subr_vmem.c revision 1.23 1 1.23 yamt /* $NetBSD: subr_vmem.c,v 1.23 2006/11/18 07:51:34 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.18 yamt *
35 1.18 yamt * todo:
36 1.18 yamt * - decide how to import segments for vmem_xalloc.
37 1.18 yamt * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.23 yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.23 2006/11/18 07:51:34 yamt Exp $");
42 1.1 yamt
43 1.1 yamt #define VMEM_DEBUG
44 1.5 yamt #if defined(_KERNEL)
45 1.5 yamt #define QCACHE
46 1.5 yamt #endif /* defined(_KERNEL) */
47 1.1 yamt
48 1.1 yamt #include <sys/param.h>
49 1.1 yamt #include <sys/hash.h>
50 1.1 yamt #include <sys/queue.h>
51 1.1 yamt
52 1.1 yamt #if defined(_KERNEL)
53 1.1 yamt #include <sys/systm.h>
54 1.1 yamt #include <sys/lock.h>
55 1.1 yamt #include <sys/malloc.h>
56 1.1 yamt #include <sys/once.h>
57 1.1 yamt #include <sys/pool.h>
58 1.3 yamt #include <sys/proc.h>
59 1.1 yamt #include <sys/vmem.h>
60 1.1 yamt #else /* defined(_KERNEL) */
61 1.1 yamt #include "../sys/vmem.h"
62 1.1 yamt #endif /* defined(_KERNEL) */
63 1.1 yamt
64 1.1 yamt #if defined(_KERNEL)
65 1.1 yamt #define SIMPLELOCK_DECL(name) struct simplelock name
66 1.1 yamt #else /* defined(_KERNEL) */
67 1.1 yamt #include <errno.h>
68 1.1 yamt #include <assert.h>
69 1.1 yamt #include <stdlib.h>
70 1.1 yamt
71 1.1 yamt #define KASSERT(a) assert(a)
72 1.1 yamt #define SIMPLELOCK_DECL(name) /* nothing */
73 1.1 yamt #define LOCK_ASSERT(a) /* nothing */
74 1.1 yamt #define simple_lock_init(a) /* nothing */
75 1.1 yamt #define simple_lock(a) /* nothing */
76 1.1 yamt #define simple_unlock(a) /* nothing */
77 1.3 yamt #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
78 1.1 yamt #endif /* defined(_KERNEL) */
79 1.1 yamt
80 1.1 yamt struct vmem;
81 1.1 yamt struct vmem_btag;
82 1.1 yamt
83 1.1 yamt #if defined(VMEM_DEBUG)
84 1.1 yamt void vmem_dump(const vmem_t *);
85 1.1 yamt #endif /* defined(VMEM_DEBUG) */
86 1.1 yamt
87 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
88 1.1 yamt #define VMEM_HASHSIZE_INIT 4096 /* XXX */
89 1.1 yamt
90 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
91 1.1 yamt
92 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
93 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
94 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
95 1.1 yamt
96 1.5 yamt #if defined(QCACHE)
97 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
98 1.5 yamt
99 1.5 yamt #define QC_NAME_MAX 16
100 1.5 yamt
101 1.5 yamt struct qcache {
102 1.5 yamt struct pool qc_pool;
103 1.5 yamt struct pool_cache qc_cache;
104 1.5 yamt vmem_t *qc_vmem;
105 1.5 yamt char qc_name[QC_NAME_MAX];
106 1.5 yamt };
107 1.5 yamt typedef struct qcache qcache_t;
108 1.5 yamt #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
109 1.5 yamt #endif /* defined(QCACHE) */
110 1.5 yamt
111 1.1 yamt /* vmem arena */
112 1.1 yamt struct vmem {
113 1.1 yamt SIMPLELOCK_DECL(vm_lock);
114 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
115 1.1 yamt vm_flag_t);
116 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
117 1.1 yamt vmem_t *vm_source;
118 1.1 yamt struct vmem_seglist vm_seglist;
119 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
120 1.1 yamt size_t vm_hashsize;
121 1.1 yamt size_t vm_nbusytag;
122 1.1 yamt struct vmem_hashlist *vm_hashlist;
123 1.1 yamt size_t vm_quantum_mask;
124 1.1 yamt int vm_quantum_shift;
125 1.1 yamt const char *vm_name;
126 1.5 yamt
127 1.5 yamt #if defined(QCACHE)
128 1.5 yamt /* quantum cache */
129 1.5 yamt size_t vm_qcache_max;
130 1.5 yamt struct pool_allocator vm_qcache_allocator;
131 1.22 yamt qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
132 1.22 yamt qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
133 1.5 yamt #endif /* defined(QCACHE) */
134 1.1 yamt };
135 1.1 yamt
136 1.1 yamt #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
137 1.1 yamt #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
138 1.1 yamt #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
139 1.1 yamt #define VMEM_ASSERT_LOCKED(vm) \
140 1.1 yamt LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
141 1.1 yamt #define VMEM_ASSERT_UNLOCKED(vm) \
142 1.1 yamt LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
143 1.1 yamt
144 1.1 yamt /* boundary tag */
145 1.1 yamt struct vmem_btag {
146 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
147 1.1 yamt union {
148 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
149 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
150 1.1 yamt } bt_u;
151 1.1 yamt #define bt_hashlist bt_u.u_hashlist
152 1.1 yamt #define bt_freelist bt_u.u_freelist
153 1.1 yamt vmem_addr_t bt_start;
154 1.1 yamt vmem_size_t bt_size;
155 1.1 yamt int bt_type;
156 1.1 yamt };
157 1.1 yamt
158 1.1 yamt #define BT_TYPE_SPAN 1
159 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
160 1.1 yamt #define BT_TYPE_FREE 3
161 1.1 yamt #define BT_TYPE_BUSY 4
162 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
163 1.1 yamt
164 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
165 1.1 yamt
166 1.1 yamt typedef struct vmem_btag bt_t;
167 1.1 yamt
168 1.1 yamt /* ---- misc */
169 1.1 yamt
170 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
171 1.19 yamt (-(-(addr) & -(align)))
172 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
173 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
174 1.19 yamt
175 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
176 1.4 yamt
177 1.1 yamt static int
178 1.1 yamt calc_order(vmem_size_t size)
179 1.1 yamt {
180 1.4 yamt vmem_size_t target;
181 1.1 yamt int i;
182 1.1 yamt
183 1.1 yamt KASSERT(size != 0);
184 1.1 yamt
185 1.1 yamt i = 0;
186 1.4 yamt target = size >> 1;
187 1.4 yamt while (ORDER2SIZE(i) <= target) {
188 1.1 yamt i++;
189 1.1 yamt }
190 1.1 yamt
191 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
192 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
193 1.1 yamt
194 1.1 yamt return i;
195 1.1 yamt }
196 1.1 yamt
197 1.1 yamt #if defined(_KERNEL)
198 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
199 1.1 yamt #endif /* defined(_KERNEL) */
200 1.1 yamt
201 1.1 yamt static void *
202 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
203 1.1 yamt {
204 1.1 yamt
205 1.1 yamt #if defined(_KERNEL)
206 1.1 yamt return malloc(sz, M_VMEM,
207 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
208 1.1 yamt #else /* defined(_KERNEL) */
209 1.1 yamt return malloc(sz);
210 1.1 yamt #endif /* defined(_KERNEL) */
211 1.1 yamt }
212 1.1 yamt
213 1.1 yamt static void
214 1.1 yamt xfree(void *p)
215 1.1 yamt {
216 1.1 yamt
217 1.1 yamt #if defined(_KERNEL)
218 1.1 yamt return free(p, M_VMEM);
219 1.1 yamt #else /* defined(_KERNEL) */
220 1.1 yamt return free(p);
221 1.1 yamt #endif /* defined(_KERNEL) */
222 1.1 yamt }
223 1.1 yamt
224 1.1 yamt /* ---- boundary tag */
225 1.1 yamt
226 1.1 yamt #if defined(_KERNEL)
227 1.1 yamt static struct pool_cache bt_poolcache;
228 1.1 yamt static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
229 1.1 yamt #endif /* defined(_KERNEL) */
230 1.1 yamt
231 1.1 yamt static bt_t *
232 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
233 1.1 yamt {
234 1.1 yamt bt_t *bt;
235 1.1 yamt
236 1.1 yamt #if defined(_KERNEL)
237 1.21 yamt int s;
238 1.21 yamt
239 1.1 yamt /* XXX bootstrap */
240 1.21 yamt s = splvm();
241 1.1 yamt bt = pool_cache_get(&bt_poolcache,
242 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
243 1.21 yamt splx(s);
244 1.1 yamt #else /* defined(_KERNEL) */
245 1.1 yamt bt = malloc(sizeof *bt);
246 1.1 yamt #endif /* defined(_KERNEL) */
247 1.1 yamt
248 1.1 yamt return bt;
249 1.1 yamt }
250 1.1 yamt
251 1.1 yamt static void
252 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
253 1.1 yamt {
254 1.1 yamt
255 1.1 yamt #if defined(_KERNEL)
256 1.21 yamt int s;
257 1.21 yamt
258 1.1 yamt /* XXX bootstrap */
259 1.21 yamt s = splvm();
260 1.1 yamt pool_cache_put(&bt_poolcache, bt);
261 1.21 yamt splx(s);
262 1.1 yamt #else /* defined(_KERNEL) */
263 1.1 yamt free(bt);
264 1.1 yamt #endif /* defined(_KERNEL) */
265 1.1 yamt }
266 1.1 yamt
267 1.1 yamt /*
268 1.1 yamt * freelist[0] ... [1, 1]
269 1.1 yamt * freelist[1] ... [2, 3]
270 1.1 yamt * freelist[2] ... [4, 7]
271 1.1 yamt * freelist[3] ... [8, 15]
272 1.1 yamt * :
273 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
274 1.1 yamt * :
275 1.1 yamt */
276 1.1 yamt
277 1.1 yamt static struct vmem_freelist *
278 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
279 1.1 yamt {
280 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
281 1.1 yamt int idx;
282 1.1 yamt
283 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
284 1.1 yamt KASSERT(size != 0);
285 1.1 yamt
286 1.1 yamt idx = calc_order(qsize);
287 1.1 yamt KASSERT(idx >= 0);
288 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
289 1.1 yamt
290 1.1 yamt return &vm->vm_freelist[idx];
291 1.1 yamt }
292 1.1 yamt
293 1.1 yamt static struct vmem_freelist *
294 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
295 1.1 yamt {
296 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
297 1.1 yamt int idx;
298 1.1 yamt
299 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
300 1.1 yamt KASSERT(size != 0);
301 1.1 yamt
302 1.1 yamt idx = calc_order(qsize);
303 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
304 1.1 yamt idx++;
305 1.1 yamt /* check too large request? */
306 1.1 yamt }
307 1.1 yamt KASSERT(idx >= 0);
308 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
309 1.1 yamt
310 1.1 yamt return &vm->vm_freelist[idx];
311 1.1 yamt }
312 1.1 yamt
313 1.1 yamt /* ---- boundary tag hash */
314 1.1 yamt
315 1.1 yamt static struct vmem_hashlist *
316 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
317 1.1 yamt {
318 1.1 yamt struct vmem_hashlist *list;
319 1.1 yamt unsigned int hash;
320 1.1 yamt
321 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
322 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
323 1.1 yamt
324 1.1 yamt return list;
325 1.1 yamt }
326 1.1 yamt
327 1.1 yamt static bt_t *
328 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
329 1.1 yamt {
330 1.1 yamt struct vmem_hashlist *list;
331 1.1 yamt bt_t *bt;
332 1.1 yamt
333 1.1 yamt list = bt_hashhead(vm, addr);
334 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
335 1.1 yamt if (bt->bt_start == addr) {
336 1.1 yamt break;
337 1.1 yamt }
338 1.1 yamt }
339 1.1 yamt
340 1.1 yamt return bt;
341 1.1 yamt }
342 1.1 yamt
343 1.1 yamt static void
344 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
345 1.1 yamt {
346 1.1 yamt
347 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
348 1.1 yamt vm->vm_nbusytag--;
349 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
350 1.1 yamt }
351 1.1 yamt
352 1.1 yamt static void
353 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
354 1.1 yamt {
355 1.1 yamt struct vmem_hashlist *list;
356 1.1 yamt
357 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
358 1.1 yamt
359 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
360 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
361 1.1 yamt vm->vm_nbusytag++;
362 1.1 yamt }
363 1.1 yamt
364 1.1 yamt /* ---- boundary tag list */
365 1.1 yamt
366 1.1 yamt static void
367 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
368 1.1 yamt {
369 1.1 yamt
370 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
371 1.1 yamt }
372 1.1 yamt
373 1.1 yamt static void
374 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
375 1.1 yamt {
376 1.1 yamt
377 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
378 1.1 yamt }
379 1.1 yamt
380 1.1 yamt static void
381 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
382 1.1 yamt {
383 1.1 yamt
384 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
385 1.1 yamt }
386 1.1 yamt
387 1.1 yamt static void
388 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
389 1.1 yamt {
390 1.1 yamt
391 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
392 1.1 yamt
393 1.1 yamt LIST_REMOVE(bt, bt_freelist);
394 1.1 yamt }
395 1.1 yamt
396 1.1 yamt static void
397 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
398 1.1 yamt {
399 1.1 yamt struct vmem_freelist *list;
400 1.1 yamt
401 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
402 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
403 1.1 yamt }
404 1.1 yamt
405 1.1 yamt /* ---- vmem internal functions */
406 1.1 yamt
407 1.5 yamt #if defined(QCACHE)
408 1.5 yamt static inline vm_flag_t
409 1.5 yamt prf_to_vmf(int prflags)
410 1.5 yamt {
411 1.5 yamt vm_flag_t vmflags;
412 1.5 yamt
413 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
414 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
415 1.5 yamt vmflags = VM_SLEEP;
416 1.5 yamt } else {
417 1.5 yamt vmflags = VM_NOSLEEP;
418 1.5 yamt }
419 1.5 yamt return vmflags;
420 1.5 yamt }
421 1.5 yamt
422 1.5 yamt static inline int
423 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
424 1.5 yamt {
425 1.5 yamt int prflags;
426 1.5 yamt
427 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
428 1.5 yamt prflags = PR_WAITOK;
429 1.7 yamt } else {
430 1.5 yamt prflags = PR_NOWAIT;
431 1.5 yamt }
432 1.5 yamt return prflags;
433 1.5 yamt }
434 1.5 yamt
435 1.5 yamt static size_t
436 1.5 yamt qc_poolpage_size(size_t qcache_max)
437 1.5 yamt {
438 1.5 yamt int i;
439 1.5 yamt
440 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
441 1.5 yamt /* nothing */
442 1.5 yamt }
443 1.5 yamt return ORDER2SIZE(i);
444 1.5 yamt }
445 1.5 yamt
446 1.5 yamt static void *
447 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
448 1.5 yamt {
449 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
450 1.5 yamt vmem_t *vm = qc->qc_vmem;
451 1.5 yamt
452 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
453 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
454 1.5 yamt }
455 1.5 yamt
456 1.5 yamt static void
457 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
458 1.5 yamt {
459 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
460 1.5 yamt vmem_t *vm = qc->qc_vmem;
461 1.5 yamt
462 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
463 1.5 yamt }
464 1.5 yamt
465 1.5 yamt static void
466 1.5 yamt qc_init(vmem_t *vm, size_t qcache_max)
467 1.5 yamt {
468 1.22 yamt qcache_t *prevqc;
469 1.5 yamt struct pool_allocator *pa;
470 1.5 yamt int qcache_idx_max;
471 1.5 yamt int i;
472 1.5 yamt
473 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
474 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
475 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
476 1.5 yamt }
477 1.5 yamt vm->vm_qcache_max = qcache_max;
478 1.5 yamt pa = &vm->vm_qcache_allocator;
479 1.5 yamt memset(pa, 0, sizeof(*pa));
480 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
481 1.5 yamt pa->pa_free = qc_poolpage_free;
482 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
483 1.5 yamt
484 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
485 1.22 yamt prevqc = NULL;
486 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
487 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
488 1.5 yamt size_t size = i << vm->vm_quantum_shift;
489 1.5 yamt
490 1.5 yamt qc->qc_vmem = vm;
491 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
492 1.5 yamt vm->vm_name, size);
493 1.15 yamt pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
494 1.15 yamt 0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
495 1.22 yamt if (prevqc != NULL &&
496 1.22 yamt qc->qc_pool.pr_itemsperpage ==
497 1.22 yamt prevqc->qc_pool.pr_itemsperpage) {
498 1.22 yamt pool_destroy(&qc->qc_pool);
499 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
500 1.22 yamt }
501 1.5 yamt pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
502 1.22 yamt vm->vm_qcache[i - 1] = qc;
503 1.22 yamt prevqc = qc;
504 1.5 yamt }
505 1.5 yamt }
506 1.6 yamt
507 1.23 yamt static void
508 1.23 yamt qc_destroy(vmem_t *vm)
509 1.23 yamt {
510 1.23 yamt const qcache_t *prevqc;
511 1.23 yamt int i;
512 1.23 yamt int qcache_idx_max;
513 1.23 yamt
514 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
515 1.23 yamt prevqc = NULL;
516 1.23 yamt for (i = 1; i <= qcache_idx_max; i++) {
517 1.23 yamt qcache_t *qc = vm->vm_qcache[i - 1];
518 1.23 yamt
519 1.23 yamt if (prevqc == qc) {
520 1.23 yamt continue;
521 1.23 yamt }
522 1.23 yamt pool_cache_destroy(&qc->qc_cache);
523 1.23 yamt pool_destroy(&qc->qc_pool);
524 1.23 yamt prevqc = qc;
525 1.23 yamt }
526 1.23 yamt }
527 1.23 yamt
528 1.6 yamt static boolean_t
529 1.6 yamt qc_reap(vmem_t *vm)
530 1.6 yamt {
531 1.22 yamt const qcache_t *prevqc;
532 1.6 yamt int i;
533 1.6 yamt int qcache_idx_max;
534 1.6 yamt boolean_t didsomething = FALSE;
535 1.6 yamt
536 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
537 1.22 yamt prevqc = NULL;
538 1.6 yamt for (i = 1; i <= qcache_idx_max; i++) {
539 1.22 yamt qcache_t *qc = vm->vm_qcache[i - 1];
540 1.6 yamt
541 1.22 yamt if (prevqc == qc) {
542 1.22 yamt continue;
543 1.22 yamt }
544 1.6 yamt if (pool_reclaim(&qc->qc_pool) != 0) {
545 1.6 yamt didsomething = TRUE;
546 1.6 yamt }
547 1.22 yamt prevqc = qc;
548 1.6 yamt }
549 1.6 yamt
550 1.6 yamt return didsomething;
551 1.6 yamt }
552 1.5 yamt #endif /* defined(QCACHE) */
553 1.5 yamt
554 1.1 yamt #if defined(_KERNEL)
555 1.1 yamt static int
556 1.1 yamt vmem_init(void)
557 1.1 yamt {
558 1.1 yamt
559 1.1 yamt pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
560 1.1 yamt return 0;
561 1.1 yamt }
562 1.1 yamt #endif /* defined(_KERNEL) */
563 1.1 yamt
564 1.1 yamt static vmem_addr_t
565 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
566 1.1 yamt int spanbttype)
567 1.1 yamt {
568 1.1 yamt bt_t *btspan;
569 1.1 yamt bt_t *btfree;
570 1.1 yamt
571 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
572 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
573 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
574 1.1 yamt
575 1.1 yamt btspan = bt_alloc(vm, flags);
576 1.1 yamt if (btspan == NULL) {
577 1.1 yamt return VMEM_ADDR_NULL;
578 1.1 yamt }
579 1.1 yamt btfree = bt_alloc(vm, flags);
580 1.1 yamt if (btfree == NULL) {
581 1.1 yamt bt_free(vm, btspan);
582 1.1 yamt return VMEM_ADDR_NULL;
583 1.1 yamt }
584 1.1 yamt
585 1.1 yamt btspan->bt_type = spanbttype;
586 1.1 yamt btspan->bt_start = addr;
587 1.1 yamt btspan->bt_size = size;
588 1.1 yamt
589 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
590 1.1 yamt btfree->bt_start = addr;
591 1.1 yamt btfree->bt_size = size;
592 1.1 yamt
593 1.1 yamt VMEM_LOCK(vm);
594 1.1 yamt bt_insseg_tail(vm, btspan);
595 1.1 yamt bt_insseg(vm, btfree, btspan);
596 1.1 yamt bt_insfree(vm, btfree);
597 1.1 yamt VMEM_UNLOCK(vm);
598 1.1 yamt
599 1.1 yamt return addr;
600 1.1 yamt }
601 1.1 yamt
602 1.1 yamt static int
603 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
604 1.1 yamt {
605 1.1 yamt vmem_addr_t addr;
606 1.1 yamt
607 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
608 1.1 yamt
609 1.1 yamt if (vm->vm_allocfn == NULL) {
610 1.1 yamt return EINVAL;
611 1.1 yamt }
612 1.1 yamt
613 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
614 1.1 yamt if (addr == VMEM_ADDR_NULL) {
615 1.1 yamt return ENOMEM;
616 1.1 yamt }
617 1.1 yamt
618 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
619 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
620 1.1 yamt return ENOMEM;
621 1.1 yamt }
622 1.1 yamt
623 1.1 yamt return 0;
624 1.1 yamt }
625 1.1 yamt
626 1.1 yamt static int
627 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
628 1.1 yamt {
629 1.1 yamt bt_t *bt;
630 1.1 yamt int i;
631 1.1 yamt struct vmem_hashlist *newhashlist;
632 1.1 yamt struct vmem_hashlist *oldhashlist;
633 1.1 yamt size_t oldhashsize;
634 1.1 yamt
635 1.1 yamt KASSERT(newhashsize > 0);
636 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
637 1.1 yamt
638 1.1 yamt newhashlist =
639 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
640 1.1 yamt if (newhashlist == NULL) {
641 1.1 yamt return ENOMEM;
642 1.1 yamt }
643 1.1 yamt for (i = 0; i < newhashsize; i++) {
644 1.1 yamt LIST_INIT(&newhashlist[i]);
645 1.1 yamt }
646 1.1 yamt
647 1.1 yamt VMEM_LOCK(vm);
648 1.1 yamt oldhashlist = vm->vm_hashlist;
649 1.1 yamt oldhashsize = vm->vm_hashsize;
650 1.1 yamt vm->vm_hashlist = newhashlist;
651 1.1 yamt vm->vm_hashsize = newhashsize;
652 1.1 yamt if (oldhashlist == NULL) {
653 1.1 yamt VMEM_UNLOCK(vm);
654 1.1 yamt return 0;
655 1.1 yamt }
656 1.1 yamt for (i = 0; i < oldhashsize; i++) {
657 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
658 1.1 yamt bt_rembusy(vm, bt); /* XXX */
659 1.1 yamt bt_insbusy(vm, bt);
660 1.1 yamt }
661 1.1 yamt }
662 1.1 yamt VMEM_UNLOCK(vm);
663 1.1 yamt
664 1.1 yamt xfree(oldhashlist);
665 1.1 yamt
666 1.1 yamt return 0;
667 1.1 yamt }
668 1.1 yamt
669 1.10 yamt /*
670 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
671 1.10 yamt */
672 1.10 yamt
673 1.10 yamt static vmem_addr_t
674 1.10 yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
675 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
676 1.10 yamt {
677 1.10 yamt vmem_addr_t start;
678 1.10 yamt vmem_addr_t end;
679 1.10 yamt
680 1.10 yamt KASSERT(bt->bt_size >= size);
681 1.10 yamt
682 1.10 yamt /*
683 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
684 1.10 yamt * unsigned integer of the same size.
685 1.10 yamt */
686 1.10 yamt
687 1.10 yamt start = bt->bt_start;
688 1.10 yamt if (start < minaddr) {
689 1.10 yamt start = minaddr;
690 1.10 yamt }
691 1.10 yamt end = BT_END(bt);
692 1.10 yamt if (end > maxaddr - 1) {
693 1.10 yamt end = maxaddr - 1;
694 1.10 yamt }
695 1.10 yamt if (start >= end) {
696 1.10 yamt return VMEM_ADDR_NULL;
697 1.10 yamt }
698 1.19 yamt
699 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
700 1.10 yamt if (start < bt->bt_start) {
701 1.10 yamt start += align;
702 1.10 yamt }
703 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
704 1.10 yamt KASSERT(align < nocross);
705 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
706 1.10 yamt }
707 1.10 yamt if (start < end && end - start >= size) {
708 1.10 yamt KASSERT((start & (align - 1)) == phase);
709 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
710 1.10 yamt KASSERT(minaddr <= start);
711 1.10 yamt KASSERT(maxaddr == 0 || start + size <= maxaddr);
712 1.10 yamt KASSERT(bt->bt_start <= start);
713 1.10 yamt KASSERT(start + size <= BT_END(bt));
714 1.10 yamt return start;
715 1.10 yamt }
716 1.10 yamt return VMEM_ADDR_NULL;
717 1.10 yamt }
718 1.10 yamt
719 1.1 yamt /* ---- vmem API */
720 1.1 yamt
721 1.1 yamt /*
722 1.1 yamt * vmem_create: create an arena.
723 1.1 yamt *
724 1.1 yamt * => must not be called from interrupt context.
725 1.1 yamt */
726 1.1 yamt
727 1.1 yamt vmem_t *
728 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
729 1.1 yamt vmem_size_t quantum,
730 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
731 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
732 1.1 yamt vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
733 1.1 yamt {
734 1.1 yamt vmem_t *vm;
735 1.1 yamt int i;
736 1.1 yamt #if defined(_KERNEL)
737 1.1 yamt static ONCE_DECL(control);
738 1.1 yamt #endif /* defined(_KERNEL) */
739 1.1 yamt
740 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
741 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
742 1.1 yamt
743 1.1 yamt #if defined(_KERNEL)
744 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
745 1.1 yamt return NULL;
746 1.1 yamt }
747 1.1 yamt #endif /* defined(_KERNEL) */
748 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
749 1.1 yamt if (vm == NULL) {
750 1.1 yamt return NULL;
751 1.1 yamt }
752 1.1 yamt
753 1.1 yamt VMEM_LOCK_INIT(vm);
754 1.1 yamt vm->vm_name = name;
755 1.1 yamt vm->vm_quantum_mask = quantum - 1;
756 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
757 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
758 1.1 yamt vm->vm_allocfn = allocfn;
759 1.1 yamt vm->vm_freefn = freefn;
760 1.1 yamt vm->vm_source = source;
761 1.1 yamt vm->vm_nbusytag = 0;
762 1.5 yamt #if defined(QCACHE)
763 1.5 yamt qc_init(vm, qcache_max);
764 1.5 yamt #endif /* defined(QCACHE) */
765 1.1 yamt
766 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
767 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
768 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
769 1.1 yamt }
770 1.1 yamt vm->vm_hashlist = NULL;
771 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
772 1.1 yamt vmem_destroy(vm);
773 1.1 yamt return NULL;
774 1.1 yamt }
775 1.1 yamt
776 1.1 yamt if (size != 0) {
777 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
778 1.1 yamt vmem_destroy(vm);
779 1.1 yamt return NULL;
780 1.1 yamt }
781 1.1 yamt }
782 1.1 yamt
783 1.1 yamt return vm;
784 1.1 yamt }
785 1.1 yamt
786 1.1 yamt void
787 1.1 yamt vmem_destroy(vmem_t *vm)
788 1.1 yamt {
789 1.1 yamt
790 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
791 1.1 yamt
792 1.23 yamt #if defined(QCACHE)
793 1.23 yamt qc_destroy(vm);
794 1.23 yamt #endif /* defined(QCACHE) */
795 1.1 yamt if (vm->vm_hashlist != NULL) {
796 1.1 yamt int i;
797 1.1 yamt
798 1.1 yamt for (i = 0; i < vm->vm_hashsize; i++) {
799 1.1 yamt bt_t *bt;
800 1.1 yamt
801 1.1 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
802 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
803 1.1 yamt bt_free(vm, bt);
804 1.1 yamt }
805 1.1 yamt }
806 1.1 yamt xfree(vm->vm_hashlist);
807 1.1 yamt }
808 1.1 yamt xfree(vm);
809 1.1 yamt }
810 1.1 yamt
811 1.1 yamt vmem_size_t
812 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
813 1.1 yamt {
814 1.1 yamt
815 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
816 1.1 yamt }
817 1.1 yamt
818 1.1 yamt /*
819 1.1 yamt * vmem_alloc:
820 1.1 yamt *
821 1.1 yamt * => caller must ensure appropriate spl,
822 1.1 yamt * if the arena can be accessed from interrupt context.
823 1.1 yamt */
824 1.1 yamt
825 1.1 yamt vmem_addr_t
826 1.1 yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
827 1.1 yamt {
828 1.12 yamt const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
829 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
830 1.1 yamt
831 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
832 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
833 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
834 1.1 yamt
835 1.1 yamt KASSERT(size0 > 0);
836 1.1 yamt KASSERT(size > 0);
837 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
838 1.3 yamt if ((flags & VM_SLEEP) != 0) {
839 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
840 1.3 yamt }
841 1.1 yamt
842 1.5 yamt #if defined(QCACHE)
843 1.5 yamt if (size <= vm->vm_qcache_max) {
844 1.5 yamt int qidx = size >> vm->vm_quantum_shift;
845 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
846 1.5 yamt
847 1.5 yamt return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
848 1.5 yamt vmf_to_prf(flags));
849 1.5 yamt }
850 1.5 yamt #endif /* defined(QCACHE) */
851 1.5 yamt
852 1.10 yamt return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
853 1.10 yamt }
854 1.10 yamt
855 1.10 yamt vmem_addr_t
856 1.10 yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
857 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
858 1.10 yamt vm_flag_t flags)
859 1.10 yamt {
860 1.10 yamt struct vmem_freelist *list;
861 1.10 yamt struct vmem_freelist *first;
862 1.10 yamt struct vmem_freelist *end;
863 1.10 yamt bt_t *bt;
864 1.10 yamt bt_t *btnew;
865 1.10 yamt bt_t *btnew2;
866 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
867 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
868 1.10 yamt vmem_addr_t start;
869 1.10 yamt
870 1.10 yamt KASSERT(size0 > 0);
871 1.10 yamt KASSERT(size > 0);
872 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
873 1.10 yamt if ((flags & VM_SLEEP) != 0) {
874 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
875 1.10 yamt }
876 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
877 1.10 yamt KASSERT((align & (align - 1)) == 0);
878 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
879 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
880 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
881 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
882 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
883 1.10 yamt KASSERT(maxaddr == 0 || minaddr < maxaddr);
884 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
885 1.10 yamt
886 1.10 yamt if (align == 0) {
887 1.10 yamt align = vm->vm_quantum_mask + 1;
888 1.10 yamt }
889 1.1 yamt btnew = bt_alloc(vm, flags);
890 1.1 yamt if (btnew == NULL) {
891 1.1 yamt return VMEM_ADDR_NULL;
892 1.1 yamt }
893 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
894 1.10 yamt if (btnew2 == NULL) {
895 1.10 yamt bt_free(vm, btnew);
896 1.10 yamt return VMEM_ADDR_NULL;
897 1.10 yamt }
898 1.1 yamt
899 1.1 yamt retry_strat:
900 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
901 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
902 1.1 yamt retry:
903 1.1 yamt bt = NULL;
904 1.1 yamt VMEM_LOCK(vm);
905 1.2 yamt if (strat == VM_INSTANTFIT) {
906 1.2 yamt for (list = first; list < end; list++) {
907 1.2 yamt bt = LIST_FIRST(list);
908 1.2 yamt if (bt != NULL) {
909 1.10 yamt start = vmem_fit(bt, size, align, phase,
910 1.10 yamt nocross, minaddr, maxaddr);
911 1.10 yamt if (start != VMEM_ADDR_NULL) {
912 1.10 yamt goto gotit;
913 1.10 yamt }
914 1.2 yamt }
915 1.2 yamt }
916 1.2 yamt } else { /* VM_BESTFIT */
917 1.2 yamt for (list = first; list < end; list++) {
918 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
919 1.2 yamt if (bt->bt_size >= size) {
920 1.10 yamt start = vmem_fit(bt, size, align, phase,
921 1.10 yamt nocross, minaddr, maxaddr);
922 1.10 yamt if (start != VMEM_ADDR_NULL) {
923 1.10 yamt goto gotit;
924 1.10 yamt }
925 1.2 yamt }
926 1.1 yamt }
927 1.1 yamt }
928 1.1 yamt }
929 1.2 yamt VMEM_UNLOCK(vm);
930 1.1 yamt #if 1
931 1.2 yamt if (strat == VM_INSTANTFIT) {
932 1.2 yamt strat = VM_BESTFIT;
933 1.2 yamt goto retry_strat;
934 1.2 yamt }
935 1.1 yamt #endif
936 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
937 1.10 yamt nocross != 0 || minaddr != 0 || maxaddr != 0) {
938 1.10 yamt
939 1.10 yamt /*
940 1.10 yamt * XXX should try to import a region large enough to
941 1.10 yamt * satisfy restrictions?
942 1.10 yamt */
943 1.10 yamt
944 1.20 yamt goto fail;
945 1.10 yamt }
946 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
947 1.2 yamt goto retry;
948 1.1 yamt }
949 1.2 yamt /* XXX */
950 1.20 yamt fail:
951 1.20 yamt bt_free(vm, btnew);
952 1.20 yamt bt_free(vm, btnew2);
953 1.2 yamt return VMEM_ADDR_NULL;
954 1.2 yamt
955 1.2 yamt gotit:
956 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
957 1.1 yamt KASSERT(bt->bt_size >= size);
958 1.1 yamt bt_remfree(vm, bt);
959 1.10 yamt if (bt->bt_start != start) {
960 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
961 1.10 yamt btnew2->bt_start = bt->bt_start;
962 1.10 yamt btnew2->bt_size = start - bt->bt_start;
963 1.10 yamt bt->bt_start = start;
964 1.10 yamt bt->bt_size -= btnew2->bt_size;
965 1.10 yamt bt_insfree(vm, btnew2);
966 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
967 1.10 yamt btnew2 = NULL;
968 1.10 yamt }
969 1.10 yamt KASSERT(bt->bt_start == start);
970 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
971 1.1 yamt /* split */
972 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
973 1.1 yamt btnew->bt_start = bt->bt_start;
974 1.1 yamt btnew->bt_size = size;
975 1.1 yamt bt->bt_start = bt->bt_start + size;
976 1.1 yamt bt->bt_size -= size;
977 1.1 yamt bt_insfree(vm, bt);
978 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
979 1.1 yamt bt_insbusy(vm, btnew);
980 1.1 yamt VMEM_UNLOCK(vm);
981 1.1 yamt } else {
982 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
983 1.1 yamt bt_insbusy(vm, bt);
984 1.1 yamt VMEM_UNLOCK(vm);
985 1.1 yamt bt_free(vm, btnew);
986 1.1 yamt btnew = bt;
987 1.1 yamt }
988 1.10 yamt if (btnew2 != NULL) {
989 1.10 yamt bt_free(vm, btnew2);
990 1.10 yamt }
991 1.1 yamt KASSERT(btnew->bt_size >= size);
992 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
993 1.1 yamt
994 1.1 yamt return btnew->bt_start;
995 1.1 yamt }
996 1.1 yamt
997 1.1 yamt /*
998 1.1 yamt * vmem_free:
999 1.1 yamt *
1000 1.1 yamt * => caller must ensure appropriate spl,
1001 1.1 yamt * if the arena can be accessed from interrupt context.
1002 1.1 yamt */
1003 1.1 yamt
1004 1.1 yamt void
1005 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1006 1.1 yamt {
1007 1.1 yamt
1008 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
1009 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
1010 1.1 yamt KASSERT(size > 0);
1011 1.1 yamt
1012 1.5 yamt #if defined(QCACHE)
1013 1.5 yamt if (size <= vm->vm_qcache_max) {
1014 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1015 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1016 1.5 yamt
1017 1.5 yamt return pool_cache_put(&qc->qc_cache, (void *)addr);
1018 1.5 yamt }
1019 1.5 yamt #endif /* defined(QCACHE) */
1020 1.5 yamt
1021 1.10 yamt vmem_xfree(vm, addr, size);
1022 1.10 yamt }
1023 1.10 yamt
1024 1.10 yamt void
1025 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1026 1.10 yamt {
1027 1.10 yamt bt_t *bt;
1028 1.10 yamt bt_t *t;
1029 1.10 yamt
1030 1.10 yamt VMEM_ASSERT_UNLOCKED(vm);
1031 1.10 yamt KASSERT(addr != VMEM_ADDR_NULL);
1032 1.10 yamt KASSERT(size > 0);
1033 1.10 yamt
1034 1.1 yamt VMEM_LOCK(vm);
1035 1.1 yamt
1036 1.1 yamt bt = bt_lookupbusy(vm, addr);
1037 1.1 yamt KASSERT(bt != NULL);
1038 1.1 yamt KASSERT(bt->bt_start == addr);
1039 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1040 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1041 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1042 1.1 yamt bt_rembusy(vm, bt);
1043 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1044 1.1 yamt
1045 1.1 yamt /* coalesce */
1046 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1047 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1048 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
1049 1.1 yamt bt_remfree(vm, t);
1050 1.1 yamt bt_remseg(vm, t);
1051 1.1 yamt bt->bt_size += t->bt_size;
1052 1.1 yamt bt_free(vm, t);
1053 1.1 yamt }
1054 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1055 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1056 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
1057 1.1 yamt bt_remfree(vm, t);
1058 1.1 yamt bt_remseg(vm, t);
1059 1.1 yamt bt->bt_size += t->bt_size;
1060 1.1 yamt bt->bt_start = t->bt_start;
1061 1.1 yamt bt_free(vm, t);
1062 1.1 yamt }
1063 1.1 yamt
1064 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1065 1.1 yamt KASSERT(t != NULL);
1066 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1067 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1068 1.1 yamt t->bt_size == bt->bt_size) {
1069 1.1 yamt vmem_addr_t spanaddr;
1070 1.1 yamt vmem_size_t spansize;
1071 1.1 yamt
1072 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1073 1.1 yamt spanaddr = bt->bt_start;
1074 1.1 yamt spansize = bt->bt_size;
1075 1.1 yamt bt_remseg(vm, bt);
1076 1.1 yamt bt_free(vm, bt);
1077 1.1 yamt bt_remseg(vm, t);
1078 1.1 yamt bt_free(vm, t);
1079 1.1 yamt VMEM_UNLOCK(vm);
1080 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1081 1.1 yamt } else {
1082 1.1 yamt bt_insfree(vm, bt);
1083 1.1 yamt VMEM_UNLOCK(vm);
1084 1.1 yamt }
1085 1.1 yamt }
1086 1.1 yamt
1087 1.1 yamt /*
1088 1.1 yamt * vmem_add:
1089 1.1 yamt *
1090 1.1 yamt * => caller must ensure appropriate spl,
1091 1.1 yamt * if the arena can be accessed from interrupt context.
1092 1.1 yamt */
1093 1.1 yamt
1094 1.1 yamt vmem_addr_t
1095 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1096 1.1 yamt {
1097 1.1 yamt
1098 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1099 1.1 yamt }
1100 1.1 yamt
1101 1.6 yamt /*
1102 1.6 yamt * vmem_reap: reap unused resources.
1103 1.6 yamt *
1104 1.6 yamt * => return TRUE if we successfully reaped something.
1105 1.6 yamt */
1106 1.6 yamt
1107 1.6 yamt boolean_t
1108 1.6 yamt vmem_reap(vmem_t *vm)
1109 1.6 yamt {
1110 1.6 yamt boolean_t didsomething = FALSE;
1111 1.6 yamt
1112 1.6 yamt VMEM_ASSERT_UNLOCKED(vm);
1113 1.6 yamt
1114 1.6 yamt #if defined(QCACHE)
1115 1.6 yamt didsomething = qc_reap(vm);
1116 1.6 yamt #endif /* defined(QCACHE) */
1117 1.6 yamt return didsomething;
1118 1.6 yamt }
1119 1.6 yamt
1120 1.1 yamt /* ---- debug */
1121 1.1 yamt
1122 1.1 yamt #if defined(VMEM_DEBUG)
1123 1.1 yamt
1124 1.1 yamt #if !defined(_KERNEL)
1125 1.1 yamt #include <stdio.h>
1126 1.1 yamt #endif /* !defined(_KERNEL) */
1127 1.1 yamt
1128 1.1 yamt void bt_dump(const bt_t *);
1129 1.1 yamt
1130 1.1 yamt void
1131 1.1 yamt bt_dump(const bt_t *bt)
1132 1.1 yamt {
1133 1.1 yamt
1134 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1135 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1136 1.1 yamt bt->bt_type);
1137 1.1 yamt }
1138 1.1 yamt
1139 1.1 yamt void
1140 1.1 yamt vmem_dump(const vmem_t *vm)
1141 1.1 yamt {
1142 1.1 yamt const bt_t *bt;
1143 1.1 yamt int i;
1144 1.1 yamt
1145 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
1146 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1147 1.1 yamt bt_dump(bt);
1148 1.1 yamt }
1149 1.1 yamt
1150 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1151 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1152 1.1 yamt
1153 1.1 yamt if (LIST_EMPTY(fl)) {
1154 1.1 yamt continue;
1155 1.1 yamt }
1156 1.1 yamt
1157 1.1 yamt printf("freelist[%d]\n", i);
1158 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1159 1.1 yamt bt_dump(bt);
1160 1.1 yamt if (bt->bt_size) {
1161 1.1 yamt }
1162 1.1 yamt }
1163 1.1 yamt }
1164 1.1 yamt }
1165 1.1 yamt
1166 1.1 yamt #if !defined(_KERNEL)
1167 1.1 yamt
1168 1.1 yamt #include <stdlib.h>
1169 1.1 yamt
1170 1.1 yamt int
1171 1.1 yamt main()
1172 1.1 yamt {
1173 1.1 yamt vmem_t *vm;
1174 1.1 yamt vmem_addr_t p;
1175 1.1 yamt struct reg {
1176 1.1 yamt vmem_addr_t p;
1177 1.1 yamt vmem_size_t sz;
1178 1.10 yamt boolean_t x;
1179 1.1 yamt } *reg = NULL;
1180 1.1 yamt int nreg = 0;
1181 1.1 yamt int nalloc = 0;
1182 1.1 yamt int nfree = 0;
1183 1.1 yamt vmem_size_t total = 0;
1184 1.1 yamt #if 1
1185 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1186 1.1 yamt #else
1187 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1188 1.1 yamt #endif
1189 1.1 yamt
1190 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1191 1.1 yamt NULL, NULL, NULL, 0, VM_NOSLEEP);
1192 1.1 yamt if (vm == NULL) {
1193 1.1 yamt printf("vmem_create\n");
1194 1.1 yamt exit(EXIT_FAILURE);
1195 1.1 yamt }
1196 1.1 yamt vmem_dump(vm);
1197 1.1 yamt
1198 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1199 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1200 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1201 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1202 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1203 1.1 yamt vmem_dump(vm);
1204 1.1 yamt for (;;) {
1205 1.1 yamt struct reg *r;
1206 1.10 yamt int t = rand() % 100;
1207 1.1 yamt
1208 1.10 yamt if (t > 45) {
1209 1.10 yamt /* alloc */
1210 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1211 1.10 yamt boolean_t x;
1212 1.10 yamt vmem_size_t align, phase, nocross;
1213 1.10 yamt vmem_addr_t minaddr, maxaddr;
1214 1.10 yamt
1215 1.10 yamt if (t > 70) {
1216 1.10 yamt x = TRUE;
1217 1.10 yamt /* XXX */
1218 1.10 yamt align = 1 << (rand() % 15);
1219 1.10 yamt phase = rand() % 65536;
1220 1.10 yamt nocross = 1 << (rand() % 15);
1221 1.10 yamt if (align <= phase) {
1222 1.10 yamt phase = 0;
1223 1.10 yamt }
1224 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1225 1.19 yamt nocross)) {
1226 1.10 yamt nocross = 0;
1227 1.10 yamt }
1228 1.10 yamt minaddr = rand() % 50000;
1229 1.10 yamt maxaddr = rand() % 70000;
1230 1.10 yamt if (minaddr > maxaddr) {
1231 1.10 yamt minaddr = 0;
1232 1.10 yamt maxaddr = 0;
1233 1.10 yamt }
1234 1.10 yamt printf("=== xalloc %" PRIu64
1235 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1236 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1237 1.10 yamt ", max=%" PRIu64 "\n",
1238 1.10 yamt (uint64_t)sz,
1239 1.10 yamt (uint64_t)align,
1240 1.10 yamt (uint64_t)phase,
1241 1.10 yamt (uint64_t)nocross,
1242 1.10 yamt (uint64_t)minaddr,
1243 1.10 yamt (uint64_t)maxaddr);
1244 1.10 yamt p = vmem_xalloc(vm, sz, align, phase, nocross,
1245 1.10 yamt minaddr, maxaddr, strat|VM_SLEEP);
1246 1.10 yamt } else {
1247 1.10 yamt x = FALSE;
1248 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1249 1.10 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1250 1.10 yamt }
1251 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1252 1.1 yamt vmem_dump(vm);
1253 1.1 yamt if (p == VMEM_ADDR_NULL) {
1254 1.10 yamt if (x) {
1255 1.10 yamt continue;
1256 1.10 yamt }
1257 1.1 yamt break;
1258 1.1 yamt }
1259 1.1 yamt nreg++;
1260 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1261 1.1 yamt r = ®[nreg - 1];
1262 1.1 yamt r->p = p;
1263 1.1 yamt r->sz = sz;
1264 1.10 yamt r->x = x;
1265 1.1 yamt total += sz;
1266 1.1 yamt nalloc++;
1267 1.1 yamt } else if (nreg != 0) {
1268 1.10 yamt /* free */
1269 1.1 yamt r = ®[rand() % nreg];
1270 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1271 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1272 1.10 yamt if (r->x) {
1273 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1274 1.10 yamt } else {
1275 1.10 yamt vmem_free(vm, r->p, r->sz);
1276 1.10 yamt }
1277 1.1 yamt total -= r->sz;
1278 1.1 yamt vmem_dump(vm);
1279 1.1 yamt *r = reg[nreg - 1];
1280 1.1 yamt nreg--;
1281 1.1 yamt nfree++;
1282 1.1 yamt }
1283 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1284 1.1 yamt }
1285 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1286 1.1 yamt (uint64_t)total, nalloc, nfree);
1287 1.1 yamt exit(EXIT_SUCCESS);
1288 1.1 yamt }
1289 1.1 yamt #endif /* !defined(_KERNEL) */
1290 1.1 yamt #endif /* defined(VMEM_DEBUG) */
1291