Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.27.2.4
      1  1.27.2.4       ad /*	$NetBSD: subr_vmem.c,v 1.27.2.4 2007/04/10 13:26:40 ad Exp $	*/
      2       1.1     yamt 
      3       1.1     yamt /*-
      4       1.1     yamt  * Copyright (c)2006 YAMAMOTO Takashi,
      5       1.1     yamt  * All rights reserved.
      6       1.1     yamt  *
      7       1.1     yamt  * Redistribution and use in source and binary forms, with or without
      8       1.1     yamt  * modification, are permitted provided that the following conditions
      9       1.1     yamt  * are met:
     10       1.1     yamt  * 1. Redistributions of source code must retain the above copyright
     11       1.1     yamt  *    notice, this list of conditions and the following disclaimer.
     12       1.1     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1     yamt  *    notice, this list of conditions and the following disclaimer in the
     14       1.1     yamt  *    documentation and/or other materials provided with the distribution.
     15       1.1     yamt  *
     16       1.1     yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17       1.1     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18       1.1     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19       1.1     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20       1.1     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21       1.1     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22       1.1     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23       1.1     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24       1.1     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25       1.1     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26       1.1     yamt  * SUCH DAMAGE.
     27       1.1     yamt  */
     28       1.1     yamt 
     29       1.1     yamt /*
     30       1.1     yamt  * reference:
     31       1.1     yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32       1.1     yamt  *	to Many CPUs and Arbitrary Resources
     33       1.1     yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34      1.18     yamt  *
     35      1.18     yamt  * todo:
     36      1.18     yamt  * -	decide how to import segments for vmem_xalloc.
     37      1.18     yamt  * -	don't rely on malloc(9).
     38       1.1     yamt  */
     39       1.1     yamt 
     40       1.1     yamt #include <sys/cdefs.h>
     41  1.27.2.4       ad __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.27.2.4 2007/04/10 13:26:40 ad Exp $");
     42       1.1     yamt 
     43       1.1     yamt #define	VMEM_DEBUG
     44       1.5     yamt #if defined(_KERNEL)
     45       1.5     yamt #define	QCACHE
     46       1.5     yamt #endif /* defined(_KERNEL) */
     47       1.1     yamt 
     48       1.1     yamt #include <sys/param.h>
     49       1.1     yamt #include <sys/hash.h>
     50       1.1     yamt #include <sys/queue.h>
     51       1.1     yamt 
     52       1.1     yamt #if defined(_KERNEL)
     53       1.1     yamt #include <sys/systm.h>
     54  1.27.2.2       ad #include <sys/mutex.h>
     55       1.1     yamt #include <sys/malloc.h>
     56       1.1     yamt #include <sys/once.h>
     57       1.1     yamt #include <sys/pool.h>
     58       1.3     yamt #include <sys/proc.h>
     59       1.1     yamt #include <sys/vmem.h>
     60       1.1     yamt #else /* defined(_KERNEL) */
     61       1.1     yamt #include "../sys/vmem.h"
     62       1.1     yamt #endif /* defined(_KERNEL) */
     63       1.1     yamt 
     64       1.1     yamt #if defined(_KERNEL)
     65  1.27.2.2       ad #define	LOCK_DECL(name)		kmutex_t name
     66       1.1     yamt #else /* defined(_KERNEL) */
     67       1.1     yamt #include <errno.h>
     68       1.1     yamt #include <assert.h>
     69       1.1     yamt #include <stdlib.h>
     70       1.1     yamt 
     71       1.1     yamt #define	KASSERT(a)		assert(a)
     72  1.27.2.2       ad #define	LOCK_DECL(name)		/* nothing */
     73  1.27.2.2       ad #define	mutex_init(a, b, c)	/* nothing */
     74  1.27.2.2       ad #define	mutex_destroy(a)	/* nothing */
     75  1.27.2.2       ad #define	mutex_enter(a)		/* nothing */
     76  1.27.2.2       ad #define	mutex_exit(a)		/* nothing */
     77  1.27.2.2       ad #define	mutex_owned(a)		/* nothing */
     78       1.3     yamt #define	ASSERT_SLEEPABLE(lk, msg) /* nothing */
     79       1.1     yamt #endif /* defined(_KERNEL) */
     80       1.1     yamt 
     81       1.1     yamt struct vmem;
     82       1.1     yamt struct vmem_btag;
     83       1.1     yamt 
     84       1.1     yamt #if defined(VMEM_DEBUG)
     85       1.1     yamt void vmem_dump(const vmem_t *);
     86       1.1     yamt #endif /* defined(VMEM_DEBUG) */
     87       1.1     yamt 
     88       1.4     yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     89       1.1     yamt #define	VMEM_HASHSIZE_INIT	4096	/* XXX */
     90       1.1     yamt 
     91       1.1     yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
     92       1.1     yamt 
     93       1.1     yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
     94       1.1     yamt LIST_HEAD(vmem_freelist, vmem_btag);
     95       1.1     yamt LIST_HEAD(vmem_hashlist, vmem_btag);
     96       1.1     yamt 
     97       1.5     yamt #if defined(QCACHE)
     98       1.5     yamt #define	VMEM_QCACHE_IDX_MAX	32
     99       1.5     yamt 
    100       1.5     yamt #define	QC_NAME_MAX	16
    101       1.5     yamt 
    102       1.5     yamt struct qcache {
    103       1.5     yamt 	struct pool qc_pool;
    104       1.5     yamt 	struct pool_cache qc_cache;
    105       1.5     yamt 	vmem_t *qc_vmem;
    106       1.5     yamt 	char qc_name[QC_NAME_MAX];
    107       1.5     yamt };
    108       1.5     yamt typedef struct qcache qcache_t;
    109       1.5     yamt #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool))
    110       1.5     yamt #endif /* defined(QCACHE) */
    111       1.5     yamt 
    112       1.1     yamt /* vmem arena */
    113       1.1     yamt struct vmem {
    114  1.27.2.2       ad 	LOCK_DECL(vm_lock);
    115       1.1     yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    116       1.1     yamt 	    vm_flag_t);
    117       1.1     yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    118       1.1     yamt 	vmem_t *vm_source;
    119       1.1     yamt 	struct vmem_seglist vm_seglist;
    120       1.1     yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    121       1.1     yamt 	size_t vm_hashsize;
    122       1.1     yamt 	size_t vm_nbusytag;
    123       1.1     yamt 	struct vmem_hashlist *vm_hashlist;
    124       1.1     yamt 	size_t vm_quantum_mask;
    125       1.1     yamt 	int vm_quantum_shift;
    126       1.1     yamt 	const char *vm_name;
    127       1.5     yamt 
    128       1.5     yamt #if defined(QCACHE)
    129       1.5     yamt 	/* quantum cache */
    130       1.5     yamt 	size_t vm_qcache_max;
    131       1.5     yamt 	struct pool_allocator vm_qcache_allocator;
    132      1.22     yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    133      1.22     yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    134       1.5     yamt #endif /* defined(QCACHE) */
    135       1.1     yamt };
    136       1.1     yamt 
    137       1.1     yamt /* boundary tag */
    138       1.1     yamt struct vmem_btag {
    139       1.1     yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    140       1.1     yamt 	union {
    141       1.1     yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    142       1.1     yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    143       1.1     yamt 	} bt_u;
    144       1.1     yamt #define	bt_hashlist	bt_u.u_hashlist
    145       1.1     yamt #define	bt_freelist	bt_u.u_freelist
    146       1.1     yamt 	vmem_addr_t bt_start;
    147       1.1     yamt 	vmem_size_t bt_size;
    148       1.1     yamt 	int bt_type;
    149       1.1     yamt };
    150       1.1     yamt 
    151       1.1     yamt #define	BT_TYPE_SPAN		1
    152       1.1     yamt #define	BT_TYPE_SPAN_STATIC	2
    153       1.1     yamt #define	BT_TYPE_FREE		3
    154       1.1     yamt #define	BT_TYPE_BUSY		4
    155       1.1     yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    156       1.1     yamt 
    157       1.1     yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    158       1.1     yamt 
    159       1.1     yamt typedef struct vmem_btag bt_t;
    160       1.1     yamt 
    161       1.1     yamt /* ---- misc */
    162       1.1     yamt 
    163      1.19     yamt #define	VMEM_ALIGNUP(addr, align) \
    164      1.19     yamt 	(-(-(addr) & -(align)))
    165      1.19     yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    166      1.19     yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    167      1.19     yamt 
    168       1.4     yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    169       1.4     yamt 
    170       1.1     yamt static int
    171       1.1     yamt calc_order(vmem_size_t size)
    172       1.1     yamt {
    173       1.4     yamt 	vmem_size_t target;
    174       1.1     yamt 	int i;
    175       1.1     yamt 
    176       1.1     yamt 	KASSERT(size != 0);
    177       1.1     yamt 
    178       1.1     yamt 	i = 0;
    179       1.4     yamt 	target = size >> 1;
    180       1.4     yamt 	while (ORDER2SIZE(i) <= target) {
    181       1.1     yamt 		i++;
    182       1.1     yamt 	}
    183       1.1     yamt 
    184       1.4     yamt 	KASSERT(ORDER2SIZE(i) <= size);
    185       1.4     yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    186       1.1     yamt 
    187       1.1     yamt 	return i;
    188       1.1     yamt }
    189       1.1     yamt 
    190       1.1     yamt #if defined(_KERNEL)
    191       1.1     yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    192       1.1     yamt #endif /* defined(_KERNEL) */
    193       1.1     yamt 
    194       1.1     yamt static void *
    195       1.1     yamt xmalloc(size_t sz, vm_flag_t flags)
    196       1.1     yamt {
    197       1.1     yamt 
    198       1.1     yamt #if defined(_KERNEL)
    199       1.1     yamt 	return malloc(sz, M_VMEM,
    200       1.1     yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    201       1.1     yamt #else /* defined(_KERNEL) */
    202       1.1     yamt 	return malloc(sz);
    203       1.1     yamt #endif /* defined(_KERNEL) */
    204       1.1     yamt }
    205       1.1     yamt 
    206       1.1     yamt static void
    207       1.1     yamt xfree(void *p)
    208       1.1     yamt {
    209       1.1     yamt 
    210       1.1     yamt #if defined(_KERNEL)
    211       1.1     yamt 	return free(p, M_VMEM);
    212       1.1     yamt #else /* defined(_KERNEL) */
    213       1.1     yamt 	return free(p);
    214       1.1     yamt #endif /* defined(_KERNEL) */
    215       1.1     yamt }
    216       1.1     yamt 
    217       1.1     yamt /* ---- boundary tag */
    218       1.1     yamt 
    219       1.1     yamt #if defined(_KERNEL)
    220       1.1     yamt static struct pool_cache bt_poolcache;
    221  1.27.2.1       ad static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL, IPL_VM);
    222       1.1     yamt #endif /* defined(_KERNEL) */
    223       1.1     yamt 
    224       1.1     yamt static bt_t *
    225      1.17     yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    226       1.1     yamt {
    227       1.1     yamt 	bt_t *bt;
    228       1.1     yamt 
    229       1.1     yamt #if defined(_KERNEL)
    230       1.1     yamt 	/* XXX bootstrap */
    231       1.1     yamt 	bt = pool_cache_get(&bt_poolcache,
    232       1.1     yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    233       1.1     yamt #else /* defined(_KERNEL) */
    234       1.1     yamt 	bt = malloc(sizeof *bt);
    235       1.1     yamt #endif /* defined(_KERNEL) */
    236       1.1     yamt 
    237       1.1     yamt 	return bt;
    238       1.1     yamt }
    239       1.1     yamt 
    240       1.1     yamt static void
    241      1.17     yamt bt_free(vmem_t *vm, bt_t *bt)
    242       1.1     yamt {
    243       1.1     yamt 
    244       1.1     yamt #if defined(_KERNEL)
    245      1.21     yamt 	int s;
    246      1.21     yamt 
    247       1.1     yamt 	/* XXX bootstrap */
    248      1.21     yamt 	s = splvm();
    249       1.1     yamt 	pool_cache_put(&bt_poolcache, bt);
    250      1.21     yamt 	splx(s);
    251       1.1     yamt #else /* defined(_KERNEL) */
    252       1.1     yamt 	free(bt);
    253       1.1     yamt #endif /* defined(_KERNEL) */
    254       1.1     yamt }
    255       1.1     yamt 
    256       1.1     yamt /*
    257       1.1     yamt  * freelist[0] ... [1, 1]
    258       1.1     yamt  * freelist[1] ... [2, 3]
    259       1.1     yamt  * freelist[2] ... [4, 7]
    260       1.1     yamt  * freelist[3] ... [8, 15]
    261       1.1     yamt  *  :
    262       1.1     yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    263       1.1     yamt  *  :
    264       1.1     yamt  */
    265       1.1     yamt 
    266       1.1     yamt static struct vmem_freelist *
    267       1.1     yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    268       1.1     yamt {
    269       1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    270       1.1     yamt 	int idx;
    271       1.1     yamt 
    272       1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    273       1.1     yamt 	KASSERT(size != 0);
    274       1.1     yamt 
    275       1.1     yamt 	idx = calc_order(qsize);
    276       1.1     yamt 	KASSERT(idx >= 0);
    277       1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    278       1.1     yamt 
    279       1.1     yamt 	return &vm->vm_freelist[idx];
    280       1.1     yamt }
    281       1.1     yamt 
    282       1.1     yamt static struct vmem_freelist *
    283       1.1     yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    284       1.1     yamt {
    285       1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    286       1.1     yamt 	int idx;
    287       1.1     yamt 
    288       1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    289       1.1     yamt 	KASSERT(size != 0);
    290       1.1     yamt 
    291       1.1     yamt 	idx = calc_order(qsize);
    292       1.4     yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    293       1.1     yamt 		idx++;
    294       1.1     yamt 		/* check too large request? */
    295       1.1     yamt 	}
    296       1.1     yamt 	KASSERT(idx >= 0);
    297       1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    298       1.1     yamt 
    299       1.1     yamt 	return &vm->vm_freelist[idx];
    300       1.1     yamt }
    301       1.1     yamt 
    302       1.1     yamt /* ---- boundary tag hash */
    303       1.1     yamt 
    304       1.1     yamt static struct vmem_hashlist *
    305       1.1     yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    306       1.1     yamt {
    307       1.1     yamt 	struct vmem_hashlist *list;
    308       1.1     yamt 	unsigned int hash;
    309       1.1     yamt 
    310       1.1     yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    311       1.1     yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    312       1.1     yamt 
    313       1.1     yamt 	return list;
    314       1.1     yamt }
    315       1.1     yamt 
    316       1.1     yamt static bt_t *
    317       1.1     yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    318       1.1     yamt {
    319       1.1     yamt 	struct vmem_hashlist *list;
    320       1.1     yamt 	bt_t *bt;
    321       1.1     yamt 
    322       1.1     yamt 	list = bt_hashhead(vm, addr);
    323       1.1     yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    324       1.1     yamt 		if (bt->bt_start == addr) {
    325       1.1     yamt 			break;
    326       1.1     yamt 		}
    327       1.1     yamt 	}
    328       1.1     yamt 
    329       1.1     yamt 	return bt;
    330       1.1     yamt }
    331       1.1     yamt 
    332       1.1     yamt static void
    333       1.1     yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    334       1.1     yamt {
    335       1.1     yamt 
    336       1.1     yamt 	KASSERT(vm->vm_nbusytag > 0);
    337       1.1     yamt 	vm->vm_nbusytag--;
    338       1.1     yamt 	LIST_REMOVE(bt, bt_hashlist);
    339       1.1     yamt }
    340       1.1     yamt 
    341       1.1     yamt static void
    342       1.1     yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    343       1.1     yamt {
    344       1.1     yamt 	struct vmem_hashlist *list;
    345       1.1     yamt 
    346       1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    347       1.1     yamt 
    348       1.1     yamt 	list = bt_hashhead(vm, bt->bt_start);
    349       1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    350       1.1     yamt 	vm->vm_nbusytag++;
    351       1.1     yamt }
    352       1.1     yamt 
    353       1.1     yamt /* ---- boundary tag list */
    354       1.1     yamt 
    355       1.1     yamt static void
    356       1.1     yamt bt_remseg(vmem_t *vm, bt_t *bt)
    357       1.1     yamt {
    358       1.1     yamt 
    359       1.1     yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    360       1.1     yamt }
    361       1.1     yamt 
    362       1.1     yamt static void
    363       1.1     yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    364       1.1     yamt {
    365       1.1     yamt 
    366       1.1     yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    367       1.1     yamt }
    368       1.1     yamt 
    369       1.1     yamt static void
    370       1.1     yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    371       1.1     yamt {
    372       1.1     yamt 
    373       1.1     yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    374       1.1     yamt }
    375       1.1     yamt 
    376       1.1     yamt static void
    377      1.17     yamt bt_remfree(vmem_t *vm, bt_t *bt)
    378       1.1     yamt {
    379       1.1     yamt 
    380       1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    381       1.1     yamt 
    382       1.1     yamt 	LIST_REMOVE(bt, bt_freelist);
    383       1.1     yamt }
    384       1.1     yamt 
    385       1.1     yamt static void
    386       1.1     yamt bt_insfree(vmem_t *vm, bt_t *bt)
    387       1.1     yamt {
    388       1.1     yamt 	struct vmem_freelist *list;
    389       1.1     yamt 
    390       1.1     yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    391       1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    392       1.1     yamt }
    393       1.1     yamt 
    394       1.1     yamt /* ---- vmem internal functions */
    395       1.1     yamt 
    396       1.5     yamt #if defined(QCACHE)
    397       1.5     yamt static inline vm_flag_t
    398       1.5     yamt prf_to_vmf(int prflags)
    399       1.5     yamt {
    400       1.5     yamt 	vm_flag_t vmflags;
    401       1.5     yamt 
    402       1.5     yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    403       1.5     yamt 	if ((prflags & PR_WAITOK) != 0) {
    404       1.5     yamt 		vmflags = VM_SLEEP;
    405       1.5     yamt 	} else {
    406       1.5     yamt 		vmflags = VM_NOSLEEP;
    407       1.5     yamt 	}
    408       1.5     yamt 	return vmflags;
    409       1.5     yamt }
    410       1.5     yamt 
    411       1.5     yamt static inline int
    412       1.5     yamt vmf_to_prf(vm_flag_t vmflags)
    413       1.5     yamt {
    414       1.5     yamt 	int prflags;
    415       1.5     yamt 
    416       1.7     yamt 	if ((vmflags & VM_SLEEP) != 0) {
    417       1.5     yamt 		prflags = PR_WAITOK;
    418       1.7     yamt 	} else {
    419       1.5     yamt 		prflags = PR_NOWAIT;
    420       1.5     yamt 	}
    421       1.5     yamt 	return prflags;
    422       1.5     yamt }
    423       1.5     yamt 
    424       1.5     yamt static size_t
    425       1.5     yamt qc_poolpage_size(size_t qcache_max)
    426       1.5     yamt {
    427       1.5     yamt 	int i;
    428       1.5     yamt 
    429       1.5     yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    430       1.5     yamt 		/* nothing */
    431       1.5     yamt 	}
    432       1.5     yamt 	return ORDER2SIZE(i);
    433       1.5     yamt }
    434       1.5     yamt 
    435       1.5     yamt static void *
    436       1.5     yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    437       1.5     yamt {
    438       1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    439       1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    440       1.5     yamt 
    441       1.5     yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    442       1.5     yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    443       1.5     yamt }
    444       1.5     yamt 
    445       1.5     yamt static void
    446       1.5     yamt qc_poolpage_free(struct pool *pool, void *addr)
    447       1.5     yamt {
    448       1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    449       1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    450       1.5     yamt 
    451       1.5     yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    452       1.5     yamt }
    453       1.5     yamt 
    454       1.5     yamt static void
    455  1.27.2.3       ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
    456       1.5     yamt {
    457      1.22     yamt 	qcache_t *prevqc;
    458       1.5     yamt 	struct pool_allocator *pa;
    459       1.5     yamt 	int qcache_idx_max;
    460       1.5     yamt 	int i;
    461       1.5     yamt 
    462       1.5     yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    463       1.5     yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    464       1.5     yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    465       1.5     yamt 	}
    466       1.5     yamt 	vm->vm_qcache_max = qcache_max;
    467       1.5     yamt 	pa = &vm->vm_qcache_allocator;
    468       1.5     yamt 	memset(pa, 0, sizeof(*pa));
    469       1.5     yamt 	pa->pa_alloc = qc_poolpage_alloc;
    470       1.5     yamt 	pa->pa_free = qc_poolpage_free;
    471       1.5     yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    472       1.5     yamt 
    473       1.5     yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    474      1.22     yamt 	prevqc = NULL;
    475      1.22     yamt 	for (i = qcache_idx_max; i > 0; i--) {
    476      1.22     yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    477       1.5     yamt 		size_t size = i << vm->vm_quantum_shift;
    478       1.5     yamt 
    479       1.5     yamt 		qc->qc_vmem = vm;
    480       1.8   martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    481       1.5     yamt 		    vm->vm_name, size);
    482      1.15     yamt 		pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
    483  1.27.2.1       ad 		    0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa,
    484  1.27.2.3       ad 		    ipl);
    485      1.22     yamt 		if (prevqc != NULL &&
    486      1.22     yamt 		    qc->qc_pool.pr_itemsperpage ==
    487      1.22     yamt 		    prevqc->qc_pool.pr_itemsperpage) {
    488      1.22     yamt 			pool_destroy(&qc->qc_pool);
    489      1.22     yamt 			vm->vm_qcache[i - 1] = prevqc;
    490      1.27       ad 			continue;
    491      1.22     yamt 		}
    492       1.5     yamt 		pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
    493      1.22     yamt 		vm->vm_qcache[i - 1] = qc;
    494      1.22     yamt 		prevqc = qc;
    495       1.5     yamt 	}
    496       1.5     yamt }
    497       1.6     yamt 
    498      1.23     yamt static void
    499      1.23     yamt qc_destroy(vmem_t *vm)
    500      1.23     yamt {
    501      1.23     yamt 	const qcache_t *prevqc;
    502      1.23     yamt 	int i;
    503      1.23     yamt 	int qcache_idx_max;
    504      1.23     yamt 
    505      1.23     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    506      1.23     yamt 	prevqc = NULL;
    507      1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    508      1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    509      1.23     yamt 
    510      1.23     yamt 		if (prevqc == qc) {
    511      1.23     yamt 			continue;
    512      1.23     yamt 		}
    513      1.23     yamt 		pool_cache_destroy(&qc->qc_cache);
    514      1.23     yamt 		pool_destroy(&qc->qc_pool);
    515      1.23     yamt 		prevqc = qc;
    516      1.23     yamt 	}
    517      1.23     yamt }
    518      1.23     yamt 
    519      1.25  thorpej static bool
    520       1.6     yamt qc_reap(vmem_t *vm)
    521       1.6     yamt {
    522      1.22     yamt 	const qcache_t *prevqc;
    523       1.6     yamt 	int i;
    524       1.6     yamt 	int qcache_idx_max;
    525      1.26  thorpej 	bool didsomething = false;
    526       1.6     yamt 
    527       1.6     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    528      1.22     yamt 	prevqc = NULL;
    529      1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    530      1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    531       1.6     yamt 
    532      1.22     yamt 		if (prevqc == qc) {
    533      1.22     yamt 			continue;
    534      1.22     yamt 		}
    535       1.6     yamt 		if (pool_reclaim(&qc->qc_pool) != 0) {
    536      1.26  thorpej 			didsomething = true;
    537       1.6     yamt 		}
    538      1.22     yamt 		prevqc = qc;
    539       1.6     yamt 	}
    540       1.6     yamt 
    541       1.6     yamt 	return didsomething;
    542       1.6     yamt }
    543       1.5     yamt #endif /* defined(QCACHE) */
    544       1.5     yamt 
    545       1.1     yamt #if defined(_KERNEL)
    546       1.1     yamt static int
    547       1.1     yamt vmem_init(void)
    548       1.1     yamt {
    549       1.1     yamt 
    550       1.1     yamt 	pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
    551       1.1     yamt 	return 0;
    552       1.1     yamt }
    553       1.1     yamt #endif /* defined(_KERNEL) */
    554       1.1     yamt 
    555       1.1     yamt static vmem_addr_t
    556       1.1     yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    557       1.1     yamt     int spanbttype)
    558       1.1     yamt {
    559       1.1     yamt 	bt_t *btspan;
    560       1.1     yamt 	bt_t *btfree;
    561       1.1     yamt 
    562       1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    563       1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    564       1.1     yamt 
    565       1.1     yamt 	btspan = bt_alloc(vm, flags);
    566       1.1     yamt 	if (btspan == NULL) {
    567       1.1     yamt 		return VMEM_ADDR_NULL;
    568       1.1     yamt 	}
    569       1.1     yamt 	btfree = bt_alloc(vm, flags);
    570       1.1     yamt 	if (btfree == NULL) {
    571       1.1     yamt 		bt_free(vm, btspan);
    572       1.1     yamt 		return VMEM_ADDR_NULL;
    573       1.1     yamt 	}
    574       1.1     yamt 
    575       1.1     yamt 	btspan->bt_type = spanbttype;
    576       1.1     yamt 	btspan->bt_start = addr;
    577       1.1     yamt 	btspan->bt_size = size;
    578       1.1     yamt 
    579       1.1     yamt 	btfree->bt_type = BT_TYPE_FREE;
    580       1.1     yamt 	btfree->bt_start = addr;
    581       1.1     yamt 	btfree->bt_size = size;
    582       1.1     yamt 
    583  1.27.2.2       ad 	mutex_enter(&vm->vm_lock);
    584       1.1     yamt 	bt_insseg_tail(vm, btspan);
    585       1.1     yamt 	bt_insseg(vm, btfree, btspan);
    586       1.1     yamt 	bt_insfree(vm, btfree);
    587  1.27.2.2       ad 	mutex_exit(&vm->vm_lock);
    588       1.1     yamt 
    589       1.1     yamt 	return addr;
    590       1.1     yamt }
    591       1.1     yamt 
    592       1.1     yamt static int
    593       1.1     yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    594       1.1     yamt {
    595       1.1     yamt 	vmem_addr_t addr;
    596       1.1     yamt 
    597       1.1     yamt 	if (vm->vm_allocfn == NULL) {
    598       1.1     yamt 		return EINVAL;
    599       1.1     yamt 	}
    600       1.1     yamt 
    601       1.1     yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    602       1.1     yamt 	if (addr == VMEM_ADDR_NULL) {
    603       1.1     yamt 		return ENOMEM;
    604       1.1     yamt 	}
    605       1.1     yamt 
    606       1.1     yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    607       1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    608       1.1     yamt 		return ENOMEM;
    609       1.1     yamt 	}
    610       1.1     yamt 
    611       1.1     yamt 	return 0;
    612       1.1     yamt }
    613       1.1     yamt 
    614       1.1     yamt static int
    615       1.1     yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    616       1.1     yamt {
    617       1.1     yamt 	bt_t *bt;
    618       1.1     yamt 	int i;
    619       1.1     yamt 	struct vmem_hashlist *newhashlist;
    620       1.1     yamt 	struct vmem_hashlist *oldhashlist;
    621       1.1     yamt 	size_t oldhashsize;
    622       1.1     yamt 
    623       1.1     yamt 	KASSERT(newhashsize > 0);
    624       1.1     yamt 
    625       1.1     yamt 	newhashlist =
    626       1.1     yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    627       1.1     yamt 	if (newhashlist == NULL) {
    628       1.1     yamt 		return ENOMEM;
    629       1.1     yamt 	}
    630       1.1     yamt 	for (i = 0; i < newhashsize; i++) {
    631       1.1     yamt 		LIST_INIT(&newhashlist[i]);
    632       1.1     yamt 	}
    633       1.1     yamt 
    634  1.27.2.2       ad 	mutex_enter(&vm->vm_lock);
    635       1.1     yamt 	oldhashlist = vm->vm_hashlist;
    636       1.1     yamt 	oldhashsize = vm->vm_hashsize;
    637       1.1     yamt 	vm->vm_hashlist = newhashlist;
    638       1.1     yamt 	vm->vm_hashsize = newhashsize;
    639       1.1     yamt 	if (oldhashlist == NULL) {
    640  1.27.2.2       ad 		mutex_exit(&vm->vm_lock);
    641       1.1     yamt 		return 0;
    642       1.1     yamt 	}
    643       1.1     yamt 	for (i = 0; i < oldhashsize; i++) {
    644       1.1     yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    645       1.1     yamt 			bt_rembusy(vm, bt); /* XXX */
    646       1.1     yamt 			bt_insbusy(vm, bt);
    647       1.1     yamt 		}
    648       1.1     yamt 	}
    649  1.27.2.2       ad 	mutex_exit(&vm->vm_lock);
    650       1.1     yamt 
    651       1.1     yamt 	xfree(oldhashlist);
    652       1.1     yamt 
    653       1.1     yamt 	return 0;
    654       1.1     yamt }
    655       1.1     yamt 
    656      1.10     yamt /*
    657      1.10     yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    658      1.10     yamt  */
    659      1.10     yamt 
    660      1.10     yamt static vmem_addr_t
    661      1.10     yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    662      1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    663      1.10     yamt {
    664      1.10     yamt 	vmem_addr_t start;
    665      1.10     yamt 	vmem_addr_t end;
    666      1.10     yamt 
    667      1.10     yamt 	KASSERT(bt->bt_size >= size);
    668      1.10     yamt 
    669      1.10     yamt 	/*
    670      1.10     yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    671      1.10     yamt 	 * unsigned integer of the same size.
    672      1.10     yamt 	 */
    673      1.10     yamt 
    674      1.10     yamt 	start = bt->bt_start;
    675      1.10     yamt 	if (start < minaddr) {
    676      1.10     yamt 		start = minaddr;
    677      1.10     yamt 	}
    678      1.10     yamt 	end = BT_END(bt);
    679      1.10     yamt 	if (end > maxaddr - 1) {
    680      1.10     yamt 		end = maxaddr - 1;
    681      1.10     yamt 	}
    682      1.10     yamt 	if (start >= end) {
    683      1.10     yamt 		return VMEM_ADDR_NULL;
    684      1.10     yamt 	}
    685      1.19     yamt 
    686      1.19     yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    687      1.10     yamt 	if (start < bt->bt_start) {
    688      1.10     yamt 		start += align;
    689      1.10     yamt 	}
    690      1.19     yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    691      1.10     yamt 		KASSERT(align < nocross);
    692      1.19     yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    693      1.10     yamt 	}
    694      1.10     yamt 	if (start < end && end - start >= size) {
    695      1.10     yamt 		KASSERT((start & (align - 1)) == phase);
    696      1.19     yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    697      1.10     yamt 		KASSERT(minaddr <= start);
    698      1.10     yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    699      1.10     yamt 		KASSERT(bt->bt_start <= start);
    700      1.10     yamt 		KASSERT(start + size <= BT_END(bt));
    701      1.10     yamt 		return start;
    702      1.10     yamt 	}
    703      1.10     yamt 	return VMEM_ADDR_NULL;
    704      1.10     yamt }
    705      1.10     yamt 
    706       1.1     yamt /* ---- vmem API */
    707       1.1     yamt 
    708       1.1     yamt /*
    709       1.1     yamt  * vmem_create: create an arena.
    710       1.1     yamt  *
    711       1.1     yamt  * => must not be called from interrupt context.
    712       1.1     yamt  */
    713       1.1     yamt 
    714       1.1     yamt vmem_t *
    715       1.1     yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    716       1.1     yamt     vmem_size_t quantum,
    717       1.1     yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    718       1.1     yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    719  1.27.2.3       ad     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
    720  1.27.2.3       ad     int ipl)
    721       1.1     yamt {
    722       1.1     yamt 	vmem_t *vm;
    723       1.1     yamt 	int i;
    724       1.1     yamt #if defined(_KERNEL)
    725       1.1     yamt 	static ONCE_DECL(control);
    726       1.1     yamt #endif /* defined(_KERNEL) */
    727       1.1     yamt 
    728       1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    729       1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    730       1.1     yamt 
    731       1.1     yamt #if defined(_KERNEL)
    732       1.1     yamt 	if (RUN_ONCE(&control, vmem_init)) {
    733       1.1     yamt 		return NULL;
    734       1.1     yamt 	}
    735       1.1     yamt #endif /* defined(_KERNEL) */
    736       1.1     yamt 	vm = xmalloc(sizeof(*vm), flags);
    737       1.1     yamt 	if (vm == NULL) {
    738       1.1     yamt 		return NULL;
    739       1.1     yamt 	}
    740       1.1     yamt 
    741  1.27.2.3       ad 	mutex_init(&vm->vm_lock, MUTEX_DRIVER, ipl);
    742       1.1     yamt 	vm->vm_name = name;
    743       1.1     yamt 	vm->vm_quantum_mask = quantum - 1;
    744       1.1     yamt 	vm->vm_quantum_shift = calc_order(quantum);
    745       1.4     yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    746       1.1     yamt 	vm->vm_allocfn = allocfn;
    747       1.1     yamt 	vm->vm_freefn = freefn;
    748       1.1     yamt 	vm->vm_source = source;
    749       1.1     yamt 	vm->vm_nbusytag = 0;
    750       1.5     yamt #if defined(QCACHE)
    751  1.27.2.3       ad 	qc_init(vm, qcache_max, ipl);
    752       1.5     yamt #endif /* defined(QCACHE) */
    753       1.1     yamt 
    754       1.1     yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    755       1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    756       1.1     yamt 		LIST_INIT(&vm->vm_freelist[i]);
    757       1.1     yamt 	}
    758       1.1     yamt 	vm->vm_hashlist = NULL;
    759       1.1     yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    760       1.1     yamt 		vmem_destroy(vm);
    761       1.1     yamt 		return NULL;
    762       1.1     yamt 	}
    763       1.1     yamt 
    764       1.1     yamt 	if (size != 0) {
    765       1.1     yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    766       1.1     yamt 			vmem_destroy(vm);
    767       1.1     yamt 			return NULL;
    768       1.1     yamt 		}
    769       1.1     yamt 	}
    770       1.1     yamt 
    771       1.1     yamt 	return vm;
    772       1.1     yamt }
    773       1.1     yamt 
    774       1.1     yamt void
    775       1.1     yamt vmem_destroy(vmem_t *vm)
    776       1.1     yamt {
    777       1.1     yamt 
    778      1.23     yamt #if defined(QCACHE)
    779      1.23     yamt 	qc_destroy(vm);
    780      1.23     yamt #endif /* defined(QCACHE) */
    781       1.1     yamt 	if (vm->vm_hashlist != NULL) {
    782       1.1     yamt 		int i;
    783       1.1     yamt 
    784       1.1     yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    785       1.1     yamt 			bt_t *bt;
    786       1.1     yamt 
    787       1.1     yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    788       1.1     yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    789       1.1     yamt 				bt_free(vm, bt);
    790       1.1     yamt 			}
    791       1.1     yamt 		}
    792       1.1     yamt 		xfree(vm->vm_hashlist);
    793       1.1     yamt 	}
    794  1.27.2.2       ad 	mutex_destroy(&vm->vm_lock);
    795       1.1     yamt 	xfree(vm);
    796       1.1     yamt }
    797       1.1     yamt 
    798       1.1     yamt vmem_size_t
    799       1.1     yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    800       1.1     yamt {
    801       1.1     yamt 
    802       1.1     yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    803       1.1     yamt }
    804       1.1     yamt 
    805       1.1     yamt /*
    806       1.1     yamt  * vmem_alloc:
    807       1.1     yamt  *
    808       1.1     yamt  * => caller must ensure appropriate spl,
    809       1.1     yamt  *    if the arena can be accessed from interrupt context.
    810       1.1     yamt  */
    811       1.1     yamt 
    812       1.1     yamt vmem_addr_t
    813       1.1     yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
    814       1.1     yamt {
    815      1.12     yamt 	const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
    816      1.12     yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    817       1.1     yamt 
    818       1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    819       1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    820       1.1     yamt 
    821       1.1     yamt 	KASSERT(size0 > 0);
    822       1.1     yamt 	KASSERT(size > 0);
    823       1.1     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    824       1.3     yamt 	if ((flags & VM_SLEEP) != 0) {
    825      1.16     yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    826       1.3     yamt 	}
    827       1.1     yamt 
    828       1.5     yamt #if defined(QCACHE)
    829       1.5     yamt 	if (size <= vm->vm_qcache_max) {
    830       1.5     yamt 		int qidx = size >> vm->vm_quantum_shift;
    831      1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    832       1.5     yamt 
    833       1.5     yamt 		return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
    834       1.5     yamt 		    vmf_to_prf(flags));
    835       1.5     yamt 	}
    836       1.5     yamt #endif /* defined(QCACHE) */
    837       1.5     yamt 
    838      1.10     yamt 	return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
    839      1.10     yamt }
    840      1.10     yamt 
    841      1.10     yamt vmem_addr_t
    842      1.10     yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
    843      1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
    844      1.10     yamt     vm_flag_t flags)
    845      1.10     yamt {
    846      1.10     yamt 	struct vmem_freelist *list;
    847      1.10     yamt 	struct vmem_freelist *first;
    848      1.10     yamt 	struct vmem_freelist *end;
    849      1.10     yamt 	bt_t *bt;
    850      1.10     yamt 	bt_t *btnew;
    851      1.10     yamt 	bt_t *btnew2;
    852      1.10     yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
    853      1.10     yamt 	vm_flag_t strat = flags & VM_FITMASK;
    854      1.10     yamt 	vmem_addr_t start;
    855      1.10     yamt 
    856      1.10     yamt 	KASSERT(size0 > 0);
    857      1.10     yamt 	KASSERT(size > 0);
    858      1.10     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    859      1.10     yamt 	if ((flags & VM_SLEEP) != 0) {
    860      1.16     yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    861      1.10     yamt 	}
    862      1.10     yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
    863      1.10     yamt 	KASSERT((align & (align - 1)) == 0);
    864      1.10     yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
    865      1.10     yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
    866      1.10     yamt 	KASSERT((nocross & (nocross - 1)) == 0);
    867      1.10     yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
    868      1.10     yamt 	KASSERT(nocross == 0 || nocross >= size);
    869      1.10     yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
    870      1.19     yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
    871      1.10     yamt 
    872      1.10     yamt 	if (align == 0) {
    873      1.10     yamt 		align = vm->vm_quantum_mask + 1;
    874      1.10     yamt 	}
    875       1.1     yamt 	btnew = bt_alloc(vm, flags);
    876       1.1     yamt 	if (btnew == NULL) {
    877       1.1     yamt 		return VMEM_ADDR_NULL;
    878       1.1     yamt 	}
    879      1.10     yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
    880      1.10     yamt 	if (btnew2 == NULL) {
    881      1.10     yamt 		bt_free(vm, btnew);
    882      1.10     yamt 		return VMEM_ADDR_NULL;
    883      1.10     yamt 	}
    884       1.1     yamt 
    885       1.1     yamt retry_strat:
    886       1.1     yamt 	first = bt_freehead_toalloc(vm, size, strat);
    887       1.1     yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
    888       1.1     yamt retry:
    889       1.1     yamt 	bt = NULL;
    890  1.27.2.2       ad 	mutex_enter(&vm->vm_lock);
    891       1.2     yamt 	if (strat == VM_INSTANTFIT) {
    892       1.2     yamt 		for (list = first; list < end; list++) {
    893       1.2     yamt 			bt = LIST_FIRST(list);
    894       1.2     yamt 			if (bt != NULL) {
    895      1.10     yamt 				start = vmem_fit(bt, size, align, phase,
    896      1.10     yamt 				    nocross, minaddr, maxaddr);
    897      1.10     yamt 				if (start != VMEM_ADDR_NULL) {
    898      1.10     yamt 					goto gotit;
    899      1.10     yamt 				}
    900       1.2     yamt 			}
    901       1.2     yamt 		}
    902       1.2     yamt 	} else { /* VM_BESTFIT */
    903       1.2     yamt 		for (list = first; list < end; list++) {
    904       1.2     yamt 			LIST_FOREACH(bt, list, bt_freelist) {
    905       1.2     yamt 				if (bt->bt_size >= size) {
    906      1.10     yamt 					start = vmem_fit(bt, size, align, phase,
    907      1.10     yamt 					    nocross, minaddr, maxaddr);
    908      1.10     yamt 					if (start != VMEM_ADDR_NULL) {
    909      1.10     yamt 						goto gotit;
    910      1.10     yamt 					}
    911       1.2     yamt 				}
    912       1.1     yamt 			}
    913       1.1     yamt 		}
    914       1.1     yamt 	}
    915  1.27.2.2       ad 	mutex_exit(&vm->vm_lock);
    916       1.1     yamt #if 1
    917       1.2     yamt 	if (strat == VM_INSTANTFIT) {
    918       1.2     yamt 		strat = VM_BESTFIT;
    919       1.2     yamt 		goto retry_strat;
    920       1.2     yamt 	}
    921       1.1     yamt #endif
    922      1.10     yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
    923      1.10     yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
    924      1.10     yamt 
    925      1.10     yamt 		/*
    926      1.10     yamt 		 * XXX should try to import a region large enough to
    927      1.10     yamt 		 * satisfy restrictions?
    928      1.10     yamt 		 */
    929      1.10     yamt 
    930      1.20     yamt 		goto fail;
    931      1.10     yamt 	}
    932       1.2     yamt 	if (vmem_import(vm, size, flags) == 0) {
    933       1.2     yamt 		goto retry;
    934       1.1     yamt 	}
    935       1.2     yamt 	/* XXX */
    936      1.20     yamt fail:
    937      1.20     yamt 	bt_free(vm, btnew);
    938      1.20     yamt 	bt_free(vm, btnew2);
    939       1.2     yamt 	return VMEM_ADDR_NULL;
    940       1.2     yamt 
    941       1.2     yamt gotit:
    942       1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    943       1.1     yamt 	KASSERT(bt->bt_size >= size);
    944       1.1     yamt 	bt_remfree(vm, bt);
    945      1.10     yamt 	if (bt->bt_start != start) {
    946      1.10     yamt 		btnew2->bt_type = BT_TYPE_FREE;
    947      1.10     yamt 		btnew2->bt_start = bt->bt_start;
    948      1.10     yamt 		btnew2->bt_size = start - bt->bt_start;
    949      1.10     yamt 		bt->bt_start = start;
    950      1.10     yamt 		bt->bt_size -= btnew2->bt_size;
    951      1.10     yamt 		bt_insfree(vm, btnew2);
    952      1.10     yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
    953      1.10     yamt 		btnew2 = NULL;
    954      1.10     yamt 	}
    955      1.10     yamt 	KASSERT(bt->bt_start == start);
    956       1.1     yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
    957       1.1     yamt 		/* split */
    958       1.1     yamt 		btnew->bt_type = BT_TYPE_BUSY;
    959       1.1     yamt 		btnew->bt_start = bt->bt_start;
    960       1.1     yamt 		btnew->bt_size = size;
    961       1.1     yamt 		bt->bt_start = bt->bt_start + size;
    962       1.1     yamt 		bt->bt_size -= size;
    963       1.1     yamt 		bt_insfree(vm, bt);
    964       1.1     yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
    965       1.1     yamt 		bt_insbusy(vm, btnew);
    966  1.27.2.2       ad 		mutex_exit(&vm->vm_lock);
    967       1.1     yamt 	} else {
    968       1.1     yamt 		bt->bt_type = BT_TYPE_BUSY;
    969       1.1     yamt 		bt_insbusy(vm, bt);
    970  1.27.2.2       ad 		mutex_exit(&vm->vm_lock);
    971       1.1     yamt 		bt_free(vm, btnew);
    972       1.1     yamt 		btnew = bt;
    973       1.1     yamt 	}
    974      1.10     yamt 	if (btnew2 != NULL) {
    975      1.10     yamt 		bt_free(vm, btnew2);
    976      1.10     yamt 	}
    977       1.1     yamt 	KASSERT(btnew->bt_size >= size);
    978       1.1     yamt 	btnew->bt_type = BT_TYPE_BUSY;
    979       1.1     yamt 
    980       1.1     yamt 	return btnew->bt_start;
    981       1.1     yamt }
    982       1.1     yamt 
    983       1.1     yamt /*
    984       1.1     yamt  * vmem_free:
    985       1.1     yamt  *
    986       1.1     yamt  * => caller must ensure appropriate spl,
    987       1.1     yamt  *    if the arena can be accessed from interrupt context.
    988       1.1     yamt  */
    989       1.1     yamt 
    990       1.1     yamt void
    991       1.1     yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
    992       1.1     yamt {
    993       1.1     yamt 
    994       1.1     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
    995       1.1     yamt 	KASSERT(size > 0);
    996       1.1     yamt 
    997       1.5     yamt #if defined(QCACHE)
    998       1.5     yamt 	if (size <= vm->vm_qcache_max) {
    999       1.5     yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1000      1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1001       1.5     yamt 
   1002       1.5     yamt 		return pool_cache_put(&qc->qc_cache, (void *)addr);
   1003       1.5     yamt 	}
   1004       1.5     yamt #endif /* defined(QCACHE) */
   1005       1.5     yamt 
   1006      1.10     yamt 	vmem_xfree(vm, addr, size);
   1007      1.10     yamt }
   1008      1.10     yamt 
   1009      1.10     yamt void
   1010      1.17     yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1011      1.10     yamt {
   1012      1.10     yamt 	bt_t *bt;
   1013      1.10     yamt 	bt_t *t;
   1014      1.10     yamt 
   1015      1.10     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1016      1.10     yamt 	KASSERT(size > 0);
   1017      1.10     yamt 
   1018  1.27.2.2       ad 	mutex_enter(&vm->vm_lock);
   1019       1.1     yamt 
   1020       1.1     yamt 	bt = bt_lookupbusy(vm, addr);
   1021       1.1     yamt 	KASSERT(bt != NULL);
   1022       1.1     yamt 	KASSERT(bt->bt_start == addr);
   1023       1.1     yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1024       1.1     yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1025       1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1026       1.1     yamt 	bt_rembusy(vm, bt);
   1027       1.1     yamt 	bt->bt_type = BT_TYPE_FREE;
   1028       1.1     yamt 
   1029       1.1     yamt 	/* coalesce */
   1030       1.1     yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1031       1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1032       1.1     yamt 		KASSERT(BT_END(bt) == t->bt_start);
   1033       1.1     yamt 		bt_remfree(vm, t);
   1034       1.1     yamt 		bt_remseg(vm, t);
   1035       1.1     yamt 		bt->bt_size += t->bt_size;
   1036       1.1     yamt 		bt_free(vm, t);
   1037       1.1     yamt 	}
   1038       1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1039       1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1040       1.1     yamt 		KASSERT(BT_END(t) == bt->bt_start);
   1041       1.1     yamt 		bt_remfree(vm, t);
   1042       1.1     yamt 		bt_remseg(vm, t);
   1043       1.1     yamt 		bt->bt_size += t->bt_size;
   1044       1.1     yamt 		bt->bt_start = t->bt_start;
   1045       1.1     yamt 		bt_free(vm, t);
   1046       1.1     yamt 	}
   1047       1.1     yamt 
   1048       1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1049       1.1     yamt 	KASSERT(t != NULL);
   1050       1.1     yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1051       1.1     yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1052       1.1     yamt 	    t->bt_size == bt->bt_size) {
   1053       1.1     yamt 		vmem_addr_t spanaddr;
   1054       1.1     yamt 		vmem_size_t spansize;
   1055       1.1     yamt 
   1056       1.1     yamt 		KASSERT(t->bt_start == bt->bt_start);
   1057       1.1     yamt 		spanaddr = bt->bt_start;
   1058       1.1     yamt 		spansize = bt->bt_size;
   1059       1.1     yamt 		bt_remseg(vm, bt);
   1060       1.1     yamt 		bt_free(vm, bt);
   1061       1.1     yamt 		bt_remseg(vm, t);
   1062       1.1     yamt 		bt_free(vm, t);
   1063  1.27.2.2       ad 		mutex_exit(&vm->vm_lock);
   1064       1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1065       1.1     yamt 	} else {
   1066       1.1     yamt 		bt_insfree(vm, bt);
   1067  1.27.2.2       ad 		mutex_exit(&vm->vm_lock);
   1068       1.1     yamt 	}
   1069       1.1     yamt }
   1070       1.1     yamt 
   1071       1.1     yamt /*
   1072       1.1     yamt  * vmem_add:
   1073       1.1     yamt  *
   1074       1.1     yamt  * => caller must ensure appropriate spl,
   1075       1.1     yamt  *    if the arena can be accessed from interrupt context.
   1076       1.1     yamt  */
   1077       1.1     yamt 
   1078       1.1     yamt vmem_addr_t
   1079       1.1     yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1080       1.1     yamt {
   1081       1.1     yamt 
   1082       1.1     yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1083       1.1     yamt }
   1084       1.1     yamt 
   1085       1.6     yamt /*
   1086       1.6     yamt  * vmem_reap: reap unused resources.
   1087       1.6     yamt  *
   1088      1.26  thorpej  * => return true if we successfully reaped something.
   1089       1.6     yamt  */
   1090       1.6     yamt 
   1091      1.25  thorpej bool
   1092       1.6     yamt vmem_reap(vmem_t *vm)
   1093       1.6     yamt {
   1094      1.26  thorpej 	bool didsomething = false;
   1095       1.6     yamt 
   1096       1.6     yamt #if defined(QCACHE)
   1097       1.6     yamt 	didsomething = qc_reap(vm);
   1098       1.6     yamt #endif /* defined(QCACHE) */
   1099       1.6     yamt 	return didsomething;
   1100       1.6     yamt }
   1101       1.6     yamt 
   1102       1.1     yamt /* ---- debug */
   1103       1.1     yamt 
   1104       1.1     yamt #if defined(VMEM_DEBUG)
   1105       1.1     yamt 
   1106       1.1     yamt #if !defined(_KERNEL)
   1107       1.1     yamt #include <stdio.h>
   1108       1.1     yamt #endif /* !defined(_KERNEL) */
   1109       1.1     yamt 
   1110       1.1     yamt void bt_dump(const bt_t *);
   1111       1.1     yamt 
   1112       1.1     yamt void
   1113       1.1     yamt bt_dump(const bt_t *bt)
   1114       1.1     yamt {
   1115       1.1     yamt 
   1116       1.1     yamt 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
   1117       1.1     yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1118       1.1     yamt 	    bt->bt_type);
   1119       1.1     yamt }
   1120       1.1     yamt 
   1121       1.1     yamt void
   1122       1.1     yamt vmem_dump(const vmem_t *vm)
   1123       1.1     yamt {
   1124       1.1     yamt 	const bt_t *bt;
   1125       1.1     yamt 	int i;
   1126       1.1     yamt 
   1127       1.1     yamt 	printf("vmem %p '%s'\n", vm, vm->vm_name);
   1128       1.1     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1129       1.1     yamt 		bt_dump(bt);
   1130       1.1     yamt 	}
   1131       1.1     yamt 
   1132       1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1133       1.1     yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1134       1.1     yamt 
   1135       1.1     yamt 		if (LIST_EMPTY(fl)) {
   1136       1.1     yamt 			continue;
   1137       1.1     yamt 		}
   1138       1.1     yamt 
   1139       1.1     yamt 		printf("freelist[%d]\n", i);
   1140       1.1     yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1141       1.1     yamt 			bt_dump(bt);
   1142       1.1     yamt 			if (bt->bt_size) {
   1143       1.1     yamt 			}
   1144       1.1     yamt 		}
   1145       1.1     yamt 	}
   1146       1.1     yamt }
   1147       1.1     yamt 
   1148       1.1     yamt #if !defined(_KERNEL)
   1149       1.1     yamt 
   1150       1.1     yamt int
   1151       1.1     yamt main()
   1152       1.1     yamt {
   1153       1.1     yamt 	vmem_t *vm;
   1154       1.1     yamt 	vmem_addr_t p;
   1155       1.1     yamt 	struct reg {
   1156       1.1     yamt 		vmem_addr_t p;
   1157       1.1     yamt 		vmem_size_t sz;
   1158      1.25  thorpej 		bool x;
   1159       1.1     yamt 	} *reg = NULL;
   1160       1.1     yamt 	int nreg = 0;
   1161       1.1     yamt 	int nalloc = 0;
   1162       1.1     yamt 	int nfree = 0;
   1163       1.1     yamt 	vmem_size_t total = 0;
   1164       1.1     yamt #if 1
   1165       1.1     yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1166       1.1     yamt #else
   1167       1.1     yamt 	vm_flag_t strat = VM_BESTFIT;
   1168       1.1     yamt #endif
   1169       1.1     yamt 
   1170       1.1     yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1171       1.1     yamt 	    NULL, NULL, NULL, 0, VM_NOSLEEP);
   1172       1.1     yamt 	if (vm == NULL) {
   1173       1.1     yamt 		printf("vmem_create\n");
   1174       1.1     yamt 		exit(EXIT_FAILURE);
   1175       1.1     yamt 	}
   1176       1.1     yamt 	vmem_dump(vm);
   1177       1.1     yamt 
   1178       1.1     yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1179       1.1     yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1180       1.1     yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1181       1.1     yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1182       1.1     yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1183       1.1     yamt 	vmem_dump(vm);
   1184       1.1     yamt 	for (;;) {
   1185       1.1     yamt 		struct reg *r;
   1186      1.10     yamt 		int t = rand() % 100;
   1187       1.1     yamt 
   1188      1.10     yamt 		if (t > 45) {
   1189      1.10     yamt 			/* alloc */
   1190       1.1     yamt 			vmem_size_t sz = rand() % 500 + 1;
   1191      1.25  thorpej 			bool x;
   1192      1.10     yamt 			vmem_size_t align, phase, nocross;
   1193      1.10     yamt 			vmem_addr_t minaddr, maxaddr;
   1194      1.10     yamt 
   1195      1.10     yamt 			if (t > 70) {
   1196      1.26  thorpej 				x = true;
   1197      1.10     yamt 				/* XXX */
   1198      1.10     yamt 				align = 1 << (rand() % 15);
   1199      1.10     yamt 				phase = rand() % 65536;
   1200      1.10     yamt 				nocross = 1 << (rand() % 15);
   1201      1.10     yamt 				if (align <= phase) {
   1202      1.10     yamt 					phase = 0;
   1203      1.10     yamt 				}
   1204      1.19     yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1205      1.19     yamt 				    nocross)) {
   1206      1.10     yamt 					nocross = 0;
   1207      1.10     yamt 				}
   1208      1.10     yamt 				minaddr = rand() % 50000;
   1209      1.10     yamt 				maxaddr = rand() % 70000;
   1210      1.10     yamt 				if (minaddr > maxaddr) {
   1211      1.10     yamt 					minaddr = 0;
   1212      1.10     yamt 					maxaddr = 0;
   1213      1.10     yamt 				}
   1214      1.10     yamt 				printf("=== xalloc %" PRIu64
   1215      1.10     yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1216      1.10     yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1217      1.10     yamt 				    ", max=%" PRIu64 "\n",
   1218      1.10     yamt 				    (uint64_t)sz,
   1219      1.10     yamt 				    (uint64_t)align,
   1220      1.10     yamt 				    (uint64_t)phase,
   1221      1.10     yamt 				    (uint64_t)nocross,
   1222      1.10     yamt 				    (uint64_t)minaddr,
   1223      1.10     yamt 				    (uint64_t)maxaddr);
   1224      1.10     yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1225      1.10     yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1226      1.10     yamt 			} else {
   1227      1.26  thorpej 				x = false;
   1228      1.10     yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1229      1.10     yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1230      1.10     yamt 			}
   1231       1.1     yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1232       1.1     yamt 			vmem_dump(vm);
   1233       1.1     yamt 			if (p == VMEM_ADDR_NULL) {
   1234      1.10     yamt 				if (x) {
   1235      1.10     yamt 					continue;
   1236      1.10     yamt 				}
   1237       1.1     yamt 				break;
   1238       1.1     yamt 			}
   1239       1.1     yamt 			nreg++;
   1240       1.1     yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1241       1.1     yamt 			r = &reg[nreg - 1];
   1242       1.1     yamt 			r->p = p;
   1243       1.1     yamt 			r->sz = sz;
   1244      1.10     yamt 			r->x = x;
   1245       1.1     yamt 			total += sz;
   1246       1.1     yamt 			nalloc++;
   1247       1.1     yamt 		} else if (nreg != 0) {
   1248      1.10     yamt 			/* free */
   1249       1.1     yamt 			r = &reg[rand() % nreg];
   1250       1.1     yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1251       1.1     yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1252      1.10     yamt 			if (r->x) {
   1253      1.10     yamt 				vmem_xfree(vm, r->p, r->sz);
   1254      1.10     yamt 			} else {
   1255      1.10     yamt 				vmem_free(vm, r->p, r->sz);
   1256      1.10     yamt 			}
   1257       1.1     yamt 			total -= r->sz;
   1258       1.1     yamt 			vmem_dump(vm);
   1259       1.1     yamt 			*r = reg[nreg - 1];
   1260       1.1     yamt 			nreg--;
   1261       1.1     yamt 			nfree++;
   1262       1.1     yamt 		}
   1263       1.1     yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1264       1.1     yamt 	}
   1265       1.1     yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1266       1.1     yamt 	    (uint64_t)total, nalloc, nfree);
   1267       1.1     yamt 	exit(EXIT_SUCCESS);
   1268       1.1     yamt }
   1269       1.1     yamt #endif /* !defined(_KERNEL) */
   1270       1.1     yamt #endif /* defined(VMEM_DEBUG) */
   1271