subr_vmem.c revision 1.27.2.7 1 1.27.2.7 yamt /* $NetBSD: subr_vmem.c,v 1.27.2.7 2007/10/27 09:18:54 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.18 yamt *
35 1.18 yamt * todo:
36 1.18 yamt * - decide how to import segments for vmem_xalloc.
37 1.18 yamt * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.27.2.7 yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.27.2.7 2007/10/27 09:18:54 yamt Exp $");
42 1.1 yamt
43 1.1 yamt #define VMEM_DEBUG
44 1.5 yamt #if defined(_KERNEL)
45 1.5 yamt #define QCACHE
46 1.5 yamt #endif /* defined(_KERNEL) */
47 1.1 yamt
48 1.1 yamt #include <sys/param.h>
49 1.1 yamt #include <sys/hash.h>
50 1.1 yamt #include <sys/queue.h>
51 1.1 yamt
52 1.1 yamt #if defined(_KERNEL)
53 1.1 yamt #include <sys/systm.h>
54 1.27.2.5 ad #include <sys/kernel.h> /* hz */
55 1.27.2.5 ad #include <sys/callout.h>
56 1.27.2.5 ad #include <sys/lock.h>
57 1.1 yamt #include <sys/malloc.h>
58 1.1 yamt #include <sys/once.h>
59 1.1 yamt #include <sys/pool.h>
60 1.3 yamt #include <sys/proc.h>
61 1.1 yamt #include <sys/vmem.h>
62 1.27.2.5 ad #include <sys/workqueue.h>
63 1.1 yamt #else /* defined(_KERNEL) */
64 1.1 yamt #include "../sys/vmem.h"
65 1.1 yamt #endif /* defined(_KERNEL) */
66 1.1 yamt
67 1.1 yamt #if defined(_KERNEL)
68 1.27.2.2 ad #define LOCK_DECL(name) kmutex_t name
69 1.1 yamt #else /* defined(_KERNEL) */
70 1.1 yamt #include <errno.h>
71 1.1 yamt #include <assert.h>
72 1.1 yamt #include <stdlib.h>
73 1.1 yamt
74 1.1 yamt #define KASSERT(a) assert(a)
75 1.27.2.2 ad #define LOCK_DECL(name) /* nothing */
76 1.27.2.2 ad #define mutex_init(a, b, c) /* nothing */
77 1.27.2.2 ad #define mutex_destroy(a) /* nothing */
78 1.27.2.2 ad #define mutex_enter(a) /* nothing */
79 1.27.2.2 ad #define mutex_exit(a) /* nothing */
80 1.27.2.2 ad #define mutex_owned(a) /* nothing */
81 1.3 yamt #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
82 1.27.2.5 ad #define IPL_VM 0
83 1.1 yamt #endif /* defined(_KERNEL) */
84 1.1 yamt
85 1.1 yamt struct vmem;
86 1.1 yamt struct vmem_btag;
87 1.1 yamt
88 1.1 yamt #if defined(VMEM_DEBUG)
89 1.1 yamt void vmem_dump(const vmem_t *);
90 1.1 yamt #endif /* defined(VMEM_DEBUG) */
91 1.1 yamt
92 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
93 1.27.2.5 ad
94 1.27.2.5 ad #define VMEM_HASHSIZE_MIN 1 /* XXX */
95 1.27.2.5 ad #define VMEM_HASHSIZE_MAX 8192 /* XXX */
96 1.27.2.5 ad #define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
97 1.1 yamt
98 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
99 1.1 yamt
100 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
101 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
102 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
103 1.1 yamt
104 1.5 yamt #if defined(QCACHE)
105 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
106 1.5 yamt
107 1.5 yamt #define QC_NAME_MAX 16
108 1.5 yamt
109 1.5 yamt struct qcache {
110 1.27.2.6 ad pool_cache_t qc_cache;
111 1.5 yamt vmem_t *qc_vmem;
112 1.5 yamt char qc_name[QC_NAME_MAX];
113 1.5 yamt };
114 1.5 yamt typedef struct qcache qcache_t;
115 1.27.2.6 ad #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
116 1.5 yamt #endif /* defined(QCACHE) */
117 1.5 yamt
118 1.1 yamt /* vmem arena */
119 1.1 yamt struct vmem {
120 1.27.2.2 ad LOCK_DECL(vm_lock);
121 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
122 1.1 yamt vm_flag_t);
123 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
124 1.1 yamt vmem_t *vm_source;
125 1.1 yamt struct vmem_seglist vm_seglist;
126 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
127 1.1 yamt size_t vm_hashsize;
128 1.1 yamt size_t vm_nbusytag;
129 1.1 yamt struct vmem_hashlist *vm_hashlist;
130 1.1 yamt size_t vm_quantum_mask;
131 1.1 yamt int vm_quantum_shift;
132 1.1 yamt const char *vm_name;
133 1.27.2.5 ad LIST_ENTRY(vmem) vm_alllist;
134 1.5 yamt
135 1.5 yamt #if defined(QCACHE)
136 1.5 yamt /* quantum cache */
137 1.5 yamt size_t vm_qcache_max;
138 1.5 yamt struct pool_allocator vm_qcache_allocator;
139 1.22 yamt qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
140 1.22 yamt qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
141 1.5 yamt #endif /* defined(QCACHE) */
142 1.1 yamt };
143 1.1 yamt
144 1.27.2.5 ad #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
145 1.27.2.5 ad #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
146 1.27.2.5 ad #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
147 1.27.2.5 ad #ifdef notyet /* XXX needs vmlocking branch changes */
148 1.27.2.5 ad #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DRIVER, ipl)
149 1.27.2.5 ad #else
150 1.27.2.5 ad #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DRIVER, IPL_VM)
151 1.27.2.5 ad #endif
152 1.27.2.5 ad #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
153 1.27.2.5 ad #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
154 1.27.2.5 ad
155 1.1 yamt /* boundary tag */
156 1.1 yamt struct vmem_btag {
157 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
158 1.1 yamt union {
159 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
160 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
161 1.1 yamt } bt_u;
162 1.1 yamt #define bt_hashlist bt_u.u_hashlist
163 1.1 yamt #define bt_freelist bt_u.u_freelist
164 1.1 yamt vmem_addr_t bt_start;
165 1.1 yamt vmem_size_t bt_size;
166 1.1 yamt int bt_type;
167 1.1 yamt };
168 1.1 yamt
169 1.1 yamt #define BT_TYPE_SPAN 1
170 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
171 1.1 yamt #define BT_TYPE_FREE 3
172 1.1 yamt #define BT_TYPE_BUSY 4
173 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
174 1.1 yamt
175 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
176 1.1 yamt
177 1.1 yamt typedef struct vmem_btag bt_t;
178 1.1 yamt
179 1.1 yamt /* ---- misc */
180 1.1 yamt
181 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
182 1.19 yamt (-(-(addr) & -(align)))
183 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
184 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
185 1.19 yamt
186 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
187 1.4 yamt
188 1.1 yamt static int
189 1.1 yamt calc_order(vmem_size_t size)
190 1.1 yamt {
191 1.4 yamt vmem_size_t target;
192 1.1 yamt int i;
193 1.1 yamt
194 1.1 yamt KASSERT(size != 0);
195 1.1 yamt
196 1.1 yamt i = 0;
197 1.4 yamt target = size >> 1;
198 1.4 yamt while (ORDER2SIZE(i) <= target) {
199 1.1 yamt i++;
200 1.1 yamt }
201 1.1 yamt
202 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
203 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
204 1.1 yamt
205 1.1 yamt return i;
206 1.1 yamt }
207 1.1 yamt
208 1.1 yamt #if defined(_KERNEL)
209 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
210 1.1 yamt #endif /* defined(_KERNEL) */
211 1.1 yamt
212 1.1 yamt static void *
213 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
214 1.1 yamt {
215 1.1 yamt
216 1.1 yamt #if defined(_KERNEL)
217 1.1 yamt return malloc(sz, M_VMEM,
218 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
219 1.1 yamt #else /* defined(_KERNEL) */
220 1.1 yamt return malloc(sz);
221 1.1 yamt #endif /* defined(_KERNEL) */
222 1.1 yamt }
223 1.1 yamt
224 1.1 yamt static void
225 1.1 yamt xfree(void *p)
226 1.1 yamt {
227 1.1 yamt
228 1.1 yamt #if defined(_KERNEL)
229 1.1 yamt return free(p, M_VMEM);
230 1.1 yamt #else /* defined(_KERNEL) */
231 1.1 yamt return free(p);
232 1.1 yamt #endif /* defined(_KERNEL) */
233 1.1 yamt }
234 1.1 yamt
235 1.1 yamt /* ---- boundary tag */
236 1.1 yamt
237 1.1 yamt #if defined(_KERNEL)
238 1.27.2.6 ad static struct pool_cache bt_cache;
239 1.1 yamt #endif /* defined(_KERNEL) */
240 1.1 yamt
241 1.1 yamt static bt_t *
242 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
243 1.1 yamt {
244 1.1 yamt bt_t *bt;
245 1.1 yamt
246 1.1 yamt #if defined(_KERNEL)
247 1.27.2.6 ad bt = pool_cache_get(&bt_cache,
248 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
249 1.1 yamt #else /* defined(_KERNEL) */
250 1.1 yamt bt = malloc(sizeof *bt);
251 1.1 yamt #endif /* defined(_KERNEL) */
252 1.1 yamt
253 1.1 yamt return bt;
254 1.1 yamt }
255 1.1 yamt
256 1.1 yamt static void
257 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
258 1.1 yamt {
259 1.1 yamt
260 1.1 yamt #if defined(_KERNEL)
261 1.27.2.6 ad pool_cache_put(&bt_cache, bt);
262 1.1 yamt #else /* defined(_KERNEL) */
263 1.1 yamt free(bt);
264 1.1 yamt #endif /* defined(_KERNEL) */
265 1.1 yamt }
266 1.1 yamt
267 1.1 yamt /*
268 1.1 yamt * freelist[0] ... [1, 1]
269 1.1 yamt * freelist[1] ... [2, 3]
270 1.1 yamt * freelist[2] ... [4, 7]
271 1.1 yamt * freelist[3] ... [8, 15]
272 1.1 yamt * :
273 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
274 1.1 yamt * :
275 1.1 yamt */
276 1.1 yamt
277 1.1 yamt static struct vmem_freelist *
278 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
279 1.1 yamt {
280 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
281 1.1 yamt int idx;
282 1.1 yamt
283 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
284 1.1 yamt KASSERT(size != 0);
285 1.1 yamt
286 1.1 yamt idx = calc_order(qsize);
287 1.1 yamt KASSERT(idx >= 0);
288 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
289 1.1 yamt
290 1.1 yamt return &vm->vm_freelist[idx];
291 1.1 yamt }
292 1.1 yamt
293 1.1 yamt static struct vmem_freelist *
294 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
295 1.1 yamt {
296 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
297 1.1 yamt int idx;
298 1.1 yamt
299 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
300 1.1 yamt KASSERT(size != 0);
301 1.1 yamt
302 1.1 yamt idx = calc_order(qsize);
303 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
304 1.1 yamt idx++;
305 1.1 yamt /* check too large request? */
306 1.1 yamt }
307 1.1 yamt KASSERT(idx >= 0);
308 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
309 1.1 yamt
310 1.1 yamt return &vm->vm_freelist[idx];
311 1.1 yamt }
312 1.1 yamt
313 1.1 yamt /* ---- boundary tag hash */
314 1.1 yamt
315 1.1 yamt static struct vmem_hashlist *
316 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
317 1.1 yamt {
318 1.1 yamt struct vmem_hashlist *list;
319 1.1 yamt unsigned int hash;
320 1.1 yamt
321 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
322 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
323 1.1 yamt
324 1.1 yamt return list;
325 1.1 yamt }
326 1.1 yamt
327 1.1 yamt static bt_t *
328 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
329 1.1 yamt {
330 1.1 yamt struct vmem_hashlist *list;
331 1.1 yamt bt_t *bt;
332 1.1 yamt
333 1.1 yamt list = bt_hashhead(vm, addr);
334 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
335 1.1 yamt if (bt->bt_start == addr) {
336 1.1 yamt break;
337 1.1 yamt }
338 1.1 yamt }
339 1.1 yamt
340 1.1 yamt return bt;
341 1.1 yamt }
342 1.1 yamt
343 1.1 yamt static void
344 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
345 1.1 yamt {
346 1.1 yamt
347 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
348 1.1 yamt vm->vm_nbusytag--;
349 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
350 1.1 yamt }
351 1.1 yamt
352 1.1 yamt static void
353 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
354 1.1 yamt {
355 1.1 yamt struct vmem_hashlist *list;
356 1.1 yamt
357 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
358 1.1 yamt
359 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
360 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
361 1.1 yamt vm->vm_nbusytag++;
362 1.1 yamt }
363 1.1 yamt
364 1.1 yamt /* ---- boundary tag list */
365 1.1 yamt
366 1.1 yamt static void
367 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
368 1.1 yamt {
369 1.1 yamt
370 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
371 1.1 yamt }
372 1.1 yamt
373 1.1 yamt static void
374 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
375 1.1 yamt {
376 1.1 yamt
377 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
378 1.1 yamt }
379 1.1 yamt
380 1.1 yamt static void
381 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
382 1.1 yamt {
383 1.1 yamt
384 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
385 1.1 yamt }
386 1.1 yamt
387 1.1 yamt static void
388 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
389 1.1 yamt {
390 1.1 yamt
391 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
392 1.1 yamt
393 1.1 yamt LIST_REMOVE(bt, bt_freelist);
394 1.1 yamt }
395 1.1 yamt
396 1.1 yamt static void
397 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
398 1.1 yamt {
399 1.1 yamt struct vmem_freelist *list;
400 1.1 yamt
401 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
402 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
403 1.1 yamt }
404 1.1 yamt
405 1.1 yamt /* ---- vmem internal functions */
406 1.1 yamt
407 1.27.2.5 ad #if defined(_KERNEL)
408 1.27.2.5 ad static kmutex_t vmem_list_lock;
409 1.27.2.5 ad static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
410 1.27.2.5 ad #endif /* defined(_KERNEL) */
411 1.27.2.5 ad
412 1.5 yamt #if defined(QCACHE)
413 1.5 yamt static inline vm_flag_t
414 1.5 yamt prf_to_vmf(int prflags)
415 1.5 yamt {
416 1.5 yamt vm_flag_t vmflags;
417 1.5 yamt
418 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
419 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
420 1.5 yamt vmflags = VM_SLEEP;
421 1.5 yamt } else {
422 1.5 yamt vmflags = VM_NOSLEEP;
423 1.5 yamt }
424 1.5 yamt return vmflags;
425 1.5 yamt }
426 1.5 yamt
427 1.5 yamt static inline int
428 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
429 1.5 yamt {
430 1.5 yamt int prflags;
431 1.5 yamt
432 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
433 1.5 yamt prflags = PR_WAITOK;
434 1.7 yamt } else {
435 1.5 yamt prflags = PR_NOWAIT;
436 1.5 yamt }
437 1.5 yamt return prflags;
438 1.5 yamt }
439 1.5 yamt
440 1.5 yamt static size_t
441 1.5 yamt qc_poolpage_size(size_t qcache_max)
442 1.5 yamt {
443 1.5 yamt int i;
444 1.5 yamt
445 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
446 1.5 yamt /* nothing */
447 1.5 yamt }
448 1.5 yamt return ORDER2SIZE(i);
449 1.5 yamt }
450 1.5 yamt
451 1.5 yamt static void *
452 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
453 1.5 yamt {
454 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
455 1.5 yamt vmem_t *vm = qc->qc_vmem;
456 1.5 yamt
457 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
458 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
459 1.5 yamt }
460 1.5 yamt
461 1.5 yamt static void
462 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
463 1.5 yamt {
464 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
465 1.5 yamt vmem_t *vm = qc->qc_vmem;
466 1.5 yamt
467 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
468 1.5 yamt }
469 1.5 yamt
470 1.5 yamt static void
471 1.27.2.3 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
472 1.5 yamt {
473 1.22 yamt qcache_t *prevqc;
474 1.5 yamt struct pool_allocator *pa;
475 1.5 yamt int qcache_idx_max;
476 1.5 yamt int i;
477 1.5 yamt
478 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
479 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
480 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
481 1.5 yamt }
482 1.5 yamt vm->vm_qcache_max = qcache_max;
483 1.5 yamt pa = &vm->vm_qcache_allocator;
484 1.5 yamt memset(pa, 0, sizeof(*pa));
485 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
486 1.5 yamt pa->pa_free = qc_poolpage_free;
487 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
488 1.5 yamt
489 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
490 1.22 yamt prevqc = NULL;
491 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
492 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
493 1.5 yamt size_t size = i << vm->vm_quantum_shift;
494 1.5 yamt
495 1.5 yamt qc->qc_vmem = vm;
496 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
497 1.5 yamt vm->vm_name, size);
498 1.27.2.6 ad qc->qc_cache = pool_cache_init(size,
499 1.27.2.6 ad ORDER2SIZE(vm->vm_quantum_shift), 0,
500 1.27.2.6 ad PR_NOALIGN | PR_NOTOUCH /* XXX */,
501 1.27.2.6 ad qc->qc_name, pa, ipl, NULL, NULL, NULL);
502 1.27.2.6 ad KASSERT(qc->qc_cache != NULL); /* XXX */
503 1.22 yamt if (prevqc != NULL &&
504 1.27.2.6 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
505 1.27.2.6 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
506 1.27.2.6 ad pool_cache_destroy(qc->qc_cache);
507 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
508 1.27 ad continue;
509 1.22 yamt }
510 1.27.2.6 ad qc->qc_cache->pc_pool.pr_qcache = qc;
511 1.22 yamt vm->vm_qcache[i - 1] = qc;
512 1.22 yamt prevqc = qc;
513 1.5 yamt }
514 1.5 yamt }
515 1.6 yamt
516 1.23 yamt static void
517 1.23 yamt qc_destroy(vmem_t *vm)
518 1.23 yamt {
519 1.23 yamt const qcache_t *prevqc;
520 1.23 yamt int i;
521 1.23 yamt int qcache_idx_max;
522 1.23 yamt
523 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
524 1.23 yamt prevqc = NULL;
525 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
526 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
527 1.23 yamt
528 1.23 yamt if (prevqc == qc) {
529 1.23 yamt continue;
530 1.23 yamt }
531 1.27.2.6 ad pool_cache_destroy(qc->qc_cache);
532 1.23 yamt prevqc = qc;
533 1.23 yamt }
534 1.23 yamt }
535 1.23 yamt
536 1.25 thorpej static bool
537 1.6 yamt qc_reap(vmem_t *vm)
538 1.6 yamt {
539 1.22 yamt const qcache_t *prevqc;
540 1.6 yamt int i;
541 1.6 yamt int qcache_idx_max;
542 1.26 thorpej bool didsomething = false;
543 1.6 yamt
544 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
545 1.22 yamt prevqc = NULL;
546 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
547 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
548 1.6 yamt
549 1.22 yamt if (prevqc == qc) {
550 1.22 yamt continue;
551 1.22 yamt }
552 1.27.2.6 ad if (pool_cache_reclaim(qc->qc_cache) != 0) {
553 1.26 thorpej didsomething = true;
554 1.6 yamt }
555 1.22 yamt prevqc = qc;
556 1.6 yamt }
557 1.6 yamt
558 1.6 yamt return didsomething;
559 1.6 yamt }
560 1.5 yamt #endif /* defined(QCACHE) */
561 1.5 yamt
562 1.1 yamt #if defined(_KERNEL)
563 1.1 yamt static int
564 1.1 yamt vmem_init(void)
565 1.1 yamt {
566 1.1 yamt
567 1.27.2.5 ad mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
568 1.27.2.6 ad pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
569 1.27.2.6 ad NULL, IPL_VM, NULL, NULL, NULL);
570 1.1 yamt return 0;
571 1.1 yamt }
572 1.1 yamt #endif /* defined(_KERNEL) */
573 1.1 yamt
574 1.1 yamt static vmem_addr_t
575 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
576 1.1 yamt int spanbttype)
577 1.1 yamt {
578 1.1 yamt bt_t *btspan;
579 1.1 yamt bt_t *btfree;
580 1.1 yamt
581 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
582 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
583 1.1 yamt
584 1.1 yamt btspan = bt_alloc(vm, flags);
585 1.1 yamt if (btspan == NULL) {
586 1.1 yamt return VMEM_ADDR_NULL;
587 1.1 yamt }
588 1.1 yamt btfree = bt_alloc(vm, flags);
589 1.1 yamt if (btfree == NULL) {
590 1.1 yamt bt_free(vm, btspan);
591 1.1 yamt return VMEM_ADDR_NULL;
592 1.1 yamt }
593 1.1 yamt
594 1.1 yamt btspan->bt_type = spanbttype;
595 1.1 yamt btspan->bt_start = addr;
596 1.1 yamt btspan->bt_size = size;
597 1.1 yamt
598 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
599 1.1 yamt btfree->bt_start = addr;
600 1.1 yamt btfree->bt_size = size;
601 1.1 yamt
602 1.27.2.5 ad VMEM_LOCK(vm);
603 1.1 yamt bt_insseg_tail(vm, btspan);
604 1.1 yamt bt_insseg(vm, btfree, btspan);
605 1.1 yamt bt_insfree(vm, btfree);
606 1.27.2.5 ad VMEM_UNLOCK(vm);
607 1.1 yamt
608 1.1 yamt return addr;
609 1.1 yamt }
610 1.1 yamt
611 1.27.2.5 ad static void
612 1.27.2.5 ad vmem_destroy1(vmem_t *vm)
613 1.27.2.5 ad {
614 1.27.2.5 ad
615 1.27.2.5 ad #if defined(QCACHE)
616 1.27.2.5 ad qc_destroy(vm);
617 1.27.2.5 ad #endif /* defined(QCACHE) */
618 1.27.2.5 ad if (vm->vm_hashlist != NULL) {
619 1.27.2.5 ad int i;
620 1.27.2.5 ad
621 1.27.2.5 ad for (i = 0; i < vm->vm_hashsize; i++) {
622 1.27.2.5 ad bt_t *bt;
623 1.27.2.5 ad
624 1.27.2.5 ad while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
625 1.27.2.5 ad KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
626 1.27.2.5 ad bt_free(vm, bt);
627 1.27.2.5 ad }
628 1.27.2.5 ad }
629 1.27.2.5 ad xfree(vm->vm_hashlist);
630 1.27.2.5 ad }
631 1.27.2.5 ad VMEM_LOCK_DESTROY(vm);
632 1.27.2.5 ad xfree(vm);
633 1.27.2.5 ad }
634 1.27.2.5 ad
635 1.1 yamt static int
636 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
637 1.1 yamt {
638 1.1 yamt vmem_addr_t addr;
639 1.1 yamt
640 1.1 yamt if (vm->vm_allocfn == NULL) {
641 1.1 yamt return EINVAL;
642 1.1 yamt }
643 1.1 yamt
644 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
645 1.1 yamt if (addr == VMEM_ADDR_NULL) {
646 1.1 yamt return ENOMEM;
647 1.1 yamt }
648 1.1 yamt
649 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
650 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
651 1.1 yamt return ENOMEM;
652 1.1 yamt }
653 1.1 yamt
654 1.1 yamt return 0;
655 1.1 yamt }
656 1.1 yamt
657 1.1 yamt static int
658 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
659 1.1 yamt {
660 1.1 yamt bt_t *bt;
661 1.1 yamt int i;
662 1.1 yamt struct vmem_hashlist *newhashlist;
663 1.1 yamt struct vmem_hashlist *oldhashlist;
664 1.1 yamt size_t oldhashsize;
665 1.1 yamt
666 1.1 yamt KASSERT(newhashsize > 0);
667 1.1 yamt
668 1.1 yamt newhashlist =
669 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
670 1.1 yamt if (newhashlist == NULL) {
671 1.1 yamt return ENOMEM;
672 1.1 yamt }
673 1.1 yamt for (i = 0; i < newhashsize; i++) {
674 1.1 yamt LIST_INIT(&newhashlist[i]);
675 1.1 yamt }
676 1.1 yamt
677 1.27.2.5 ad if (!VMEM_TRYLOCK(vm)) {
678 1.27.2.5 ad xfree(newhashlist);
679 1.27.2.5 ad return EBUSY;
680 1.27.2.5 ad }
681 1.1 yamt oldhashlist = vm->vm_hashlist;
682 1.1 yamt oldhashsize = vm->vm_hashsize;
683 1.1 yamt vm->vm_hashlist = newhashlist;
684 1.1 yamt vm->vm_hashsize = newhashsize;
685 1.1 yamt if (oldhashlist == NULL) {
686 1.27.2.5 ad VMEM_UNLOCK(vm);
687 1.1 yamt return 0;
688 1.1 yamt }
689 1.1 yamt for (i = 0; i < oldhashsize; i++) {
690 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
691 1.1 yamt bt_rembusy(vm, bt); /* XXX */
692 1.1 yamt bt_insbusy(vm, bt);
693 1.1 yamt }
694 1.1 yamt }
695 1.27.2.5 ad VMEM_UNLOCK(vm);
696 1.1 yamt
697 1.1 yamt xfree(oldhashlist);
698 1.1 yamt
699 1.1 yamt return 0;
700 1.1 yamt }
701 1.1 yamt
702 1.10 yamt /*
703 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
704 1.10 yamt */
705 1.10 yamt
706 1.10 yamt static vmem_addr_t
707 1.10 yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
708 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
709 1.10 yamt {
710 1.10 yamt vmem_addr_t start;
711 1.10 yamt vmem_addr_t end;
712 1.10 yamt
713 1.10 yamt KASSERT(bt->bt_size >= size);
714 1.10 yamt
715 1.10 yamt /*
716 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
717 1.10 yamt * unsigned integer of the same size.
718 1.10 yamt */
719 1.10 yamt
720 1.10 yamt start = bt->bt_start;
721 1.10 yamt if (start < minaddr) {
722 1.10 yamt start = minaddr;
723 1.10 yamt }
724 1.10 yamt end = BT_END(bt);
725 1.10 yamt if (end > maxaddr - 1) {
726 1.10 yamt end = maxaddr - 1;
727 1.10 yamt }
728 1.10 yamt if (start >= end) {
729 1.10 yamt return VMEM_ADDR_NULL;
730 1.10 yamt }
731 1.19 yamt
732 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
733 1.10 yamt if (start < bt->bt_start) {
734 1.10 yamt start += align;
735 1.10 yamt }
736 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
737 1.10 yamt KASSERT(align < nocross);
738 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
739 1.10 yamt }
740 1.10 yamt if (start < end && end - start >= size) {
741 1.10 yamt KASSERT((start & (align - 1)) == phase);
742 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
743 1.10 yamt KASSERT(minaddr <= start);
744 1.10 yamt KASSERT(maxaddr == 0 || start + size <= maxaddr);
745 1.10 yamt KASSERT(bt->bt_start <= start);
746 1.10 yamt KASSERT(start + size <= BT_END(bt));
747 1.10 yamt return start;
748 1.10 yamt }
749 1.10 yamt return VMEM_ADDR_NULL;
750 1.10 yamt }
751 1.10 yamt
752 1.1 yamt /* ---- vmem API */
753 1.1 yamt
754 1.1 yamt /*
755 1.1 yamt * vmem_create: create an arena.
756 1.1 yamt *
757 1.1 yamt * => must not be called from interrupt context.
758 1.1 yamt */
759 1.1 yamt
760 1.1 yamt vmem_t *
761 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
762 1.1 yamt vmem_size_t quantum,
763 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
764 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
765 1.27.2.3 ad vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
766 1.27.2.3 ad int ipl)
767 1.1 yamt {
768 1.1 yamt vmem_t *vm;
769 1.1 yamt int i;
770 1.1 yamt #if defined(_KERNEL)
771 1.1 yamt static ONCE_DECL(control);
772 1.1 yamt #endif /* defined(_KERNEL) */
773 1.1 yamt
774 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
775 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
776 1.1 yamt
777 1.1 yamt #if defined(_KERNEL)
778 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
779 1.1 yamt return NULL;
780 1.1 yamt }
781 1.1 yamt #endif /* defined(_KERNEL) */
782 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
783 1.1 yamt if (vm == NULL) {
784 1.1 yamt return NULL;
785 1.1 yamt }
786 1.1 yamt
787 1.27.2.5 ad VMEM_LOCK_INIT(vm, ipl);
788 1.1 yamt vm->vm_name = name;
789 1.1 yamt vm->vm_quantum_mask = quantum - 1;
790 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
791 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
792 1.1 yamt vm->vm_allocfn = allocfn;
793 1.1 yamt vm->vm_freefn = freefn;
794 1.1 yamt vm->vm_source = source;
795 1.1 yamt vm->vm_nbusytag = 0;
796 1.5 yamt #if defined(QCACHE)
797 1.27.2.3 ad qc_init(vm, qcache_max, ipl);
798 1.5 yamt #endif /* defined(QCACHE) */
799 1.1 yamt
800 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
801 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
802 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
803 1.1 yamt }
804 1.1 yamt vm->vm_hashlist = NULL;
805 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
806 1.27.2.5 ad vmem_destroy1(vm);
807 1.1 yamt return NULL;
808 1.1 yamt }
809 1.1 yamt
810 1.1 yamt if (size != 0) {
811 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
812 1.27.2.5 ad vmem_destroy1(vm);
813 1.1 yamt return NULL;
814 1.1 yamt }
815 1.1 yamt }
816 1.1 yamt
817 1.27.2.5 ad #if defined(_KERNEL)
818 1.27.2.5 ad mutex_enter(&vmem_list_lock);
819 1.27.2.5 ad LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
820 1.27.2.5 ad mutex_exit(&vmem_list_lock);
821 1.27.2.5 ad #endif /* defined(_KERNEL) */
822 1.27.2.5 ad
823 1.1 yamt return vm;
824 1.1 yamt }
825 1.1 yamt
826 1.1 yamt void
827 1.1 yamt vmem_destroy(vmem_t *vm)
828 1.1 yamt {
829 1.1 yamt
830 1.27.2.5 ad #if defined(_KERNEL)
831 1.27.2.5 ad mutex_enter(&vmem_list_lock);
832 1.27.2.5 ad LIST_REMOVE(vm, vm_alllist);
833 1.27.2.5 ad mutex_exit(&vmem_list_lock);
834 1.27.2.5 ad #endif /* defined(_KERNEL) */
835 1.1 yamt
836 1.27.2.5 ad vmem_destroy1(vm);
837 1.1 yamt }
838 1.1 yamt
839 1.1 yamt vmem_size_t
840 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
841 1.1 yamt {
842 1.1 yamt
843 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
844 1.1 yamt }
845 1.1 yamt
846 1.1 yamt /*
847 1.1 yamt * vmem_alloc:
848 1.1 yamt *
849 1.1 yamt * => caller must ensure appropriate spl,
850 1.1 yamt * if the arena can be accessed from interrupt context.
851 1.1 yamt */
852 1.1 yamt
853 1.1 yamt vmem_addr_t
854 1.1 yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
855 1.1 yamt {
856 1.12 yamt const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
857 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
858 1.1 yamt
859 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
860 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
861 1.1 yamt
862 1.1 yamt KASSERT(size0 > 0);
863 1.1 yamt KASSERT(size > 0);
864 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
865 1.3 yamt if ((flags & VM_SLEEP) != 0) {
866 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
867 1.3 yamt }
868 1.1 yamt
869 1.5 yamt #if defined(QCACHE)
870 1.5 yamt if (size <= vm->vm_qcache_max) {
871 1.5 yamt int qidx = size >> vm->vm_quantum_shift;
872 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
873 1.5 yamt
874 1.27.2.6 ad return (vmem_addr_t)pool_cache_get(qc->qc_cache,
875 1.5 yamt vmf_to_prf(flags));
876 1.5 yamt }
877 1.5 yamt #endif /* defined(QCACHE) */
878 1.5 yamt
879 1.10 yamt return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
880 1.10 yamt }
881 1.10 yamt
882 1.10 yamt vmem_addr_t
883 1.10 yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
884 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
885 1.10 yamt vm_flag_t flags)
886 1.10 yamt {
887 1.10 yamt struct vmem_freelist *list;
888 1.10 yamt struct vmem_freelist *first;
889 1.10 yamt struct vmem_freelist *end;
890 1.10 yamt bt_t *bt;
891 1.10 yamt bt_t *btnew;
892 1.10 yamt bt_t *btnew2;
893 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
894 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
895 1.10 yamt vmem_addr_t start;
896 1.10 yamt
897 1.10 yamt KASSERT(size0 > 0);
898 1.10 yamt KASSERT(size > 0);
899 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
900 1.10 yamt if ((flags & VM_SLEEP) != 0) {
901 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
902 1.10 yamt }
903 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
904 1.10 yamt KASSERT((align & (align - 1)) == 0);
905 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
906 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
907 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
908 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
909 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
910 1.10 yamt KASSERT(maxaddr == 0 || minaddr < maxaddr);
911 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
912 1.10 yamt
913 1.10 yamt if (align == 0) {
914 1.10 yamt align = vm->vm_quantum_mask + 1;
915 1.10 yamt }
916 1.1 yamt btnew = bt_alloc(vm, flags);
917 1.1 yamt if (btnew == NULL) {
918 1.1 yamt return VMEM_ADDR_NULL;
919 1.1 yamt }
920 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
921 1.10 yamt if (btnew2 == NULL) {
922 1.10 yamt bt_free(vm, btnew);
923 1.10 yamt return VMEM_ADDR_NULL;
924 1.10 yamt }
925 1.1 yamt
926 1.1 yamt retry_strat:
927 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
928 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
929 1.1 yamt retry:
930 1.1 yamt bt = NULL;
931 1.27.2.5 ad VMEM_LOCK(vm);
932 1.2 yamt if (strat == VM_INSTANTFIT) {
933 1.2 yamt for (list = first; list < end; list++) {
934 1.2 yamt bt = LIST_FIRST(list);
935 1.2 yamt if (bt != NULL) {
936 1.10 yamt start = vmem_fit(bt, size, align, phase,
937 1.10 yamt nocross, minaddr, maxaddr);
938 1.10 yamt if (start != VMEM_ADDR_NULL) {
939 1.10 yamt goto gotit;
940 1.10 yamt }
941 1.2 yamt }
942 1.2 yamt }
943 1.2 yamt } else { /* VM_BESTFIT */
944 1.2 yamt for (list = first; list < end; list++) {
945 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
946 1.2 yamt if (bt->bt_size >= size) {
947 1.10 yamt start = vmem_fit(bt, size, align, phase,
948 1.10 yamt nocross, minaddr, maxaddr);
949 1.10 yamt if (start != VMEM_ADDR_NULL) {
950 1.10 yamt goto gotit;
951 1.10 yamt }
952 1.2 yamt }
953 1.1 yamt }
954 1.1 yamt }
955 1.1 yamt }
956 1.27.2.5 ad VMEM_UNLOCK(vm);
957 1.1 yamt #if 1
958 1.2 yamt if (strat == VM_INSTANTFIT) {
959 1.2 yamt strat = VM_BESTFIT;
960 1.2 yamt goto retry_strat;
961 1.2 yamt }
962 1.1 yamt #endif
963 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
964 1.10 yamt nocross != 0 || minaddr != 0 || maxaddr != 0) {
965 1.10 yamt
966 1.10 yamt /*
967 1.10 yamt * XXX should try to import a region large enough to
968 1.10 yamt * satisfy restrictions?
969 1.10 yamt */
970 1.10 yamt
971 1.20 yamt goto fail;
972 1.10 yamt }
973 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
974 1.2 yamt goto retry;
975 1.1 yamt }
976 1.2 yamt /* XXX */
977 1.20 yamt fail:
978 1.20 yamt bt_free(vm, btnew);
979 1.20 yamt bt_free(vm, btnew2);
980 1.2 yamt return VMEM_ADDR_NULL;
981 1.2 yamt
982 1.2 yamt gotit:
983 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
984 1.1 yamt KASSERT(bt->bt_size >= size);
985 1.1 yamt bt_remfree(vm, bt);
986 1.10 yamt if (bt->bt_start != start) {
987 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
988 1.10 yamt btnew2->bt_start = bt->bt_start;
989 1.10 yamt btnew2->bt_size = start - bt->bt_start;
990 1.10 yamt bt->bt_start = start;
991 1.10 yamt bt->bt_size -= btnew2->bt_size;
992 1.10 yamt bt_insfree(vm, btnew2);
993 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
994 1.10 yamt btnew2 = NULL;
995 1.10 yamt }
996 1.10 yamt KASSERT(bt->bt_start == start);
997 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
998 1.1 yamt /* split */
999 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1000 1.1 yamt btnew->bt_start = bt->bt_start;
1001 1.1 yamt btnew->bt_size = size;
1002 1.1 yamt bt->bt_start = bt->bt_start + size;
1003 1.1 yamt bt->bt_size -= size;
1004 1.1 yamt bt_insfree(vm, bt);
1005 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1006 1.1 yamt bt_insbusy(vm, btnew);
1007 1.27.2.5 ad VMEM_UNLOCK(vm);
1008 1.1 yamt } else {
1009 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1010 1.1 yamt bt_insbusy(vm, bt);
1011 1.27.2.5 ad VMEM_UNLOCK(vm);
1012 1.1 yamt bt_free(vm, btnew);
1013 1.1 yamt btnew = bt;
1014 1.1 yamt }
1015 1.10 yamt if (btnew2 != NULL) {
1016 1.10 yamt bt_free(vm, btnew2);
1017 1.10 yamt }
1018 1.1 yamt KASSERT(btnew->bt_size >= size);
1019 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1020 1.1 yamt
1021 1.1 yamt return btnew->bt_start;
1022 1.1 yamt }
1023 1.1 yamt
1024 1.1 yamt /*
1025 1.1 yamt * vmem_free:
1026 1.1 yamt *
1027 1.1 yamt * => caller must ensure appropriate spl,
1028 1.1 yamt * if the arena can be accessed from interrupt context.
1029 1.1 yamt */
1030 1.1 yamt
1031 1.1 yamt void
1032 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1033 1.1 yamt {
1034 1.1 yamt
1035 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
1036 1.1 yamt KASSERT(size > 0);
1037 1.1 yamt
1038 1.5 yamt #if defined(QCACHE)
1039 1.5 yamt if (size <= vm->vm_qcache_max) {
1040 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1041 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1042 1.5 yamt
1043 1.27.2.6 ad return pool_cache_put(qc->qc_cache, (void *)addr);
1044 1.5 yamt }
1045 1.5 yamt #endif /* defined(QCACHE) */
1046 1.5 yamt
1047 1.10 yamt vmem_xfree(vm, addr, size);
1048 1.10 yamt }
1049 1.10 yamt
1050 1.10 yamt void
1051 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1052 1.10 yamt {
1053 1.10 yamt bt_t *bt;
1054 1.10 yamt bt_t *t;
1055 1.10 yamt
1056 1.10 yamt KASSERT(addr != VMEM_ADDR_NULL);
1057 1.10 yamt KASSERT(size > 0);
1058 1.10 yamt
1059 1.27.2.5 ad VMEM_LOCK(vm);
1060 1.1 yamt
1061 1.1 yamt bt = bt_lookupbusy(vm, addr);
1062 1.1 yamt KASSERT(bt != NULL);
1063 1.1 yamt KASSERT(bt->bt_start == addr);
1064 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1065 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1066 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1067 1.1 yamt bt_rembusy(vm, bt);
1068 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1069 1.1 yamt
1070 1.1 yamt /* coalesce */
1071 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1072 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1073 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
1074 1.1 yamt bt_remfree(vm, t);
1075 1.1 yamt bt_remseg(vm, t);
1076 1.1 yamt bt->bt_size += t->bt_size;
1077 1.1 yamt bt_free(vm, t);
1078 1.1 yamt }
1079 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1080 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1081 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
1082 1.1 yamt bt_remfree(vm, t);
1083 1.1 yamt bt_remseg(vm, t);
1084 1.1 yamt bt->bt_size += t->bt_size;
1085 1.1 yamt bt->bt_start = t->bt_start;
1086 1.1 yamt bt_free(vm, t);
1087 1.1 yamt }
1088 1.1 yamt
1089 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1090 1.1 yamt KASSERT(t != NULL);
1091 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1092 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1093 1.1 yamt t->bt_size == bt->bt_size) {
1094 1.1 yamt vmem_addr_t spanaddr;
1095 1.1 yamt vmem_size_t spansize;
1096 1.1 yamt
1097 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1098 1.1 yamt spanaddr = bt->bt_start;
1099 1.1 yamt spansize = bt->bt_size;
1100 1.1 yamt bt_remseg(vm, bt);
1101 1.1 yamt bt_free(vm, bt);
1102 1.1 yamt bt_remseg(vm, t);
1103 1.1 yamt bt_free(vm, t);
1104 1.27.2.5 ad VMEM_UNLOCK(vm);
1105 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1106 1.1 yamt } else {
1107 1.1 yamt bt_insfree(vm, bt);
1108 1.27.2.5 ad VMEM_UNLOCK(vm);
1109 1.1 yamt }
1110 1.1 yamt }
1111 1.1 yamt
1112 1.1 yamt /*
1113 1.1 yamt * vmem_add:
1114 1.1 yamt *
1115 1.1 yamt * => caller must ensure appropriate spl,
1116 1.1 yamt * if the arena can be accessed from interrupt context.
1117 1.1 yamt */
1118 1.1 yamt
1119 1.1 yamt vmem_addr_t
1120 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1121 1.1 yamt {
1122 1.1 yamt
1123 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1124 1.1 yamt }
1125 1.1 yamt
1126 1.6 yamt /*
1127 1.6 yamt * vmem_reap: reap unused resources.
1128 1.6 yamt *
1129 1.26 thorpej * => return true if we successfully reaped something.
1130 1.6 yamt */
1131 1.6 yamt
1132 1.25 thorpej bool
1133 1.6 yamt vmem_reap(vmem_t *vm)
1134 1.6 yamt {
1135 1.26 thorpej bool didsomething = false;
1136 1.6 yamt
1137 1.6 yamt #if defined(QCACHE)
1138 1.6 yamt didsomething = qc_reap(vm);
1139 1.6 yamt #endif /* defined(QCACHE) */
1140 1.6 yamt return didsomething;
1141 1.6 yamt }
1142 1.6 yamt
1143 1.27.2.5 ad /* ---- rehash */
1144 1.27.2.5 ad
1145 1.27.2.5 ad #if defined(_KERNEL)
1146 1.27.2.5 ad static struct callout vmem_rehash_ch;
1147 1.27.2.5 ad static int vmem_rehash_interval;
1148 1.27.2.5 ad static struct workqueue *vmem_rehash_wq;
1149 1.27.2.5 ad static struct work vmem_rehash_wk;
1150 1.27.2.5 ad
1151 1.27.2.5 ad static void
1152 1.27.2.5 ad vmem_rehash_all(struct work *wk, void *dummy)
1153 1.27.2.5 ad {
1154 1.27.2.5 ad vmem_t *vm;
1155 1.27.2.5 ad
1156 1.27.2.5 ad KASSERT(wk == &vmem_rehash_wk);
1157 1.27.2.5 ad mutex_enter(&vmem_list_lock);
1158 1.27.2.5 ad LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1159 1.27.2.5 ad size_t desired;
1160 1.27.2.5 ad size_t current;
1161 1.27.2.5 ad int s;
1162 1.27.2.5 ad
1163 1.27.2.5 ad s = splvm();
1164 1.27.2.5 ad if (!VMEM_TRYLOCK(vm)) {
1165 1.27.2.5 ad splx(s);
1166 1.27.2.5 ad continue;
1167 1.27.2.5 ad }
1168 1.27.2.5 ad desired = vm->vm_nbusytag;
1169 1.27.2.5 ad current = vm->vm_hashsize;
1170 1.27.2.5 ad VMEM_UNLOCK(vm);
1171 1.27.2.5 ad splx(s);
1172 1.27.2.5 ad
1173 1.27.2.5 ad if (desired > VMEM_HASHSIZE_MAX) {
1174 1.27.2.5 ad desired = VMEM_HASHSIZE_MAX;
1175 1.27.2.5 ad } else if (desired < VMEM_HASHSIZE_MIN) {
1176 1.27.2.5 ad desired = VMEM_HASHSIZE_MIN;
1177 1.27.2.5 ad }
1178 1.27.2.5 ad if (desired > current * 2 || desired * 2 < current) {
1179 1.27.2.5 ad s = splvm();
1180 1.27.2.5 ad vmem_rehash(vm, desired, VM_NOSLEEP);
1181 1.27.2.5 ad splx(s);
1182 1.27.2.5 ad }
1183 1.27.2.5 ad }
1184 1.27.2.5 ad mutex_exit(&vmem_list_lock);
1185 1.27.2.5 ad
1186 1.27.2.5 ad callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1187 1.27.2.5 ad }
1188 1.27.2.5 ad
1189 1.27.2.5 ad static void
1190 1.27.2.5 ad vmem_rehash_all_kick(void *dummy)
1191 1.27.2.5 ad {
1192 1.27.2.5 ad
1193 1.27.2.5 ad workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1194 1.27.2.5 ad }
1195 1.27.2.5 ad
1196 1.27.2.5 ad void
1197 1.27.2.5 ad vmem_rehash_start(void)
1198 1.27.2.5 ad {
1199 1.27.2.5 ad int error;
1200 1.27.2.5 ad
1201 1.27.2.5 ad error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1202 1.27.2.7 yamt vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, 0);
1203 1.27.2.5 ad if (error) {
1204 1.27.2.5 ad panic("%s: workqueue_create %d\n", __func__, error);
1205 1.27.2.5 ad }
1206 1.27.2.5 ad callout_init(&vmem_rehash_ch, 0);
1207 1.27.2.5 ad callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1208 1.27.2.5 ad
1209 1.27.2.5 ad vmem_rehash_interval = hz * 10;
1210 1.27.2.5 ad callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1211 1.27.2.5 ad }
1212 1.27.2.5 ad #endif /* defined(_KERNEL) */
1213 1.27.2.5 ad
1214 1.1 yamt /* ---- debug */
1215 1.1 yamt
1216 1.1 yamt #if defined(VMEM_DEBUG)
1217 1.1 yamt
1218 1.1 yamt #if !defined(_KERNEL)
1219 1.1 yamt #include <stdio.h>
1220 1.1 yamt #endif /* !defined(_KERNEL) */
1221 1.1 yamt
1222 1.1 yamt void bt_dump(const bt_t *);
1223 1.1 yamt
1224 1.1 yamt void
1225 1.1 yamt bt_dump(const bt_t *bt)
1226 1.1 yamt {
1227 1.1 yamt
1228 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1229 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1230 1.1 yamt bt->bt_type);
1231 1.1 yamt }
1232 1.1 yamt
1233 1.1 yamt void
1234 1.1 yamt vmem_dump(const vmem_t *vm)
1235 1.1 yamt {
1236 1.1 yamt const bt_t *bt;
1237 1.1 yamt int i;
1238 1.1 yamt
1239 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
1240 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1241 1.1 yamt bt_dump(bt);
1242 1.1 yamt }
1243 1.1 yamt
1244 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1245 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1246 1.1 yamt
1247 1.1 yamt if (LIST_EMPTY(fl)) {
1248 1.1 yamt continue;
1249 1.1 yamt }
1250 1.1 yamt
1251 1.1 yamt printf("freelist[%d]\n", i);
1252 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1253 1.1 yamt bt_dump(bt);
1254 1.1 yamt if (bt->bt_size) {
1255 1.1 yamt }
1256 1.1 yamt }
1257 1.1 yamt }
1258 1.1 yamt }
1259 1.1 yamt
1260 1.1 yamt #if !defined(_KERNEL)
1261 1.1 yamt
1262 1.1 yamt int
1263 1.1 yamt main()
1264 1.1 yamt {
1265 1.1 yamt vmem_t *vm;
1266 1.1 yamt vmem_addr_t p;
1267 1.1 yamt struct reg {
1268 1.1 yamt vmem_addr_t p;
1269 1.1 yamt vmem_size_t sz;
1270 1.25 thorpej bool x;
1271 1.1 yamt } *reg = NULL;
1272 1.1 yamt int nreg = 0;
1273 1.1 yamt int nalloc = 0;
1274 1.1 yamt int nfree = 0;
1275 1.1 yamt vmem_size_t total = 0;
1276 1.1 yamt #if 1
1277 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1278 1.1 yamt #else
1279 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1280 1.1 yamt #endif
1281 1.1 yamt
1282 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1283 1.27.2.5 ad NULL, NULL, NULL, 0, VM_SLEEP);
1284 1.1 yamt if (vm == NULL) {
1285 1.1 yamt printf("vmem_create\n");
1286 1.1 yamt exit(EXIT_FAILURE);
1287 1.1 yamt }
1288 1.1 yamt vmem_dump(vm);
1289 1.1 yamt
1290 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1291 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1292 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1293 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1294 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1295 1.1 yamt vmem_dump(vm);
1296 1.1 yamt for (;;) {
1297 1.1 yamt struct reg *r;
1298 1.10 yamt int t = rand() % 100;
1299 1.1 yamt
1300 1.10 yamt if (t > 45) {
1301 1.10 yamt /* alloc */
1302 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1303 1.25 thorpej bool x;
1304 1.10 yamt vmem_size_t align, phase, nocross;
1305 1.10 yamt vmem_addr_t minaddr, maxaddr;
1306 1.10 yamt
1307 1.10 yamt if (t > 70) {
1308 1.26 thorpej x = true;
1309 1.10 yamt /* XXX */
1310 1.10 yamt align = 1 << (rand() % 15);
1311 1.10 yamt phase = rand() % 65536;
1312 1.10 yamt nocross = 1 << (rand() % 15);
1313 1.10 yamt if (align <= phase) {
1314 1.10 yamt phase = 0;
1315 1.10 yamt }
1316 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1317 1.19 yamt nocross)) {
1318 1.10 yamt nocross = 0;
1319 1.10 yamt }
1320 1.10 yamt minaddr = rand() % 50000;
1321 1.10 yamt maxaddr = rand() % 70000;
1322 1.10 yamt if (minaddr > maxaddr) {
1323 1.10 yamt minaddr = 0;
1324 1.10 yamt maxaddr = 0;
1325 1.10 yamt }
1326 1.10 yamt printf("=== xalloc %" PRIu64
1327 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1328 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1329 1.10 yamt ", max=%" PRIu64 "\n",
1330 1.10 yamt (uint64_t)sz,
1331 1.10 yamt (uint64_t)align,
1332 1.10 yamt (uint64_t)phase,
1333 1.10 yamt (uint64_t)nocross,
1334 1.10 yamt (uint64_t)minaddr,
1335 1.10 yamt (uint64_t)maxaddr);
1336 1.10 yamt p = vmem_xalloc(vm, sz, align, phase, nocross,
1337 1.10 yamt minaddr, maxaddr, strat|VM_SLEEP);
1338 1.10 yamt } else {
1339 1.26 thorpej x = false;
1340 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1341 1.10 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1342 1.10 yamt }
1343 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1344 1.1 yamt vmem_dump(vm);
1345 1.1 yamt if (p == VMEM_ADDR_NULL) {
1346 1.10 yamt if (x) {
1347 1.10 yamt continue;
1348 1.10 yamt }
1349 1.1 yamt break;
1350 1.1 yamt }
1351 1.1 yamt nreg++;
1352 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1353 1.1 yamt r = ®[nreg - 1];
1354 1.1 yamt r->p = p;
1355 1.1 yamt r->sz = sz;
1356 1.10 yamt r->x = x;
1357 1.1 yamt total += sz;
1358 1.1 yamt nalloc++;
1359 1.1 yamt } else if (nreg != 0) {
1360 1.10 yamt /* free */
1361 1.1 yamt r = ®[rand() % nreg];
1362 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1363 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1364 1.10 yamt if (r->x) {
1365 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1366 1.10 yamt } else {
1367 1.10 yamt vmem_free(vm, r->p, r->sz);
1368 1.10 yamt }
1369 1.1 yamt total -= r->sz;
1370 1.1 yamt vmem_dump(vm);
1371 1.1 yamt *r = reg[nreg - 1];
1372 1.1 yamt nreg--;
1373 1.1 yamt nfree++;
1374 1.1 yamt }
1375 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1376 1.1 yamt }
1377 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1378 1.1 yamt (uint64_t)total, nalloc, nfree);
1379 1.1 yamt exit(EXIT_SUCCESS);
1380 1.1 yamt }
1381 1.1 yamt #endif /* !defined(_KERNEL) */
1382 1.1 yamt #endif /* defined(VMEM_DEBUG) */
1383