldhashlist = vm->vm_hashlist;
    649   1.1    yamt 	oldhashsize = vm->vm_hashsize;
    650   1.1    yamt 	vm->vm_hashlist = newhashlist;
    651   1.1    yamt 	vm->vm_hashsize = newhashsize;
    652   1.1    yamt 	if (oldhashlist == NULL) {
    653   1.1    yamt 		VMEM_UNLOCK(vm);
    654   1.1    yamt 		return 0;
    655   1.1    yamt 	}
    656   1.1    yamt 	for (i = 0; i < oldhashsize; i++) {
    657   1.1    yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    658   1.1    yamt 			bt_rembusy(vm, bt); /* XXX */
    659   1.1    yamt 			bt_insbusy(vm, bt);
    660   1.1    yamt 		}
    661   1.1    yamt 	}
    662   1.1    yamt 	VMEM_UNLOCK(vm);
    663   1.1    yamt 
    664   1.1    yamt 	xfree(oldhashlist);
    665   1.1    yamt 
    666   1.1    yamt 	return 0;
    667   1.1    yamt }
    668   1.1    yamt 
    669  1.10    yamt /*
    670  1.10    yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    671  1.10    yamt  */
    672  1.10    yamt 
    673  1.10    yamt static vmem_addr_t
    674  1.10    yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    675  1.10    yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    676  1.10    yamt {
    677  1.10    yamt 	vmem_addr_t start;
    678  1.10    yamt 	vmem_addr_t end;
    679  1.10    yamt 
    680  1.10    yamt 	KASSERT(bt->bt_size >= size);
    681  1.10    yamt 
    682  1.10    yamt 	/*
    683  1.10    yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    684  1.10    yamt 	 * unsigned integer of the same size.
    685  1.10    yamt 	 */
    686  1.10    yamt 
    687  1.10    yamt 	start = bt->bt_start;
    688  1.10    yamt 	if (start < minaddr) {
    689  1.10    yamt 		start = minaddr;
    690  1.10    yamt 	}
    691  1.10    yamt 	end = BT_END(bt);
    692  1.10    yamt 	if (end > maxaddr - 1) {
    693  1.10    yamt 		end = maxaddr - 1;
    694  1.10    yamt 	}
    695  1.10    yamt 	if (start >= end) {
    696  1.10    yamt 		return VMEM_ADDR_NULL;
    697  1.10    yamt 	}
    698  1.19    yamt 
    699  1.19    yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    700  1.10    yamt 	if (start < bt->bt_start) {
    701  1.10    yamt 		start += align;
    702  1.10    yamt 	}
    703  1.19    yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    704  1.10    yamt 		KASSERT(align < nocross);
    705  1.19    yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    706  1.10    yamt 	}
    707  1.10    yamt 	if (start < end && end - start >= size) {
    708  1.10    yamt 		KASSERT((start & (align - 1)) == phase);
    709  1.19    yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    710  1.10    yamt 		KASSERT(minaddr <= start);
    711  1.10    yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    712  1.10    yamt 		KASSERT(bt->bt_start <= start);
    713  1.10    yamt 		KASSERT(start + size <= BT_END(bt));
    714  1.10    yamt 		return start;
    715  1.10    yamt 	}
    716  1.10    yamt 	return VMEM_ADDR_NULL;
    717  1.10    yamt }
    718  1.10    yamt 
    719   1.1    yamt /* ---- vmem API */
    720   1.1    yamt 
    721   1.1    yamt /*
    722   1.1    yamt  * vmem_create: create an arena.
    723   1.1    yamt  *
    724   1.1    yamt  * => must not be called from interrupt context.
    725   1.1    yamt  */
    726   1.1    yamt 
    727   1.1    yamt vmem_t *
    728   1.1    yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    729   1.1    yamt     vmem_size_t quantum,
    730   1.1    yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    731   1.1    yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    732   1.1    yamt     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
    733   1.1    yamt {
    734   1.1    yamt 	vmem_t *vm;
    735   1.1    yamt 	int i;
    736   1.1    yamt #if defined(_KERNEL)
    737   1.1    yamt 	static ONCE_DECL(control);
    738   1.1    yamt #endif /* defined(_KERNEL) */
    739   1.1    yamt 
    740   1.1    yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    741   1.1    yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    742   1.1    yamt 
    743   1.1    yamt #if defined(_KERNEL)
    744   1.1    yamt 	if (RUN_ONCE(&control, vmem_init)) {
    745   1.1    yamt 		return NULL;
    746   1.1    yamt 	}
    747   1.1    yamt #endif /* defined(_KERNEL) */
    748   1.1    yamt 	vm = xmalloc(sizeof(*vm), flags);
    749   1.1    yamt 	if (vm == NULL) {
    750   1.1    yamt 		return NULL;
    751   1.1    yamt 	}
    752   1.1    yamt 
    753   1.1    yamt 	VMEM_LOCK_INIT(vm);
    754   1.1    yamt 	vm->vm_name = name;
    755   1.1    yamt 	vm->vm_quantum_mask = quantum - 1;
    756   1.1    yamt 	vm->vm_quantum_shift = calc_order(quantum);
    757   1.4    yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    758   1.1    yamt 	vm->vm_allocfn = allocfn;
    759   1.1    yamt 	vm->vm_freefn = freefn;
    760   1.1    yamt 	vm->vm_source = source;
    761   1.1    yamt 	vm->vm_nbusytag = 0;
    762   1.5    yamt #if defined(QCACHE)
    763   1.5    yamt 	qc_init(vm, qcache_max);
    764   1.5    yamt #endif /* defined(QCACHE) */
    765   1.1    yamt 
    766   1.1    yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    767   1.1    yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    768   1.1    yamt 		LIST_INIT(&vm->vm_freelist[i]);
    769   1.1    yamt 	}
    770   1.1    yamt 	vm->vm_hashlist = NULL;
    771   1.1    yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    772   1.1    yamt 		vmem_destroy(vm);
    773   1.1    yamt 		return NULL;
    774   1.1    yamt 	}
    775   1.1    yamt 
    776   1.1    yamt 	if (size != 0) {
    777   1.1    yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    778   1.1    yamt 			vmem_destroy(vm);
    779   1.1    yamt 			return NULL;
    780   1.1    yamt 		}
    781   1.1    yamt 	}
    782   1.1    yamt 
    783   1.1    yamt 	return vm;
    784   1.1    yamt }
    785   1.1    yamt 
    786   1.1    yamt void
    787   1.1    yamt vmem_destroy(vmem_t *vm)
    788   1.1    yamt {
    789   1.1    yamt 
    790   1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    791   1.1    yamt 
    792  1.23    yamt #if defined(QCACHE)
    793  1.23    yamt 	qc_destroy(vm);
    794  1.23    yamt #endif /* defined(QCACHE) */
    795   1.1    yamt 	if (vm->vm_hashlist != NULL) {
    796   1.1    yamt 		int i;
    797   1.1    yamt 
    798   1.1    yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    799   1.1    yamt 			bt_t *bt;
    800   1.1    yamt 
    801   1.1    yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    802   1.1    yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    803   1.1    yamt 				bt_free(vm, bt);
    804   1.1    yamt 			}
    805   1.1    yamt 		}
    806   1.1    yamt 		xfree(vm->vm_hashlist);
    807   1.1    yamt 	}
    808   1.1    yamt 	xfree(vm);
    809   1.1    yamt }
    810   1.1    yamt 
    811   1.1    yamt vmem_size_t
    812   1.1    yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    813   1.1    yamt {
    814   1.1    yamt 
    815   1.1    yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    816   1.1    yamt }
    817   1.1    yamt 
    818   1.1    yamt /*
    819   1.1    yamt  * vmem_alloc:
    820   1.1    yamt  *
    821   1.1    yamt  * => caller must ensure appropriate spl,
    822   1.1    yamt  *    if the arena can be accessed from interrupt context.
    823   1.1    yamt  */
    824   1.1    yamt 
    825   1.1    yamt vmem_addr_t
    826   1.1    yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
    827   1.1    yamt {
    828  1.12    yamt 	const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
    829  1.12    yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    830   1.1    yamt 
    831   1.1    yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    832   1.1    yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    833   1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    834   1.1    yamt 
    835   1.1    yamt 	KASSERT(size0 > 0);
    836   1.1    yamt 	KASSERT(size > 0);
    837   1.1    yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    838   1.3    yamt 	if ((flags & VM_SLEEP) != 0) {
    839  1.16    yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    840   1.3    yamt 	}
    841   1.1    yamt 
    842   1.5    yamt #if defined(QCACHE)
    843   1.5    yamt 	if (size <= vm->vm_qcache_max) {
    844   1.5    yamt 		int qidx = size >> vm->vm_quantum_shift;
    845  1.22    yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    846   1.5    yamt 
    847   1.5    yamt 		return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
    848   1.5    yamt 		    vmf_to_prf(flags));
    849   1.5    yamt 	}
    850   1.5    yamt #endif /* defined(QCACHE) */
    851   1.5    yamt 
    852  1.10    yamt 	return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
    853  1.10    yamt }
    854  1.10    yamt 
    855  1.10    yamt vmem_addr_t
    856  1.10    yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
    857  1.10    yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
    858  1.10    yamt     vm_flag_t flags)
    859  1.10    yamt {
    860  1.10    yamt 	struct vmem_freelist *list;
    861  1.10    yamt 	struct vmem_freelist *first;
    862  1.10    yamt 	struct vmem_freelist *end;
    863  1.10    yamt 	bt_t *bt;
    864  1.10    yamt 	bt_t *btnew;
    865  1.10    yamt 	bt_t *btnew2;
    866  1.10    yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
    867  1.10    yamt 	vm_flag_t strat = flags & VM_FITMASK;
    868  1.10    yamt 	vmem_addr_t start;
    869  1.10    yamt 
    870  1.10    yamt 	KASSERT(size0 > 0);
    871  1.10    yamt 	KASSERT(size > 0);
    872  1.10    yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    873  1.10    yamt 	if ((flags & VM_SLEEP) != 0) {
    874  1.16    yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    875  1.10    yamt 	}
    876  1.10    yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
    877  1.10    yamt 	KASSERT((align & (align - 1)) == 0);
    878  1.10    yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
    879  1.10    yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
    880  1.10    yamt 	KASSERT((nocross & (nocross - 1)) == 0);
    881  1.10    yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
    882  1.10    yamt 	KASSERT(nocross == 0 || nocross >= size);
    883  1.10    yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
    884  1.19    yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
    885  1.10    yamt 
    886  1.10    yamt 	if (align == 0) {
    887  1.10    yamt 		align = vm->vm_quantum_mask + 1;
    888  1.10    yamt 	}
    889   1.1    yamt 	btnew = bt_alloc(vm, flags);
    890   1.1    yamt 	if (btnew == NULL) {
    891   1.1    yamt 		return VMEM_ADDR_NULL;
    892   1.1    yamt 	}
    893  1.10    yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
    894  1.10    yamt 	if (btnew2 == NULL) {
    895  1.10    yamt 		bt_free(vm, btnew);
    896  1.10    yamt 		return VMEM_ADDR_NULL;
    897  1.10    yamt 	}
    898   1.1    yamt 
    899   1.1    yamt retry_strat:
    900   1.1    yamt 	first = bt_freehead_toalloc(vm, size, strat);
    901   1.1    yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
    902   1.1    yamt retry:
    903   1.1    yamt 	bt = NULL;
    904   1.1    yamt 	VMEM_LOCK(vm);
    905   1.2    yamt 	if (strat == VM_INSTANTFIT) {
    906   1.2    yamt 		for (list = first; list < end; list++) {
    907   1.2    yamt 			bt = LIST_FIRST(list);
    908   1.2    yamt 			if (bt != NULL) {
    909  1.10    yamt 				start = vmem_fit(bt, size, align, phase,
    910  1.10    yamt 				    nocross, minaddr, maxaddr);
    911  1.10    yamt 				if (start != VMEM_ADDR_NULL) {
    912  1.10    yamt 					goto gotit;
    913  1.10    yamt 				}
    914   1.2    yamt 			}
    915   1.2    yamt 		}
    916   1.2    yamt 	} else { /* VM_BESTFIT */
    917   1.2    yamt 		for (list = first; list < end; list++) {
    918   1.2    yamt 			LIST_FOREACH(bt, list, bt_freelist) {
    919   1.2    yamt 				if (bt->bt_size >= size) {
    920  1.10    yamt 					start = vmem_fit(bt, size, align, phase,
    921  1.10    yamt 					    nocross, minaddr, maxaddr);
    922  1.10    yamt 					if (start != VMEM_ADDR_NULL) {
    923  1.10    yamt 						goto gotit;
    924  1.10    yamt 					}
    925   1.2    yamt 				}
    926   1.1    yamt 			}
    927   1.1    yamt 		}
    928   1.1    yamt 	}
    929   1.2    yamt 	VMEM_UNLOCK(vm);
    930   1.1    yamt #if 1
    931   1.2    yamt 	if (strat == VM_INSTANTFIT) {
    932   1.2    yamt 		strat = VM_BESTFIT;
    933   1.2    yamt 		goto retry_strat;
    934   1.2    yamt 	}
    935   1.1    yamt #endif
    936  1.10    yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
    937  1.10    yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
    938  1.10    yamt 
    939  1.10    yamt 		/*
    940  1.10    yamt 		 * XXX should try to import a region large enough to
    941  1.10    yamt 		 * satisfy restrictions?
    942  1.10    yamt 		 */
    943  1.10    yamt 
    944  1.20    yamt 		goto fail;
    945  1.10    yamt 	}
    946   1.2    yamt 	if (vmem_import(vm, size, flags) == 0) {
    947   1.2    yamt 		goto retry;
    948   1.1    yamt 	}
    949   1.2    yamt 	/* XXX */
    950  1.20    yamt fail:
    951  1.20    yamt 	bt_free(vm, btnew);
    952  1.20    yamt 	bt_free(vm, btnew2);
    953   1.2    yamt 	return VMEM_ADDR_NULL;
    954   1.2    yamt 
    955   1.2    yamt gotit:
    956   1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    957   1.1    yamt 	KASSERT(bt->bt_size >= size);
    958   1.1    yamt 	bt_remfree(vm, bt);
    959  1.10    yamt 	if (bt->bt_start != start) {
    960  1.10    yamt 		btnew2->bt_type = BT_TYPE_FREE;
    961  1.10    yamt 		btnew2->bt_start = bt->bt_start;
    962  1.10    yamt 		btnew2->bt_size = start - bt->bt_start;
    963  1.10    yamt 		bt->bt_start = start;
    964  1.10    yamt 		bt->bt_size -= btnew2->bt_size;
    965  1.10    yamt 		bt_insfree(vm, btnew2);
    966  1.10    yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
    967  1.10    yamt 		btnew2 = NULL;
    968  1.10    yamt 	}
    969  1.10    yamt 	KASSERT(bt->bt_start == start);
    970   1.1    yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
    971   1.1    yamt 		/* split */
    972   1.1    yamt 		btnew->bt_type = BT_TYPE_BUSY;
    973   1.1    yamt 		btnew->bt_start = bt->bt_start;
    974   1.1    yamt 		btnew->bt_size = size;
    975   1.1    yamt 		bt->bt_start = bt->bt_start + size;
    976   1.1    yamt 		bt->bt_size -= size;
    977   1.1    yamt 		bt_insfree(vm, bt);
    978   1.1    yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
    979   1.1    yamt 		bt_insbusy(vm, btnew);
    980   1.1    yamt 		VMEM_UNLOCK(vm);
    981   1.1    yamt 	} else {
    982   1.1    yamt 		bt->bt_type = BT_TYPE_BUSY;
    983   1.1    yamt 		bt_insbusy(vm, bt);
    984   1.1    yamt 		VMEM_UNLOCK(vm);
    985   1.1    yamt 		bt_free(vm, btnew);
    986   1.1    yamt 		btnew = bt;
    987   1.1    yamt 	}
    988  1.10    yamt 	if (btnew2 != NULL) {
    989  1.10    yamt 		bt_free(vm, btnew2);
    990  1.10    yamt 	}
    991   1.1    yamt 	KASSERT(btnew->bt_size >= size);
    992   1.1    yamt 	btnew->bt_type = BT_TYPE_BUSY;
    993   1.1    yamt 
    994   1.1    yamt 	return btnew->bt_start;
    995   1.1    yamt }
    996   1.1    yamt 
    997   1.1    yamt /*
    998   1.1    yamt  * vmem_free:
    999   1.1    yamt  *
   1000   1.1    yamt  * => caller must ensure appropriate spl,
   1001   1.1    yamt  *    if the arena can be accessed from interrupt context.
   1002   1.1    yamt  */
   1003   1.1    yamt 
   1004   1.1    yamt void
   1005   1.1    yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1006   1.1    yamt {
   1007   1.1    yamt 
   1008   1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
   1009   1.1    yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1010   1.1    yamt 	KASSERT(size > 0);
   1011   1.1    yamt 
   1012   1.5    yamt #if defined(QCACHE)
   1013   1.5    yamt 	if (size <= vm->vm_qcache_max) {
   1014   1.5    yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1015  1.22    yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1016   1.5    yamt 
   1017   1.5    yamt 		return pool_cache_put(&qc->qc_cache, (void *)addr);
   1018   1.5    yamt 	}
   1019   1.5    yamt #endif /* defined(QCACHE) */
   1020   1.5    yamt 
   1021  1.10    yamt 	vmem_xfree(vm, addr, size);
   1022  1.10    yamt }
   1023  1.10    yamt 
   1024  1.10    yamt void
   1025  1.17    yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1026  1.10    yamt {
   1027  1.10    yamt 	bt_t *bt;
   1028  1.10    yamt 	bt_t *t;
   1029  1.10    yamt 
   1030  1.10    yamt 	VMEM_ASSERT_UNLOCKED(vm);
   1031  1.10    yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1032  1.10    yamt 	KASSERT(size > 0);
   1033  1.10    yamt 
   1034   1.1    yamt 	VMEM_LOCK(vm);
   1035   1.1    yamt 
   1036   1.1    yamt 	bt = bt_lookupbusy(vm, addr);
   1037   1.1    yamt 	KASSERT(bt != NULL);
   1038   1.1    yamt 	KASSERT(bt->bt_start == addr);
   1039   1.1    yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1040   1.1    yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1041   1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1042   1.1    yamt 	bt_rembusy(vm, bt);
   1043   1.1    yamt 	bt->bt_type = BT_TYPE_FREE;
   1044   1.1    yamt 
   1045   1.1    yamt 	/* coalesce */
   1046   1.1    yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1047   1.1    yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1048   1.1    yamt 		KASSERT(BT_END(bt) == t->bt_start);
   1049   1.1    yamt 		bt_remfree(vm, t);
   1050   1.1    yamt 		bt_remseg(vm, t);
   1051   1.1    yamt 		bt->bt_size += t->bt_size;
   1052   1.1    yamt 		bt_free(vm, t);
   1053   1.1    yamt 	}
   1054   1.1    yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1055   1.1    yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1056   1.1    yamt 		KASSERT(BT_END(t) == bt->bt_start);
   1057   1.1    yamt 		bt_remfree(vm, t);
   1058   1.1    yamt 		bt_remseg(vm, t);
   1059   1.1    yamt 		bt->bt_size += t->bt_size;
   1060   1.1    yamt 		bt->bt_start = t->bt_start;
   1061   1.1    yamt 		bt_free(vm, t);
   1062   1.1    yamt 	}
   1063   1.1    yamt 
   1064   1.1    yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1065   1.1    yamt 	KASSERT(t != NULL);
   1066   1.1    yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1067   1.1    yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1068   1.1    yamt 	    t->bt_size == bt->bt_size) {
   1069   1.1    yamt 		vmem_addr_t spanaddr;
   1070   1.1    yamt 		vmem_size_t spansize;
   1071   1.1    yamt 
   1072   1.1    yamt 		KASSERT(t->bt_start == bt->bt_start);
   1073   1.1    yamt 		spanaddr = bt->bt_start;
   1074   1.1    yamt 		spansize = bt->bt_size;
   1075   1.1    yamt 		bt_remseg(vm, bt);
   1076   1.1    yamt 		bt_free(vm, bt);
   1077   1.1    yamt 		bt_remseg(vm, t);
   1078   1.1    yamt 		bt_free(vm, t);
   1079   1.1    yamt 		VMEM_UNLOCK(vm);
   1080   1.1    yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1081   1.1    yamt 	} else {
   1082   1.1    yamt 		bt_insfree(vm, bt);
   1083   1.1    yamt 		VMEM_UNLOCK(vm);
   1084   1.1    yamt 	}
   1085   1.1    yamt }
   1086   1.1    yamt 
   1087   1.1    yamt /*
   1088   1.1    yamt  * vmem_add:
   1089   1.1    yamt  *
   1090   1.1    yamt  * => caller must ensure appropriate spl,
   1091   1.1    yamt  *    if the arena can be accessed from interrupt context.
   1092   1.1    yamt  */
   1093   1.1    yamt 
   1094   1.1    yamt vmem_addr_t
   1095   1.1    yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1096   1.1    yamt {
   1097   1.1    yamt 
   1098   1.1    yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1099   1.1    yamt }
   1100   1.1    yamt 
   1101   1.6    yamt /*
   1102   1.6    yamt  * vmem_reap: reap unused resources.
   1103   1.6    yamt  *
   1104   1.6    yamt  * => return TRUE if we successfully reaped something.
   1105   1.6    yamt  */
   1106   1.6    yamt 
   1107   1.6    yamt boolean_t
   1108   1.6    yamt vmem_reap(vmem_t *vm)
   1109   1.6    yamt {
   1110   1.6    yamt 	boolean_t didsomething = FALSE;
   1111   1.6    yamt 
   1112   1.6    yamt 	VMEM_ASSERT_UNLOCKED(vm);
   1113   1.6    yamt 
   1114   1.6    yamt #if defined(QCACHE)
   1115   1.6    yamt 	didsomething = qc_reap(vm);
   1116   1.6    yamt #endif /* defined(QCACHE) */
   1117   1.6    yamt 	return didsomething;
   1118   1.6    yamt }
   1119   1.6    yamt 
   1120   1.1    yamt /* ---- debug */
   1121   1.1    yamt 
   1122   1.1    yamt #if defined(VMEM_DEBUG)
   1123   1.1    yamt 
   1124   1.1    yamt #if !defined(_KERNEL)
   1125   1.1    yamt #include <stdio.h>
   1126   1.1    yamt #endif /* !defined(_KERNEL) */
   1127   1.1    yamt 
   1128   1.1    yamt void bt_dump(const bt_t *);
   1129   1.1    yamt 
   1130   1.1    yamt void
   1131   1.1    yamt bt_dump(const bt_t *bt)
   1132   1.1    yamt {
   1133   1.1    yamt 
   1134   1.1    yamt 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
   1135   1.1    yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1136   1.1    yamt 	    bt->bt_type);
   1137   1.1    yamt }
   1138   1.1    yamt 
   1139   1.1    yamt void
   1140   1.1    yamt vmem_dump(const vmem_t *vm)
   1141   1.1    yamt {
   1142   1.1    yamt 	const bt_t *bt;
   1143   1.1    yamt 	int i;
   1144   1.1    yamt 
   1145   1.1    yamt 	printf("vmem %p '%s'\n", vm, vm->vm_name);
   1146   1.1    yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1147   1.1    yamt 		bt_dump(bt);
   1148   1.1    yamt 	}
   1149   1.1    yamt 
   1150   1.1    yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1151   1.1    yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1152   1.1    yamt 
   1153   1.1    yamt 		if (LIST_EMPTY(fl)) {
   1154   1.1    yamt 			continue;
   1155   1.1    yamt 		}
   1156   1.1    yamt 
   1157   1.1    yamt 		printf("freelist[%d]\n", i);
   1158   1.1    yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1159   1.1    yamt 			bt_dump(bt);
   1160   1.1    yamt 			if (bt->bt_size) {
   1161   1.1    yamt 			}
   1162   1.1    yamt 		}
   1163   1.1    yamt 	}
   1164   1.1    yamt }
   1165   1.1    yamt 
   1166   1.1    yamt #if !defined(_KERNEL)
   1167   1.1    yamt 
   1168   1.1    yamt #include <stdlib.h>
   1169   1.1    yamt 
   1170   1.1    yamt int
   1171   1.1    yamt main()
   1172   1.1    yamt {
   1173   1.1    yamt 	vmem_t *vm;
   1174   1.1    yamt 	vmem_addr_t p;
   1175   1.1    yamt 	struct reg {
   1176   1.1    yamt 		vmem_addr_t p;
   1177   1.1    yamt 		vmem_size_t sz;
   1178  1.10    yamt 		boolean_t x;
   1179   1.1    yamt 	} *reg = NULL;
   1180   1.1    yamt 	int nreg = 0;
   1181   1.1    yamt 	int nalloc = 0;
   1182   1.1    yamt 	int nfree = 0;
   1183   1.1    yamt 	vmem_size_t total = 0;
   1184   1.1    yamt #if 1
   1185   1.1    yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1186   1.1    yamt #else
   1187   1.1    yamt 	vm_flag_t strat = VM_BESTFIT;
   1188   1.1    yamt #endif
   1189   1.1    yamt 
   1190   1.1    yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1191   1.1    yamt 	    NULL, NULL, NULL, 0, VM_NOSLEEP);
   1192   1.1    yamt 	if (vm == NULL) {
   1193   1.1    yamt 		printf("vmem_create\n");
   1194   1.1    yamt 		exit(EXIT_FAILURE);
   1195   1.1    yamt 	}
   1196   1.1    yamt 	vmem_dump(vm);
   1197   1.1    yamt 
   1198   1.1    yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1199   1.1    yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1200   1.1    yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1201   1.1    yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1202   1.1    yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1203   1.1    yamt 	vmem_dump(vm);
   1204   1.1    yamt 	for (;;) {
   1205   1.1    yamt 		struct reg *r;
   1206  1.10    yamt 		int t = rand() % 100;
   1207   1.1    yamt 
   1208  1.10    yamt 		if (t > 45) {
   1209  1.10    yamt 			/* alloc */
   1210   1.1    yamt 			vmem_size_t sz = rand() % 500 + 1;
   1211  1.10    yamt 			boolean_t x;
   1212  1.10    yamt 			vmem_size_t align, phase, nocross;
   1213  1.10    yamt 			vmem_addr_t minaddr, maxaddr;
   1214  1.10    yamt 
   1215  1.10    yamt 			if (t > 70) {
   1216  1.10    yamt 				x = TRUE;
   1217  1.10    yamt 				/* XXX */
   1218  1.10    yamt 				align = 1 << (rand() % 15);
   1219  1.10    yamt 				phase = rand() % 65536;
   1220  1.10    yamt 				nocross = 1 << (rand() % 15);
   1221  1.10    yamt 				if (align <= phase) {
   1222  1.10    yamt 					phase = 0;
   1223  1.10    yamt 				}
   1224  1.19    yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1225  1.19    yamt 				    nocross)) {
   1226  1.10    yamt 					nocross = 0;
   1227  1.10    yamt 				}
   1228  1.10    yamt 				minaddr = rand() % 50000;
   1229  1.10    yamt 				maxaddr = rand() % 70000;
   1230  1.10    yamt 				if (minaddr > maxaddr) {
   1231  1.10    yamt 					minaddr = 0;
   1232  1.10    yamt 					maxaddr = 0;
   1233  1.10    yamt 				}
   1234  1.10    yamt 				printf("=== xalloc %" PRIu64
   1235  1.10    yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1236  1.10    yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1237  1.10    yamt 				    ", max=%" PRIu64 "\n",
   1238  1.10    yamt 				    (uint64_t)sz,
   1239  1.10    yamt 				    (uint64_t)align,
   1240  1.10    yamt 				    (uint64_t)phase,
   1241  1.10    yamt 				    (uint64_t)nocross,
   1242  1.10    yamt 				    (uint64_t)minaddr,
   1243  1.10    yamt 				    (uint64_t)maxaddr);
   1244  1.10    yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1245  1.10    yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1246  1.10    yamt 			} else {
   1247  1.10    yamt 				x = FALSE;
   1248  1.10    yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1249  1.10    yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1250  1.10    yamt 			}
   1251   1.1    yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1252   1.1    yamt 			vmem_dump(vm);
   1253   1.1    yamt 			if (p == VMEM_ADDR_NULL) {
   1254  1.10    yamt 				if (x) {
   1255  1.10    yamt 					continue;
   1256  1.10    yamt 				}
   1257   1.1    yamt 				break;
   1258   1.1    yamt 			}
   1259   1.1    yamt 			nreg++;
   1260   1.1    yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1261   1.1    yamt 			r = &reg[nreg - 1];
   1262   1.1    yamt 			r->p = p;
   1263   1.1    yamt 			r->sz = sz;
   1264  1.10    yamt 			r->x = x;
   1265   1.1    yamt 			total += sz;
   1266   1.1    yamt 			nalloc++;
   1267   1.1    yamt 		} else if (nreg != 0) {
   1268  1.10    yamt 			/* free */
   1269   1.1    yamt 			r = &reg[rand() % nreg];
   1270   1.1    yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1271   1.1    yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1272  1.10    yamt 			if (r->x) {
   1273  1.10    yamt 				vmem_xfree(vm, r->p, r->sz);
   1274  1.10    yamt 			} else {
   1275  1.10    yamt 				vmem_free(vm, r->p, r->sz);
   1276  1.10    yamt 			}
   1277   1.1    yamt 			total -= r->sz;
   1278   1.1    yamt 			vmem_dump(vm);
   1279   1.1    yamt 			*r = reg[nreg - 1];
   1280   1.1    yamt 			nreg--;
   1281   1.1    yamt 			nfree++;
   1282   1.1    yamt 		}
   1283   1.1    yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1284   1.1    yamt 	}
   1285   1.1    yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1286   1.1    yamt 	    (uint64_t)total, nalloc, nfree);
   1287   1.1    yamt 	exit(EXIT_SUCCESS);
   1288   1.1    yamt }
   1289   1.1    yamt #endif /* !defined(_KERNEL) */
   1290   1.1    yamt #endif /* defined(VMEM_DEBUG) */
   1291