Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.24.6.3
      1  1.24.6.3    yamt /*	$NetBSD: subr_vmem.c,v 1.24.6.3 2007/03/24 14:56:04 yamt Exp $	*/
      2       1.1    yamt 
      3       1.1    yamt /*-
      4       1.1    yamt  * Copyright (c)2006 YAMAMOTO Takashi,
      5       1.1    yamt  * All rights reserved.
      6       1.1    yamt  *
      7       1.1    yamt  * Redistribution and use in source and binary forms, with or without
      8       1.1    yamt  * modification, are permitted provided that the following conditions
      9       1.1    yamt  * are met:
     10       1.1    yamt  * 1. Redistributions of source code must retain the above copyright
     11       1.1    yamt  *    notice, this list of conditions and the following disclaimer.
     12       1.1    yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1    yamt  *    notice, this list of conditions and the following disclaimer in the
     14       1.1    yamt  *    documentation and/or other materials provided with the distribution.
     15       1.1    yamt  *
     16       1.1    yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17       1.1    yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18       1.1    yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19       1.1    yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20       1.1    yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21       1.1    yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22       1.1    yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23       1.1    yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24       1.1    yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25       1.1    yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26       1.1    yamt  * SUCH DAMAGE.
     27       1.1    yamt  */
     28       1.1    yamt 
     29       1.1    yamt /*
     30       1.1    yamt  * reference:
     31       1.1    yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32       1.1    yamt  *	to Many CPUs and Arbitrary Resources
     33       1.1    yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34      1.18    yamt  *
     35      1.18    yamt  * todo:
     36      1.18    yamt  * -	decide how to import segments for vmem_xalloc.
     37      1.18    yamt  * -	don't rely on malloc(9).
     38       1.1    yamt  */
     39       1.1    yamt 
     40       1.1    yamt #include <sys/cdefs.h>
     41  1.24.6.3    yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.24.6.3 2007/03/24 14:56:04 yamt Exp $");
     42       1.1    yamt 
     43       1.1    yamt #define	VMEM_DEBUG
     44       1.5    yamt #if defined(_KERNEL)
     45       1.5    yamt #define	QCACHE
     46       1.5    yamt #endif /* defined(_KERNEL) */
     47       1.1    yamt 
     48       1.1    yamt #include <sys/param.h>
     49       1.1    yamt #include <sys/hash.h>
     50       1.1    yamt #include <sys/queue.h>
     51       1.1    yamt 
     52       1.1    yamt #if defined(_KERNEL)
     53       1.1    yamt #include <sys/systm.h>
     54       1.1    yamt #include <sys/lock.h>
     55       1.1    yamt #include <sys/malloc.h>
     56       1.1    yamt #include <sys/once.h>
     57       1.1    yamt #include <sys/pool.h>
     58       1.3    yamt #include <sys/proc.h>
     59       1.1    yamt #include <sys/vmem.h>
     60       1.1    yamt #else /* defined(_KERNEL) */
     61       1.1    yamt #include "../sys/vmem.h"
     62       1.1    yamt #endif /* defined(_KERNEL) */
     63       1.1    yamt 
     64       1.1    yamt #if defined(_KERNEL)
     65       1.1    yamt #define	SIMPLELOCK_DECL(name)	struct simplelock name
     66       1.1    yamt #else /* defined(_KERNEL) */
     67       1.1    yamt #include <errno.h>
     68       1.1    yamt #include <assert.h>
     69       1.1    yamt #include <stdlib.h>
     70       1.1    yamt 
     71       1.1    yamt #define	KASSERT(a)		assert(a)
     72       1.1    yamt #define	SIMPLELOCK_DECL(name)	/* nothing */
     73       1.1    yamt #define	LOCK_ASSERT(a)		/* nothing */
     74       1.1    yamt #define	simple_lock_init(a)	/* nothing */
     75       1.1    yamt #define	simple_lock(a)		/* nothing */
     76       1.1    yamt #define	simple_unlock(a)	/* nothing */
     77       1.3    yamt #define	ASSERT_SLEEPABLE(lk, msg) /* nothing */
     78       1.1    yamt #endif /* defined(_KERNEL) */
     79       1.1    yamt 
     80       1.1    yamt struct vmem;
     81       1.1    yamt struct vmem_btag;
     82       1.1    yamt 
     83       1.1    yamt #if defined(VMEM_DEBUG)
     84       1.1    yamt void vmem_dump(const vmem_t *);
     85       1.1    yamt #endif /* defined(VMEM_DEBUG) */
     86       1.1    yamt 
     87       1.4    yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     88       1.1    yamt #define	VMEM_HASHSIZE_INIT	4096	/* XXX */
     89       1.1    yamt 
     90       1.1    yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
     91       1.1    yamt 
     92       1.1    yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
     93       1.1    yamt LIST_HEAD(vmem_freelist, vmem_btag);
     94       1.1    yamt LIST_HEAD(vmem_hashlist, vmem_btag);
     95       1.1    yamt 
     96       1.5    yamt #if defined(QCACHE)
     97       1.5    yamt #define	VMEM_QCACHE_IDX_MAX	32
     98       1.5    yamt 
     99       1.5    yamt #define	QC_NAME_MAX	16
    100       1.5    yamt 
    101       1.5    yamt struct qcache {
    102       1.5    yamt 	struct pool qc_pool;
    103       1.5    yamt 	struct pool_cache qc_cache;
    104       1.5    yamt 	vmem_t *qc_vmem;
    105       1.5    yamt 	char qc_name[QC_NAME_MAX];
    106       1.5    yamt };
    107       1.5    yamt typedef struct qcache qcache_t;
    108       1.5    yamt #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool))
    109       1.5    yamt #endif /* defined(QCACHE) */
    110       1.5    yamt 
    111       1.1    yamt /* vmem arena */
    112       1.1    yamt struct vmem {
    113       1.1    yamt 	SIMPLELOCK_DECL(vm_lock);
    114       1.1    yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    115       1.1    yamt 	    vm_flag_t);
    116       1.1    yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    117       1.1    yamt 	vmem_t *vm_source;
    118       1.1    yamt 	struct vmem_seglist vm_seglist;
    119       1.1    yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    120       1.1    yamt 	size_t vm_hashsize;
    121       1.1    yamt 	size_t vm_nbusytag;
    122       1.1    yamt 	struct vmem_hashlist *vm_hashlist;
    123       1.1    yamt 	size_t vm_quantum_mask;
    124       1.1    yamt 	int vm_quantum_shift;
    125       1.1    yamt 	const char *vm_name;
    126       1.5    yamt 
    127       1.5    yamt #if defined(QCACHE)
    128       1.5    yamt 	/* quantum cache */
    129       1.5    yamt 	size_t vm_qcache_max;
    130       1.5    yamt 	struct pool_allocator vm_qcache_allocator;
    131      1.22    yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    132      1.22    yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    133       1.5    yamt #endif /* defined(QCACHE) */
    134       1.1    yamt };
    135       1.1    yamt 
    136       1.1    yamt #define	VMEM_LOCK(vm)	simple_lock(&vm->vm_lock)
    137       1.1    yamt #define	VMEM_UNLOCK(vm)	simple_unlock(&vm->vm_lock)
    138       1.1    yamt #define	VMEM_LOCK_INIT(vm)	simple_lock_init(&vm->vm_lock);
    139       1.1    yamt #define	VMEM_ASSERT_LOCKED(vm) \
    140       1.1    yamt 	LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
    141       1.1    yamt #define	VMEM_ASSERT_UNLOCKED(vm) \
    142       1.1    yamt 	LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
    143       1.1    yamt 
    144       1.1    yamt /* boundary tag */
    145       1.1    yamt struct vmem_btag {
    146       1.1    yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    147       1.1    yamt 	union {
    148       1.1    yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    149       1.1    yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    150       1.1    yamt 	} bt_u;
    151       1.1    yamt #define	bt_hashlist	bt_u.u_hashlist
    152       1.1    yamt #define	bt_freelist	bt_u.u_freelist
    153       1.1    yamt 	vmem_addr_t bt_start;
    154       1.1    yamt 	vmem_size_t bt_size;
    155       1.1    yamt 	int bt_type;
    156       1.1    yamt };
    157       1.1    yamt 
    158       1.1    yamt #define	BT_TYPE_SPAN		1
    159       1.1    yamt #define	BT_TYPE_SPAN_STATIC	2
    160       1.1    yamt #define	BT_TYPE_FREE		3
    161       1.1    yamt #define	BT_TYPE_BUSY		4
    162       1.1    yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    163       1.1    yamt 
    164       1.1    yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    165       1.1    yamt 
    166       1.1    yamt typedef struct vmem_btag bt_t;
    167       1.1    yamt 
    168       1.1    yamt /* ---- misc */
    169       1.1    yamt 
    170      1.19    yamt #define	VMEM_ALIGNUP(addr, align) \
    171      1.19    yamt 	(-(-(addr) & -(align)))
    172      1.19    yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    173      1.19    yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    174      1.19    yamt 
    175       1.4    yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    176       1.4    yamt 
    177       1.1    yamt static int
    178       1.1    yamt calc_order(vmem_size_t size)
    179       1.1    yamt {
    180       1.4    yamt 	vmem_size_t target;
    181       1.1    yamt 	int i;
    182       1.1    yamt 
    183       1.1    yamt 	KASSERT(size != 0);
    184       1.1    yamt 
    185       1.1    yamt 	i = 0;
    186       1.4    yamt 	target = size >> 1;
    187       1.4    yamt 	while (ORDER2SIZE(i) <= target) {
    188       1.1    yamt 		i++;
    189       1.1    yamt 	}
    190       1.1    yamt 
    191       1.4    yamt 	KASSERT(ORDER2SIZE(i) <= size);
    192       1.4    yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    193       1.1    yamt 
    194       1.1    yamt 	return i;
    195       1.1    yamt }
    196       1.1    yamt 
    197       1.1    yamt #if defined(_KERNEL)
    198       1.1    yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    199       1.1    yamt #endif /* defined(_KERNEL) */
    200       1.1    yamt 
    201       1.1    yamt static void *
    202       1.1    yamt xmalloc(size_t sz, vm_flag_t flags)
    203       1.1    yamt {
    204       1.1    yamt 
    205       1.1    yamt #if defined(_KERNEL)
    206       1.1    yamt 	return malloc(sz, M_VMEM,
    207       1.1    yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    208       1.1    yamt #else /* defined(_KERNEL) */
    209       1.1    yamt 	return malloc(sz);
    210       1.1    yamt #endif /* defined(_KERNEL) */
    211       1.1    yamt }
    212       1.1    yamt 
    213       1.1    yamt static void
    214       1.1    yamt xfree(void *p)
    215       1.1    yamt {
    216       1.1    yamt 
    217       1.1    yamt #if defined(_KERNEL)
    218       1.1    yamt 	return free(p, M_VMEM);
    219       1.1    yamt #else /* defined(_KERNEL) */
    220       1.1    yamt 	return free(p);
    221       1.1    yamt #endif /* defined(_KERNEL) */
    222       1.1    yamt }
    223       1.1    yamt 
    224       1.1    yamt /* ---- boundary tag */
    225       1.1    yamt 
    226       1.1    yamt #if defined(_KERNEL)
    227       1.1    yamt static struct pool_cache bt_poolcache;
    228  1.24.6.3    yamt static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL, IPL_VM);
    229       1.1    yamt #endif /* defined(_KERNEL) */
    230       1.1    yamt 
    231       1.1    yamt static bt_t *
    232      1.17    yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    233       1.1    yamt {
    234       1.1    yamt 	bt_t *bt;
    235       1.1    yamt 
    236       1.1    yamt #if defined(_KERNEL)
    237      1.21    yamt 	int s;
    238      1.21    yamt 
    239       1.1    yamt 	/* XXX bootstrap */
    240      1.21    yamt 	s = splvm();
    241       1.1    yamt 	bt = pool_cache_get(&bt_poolcache,
    242       1.1    yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    243      1.21    yamt 	splx(s);
    244       1.1    yamt #else /* defined(_KERNEL) */
    245       1.1    yamt 	bt = malloc(sizeof *bt);
    246       1.1    yamt #endif /* defined(_KERNEL) */
    247       1.1    yamt 
    248       1.1    yamt 	return bt;
    249       1.1    yamt }
    250       1.1    yamt 
    251       1.1    yamt static void
    252      1.17    yamt bt_free(vmem_t *vm, bt_t *bt)
    253       1.1    yamt {
    254       1.1    yamt 
    255       1.1    yamt #if defined(_KERNEL)
    256      1.21    yamt 	int s;
    257      1.21    yamt 
    258       1.1    yamt 	/* XXX bootstrap */
    259      1.21    yamt 	s = splvm();
    260       1.1    yamt 	pool_cache_put(&bt_poolcache, bt);
    261      1.21    yamt 	splx(s);
    262       1.1    yamt #else /* defined(_KERNEL) */
    263       1.1    yamt 	free(bt);
    264       1.1    yamt #endif /* defined(_KERNEL) */
    265       1.1    yamt }
    266       1.1    yamt 
    267       1.1    yamt /*
    268       1.1    yamt  * freelist[0] ... [1, 1]
    269       1.1    yamt  * freelist[1] ... [2, 3]
    270       1.1    yamt  * freelist[2] ... [4, 7]
    271       1.1    yamt  * freelist[3] ... [8, 15]
    272       1.1    yamt  *  :
    273       1.1    yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    274       1.1    yamt  *  :
    275       1.1    yamt  */
    276       1.1    yamt 
    277       1.1    yamt static struct vmem_freelist *
    278       1.1    yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    279       1.1    yamt {
    280       1.1    yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    281       1.1    yamt 	int idx;
    282       1.1    yamt 
    283       1.1    yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    284       1.1    yamt 	KASSERT(size != 0);
    285       1.1    yamt 
    286       1.1    yamt 	idx = calc_order(qsize);
    287       1.1    yamt 	KASSERT(idx >= 0);
    288       1.1    yamt 	KASSERT(idx < VMEM_MAXORDER);
    289       1.1    yamt 
    290       1.1    yamt 	return &vm->vm_freelist[idx];
    291       1.1    yamt }
    292       1.1    yamt 
    293       1.1    yamt static struct vmem_freelist *
    294       1.1    yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    295       1.1    yamt {
    296       1.1    yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    297       1.1    yamt 	int idx;
    298       1.1    yamt 
    299       1.1    yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    300       1.1    yamt 	KASSERT(size != 0);
    301       1.1    yamt 
    302       1.1    yamt 	idx = calc_order(qsize);
    303       1.4    yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    304       1.1    yamt 		idx++;
    305       1.1    yamt 		/* check too large request? */
    306       1.1    yamt 	}
    307       1.1    yamt 	KASSERT(idx >= 0);
    308       1.1    yamt 	KASSERT(idx < VMEM_MAXORDER);
    309       1.1    yamt 
    310       1.1    yamt 	return &vm->vm_freelist[idx];
    311       1.1    yamt }
    312       1.1    yamt 
    313       1.1    yamt /* ---- boundary tag hash */
    314       1.1    yamt 
    315       1.1    yamt static struct vmem_hashlist *
    316       1.1    yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    317       1.1    yamt {
    318       1.1    yamt 	struct vmem_hashlist *list;
    319       1.1    yamt 	unsigned int hash;
    320       1.1    yamt 
    321       1.1    yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    322       1.1    yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    323       1.1    yamt 
    324       1.1    yamt 	return list;
    325       1.1    yamt }
    326       1.1    yamt 
    327       1.1    yamt static bt_t *
    328       1.1    yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    329       1.1    yamt {
    330       1.1    yamt 	struct vmem_hashlist *list;
    331       1.1    yamt 	bt_t *bt;
    332       1.1    yamt 
    333       1.1    yamt 	list = bt_hashhead(vm, addr);
    334       1.1    yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    335       1.1    yamt 		if (bt->bt_start == addr) {
    336       1.1    yamt 			break;
    337       1.1    yamt 		}
    338       1.1    yamt 	}
    339       1.1    yamt 
    340       1.1    yamt 	return bt;
    341       1.1    yamt }
    342       1.1    yamt 
    343       1.1    yamt static void
    344       1.1    yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    345       1.1    yamt {
    346       1.1    yamt 
    347       1.1    yamt 	KASSERT(vm->vm_nbusytag > 0);
    348       1.1    yamt 	vm->vm_nbusytag--;
    349       1.1    yamt 	LIST_REMOVE(bt, bt_hashlist);
    350       1.1    yamt }
    351       1.1    yamt 
    352       1.1    yamt static void
    353       1.1    yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    354       1.1    yamt {
    355       1.1    yamt 	struct vmem_hashlist *list;
    356       1.1    yamt 
    357       1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    358       1.1    yamt 
    359       1.1    yamt 	list = bt_hashhead(vm, bt->bt_start);
    360       1.1    yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    361       1.1    yamt 	vm->vm_nbusytag++;
    362       1.1    yamt }
    363       1.1    yamt 
    364       1.1    yamt /* ---- boundary tag list */
    365       1.1    yamt 
    366       1.1    yamt static void
    367       1.1    yamt bt_remseg(vmem_t *vm, bt_t *bt)
    368       1.1    yamt {
    369       1.1    yamt 
    370       1.1    yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    371       1.1    yamt }
    372       1.1    yamt 
    373       1.1    yamt static void
    374       1.1    yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    375       1.1    yamt {
    376       1.1    yamt 
    377       1.1    yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    378       1.1    yamt }
    379       1.1    yamt 
    380       1.1    yamt static void
    381       1.1    yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    382       1.1    yamt {
    383       1.1    yamt 
    384       1.1    yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    385       1.1    yamt }
    386       1.1    yamt 
    387       1.1    yamt static void
    388      1.17    yamt bt_remfree(vmem_t *vm, bt_t *bt)
    389       1.1    yamt {
    390       1.1    yamt 
    391       1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    392       1.1    yamt 
    393       1.1    yamt 	LIST_REMOVE(bt, bt_freelist);
    394       1.1    yamt }
    395       1.1    yamt 
    396       1.1    yamt static void
    397       1.1    yamt bt_insfree(vmem_t *vm, bt_t *bt)
    398       1.1    yamt {
    399       1.1    yamt 	struct vmem_freelist *list;
    400       1.1    yamt 
    401       1.1    yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    402       1.1    yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    403       1.1    yamt }
    404       1.1    yamt 
    405       1.1    yamt /* ---- vmem internal functions */
    406       1.1    yamt 
    407       1.5    yamt #if defined(QCACHE)
    408       1.5    yamt static inline vm_flag_t
    409       1.5    yamt prf_to_vmf(int prflags)
    410       1.5    yamt {
    411       1.5    yamt 	vm_flag_t vmflags;
    412       1.5    yamt 
    413       1.5    yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    414       1.5    yamt 	if ((prflags & PR_WAITOK) != 0) {
    415       1.5    yamt 		vmflags = VM_SLEEP;
    416       1.5    yamt 	} else {
    417       1.5    yamt 		vmflags = VM_NOSLEEP;
    418       1.5    yamt 	}
    419       1.5    yamt 	return vmflags;
    420       1.5    yamt }
    421       1.5    yamt 
    422       1.5    yamt static inline int
    423       1.5    yamt vmf_to_prf(vm_flag_t vmflags)
    424       1.5    yamt {
    425       1.5    yamt 	int prflags;
    426       1.5    yamt 
    427       1.7    yamt 	if ((vmflags & VM_SLEEP) != 0) {
    428       1.5    yamt 		prflags = PR_WAITOK;
    429       1.7    yamt 	} else {
    430       1.5    yamt 		prflags = PR_NOWAIT;
    431       1.5    yamt 	}
    432       1.5    yamt 	return prflags;
    433       1.5    yamt }
    434       1.5    yamt 
    435       1.5    yamt static size_t
    436       1.5    yamt qc_poolpage_size(size_t qcache_max)
    437       1.5    yamt {
    438       1.5    yamt 	int i;
    439       1.5    yamt 
    440       1.5    yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    441       1.5    yamt 		/* nothing */
    442       1.5    yamt 	}
    443       1.5    yamt 	return ORDER2SIZE(i);
    444       1.5    yamt }
    445       1.5    yamt 
    446       1.5    yamt static void *
    447       1.5    yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    448       1.5    yamt {
    449       1.5    yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    450       1.5    yamt 	vmem_t *vm = qc->qc_vmem;
    451       1.5    yamt 
    452       1.5    yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    453       1.5    yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    454       1.5    yamt }
    455       1.5    yamt 
    456       1.5    yamt static void
    457       1.5    yamt qc_poolpage_free(struct pool *pool, void *addr)
    458       1.5    yamt {
    459       1.5    yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    460       1.5    yamt 	vmem_t *vm = qc->qc_vmem;
    461       1.5    yamt 
    462       1.5    yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    463       1.5    yamt }
    464       1.5    yamt 
    465       1.5    yamt static void
    466       1.5    yamt qc_init(vmem_t *vm, size_t qcache_max)
    467       1.5    yamt {
    468      1.22    yamt 	qcache_t *prevqc;
    469       1.5    yamt 	struct pool_allocator *pa;
    470       1.5    yamt 	int qcache_idx_max;
    471       1.5    yamt 	int i;
    472       1.5    yamt 
    473       1.5    yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    474       1.5    yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    475       1.5    yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    476       1.5    yamt 	}
    477       1.5    yamt 	vm->vm_qcache_max = qcache_max;
    478       1.5    yamt 	pa = &vm->vm_qcache_allocator;
    479       1.5    yamt 	memset(pa, 0, sizeof(*pa));
    480       1.5    yamt 	pa->pa_alloc = qc_poolpage_alloc;
    481       1.5    yamt 	pa->pa_free = qc_poolpage_free;
    482       1.5    yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    483       1.5    yamt 
    484       1.5    yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    485      1.22    yamt 	prevqc = NULL;
    486      1.22    yamt 	for (i = qcache_idx_max; i > 0; i--) {
    487      1.22    yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    488       1.5    yamt 		size_t size = i << vm->vm_quantum_shift;
    489       1.5    yamt 
    490       1.5    yamt 		qc->qc_vmem = vm;
    491       1.8  martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    492       1.5    yamt 		    vm->vm_name, size);
    493      1.15    yamt 		pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
    494  1.24.6.3    yamt 		    0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa,
    495  1.24.6.3    yamt 		    IPL_NONE);
    496      1.22    yamt 		if (prevqc != NULL &&
    497      1.22    yamt 		    qc->qc_pool.pr_itemsperpage ==
    498      1.22    yamt 		    prevqc->qc_pool.pr_itemsperpage) {
    499      1.22    yamt 			pool_destroy(&qc->qc_pool);
    500      1.22    yamt 			vm->vm_qcache[i - 1] = prevqc;
    501  1.24.6.2   rmind 			continue;
    502      1.22    yamt 		}
    503       1.5    yamt 		pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
    504      1.22    yamt 		vm->vm_qcache[i - 1] = qc;
    505      1.22    yamt 		prevqc = qc;
    506       1.5    yamt 	}
    507       1.5    yamt }
    508       1.6    yamt 
    509      1.23    yamt static void
    510      1.23    yamt qc_destroy(vmem_t *vm)
    511      1.23    yamt {
    512      1.23    yamt 	const qcache_t *prevqc;
    513      1.23    yamt 	int i;
    514      1.23    yamt 	int qcache_idx_max;
    515      1.23    yamt 
    516      1.23    yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    517      1.23    yamt 	prevqc = NULL;
    518      1.24    yamt 	for (i = 0; i < qcache_idx_max; i++) {
    519      1.24    yamt 		qcache_t *qc = vm->vm_qcache[i];
    520      1.23    yamt 
    521      1.23    yamt 		if (prevqc == qc) {
    522      1.23    yamt 			continue;
    523      1.23    yamt 		}
    524      1.23    yamt 		pool_cache_destroy(&qc->qc_cache);
    525      1.23    yamt 		pool_destroy(&qc->qc_pool);
    526      1.23    yamt 		prevqc = qc;
    527      1.23    yamt 	}
    528      1.23    yamt }
    529      1.23    yamt 
    530  1.24.6.1    yamt static bool
    531       1.6    yamt qc_reap(vmem_t *vm)
    532       1.6    yamt {
    533      1.22    yamt 	const qcache_t *prevqc;
    534       1.6    yamt 	int i;
    535       1.6    yamt 	int qcache_idx_max;
    536  1.24.6.1    yamt 	bool didsomething = false;
    537       1.6    yamt 
    538       1.6    yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    539      1.22    yamt 	prevqc = NULL;
    540      1.24    yamt 	for (i = 0; i < qcache_idx_max; i++) {
    541      1.24    yamt 		qcache_t *qc = vm->vm_qcache[i];
    542       1.6    yamt 
    543      1.22    yamt 		if (prevqc == qc) {
    544      1.22    yamt 			continue;
    545      1.22    yamt 		}
    546       1.6    yamt 		if (pool_reclaim(&qc->qc_pool) != 0) {
    547  1.24.6.1    yamt 			didsomething = true;
    548       1.6    yamt 		}
    549      1.22    yamt 		prevqc = qc;
    550       1.6    yamt 	}
    551       1.6    yamt 
    552       1.6    yamt 	return didsomething;
    553       1.6    yamt }
    554       1.5    yamt #endif /* defined(QCACHE) */
    555       1.5    yamt 
    556       1.1    yamt #if defined(_KERNEL)
    557       1.1    yamt static int
    558       1.1    yamt vmem_init(void)
    559       1.1    yamt {
    560       1.1    yamt 
    561       1.1    yamt 	pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
    562       1.1    yamt 	return 0;
    563       1.1    yamt }
    564       1.1    yamt #endif /* defined(_KERNEL) */
    565       1.1    yamt 
    566       1.1    yamt static vmem_addr_t
    567       1.1    yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    568       1.1    yamt     int spanbttype)
    569       1.1    yamt {
    570       1.1    yamt 	bt_t *btspan;
    571       1.1    yamt 	bt_t *btfree;
    572       1.1    yamt 
    573       1.1    yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    574       1.1    yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    575       1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    576       1.1    yamt 
    577       1.1    yamt 	btspan = bt_alloc(vm, flags);
    578       1.1    yamt 	if (btspan == NULL) {
    579       1.1    yamt 		return VMEM_ADDR_NULL;
    580       1.1    yamt 	}
    581       1.1    yamt 	btfree = bt_alloc(vm, flags);
    582       1.1    yamt 	if (btfree == NULL) {
    583       1.1    yamt 		bt_free(vm, btspan);
    584       1.1    yamt 		return VMEM_ADDR_NULL;
    585       1.1    yamt 	}
    586       1.1    yamt 
    587       1.1    yamt 	btspan->bt_type = spanbttype;
    588       1.1    yamt 	btspan->bt_start = addr;
    589       1.1    yamt 	btspan->bt_size = size;
    590       1.1    yamt 
    591       1.1    yamt 	btfree->bt_type = BT_TYPE_FREE;
    592       1.1    yamt 	btfree->bt_start = addr;
    593       1.1    yamt 	btfree->bt_size = size;
    594       1.1    yamt 
    595       1.1    yamt 	VMEM_LOCK(vm);
    596       1.1    yamt 	bt_insseg_tail(vm, btspan);
    597       1.1    yamt 	bt_insseg(vm, btfree, btspan);
    598       1.1    yamt 	bt_insfree(vm, btfree);
    599       1.1    yamt 	VMEM_UNLOCK(vm);
    600       1.1    yamt 
    601       1.1    yamt 	return addr;
    602       1.1    yamt }
    603       1.1    yamt 
    604       1.1    yamt static int
    605       1.1    yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    606       1.1    yamt {
    607       1.1    yamt 	vmem_addr_t addr;
    608       1.1    yamt 
    609       1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    610       1.1    yamt 
    611       1.1    yamt 	if (vm->vm_allocfn == NULL) {
    612       1.1    yamt 		return EINVAL;
    613       1.1    yamt 	}
    614       1.1    yamt 
    615       1.1    yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    616       1.1    yamt 	if (addr == VMEM_ADDR_NULL) {
    617       1.1    yamt 		return ENOMEM;
    618       1.1    yamt 	}
    619       1.1    yamt 
    620       1.1    yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    621       1.1    yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    622       1.1    yamt 		return ENOMEM;
    623       1.1    yamt 	}
    624       1.1    yamt 
    625       1.1    yamt 	return 0;
    626       1.1    yamt }
    627       1.1    yamt 
    628       1.1    yamt static int
    629       1.1    yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    630       1.1    yamt {
    631       1.1    yamt 	bt_t *bt;
    632       1.1    yamt 	int i;
    633       1.1    yamt 	struct vmem_hashlist *newhashlist;
    634       1.1    yamt 	struct vmem_hashlist *oldhashlist;
    635       1.1    yamt 	size_t oldhashsize;
    636       1.1    yamt 
    637       1.1    yamt 	KASSERT(newhashsize > 0);
    638       1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    639       1.1    yamt 
    640       1.1    yamt 	newhashlist =
    641       1.1    yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    642       1.1    yamt 	if (newhashlist == NULL) {
    643       1.1    yamt 		return ENOMEM;
    644       1.1    yamt 	}
    645       1.1    yamt 	for (i = 0; i < newhashsize; i++) {
    646       1.1    yamt 		LIST_INIT(&newhashlist[i]);
    647       1.1    yamt 	}
    648       1.1    yamt 
    649       1.1    yamt 	VMEM_LOCK(vm);
    650       1.1    yamt 	oldhashlist = vm->vm_hashlist;
    651       1.1    yamt 	oldhashsize = vm->vm_hashsize;
    652       1.1    yamt 	vm->vm_hashlist = newhashlist;
    653       1.1    yamt 	vm->vm_hashsize = newhashsize;
    654       1.1    yamt 	if (oldhashlist == NULL) {
    655       1.1    yamt 		VMEM_UNLOCK(vm);
    656       1.1    yamt 		return 0;
    657       1.1    yamt 	}
    658       1.1    yamt 	for (i = 0; i < oldhashsize; i++) {
    659       1.1    yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    660       1.1    yamt 			bt_rembusy(vm, bt); /* XXX */
    661       1.1    yamt 			bt_insbusy(vm, bt);
    662       1.1    yamt 		}
    663       1.1    yamt 	}
    664       1.1    yamt 	VMEM_UNLOCK(vm);
    665       1.1    yamt 
    666       1.1    yamt 	xfree(oldhashlist);
    667       1.1    yamt 
    668       1.1    yamt 	return 0;
    669       1.1    yamt }
    670       1.1    yamt 
    671      1.10    yamt /*
    672      1.10    yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    673      1.10    yamt  */
    674      1.10    yamt 
    675      1.10    yamt static vmem_addr_t
    676      1.10    yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    677      1.10    yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    678      1.10    yamt {
    679      1.10    yamt 	vmem_addr_t start;
    680      1.10    yamt 	vmem_addr_t end;
    681      1.10    yamt 
    682      1.10    yamt 	KASSERT(bt->bt_size >= size);
    683      1.10    yamt 
    684      1.10    yamt 	/*
    685      1.10    yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    686      1.10    yamt 	 * unsigned integer of the same size.
    687      1.10    yamt 	 */
    688      1.10    yamt 
    689      1.10    yamt 	start = bt->bt_start;
    690      1.10    yamt 	if (start < minaddr) {
    691      1.10    yamt 		start = minaddr;
    692      1.10    yamt 	}
    693      1.10    yamt 	end = BT_END(bt);
    694      1.10    yamt 	if (end > maxaddr - 1) {
    695      1.10    yamt 		end = maxaddr - 1;
    696      1.10    yamt 	}
    697      1.10    yamt 	if (start >= end) {
    698      1.10    yamt 		return VMEM_ADDR_NULL;
    699      1.10    yamt 	}
    700      1.19    yamt 
    701      1.19    yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    702      1.10    yamt 	if (start < bt->bt_start) {
    703      1.10    yamt 		start += align;
    704      1.10    yamt 	}
    705      1.19    yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    706      1.10    yamt 		KASSERT(align < nocross);
    707      1.19    yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    708      1.10    yamt 	}
    709      1.10    yamt 	if (start < end && end - start >= size) {
    710      1.10    yamt 		KASSERT((start & (align - 1)) == phase);
    711      1.19    yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    712      1.10    yamt 		KASSERT(minaddr <= start);
    713      1.10    yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    714      1.10    yamt 		KASSERT(bt->bt_start <= start);
    715      1.10    yamt 		KASSERT(start + size <= BT_END(bt));
    716      1.10    yamt 		return start;
    717      1.10    yamt 	}
    718      1.10    yamt 	return VMEM_ADDR_NULL;
    719      1.10    yamt }
    720      1.10    yamt 
    721       1.1    yamt /* ---- vmem API */
    722       1.1    yamt 
    723       1.1    yamt /*
    724       1.1    yamt  * vmem_create: create an arena.
    725       1.1    yamt  *
    726       1.1    yamt  * => must not be called from interrupt context.
    727       1.1    yamt  */
    728       1.1    yamt 
    729       1.1    yamt vmem_t *
    730       1.1    yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    731       1.1    yamt     vmem_size_t quantum,
    732       1.1    yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    733       1.1    yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    734       1.1    yamt     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
    735       1.1    yamt {
    736       1.1    yamt 	vmem_t *vm;
    737       1.1    yamt 	int i;
    738       1.1    yamt #if defined(_KERNEL)
    739       1.1    yamt 	static ONCE_DECL(control);
    740       1.1    yamt #endif /* defined(_KERNEL) */
    741       1.1    yamt 
    742       1.1    yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    743       1.1    yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    744       1.1    yamt 
    745       1.1    yamt #if defined(_KERNEL)
    746       1.1    yamt 	if (RUN_ONCE(&control, vmem_init)) {
    747       1.1    yamt 		return NULL;
    748       1.1    yamt 	}
    749       1.1    yamt #endif /* defined(_KERNEL) */
    750       1.1    yamt 	vm = xmalloc(sizeof(*vm), flags);
    751       1.1    yamt 	if (vm == NULL) {
    752       1.1    yamt 		return NULL;
    753       1.1    yamt 	}
    754       1.1    yamt 
    755       1.1    yamt 	VMEM_LOCK_INIT(vm);
    756       1.1    yamt 	vm->vm_name = name;
    757       1.1    yamt 	vm->vm_quantum_mask = quantum - 1;
    758       1.1    yamt 	vm->vm_quantum_shift = calc_order(quantum);
    759       1.4    yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    760       1.1    yamt 	vm->vm_allocfn = allocfn;
    761       1.1    yamt 	vm->vm_freefn = freefn;
    762       1.1    yamt 	vm->vm_source = source;
    763       1.1    yamt 	vm->vm_nbusytag = 0;
    764       1.5    yamt #if defined(QCACHE)
    765       1.5    yamt 	qc_init(vm, qcache_max);
    766       1.5    yamt #endif /* defined(QCACHE) */
    767       1.1    yamt 
    768       1.1    yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    769       1.1    yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    770       1.1    yamt 		LIST_INIT(&vm->vm_freelist[i]);
    771       1.1    yamt 	}
    772       1.1    yamt 	vm->vm_hashlist = NULL;
    773       1.1    yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    774       1.1    yamt 		vmem_destroy(vm);
    775       1.1    yamt 		return NULL;
    776       1.1    yamt 	}
    777       1.1    yamt 
    778       1.1    yamt 	if (size != 0) {
    779       1.1    yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    780       1.1    yamt 			vmem_destroy(vm);
    781       1.1    yamt 			return NULL;
    782       1.1    yamt 		}
    783       1.1    yamt 	}
    784       1.1    yamt 
    785       1.1    yamt 	return vm;
    786       1.1    yamt }
    787       1.1    yamt 
    788       1.1    yamt void
    789       1.1    yamt vmem_destroy(vmem_t *vm)
    790       1.1    yamt {
    791       1.1    yamt 
    792       1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    793       1.1    yamt 
    794      1.23    yamt #if defined(QCACHE)
    795      1.23    yamt 	qc_destroy(vm);
    796      1.23    yamt #endif /* defined(QCACHE) */
    797       1.1    yamt 	if (vm->vm_hashlist != NULL) {
    798       1.1    yamt 		int i;
    799       1.1    yamt 
    800       1.1    yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    801       1.1    yamt 			bt_t *bt;
    802       1.1    yamt 
    803       1.1    yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    804       1.1    yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    805       1.1    yamt 				bt_free(vm, bt);
    806       1.1    yamt 			}
    807       1.1    yamt 		}
    808       1.1    yamt 		xfree(vm->vm_hashlist);
    809       1.1    yamt 	}
    810       1.1    yamt 	xfree(vm);
    811       1.1    yamt }
    812       1.1    yamt 
    813       1.1    yamt vmem_size_t
    814       1.1    yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    815       1.1    yamt {
    816       1.1    yamt 
    817       1.1    yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    818       1.1    yamt }
    819       1.1    yamt 
    820       1.1    yamt /*
    821       1.1    yamt  * vmem_alloc:
    822       1.1    yamt  *
    823       1.1    yamt  * => caller must ensure appropriate spl,
    824       1.1    yamt  *    if the arena can be accessed from interrupt context.
    825       1.1    yamt  */
    826       1.1    yamt 
    827       1.1    yamt vmem_addr_t
    828       1.1    yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
    829       1.1    yamt {
    830      1.12    yamt 	const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
    831      1.12    yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    832       1.1    yamt 
    833       1.1    yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    834       1.1    yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    835       1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    836       1.1    yamt 
    837       1.1    yamt 	KASSERT(size0 > 0);
    838       1.1    yamt 	KASSERT(size > 0);
    839       1.1    yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    840       1.3    yamt 	if ((flags & VM_SLEEP) != 0) {
    841      1.16    yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    842       1.3    yamt 	}
    843       1.1    yamt 
    844       1.5    yamt #if defined(QCACHE)
    845       1.5    yamt 	if (size <= vm->vm_qcache_max) {
    846       1.5    yamt 		int qidx = size >> vm->vm_quantum_shift;
    847      1.22    yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    848       1.5    yamt 
    849       1.5    yamt 		return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
    850       1.5    yamt 		    vmf_to_prf(flags));
    851       1.5    yamt 	}
    852       1.5    yamt #endif /* defined(QCACHE) */
    853       1.5    yamt 
    854      1.10    yamt 	return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
    855      1.10    yamt }
    856      1.10    yamt 
    857      1.10    yamt vmem_addr_t
    858      1.10    yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
    859      1.10    yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
    860      1.10    yamt     vm_flag_t flags)
    861      1.10    yamt {
    862      1.10    yamt 	struct vmem_freelist *list;
    863      1.10    yamt 	struct vmem_freelist *first;
    864      1.10    yamt 	struct vmem_freelist *end;
    865      1.10    yamt 	bt_t *bt;
    866      1.10    yamt 	bt_t *btnew;
    867      1.10    yamt 	bt_t *btnew2;
    868      1.10    yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
    869      1.10    yamt 	vm_flag_t strat = flags & VM_FITMASK;
    870      1.10    yamt 	vmem_addr_t start;
    871      1.10    yamt 
    872      1.10    yamt 	KASSERT(size0 > 0);
    873      1.10    yamt 	KASSERT(size > 0);
    874      1.10    yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    875      1.10    yamt 	if ((flags & VM_SLEEP) != 0) {
    876      1.16    yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    877      1.10    yamt 	}
    878      1.10    yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
    879      1.10    yamt 	KASSERT((align & (align - 1)) == 0);
    880      1.10    yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
    881      1.10    yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
    882      1.10    yamt 	KASSERT((nocross & (nocross - 1)) == 0);
    883      1.10    yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
    884      1.10    yamt 	KASSERT(nocross == 0 || nocross >= size);
    885      1.10    yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
    886      1.19    yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
    887      1.10    yamt 
    888      1.10    yamt 	if (align == 0) {
    889      1.10    yamt 		align = vm->vm_quantum_mask + 1;
    890      1.10    yamt 	}
    891       1.1    yamt 	btnew = bt_alloc(vm, flags);
    892       1.1    yamt 	if (btnew == NULL) {
    893       1.1    yamt 		return VMEM_ADDR_NULL;
    894       1.1    yamt 	}
    895      1.10    yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
    896      1.10    yamt 	if (btnew2 == NULL) {
    897      1.10    yamt 		bt_free(vm, btnew);
    898      1.10    yamt 		return VMEM_ADDR_NULL;
    899      1.10    yamt 	}
    900       1.1    yamt 
    901       1.1    yamt retry_strat:
    902       1.1    yamt 	first = bt_freehead_toalloc(vm, size, strat);
    903       1.1    yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
    904       1.1    yamt retry:
    905       1.1    yamt 	bt = NULL;
    906       1.1    yamt 	VMEM_LOCK(vm);
    907       1.2    yamt 	if (strat == VM_INSTANTFIT) {
    908       1.2    yamt 		for (list = first; list < end; list++) {
    909       1.2    yamt 			bt = LIST_FIRST(list);
    910       1.2    yamt 			if (bt != NULL) {
    911      1.10    yamt 				start = vmem_fit(bt, size, align, phase,
    912      1.10    yamt 				    nocross, minaddr, maxaddr);
    913      1.10    yamt 				if (start != VMEM_ADDR_NULL) {
    914      1.10    yamt 					goto gotit;
    915      1.10    yamt 				}
    916       1.2    yamt 			}
    917       1.2    yamt 		}
    918       1.2    yamt 	} else { /* VM_BESTFIT */
    919       1.2    yamt 		for (list = first; list < end; list++) {
    920       1.2    yamt 			LIST_FOREACH(bt, list, bt_freelist) {
    921       1.2    yamt 				if (bt->bt_size >= size) {
    922      1.10    yamt 					start = vmem_fit(bt, size, align, phase,
    923      1.10    yamt 					    nocross, minaddr, maxaddr);
    924      1.10    yamt 					if (start != VMEM_ADDR_NULL) {
    925      1.10    yamt 						goto gotit;
    926      1.10    yamt 					}
    927       1.2    yamt 				}
    928       1.1    yamt 			}
    929       1.1    yamt 		}
    930       1.1    yamt 	}
    931       1.2    yamt 	VMEM_UNLOCK(vm);
    932       1.1    yamt #if 1
    933       1.2    yamt 	if (strat == VM_INSTANTFIT) {
    934       1.2    yamt 		strat = VM_BESTFIT;
    935       1.2    yamt 		goto retry_strat;
    936       1.2    yamt 	}
    937       1.1    yamt #endif
    938      1.10    yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
    939      1.10    yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
    940      1.10    yamt 
    941      1.10    yamt 		/*
    942      1.10    yamt 		 * XXX should try to import a region large enough to
    943      1.10    yamt 		 * satisfy restrictions?
    944      1.10    yamt 		 */
    945      1.10    yamt 
    946      1.20    yamt 		goto fail;
    947      1.10    yamt 	}
    948       1.2    yamt 	if (vmem_import(vm, size, flags) == 0) {
    949       1.2    yamt 		goto retry;
    950       1.1    yamt 	}
    951       1.2    yamt 	/* XXX */
    952      1.20    yamt fail:
    953      1.20    yamt 	bt_free(vm, btnew);
    954      1.20    yamt 	bt_free(vm, btnew2);
    955       1.2    yamt 	return VMEM_ADDR_NULL;
    956       1.2    yamt 
    957       1.2    yamt gotit:
    958       1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    959       1.1    yamt 	KASSERT(bt->bt_size >= size);
    960       1.1    yamt 	bt_remfree(vm, bt);
    961      1.10    yamt 	if (bt->bt_start != start) {
    962      1.10    yamt 		btnew2->bt_type = BT_TYPE_FREE;
    963      1.10    yamt 		btnew2->bt_start = bt->bt_start;
    964      1.10    yamt 		btnew2->bt_size = start - bt->bt_start;
    965      1.10    yamt 		bt->bt_start = start;
    966      1.10    yamt 		bt->bt_size -= btnew2->bt_size;
    967      1.10    yamt 		bt_insfree(vm, btnew2);
    968      1.10    yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
    969      1.10    yamt 		btnew2 = NULL;
    970      1.10    yamt 	}
    971      1.10    yamt 	KASSERT(bt->bt_start == start);
    972       1.1    yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
    973       1.1    yamt 		/* split */
    974       1.1    yamt 		btnew->bt_type = BT_TYPE_BUSY;
    975       1.1    yamt 		btnew->bt_start = bt->bt_start;
    976       1.1    yamt 		btnew->bt_size = size;
    977       1.1    yamt 		bt->bt_start = bt->bt_start + size;
    978       1.1    yamt 		bt->bt_size -= size;
    979       1.1    yamt 		bt_insfree(vm, bt);
    980       1.1    yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
    981       1.1    yamt 		bt_insbusy(vm, btnew);
    982       1.1    yamt 		VMEM_UNLOCK(vm);
    983       1.1    yamt 	} else {
    984       1.1    yamt 		bt->bt_type = BT_TYPE_BUSY;
    985       1.1    yamt 		bt_insbusy(vm, bt);
    986       1.1    yamt 		VMEM_UNLOCK(vm);
    987       1.1    yamt 		bt_free(vm, btnew);
    988       1.1    yamt 		btnew = bt;
    989       1.1    yamt 	}
    990      1.10    yamt 	if (btnew2 != NULL) {
    991      1.10    yamt 		bt_free(vm, btnew2);
    992      1.10    yamt 	}
    993       1.1    yamt 	KASSERT(btnew->bt_size >= size);
    994       1.1    yamt 	btnew->bt_type = BT_TYPE_BUSY;
    995       1.1    yamt 
    996       1.1    yamt 	return btnew->bt_start;
    997       1.1    yamt }
    998       1.1    yamt 
    999       1.1    yamt /*
   1000       1.1    yamt  * vmem_free:
   1001       1.1    yamt  *
   1002       1.1    yamt  * => caller must ensure appropriate spl,
   1003       1.1    yamt  *    if the arena can be accessed from interrupt context.
   1004       1.1    yamt  */
   1005       1.1    yamt 
   1006       1.1    yamt void
   1007       1.1    yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1008       1.1    yamt {
   1009       1.1    yamt 
   1010       1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
   1011       1.1    yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1012       1.1    yamt 	KASSERT(size > 0);
   1013       1.1    yamt 
   1014       1.5    yamt #if defined(QCACHE)
   1015       1.5    yamt 	if (size <= vm->vm_qcache_max) {
   1016       1.5    yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1017      1.22    yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1018       1.5    yamt 
   1019       1.5    yamt 		return pool_cache_put(&qc->qc_cache, (void *)addr);
   1020       1.5    yamt 	}
   1021       1.5    yamt #endif /* defined(QCACHE) */
   1022       1.5    yamt 
   1023      1.10    yamt 	vmem_xfree(vm, addr, size);
   1024      1.10    yamt }
   1025      1.10    yamt 
   1026      1.10    yamt void
   1027      1.17    yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1028      1.10    yamt {
   1029      1.10    yamt 	bt_t *bt;
   1030      1.10    yamt 	bt_t *t;
   1031      1.10    yamt 
   1032      1.10    yamt 	VMEM_ASSERT_UNLOCKED(vm);
   1033      1.10    yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1034      1.10    yamt 	KASSERT(size > 0);
   1035      1.10    yamt 
   1036       1.1    yamt 	VMEM_LOCK(vm);
   1037       1.1    yamt 
   1038       1.1    yamt 	bt = bt_lookupbusy(vm, addr);
   1039       1.1    yamt 	KASSERT(bt != NULL);
   1040       1.1    yamt 	KASSERT(bt->bt_start == addr);
   1041       1.1    yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1042       1.1    yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1043       1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1044       1.1    yamt 	bt_rembusy(vm, bt);
   1045       1.1    yamt 	bt->bt_type = BT_TYPE_FREE;
   1046       1.1    yamt 
   1047       1.1    yamt 	/* coalesce */
   1048       1.1    yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1049       1.1    yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1050       1.1    yamt 		KASSERT(BT_END(bt) == t->bt_start);
   1051       1.1    yamt 		bt_remfree(vm, t);
   1052       1.1    yamt 		bt_remseg(vm, t);
   1053       1.1    yamt 		bt->bt_size += t->bt_size;
   1054       1.1    yamt 		bt_free(vm, t);
   1055       1.1    yamt 	}
   1056       1.1    yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1057       1.1    yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1058       1.1    yamt 		KASSERT(BT_END(t) == bt->bt_start);
   1059       1.1    yamt 		bt_remfree(vm, t);
   1060       1.1    yamt 		bt_remseg(vm, t);
   1061       1.1    yamt 		bt->bt_size += t->bt_size;
   1062       1.1    yamt 		bt->bt_start = t->bt_start;
   1063       1.1    yamt 		bt_free(vm, t);
   1064       1.1    yamt 	}
   1065       1.1    yamt 
   1066       1.1    yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1067       1.1    yamt 	KASSERT(t != NULL);
   1068       1.1    yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1069       1.1    yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1070       1.1    yamt 	    t->bt_size == bt->bt_size) {
   1071       1.1    yamt 		vmem_addr_t spanaddr;
   1072       1.1    yamt 		vmem_size_t spansize;
   1073       1.1    yamt 
   1074       1.1    yamt 		KASSERT(t->bt_start == bt->bt_start);
   1075       1.1    yamt 		spanaddr = bt->bt_start;
   1076       1.1    yamt 		spansize = bt->bt_size;
   1077       1.1    yamt 		bt_remseg(vm, bt);
   1078       1.1    yamt 		bt_free(vm, bt);
   1079       1.1    yamt 		bt_remseg(vm, t);
   1080       1.1    yamt 		bt_free(vm, t);
   1081       1.1    yamt 		VMEM_UNLOCK(vm);
   1082       1.1    yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1083       1.1    yamt 	} else {
   1084       1.1    yamt 		bt_insfree(vm, bt);
   1085       1.1    yamt 		VMEM_UNLOCK(vm);
   1086       1.1    yamt 	}
   1087       1.1    yamt }
   1088       1.1    yamt 
   1089       1.1    yamt /*
   1090       1.1    yamt  * vmem_add:
   1091       1.1    yamt  *
   1092       1.1    yamt  * => caller must ensure appropriate spl,
   1093       1.1    yamt  *    if the arena can be accessed from interrupt context.
   1094       1.1    yamt  */
   1095       1.1    yamt 
   1096       1.1    yamt vmem_addr_t
   1097       1.1    yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1098       1.1    yamt {
   1099       1.1    yamt 
   1100       1.1    yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1101       1.1    yamt }
   1102       1.1    yamt 
   1103       1.6    yamt /*
   1104       1.6    yamt  * vmem_reap: reap unused resources.
   1105       1.6    yamt  *
   1106  1.24.6.1    yamt  * => return true if we successfully reaped something.
   1107       1.6    yamt  */
   1108       1.6    yamt 
   1109  1.24.6.1    yamt bool
   1110       1.6    yamt vmem_reap(vmem_t *vm)
   1111       1.6    yamt {
   1112  1.24.6.1    yamt 	bool didsomething = false;
   1113       1.6    yamt 
   1114       1.6    yamt 	VMEM_ASSERT_UNLOCKED(vm);
   1115       1.6    yamt 
   1116       1.6    yamt #if defined(QCACHE)
   1117       1.6    yamt 	didsomething = qc_reap(vm);
   1118       1.6    yamt #endif /* defined(QCACHE) */
   1119       1.6    yamt 	return didsomething;
   1120       1.6    yamt }
   1121       1.6    yamt 
   1122       1.1    yamt /* ---- debug */
   1123       1.1    yamt 
   1124       1.1    yamt #if defined(VMEM_DEBUG)
   1125       1.1    yamt 
   1126       1.1    yamt #if !defined(_KERNEL)
   1127       1.1    yamt #include <stdio.h>
   1128       1.1    yamt #endif /* !defined(_KERNEL) */
   1129       1.1    yamt 
   1130       1.1    yamt void bt_dump(const bt_t *);
   1131       1.1    yamt 
   1132       1.1    yamt void
   1133       1.1    yamt bt_dump(const bt_t *bt)
   1134       1.1    yamt {
   1135       1.1    yamt 
   1136       1.1    yamt 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
   1137       1.1    yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1138       1.1    yamt 	    bt->bt_type);
   1139       1.1    yamt }
   1140       1.1    yamt 
   1141       1.1    yamt void
   1142       1.1    yamt vmem_dump(const vmem_t *vm)
   1143       1.1    yamt {
   1144       1.1    yamt 	const bt_t *bt;
   1145       1.1    yamt 	int i;
   1146       1.1    yamt 
   1147       1.1    yamt 	printf("vmem %p '%s'\n", vm, vm->vm_name);
   1148       1.1    yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1149       1.1    yamt 		bt_dump(bt);
   1150       1.1    yamt 	}
   1151       1.1    yamt 
   1152       1.1    yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1153       1.1    yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1154       1.1    yamt 
   1155       1.1    yamt 		if (LIST_EMPTY(fl)) {
   1156       1.1    yamt 			continue;
   1157       1.1    yamt 		}
   1158       1.1    yamt 
   1159       1.1    yamt 		printf("freelist[%d]\n", i);
   1160       1.1    yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1161       1.1    yamt 			bt_dump(bt);
   1162       1.1    yamt 			if (bt->bt_size) {
   1163       1.1    yamt 			}
   1164       1.1    yamt 		}
   1165       1.1    yamt 	}
   1166       1.1    yamt }
   1167       1.1    yamt 
   1168       1.1    yamt #if !defined(_KERNEL)
   1169       1.1    yamt 
   1170       1.1    yamt #include <stdlib.h>
   1171       1.1    yamt 
   1172       1.1    yamt int
   1173       1.1    yamt main()
   1174       1.1    yamt {
   1175       1.1    yamt 	vmem_t *vm;
   1176       1.1    yamt 	vmem_addr_t p;
   1177       1.1    yamt 	struct reg {
   1178       1.1    yamt 		vmem_addr_t p;
   1179       1.1    yamt 		vmem_size_t sz;
   1180  1.24.6.1    yamt 		bool x;
   1181       1.1    yamt 	} *reg = NULL;
   1182       1.1    yamt 	int nreg = 0;
   1183       1.1    yamt 	int nalloc = 0;
   1184       1.1    yamt 	int nfree = 0;
   1185       1.1    yamt 	vmem_size_t total = 0;
   1186       1.1    yamt #if 1
   1187       1.1    yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1188       1.1    yamt #else
   1189       1.1    yamt 	vm_flag_t strat = VM_BESTFIT;
   1190       1.1    yamt #endif
   1191       1.1    yamt 
   1192       1.1    yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1193       1.1    yamt 	    NULL, NULL, NULL, 0, VM_NOSLEEP);
   1194       1.1    yamt 	if (vm == NULL) {
   1195       1.1    yamt 		printf("vmem_create\n");
   1196       1.1    yamt 		exit(EXIT_FAILURE);
   1197       1.1    yamt 	}
   1198       1.1    yamt 	vmem_dump(vm);
   1199       1.1    yamt 
   1200       1.1    yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1201       1.1    yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1202       1.1    yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1203       1.1    yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1204       1.1    yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1205       1.1    yamt 	vmem_dump(vm);
   1206       1.1    yamt 	for (;;) {
   1207       1.1    yamt 		struct reg *r;
   1208      1.10    yamt 		int t = rand() % 100;
   1209       1.1    yamt 
   1210      1.10    yamt 		if (t > 45) {
   1211      1.10    yamt 			/* alloc */
   1212       1.1    yamt 			vmem_size_t sz = rand() % 500 + 1;
   1213  1.24.6.1    yamt 			bool x;
   1214      1.10    yamt 			vmem_size_t align, phase, nocross;
   1215      1.10    yamt 			vmem_addr_t minaddr, maxaddr;
   1216      1.10    yamt 
   1217      1.10    yamt 			if (t > 70) {
   1218  1.24.6.1    yamt 				x = true;
   1219      1.10    yamt 				/* XXX */
   1220      1.10    yamt 				align = 1 << (rand() % 15);
   1221      1.10    yamt 				phase = rand() % 65536;
   1222      1.10    yamt 				nocross = 1 << (rand() % 15);
   1223      1.10    yamt 				if (align <= phase) {
   1224      1.10    yamt 					phase = 0;
   1225      1.10    yamt 				}
   1226      1.19    yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1227      1.19    yamt 				    nocross)) {
   1228      1.10    yamt 					nocross = 0;
   1229      1.10    yamt 				}
   1230      1.10    yamt 				minaddr = rand() % 50000;
   1231      1.10    yamt 				maxaddr = rand() % 70000;
   1232      1.10    yamt 				if (minaddr > maxaddr) {
   1233      1.10    yamt 					minaddr = 0;
   1234      1.10    yamt 					maxaddr = 0;
   1235      1.10    yamt 				}
   1236      1.10    yamt 				printf("=== xalloc %" PRIu64
   1237      1.10    yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1238      1.10    yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1239      1.10    yamt 				    ", max=%" PRIu64 "\n",
   1240      1.10    yamt 				    (uint64_t)sz,
   1241      1.10    yamt 				    (uint64_t)align,
   1242      1.10    yamt 				    (uint64_t)phase,
   1243      1.10    yamt 				    (uint64_t)nocross,
   1244      1.10    yamt 				    (uint64_t)minaddr,
   1245      1.10    yamt 				    (uint64_t)maxaddr);
   1246      1.10    yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1247      1.10    yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1248      1.10    yamt 			} else {
   1249  1.24.6.1    yamt 				x = false;
   1250      1.10    yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1251      1.10    yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1252      1.10    yamt 			}
   1253       1.1    yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1254       1.1    yamt 			vmem_dump(vm);
   1255       1.1    yamt 			if (p == VMEM_ADDR_NULL) {
   1256      1.10    yamt 				if (x) {
   1257      1.10    yamt 					continue;
   1258      1.10    yamt 				}
   1259       1.1    yamt 				break;
   1260       1.1    yamt 			}
   1261       1.1    yamt 			nreg++;
   1262       1.1    yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1263       1.1    yamt 			r = &reg[nreg - 1];
   1264       1.1    yamt 			r->p = p;
   1265       1.1    yamt 			r->sz = sz;
   1266      1.10    yamt 			r->x = x;
   1267       1.1    yamt 			total += sz;
   1268       1.1    yamt 			nalloc++;
   1269       1.1    yamt 		} else if (nreg != 0) {
   1270      1.10    yamt 			/* free */
   1271       1.1    yamt 			r = &reg[rand() % nreg];
   1272       1.1    yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1273       1.1    yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1274      1.10    yamt 			if (r->x) {
   1275      1.10    yamt 				vmem_xfree(vm, r->p, r->sz);
   1276      1.10    yamt 			} else {
   1277      1.10    yamt 				vmem_free(vm, r->p, r->sz);
   1278      1.10    yamt 			}
   1279       1.1    yamt 			total -= r->sz;
   1280       1.1    yamt 			vmem_dump(vm);
   1281       1.1    yamt 			*r = reg[nreg - 1];
   1282       1.1    yamt 			nreg--;
   1283       1.1    yamt 			nfree++;
   1284       1.1    yamt 		}
   1285       1.1    yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1286       1.1    yamt 	}
   1287       1.1    yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1288       1.1    yamt 	    (uint64_t)total, nalloc, nfree);
   1289       1.1    yamt 	exit(EXIT_SUCCESS);
   1290       1.1    yamt }
   1291       1.1    yamt #endif /* !defined(_KERNEL) */
   1292       1.1    yamt #endif /* defined(VMEM_DEBUG) */
   1293