subr_vmem.c revision 1.3 1 1.1 yamt /* $NetBSD: subr_vmem.c,v 1.3 2006/07/21 10:08:41 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.1 yamt *
35 1.1 yamt * TODO:
36 1.1 yamt * - implement quantum cache
37 1.1 yamt * - implement vmem_xalloc/vmem_xfree
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.1 yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.3 2006/07/21 10:08:41 yamt Exp $");
42 1.1 yamt
43 1.1 yamt #define VMEM_DEBUG
44 1.1 yamt
45 1.1 yamt #include <sys/param.h>
46 1.1 yamt #include <sys/hash.h>
47 1.1 yamt #include <sys/queue.h>
48 1.1 yamt
49 1.1 yamt #if defined(_KERNEL)
50 1.1 yamt #include <sys/systm.h>
51 1.1 yamt #include <sys/lock.h>
52 1.1 yamt #include <sys/malloc.h>
53 1.1 yamt #include <sys/once.h>
54 1.1 yamt #include <sys/pool.h>
55 1.3 yamt #include <sys/proc.h>
56 1.1 yamt #include <sys/vmem.h>
57 1.1 yamt #else /* defined(_KERNEL) */
58 1.1 yamt #include "../sys/vmem.h"
59 1.1 yamt #endif /* defined(_KERNEL) */
60 1.1 yamt
61 1.1 yamt #if defined(_KERNEL)
62 1.1 yamt #define SIMPLELOCK_DECL(name) struct simplelock name
63 1.1 yamt #else /* defined(_KERNEL) */
64 1.1 yamt #include <errno.h>
65 1.1 yamt #include <assert.h>
66 1.1 yamt #include <stdlib.h>
67 1.1 yamt
68 1.1 yamt #define KASSERT(a) assert(a)
69 1.1 yamt #define SIMPLELOCK_DECL(name) /* nothing */
70 1.1 yamt #define LOCK_ASSERT(a) /* nothing */
71 1.1 yamt #define simple_lock_init(a) /* nothing */
72 1.1 yamt #define simple_lock(a) /* nothing */
73 1.1 yamt #define simple_unlock(a) /* nothing */
74 1.3 yamt #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
75 1.1 yamt #endif /* defined(_KERNEL) */
76 1.1 yamt
77 1.1 yamt struct vmem;
78 1.1 yamt struct vmem_btag;
79 1.1 yamt
80 1.1 yamt #if defined(VMEM_DEBUG)
81 1.1 yamt void vmem_dump(const vmem_t *);
82 1.1 yamt #endif /* defined(VMEM_DEBUG) */
83 1.1 yamt
84 1.1 yamt #define VMEM_MAXORDER 20
85 1.1 yamt #define VMEM_HASHSIZE_INIT 4096 /* XXX */
86 1.1 yamt
87 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
88 1.1 yamt
89 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
90 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
91 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
92 1.1 yamt
93 1.1 yamt /* vmem arena */
94 1.1 yamt struct vmem {
95 1.1 yamt SIMPLELOCK_DECL(vm_lock);
96 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
97 1.1 yamt vm_flag_t);
98 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
99 1.1 yamt vmem_t *vm_source;
100 1.1 yamt struct vmem_seglist vm_seglist;
101 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
102 1.1 yamt size_t vm_hashsize;
103 1.1 yamt size_t vm_nbusytag;
104 1.1 yamt struct vmem_hashlist *vm_hashlist;
105 1.1 yamt size_t vm_qcache_max;
106 1.1 yamt size_t vm_quantum_mask;
107 1.1 yamt int vm_quantum_shift;
108 1.1 yamt /* XXX qcache */
109 1.1 yamt const char *vm_name;
110 1.1 yamt };
111 1.1 yamt
112 1.1 yamt #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
113 1.1 yamt #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
114 1.1 yamt #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
115 1.1 yamt #define VMEM_ASSERT_LOCKED(vm) \
116 1.1 yamt LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
117 1.1 yamt #define VMEM_ASSERT_UNLOCKED(vm) \
118 1.1 yamt LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
119 1.1 yamt
120 1.1 yamt /* boundary tag */
121 1.1 yamt struct vmem_btag {
122 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
123 1.1 yamt union {
124 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
125 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
126 1.1 yamt } bt_u;
127 1.1 yamt #define bt_hashlist bt_u.u_hashlist
128 1.1 yamt #define bt_freelist bt_u.u_freelist
129 1.1 yamt vmem_addr_t bt_start;
130 1.1 yamt vmem_size_t bt_size;
131 1.1 yamt int bt_type;
132 1.1 yamt };
133 1.1 yamt
134 1.1 yamt #define BT_TYPE_SPAN 1
135 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
136 1.1 yamt #define BT_TYPE_FREE 3
137 1.1 yamt #define BT_TYPE_BUSY 4
138 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
139 1.1 yamt
140 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
141 1.1 yamt
142 1.1 yamt typedef struct vmem_btag bt_t;
143 1.1 yamt
144 1.1 yamt /* ---- misc */
145 1.1 yamt
146 1.1 yamt static int
147 1.1 yamt calc_order(vmem_size_t size)
148 1.1 yamt {
149 1.1 yamt int i;
150 1.1 yamt
151 1.1 yamt KASSERT(size != 0);
152 1.1 yamt
153 1.1 yamt i = 0;
154 1.1 yamt while (1 << (i + 1) <= size) {
155 1.1 yamt i++;
156 1.1 yamt }
157 1.1 yamt
158 1.1 yamt KASSERT(1 << i <= size);
159 1.1 yamt KASSERT(size < 1 << (i + 1));
160 1.1 yamt
161 1.1 yamt return i;
162 1.1 yamt }
163 1.1 yamt
164 1.1 yamt #if defined(_KERNEL)
165 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
166 1.1 yamt #endif /* defined(_KERNEL) */
167 1.1 yamt
168 1.1 yamt static void *
169 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
170 1.1 yamt {
171 1.1 yamt
172 1.1 yamt #if defined(_KERNEL)
173 1.1 yamt return malloc(sz, M_VMEM,
174 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
175 1.1 yamt #else /* defined(_KERNEL) */
176 1.1 yamt return malloc(sz);
177 1.1 yamt #endif /* defined(_KERNEL) */
178 1.1 yamt }
179 1.1 yamt
180 1.1 yamt static void
181 1.1 yamt xfree(void *p)
182 1.1 yamt {
183 1.1 yamt
184 1.1 yamt #if defined(_KERNEL)
185 1.1 yamt return free(p, M_VMEM);
186 1.1 yamt #else /* defined(_KERNEL) */
187 1.1 yamt return free(p);
188 1.1 yamt #endif /* defined(_KERNEL) */
189 1.1 yamt }
190 1.1 yamt
191 1.1 yamt /* ---- boundary tag */
192 1.1 yamt
193 1.1 yamt #if defined(_KERNEL)
194 1.1 yamt static struct pool_cache bt_poolcache;
195 1.1 yamt static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
196 1.1 yamt #endif /* defined(_KERNEL) */
197 1.1 yamt
198 1.1 yamt static bt_t *
199 1.1 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
200 1.1 yamt {
201 1.1 yamt bt_t *bt;
202 1.1 yamt
203 1.1 yamt #if defined(_KERNEL)
204 1.1 yamt /* XXX bootstrap */
205 1.1 yamt bt = pool_cache_get(&bt_poolcache,
206 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
207 1.1 yamt #else /* defined(_KERNEL) */
208 1.1 yamt bt = malloc(sizeof *bt);
209 1.1 yamt #endif /* defined(_KERNEL) */
210 1.1 yamt
211 1.1 yamt return bt;
212 1.1 yamt }
213 1.1 yamt
214 1.1 yamt static void
215 1.1 yamt bt_free(vmem_t *vm, bt_t *bt)
216 1.1 yamt {
217 1.1 yamt
218 1.1 yamt #if defined(_KERNEL)
219 1.1 yamt /* XXX bootstrap */
220 1.1 yamt pool_cache_put(&bt_poolcache, bt);
221 1.1 yamt #else /* defined(_KERNEL) */
222 1.1 yamt free(bt);
223 1.1 yamt #endif /* defined(_KERNEL) */
224 1.1 yamt }
225 1.1 yamt
226 1.1 yamt /*
227 1.1 yamt * freelist[0] ... [1, 1]
228 1.1 yamt * freelist[1] ... [2, 3]
229 1.1 yamt * freelist[2] ... [4, 7]
230 1.1 yamt * freelist[3] ... [8, 15]
231 1.1 yamt * :
232 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
233 1.1 yamt * :
234 1.1 yamt */
235 1.1 yamt
236 1.1 yamt static struct vmem_freelist *
237 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
238 1.1 yamt {
239 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
240 1.1 yamt int idx;
241 1.1 yamt
242 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
243 1.1 yamt KASSERT(size != 0);
244 1.1 yamt
245 1.1 yamt idx = calc_order(qsize);
246 1.1 yamt KASSERT(idx >= 0);
247 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
248 1.1 yamt
249 1.1 yamt return &vm->vm_freelist[idx];
250 1.1 yamt }
251 1.1 yamt
252 1.1 yamt static struct vmem_freelist *
253 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
254 1.1 yamt {
255 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
256 1.1 yamt int idx;
257 1.1 yamt
258 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
259 1.1 yamt KASSERT(size != 0);
260 1.1 yamt
261 1.1 yamt idx = calc_order(qsize);
262 1.1 yamt if (strat == VM_INSTANTFIT && 1 << idx != qsize) {
263 1.1 yamt idx++;
264 1.1 yamt /* check too large request? */
265 1.1 yamt }
266 1.1 yamt KASSERT(idx >= 0);
267 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
268 1.1 yamt
269 1.1 yamt return &vm->vm_freelist[idx];
270 1.1 yamt }
271 1.1 yamt
272 1.1 yamt /* ---- boundary tag hash */
273 1.1 yamt
274 1.1 yamt static struct vmem_hashlist *
275 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
276 1.1 yamt {
277 1.1 yamt struct vmem_hashlist *list;
278 1.1 yamt unsigned int hash;
279 1.1 yamt
280 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
281 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
282 1.1 yamt
283 1.1 yamt return list;
284 1.1 yamt }
285 1.1 yamt
286 1.1 yamt static bt_t *
287 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
288 1.1 yamt {
289 1.1 yamt struct vmem_hashlist *list;
290 1.1 yamt bt_t *bt;
291 1.1 yamt
292 1.1 yamt list = bt_hashhead(vm, addr);
293 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
294 1.1 yamt if (bt->bt_start == addr) {
295 1.1 yamt break;
296 1.1 yamt }
297 1.1 yamt }
298 1.1 yamt
299 1.1 yamt return bt;
300 1.1 yamt }
301 1.1 yamt
302 1.1 yamt static void
303 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
304 1.1 yamt {
305 1.1 yamt
306 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
307 1.1 yamt vm->vm_nbusytag--;
308 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
309 1.1 yamt }
310 1.1 yamt
311 1.1 yamt static void
312 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
313 1.1 yamt {
314 1.1 yamt struct vmem_hashlist *list;
315 1.1 yamt
316 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
317 1.1 yamt
318 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
319 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
320 1.1 yamt vm->vm_nbusytag++;
321 1.1 yamt }
322 1.1 yamt
323 1.1 yamt /* ---- boundary tag list */
324 1.1 yamt
325 1.1 yamt static void
326 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
327 1.1 yamt {
328 1.1 yamt
329 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
330 1.1 yamt }
331 1.1 yamt
332 1.1 yamt static void
333 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
334 1.1 yamt {
335 1.1 yamt
336 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
337 1.1 yamt }
338 1.1 yamt
339 1.1 yamt static void
340 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
341 1.1 yamt {
342 1.1 yamt
343 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
344 1.1 yamt }
345 1.1 yamt
346 1.1 yamt static void
347 1.1 yamt bt_remfree(vmem_t *vm, bt_t *bt)
348 1.1 yamt {
349 1.1 yamt
350 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
351 1.1 yamt
352 1.1 yamt LIST_REMOVE(bt, bt_freelist);
353 1.1 yamt }
354 1.1 yamt
355 1.1 yamt static void
356 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
357 1.1 yamt {
358 1.1 yamt struct vmem_freelist *list;
359 1.1 yamt
360 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
361 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
362 1.1 yamt }
363 1.1 yamt
364 1.1 yamt /* ---- vmem internal functions */
365 1.1 yamt
366 1.1 yamt #if defined(_KERNEL)
367 1.1 yamt static int
368 1.1 yamt vmem_init(void)
369 1.1 yamt {
370 1.1 yamt
371 1.1 yamt pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
372 1.1 yamt return 0;
373 1.1 yamt }
374 1.1 yamt #endif /* defined(_KERNEL) */
375 1.1 yamt
376 1.1 yamt static vmem_addr_t
377 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
378 1.1 yamt int spanbttype)
379 1.1 yamt {
380 1.1 yamt bt_t *btspan;
381 1.1 yamt bt_t *btfree;
382 1.1 yamt
383 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
384 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
385 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
386 1.1 yamt
387 1.1 yamt btspan = bt_alloc(vm, flags);
388 1.1 yamt if (btspan == NULL) {
389 1.1 yamt return VMEM_ADDR_NULL;
390 1.1 yamt }
391 1.1 yamt btfree = bt_alloc(vm, flags);
392 1.1 yamt if (btfree == NULL) {
393 1.1 yamt bt_free(vm, btspan);
394 1.1 yamt return VMEM_ADDR_NULL;
395 1.1 yamt }
396 1.1 yamt
397 1.1 yamt btspan->bt_type = spanbttype;
398 1.1 yamt btspan->bt_start = addr;
399 1.1 yamt btspan->bt_size = size;
400 1.1 yamt
401 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
402 1.1 yamt btfree->bt_start = addr;
403 1.1 yamt btfree->bt_size = size;
404 1.1 yamt
405 1.1 yamt VMEM_LOCK(vm);
406 1.1 yamt bt_insseg_tail(vm, btspan);
407 1.1 yamt bt_insseg(vm, btfree, btspan);
408 1.1 yamt bt_insfree(vm, btfree);
409 1.1 yamt VMEM_UNLOCK(vm);
410 1.1 yamt
411 1.1 yamt return addr;
412 1.1 yamt }
413 1.1 yamt
414 1.1 yamt static int
415 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
416 1.1 yamt {
417 1.1 yamt vmem_addr_t addr;
418 1.1 yamt
419 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
420 1.1 yamt
421 1.1 yamt if (vm->vm_allocfn == NULL) {
422 1.1 yamt return EINVAL;
423 1.1 yamt }
424 1.1 yamt
425 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
426 1.1 yamt if (addr == VMEM_ADDR_NULL) {
427 1.1 yamt return ENOMEM;
428 1.1 yamt }
429 1.1 yamt
430 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
431 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
432 1.1 yamt return ENOMEM;
433 1.1 yamt }
434 1.1 yamt
435 1.1 yamt return 0;
436 1.1 yamt }
437 1.1 yamt
438 1.1 yamt static int
439 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
440 1.1 yamt {
441 1.1 yamt bt_t *bt;
442 1.1 yamt int i;
443 1.1 yamt struct vmem_hashlist *newhashlist;
444 1.1 yamt struct vmem_hashlist *oldhashlist;
445 1.1 yamt size_t oldhashsize;
446 1.1 yamt
447 1.1 yamt KASSERT(newhashsize > 0);
448 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
449 1.1 yamt
450 1.1 yamt newhashlist =
451 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
452 1.1 yamt if (newhashlist == NULL) {
453 1.1 yamt return ENOMEM;
454 1.1 yamt }
455 1.1 yamt for (i = 0; i < newhashsize; i++) {
456 1.1 yamt LIST_INIT(&newhashlist[i]);
457 1.1 yamt }
458 1.1 yamt
459 1.1 yamt VMEM_LOCK(vm);
460 1.1 yamt oldhashlist = vm->vm_hashlist;
461 1.1 yamt oldhashsize = vm->vm_hashsize;
462 1.1 yamt vm->vm_hashlist = newhashlist;
463 1.1 yamt vm->vm_hashsize = newhashsize;
464 1.1 yamt if (oldhashlist == NULL) {
465 1.1 yamt VMEM_UNLOCK(vm);
466 1.1 yamt return 0;
467 1.1 yamt }
468 1.1 yamt for (i = 0; i < oldhashsize; i++) {
469 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
470 1.1 yamt bt_rembusy(vm, bt); /* XXX */
471 1.1 yamt bt_insbusy(vm, bt);
472 1.1 yamt }
473 1.1 yamt }
474 1.1 yamt VMEM_UNLOCK(vm);
475 1.1 yamt
476 1.1 yamt xfree(oldhashlist);
477 1.1 yamt
478 1.1 yamt return 0;
479 1.1 yamt }
480 1.1 yamt
481 1.1 yamt /* ---- vmem API */
482 1.1 yamt
483 1.1 yamt /*
484 1.1 yamt * vmem_create: create an arena.
485 1.1 yamt *
486 1.1 yamt * => must not be called from interrupt context.
487 1.1 yamt */
488 1.1 yamt
489 1.1 yamt vmem_t *
490 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
491 1.1 yamt vmem_size_t quantum,
492 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
493 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
494 1.1 yamt vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
495 1.1 yamt {
496 1.1 yamt vmem_t *vm;
497 1.1 yamt int i;
498 1.1 yamt #if defined(_KERNEL)
499 1.1 yamt static ONCE_DECL(control);
500 1.1 yamt #endif /* defined(_KERNEL) */
501 1.1 yamt
502 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
503 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
504 1.1 yamt
505 1.1 yamt #if defined(_KERNEL)
506 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
507 1.1 yamt return NULL;
508 1.1 yamt }
509 1.1 yamt #endif /* defined(_KERNEL) */
510 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
511 1.1 yamt if (vm == NULL) {
512 1.1 yamt return NULL;
513 1.1 yamt }
514 1.1 yamt
515 1.1 yamt VMEM_LOCK_INIT(vm);
516 1.1 yamt vm->vm_name = name;
517 1.1 yamt vm->vm_quantum_mask = quantum - 1;
518 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
519 1.1 yamt KASSERT((1 << vm->vm_quantum_shift) == quantum);
520 1.1 yamt vm->vm_allocfn = allocfn;
521 1.1 yamt vm->vm_freefn = freefn;
522 1.1 yamt vm->vm_source = source;
523 1.1 yamt vm->vm_qcache_max = qcache_max;
524 1.1 yamt vm->vm_nbusytag = 0;
525 1.1 yamt
526 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
527 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
528 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
529 1.1 yamt }
530 1.1 yamt vm->vm_hashlist = NULL;
531 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
532 1.1 yamt vmem_destroy(vm);
533 1.1 yamt return NULL;
534 1.1 yamt }
535 1.1 yamt
536 1.1 yamt if (size != 0) {
537 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
538 1.1 yamt vmem_destroy(vm);
539 1.1 yamt return NULL;
540 1.1 yamt }
541 1.1 yamt }
542 1.1 yamt
543 1.1 yamt return vm;
544 1.1 yamt }
545 1.1 yamt
546 1.1 yamt void
547 1.1 yamt vmem_destroy(vmem_t *vm)
548 1.1 yamt {
549 1.1 yamt
550 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
551 1.1 yamt
552 1.1 yamt if (vm->vm_hashlist != NULL) {
553 1.1 yamt int i;
554 1.1 yamt
555 1.1 yamt for (i = 0; i < vm->vm_hashsize; i++) {
556 1.1 yamt bt_t *bt;
557 1.1 yamt
558 1.1 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
559 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
560 1.1 yamt bt_free(vm, bt);
561 1.1 yamt }
562 1.1 yamt }
563 1.1 yamt xfree(vm->vm_hashlist);
564 1.1 yamt }
565 1.1 yamt xfree(vm);
566 1.1 yamt }
567 1.1 yamt
568 1.1 yamt vmem_size_t
569 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
570 1.1 yamt {
571 1.1 yamt
572 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
573 1.1 yamt }
574 1.1 yamt
575 1.1 yamt /*
576 1.1 yamt * vmem_alloc:
577 1.1 yamt *
578 1.1 yamt * => caller must ensure appropriate spl,
579 1.1 yamt * if the arena can be accessed from interrupt context.
580 1.1 yamt */
581 1.1 yamt
582 1.1 yamt vmem_addr_t
583 1.1 yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
584 1.1 yamt {
585 1.1 yamt struct vmem_freelist *list;
586 1.1 yamt struct vmem_freelist *first;
587 1.1 yamt struct vmem_freelist *end;
588 1.1 yamt bt_t *bt;
589 1.1 yamt bt_t *btnew;
590 1.1 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
591 1.1 yamt vm_flag_t strat = flags & VM_FITMASK;
592 1.1 yamt
593 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
594 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
595 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
596 1.1 yamt
597 1.1 yamt KASSERT(size0 > 0);
598 1.1 yamt KASSERT(size > 0);
599 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
600 1.3 yamt if ((flags & VM_SLEEP) != 0) {
601 1.3 yamt ASSERT_SLEEPABLE(NULL, "vmem_alloc");
602 1.3 yamt }
603 1.1 yamt
604 1.1 yamt btnew = bt_alloc(vm, flags);
605 1.1 yamt if (btnew == NULL) {
606 1.1 yamt return VMEM_ADDR_NULL;
607 1.1 yamt }
608 1.1 yamt
609 1.1 yamt retry_strat:
610 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
611 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
612 1.1 yamt retry:
613 1.1 yamt bt = NULL;
614 1.1 yamt VMEM_LOCK(vm);
615 1.2 yamt if (strat == VM_INSTANTFIT) {
616 1.2 yamt for (list = first; list < end; list++) {
617 1.2 yamt bt = LIST_FIRST(list);
618 1.2 yamt if (bt != NULL) {
619 1.2 yamt goto gotit;
620 1.2 yamt }
621 1.2 yamt }
622 1.2 yamt } else { /* VM_BESTFIT */
623 1.2 yamt for (list = first; list < end; list++) {
624 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
625 1.2 yamt if (bt->bt_size >= size) {
626 1.2 yamt goto gotit;
627 1.2 yamt }
628 1.1 yamt }
629 1.1 yamt }
630 1.1 yamt }
631 1.2 yamt VMEM_UNLOCK(vm);
632 1.1 yamt #if 1
633 1.2 yamt if (strat == VM_INSTANTFIT) {
634 1.2 yamt strat = VM_BESTFIT;
635 1.2 yamt goto retry_strat;
636 1.2 yamt }
637 1.1 yamt #endif
638 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
639 1.2 yamt goto retry;
640 1.1 yamt }
641 1.2 yamt /* XXX */
642 1.2 yamt return VMEM_ADDR_NULL;
643 1.2 yamt
644 1.2 yamt gotit:
645 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
646 1.1 yamt KASSERT(bt->bt_size >= size);
647 1.1 yamt bt_remfree(vm, bt);
648 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
649 1.1 yamt /* split */
650 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
651 1.1 yamt btnew->bt_start = bt->bt_start;
652 1.1 yamt btnew->bt_size = size;
653 1.1 yamt bt->bt_start = bt->bt_start + size;
654 1.1 yamt bt->bt_size -= size;
655 1.1 yamt bt_insfree(vm, bt);
656 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
657 1.1 yamt bt_insbusy(vm, btnew);
658 1.1 yamt VMEM_UNLOCK(vm);
659 1.1 yamt } else {
660 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
661 1.1 yamt bt_insbusy(vm, bt);
662 1.1 yamt VMEM_UNLOCK(vm);
663 1.1 yamt bt_free(vm, btnew);
664 1.1 yamt btnew = bt;
665 1.1 yamt }
666 1.1 yamt KASSERT(btnew->bt_size >= size);
667 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
668 1.1 yamt
669 1.1 yamt return btnew->bt_start;
670 1.1 yamt }
671 1.1 yamt
672 1.1 yamt /*
673 1.1 yamt * vmem_free:
674 1.1 yamt *
675 1.1 yamt * => caller must ensure appropriate spl,
676 1.1 yamt * if the arena can be accessed from interrupt context.
677 1.1 yamt */
678 1.1 yamt
679 1.1 yamt void
680 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
681 1.1 yamt {
682 1.1 yamt bt_t *bt;
683 1.1 yamt bt_t *t;
684 1.1 yamt
685 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
686 1.1 yamt
687 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
688 1.1 yamt KASSERT(size > 0);
689 1.1 yamt
690 1.1 yamt VMEM_LOCK(vm);
691 1.1 yamt
692 1.1 yamt bt = bt_lookupbusy(vm, addr);
693 1.1 yamt KASSERT(bt != NULL);
694 1.1 yamt KASSERT(bt->bt_start == addr);
695 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
696 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
697 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
698 1.1 yamt bt_rembusy(vm, bt);
699 1.1 yamt bt->bt_type = BT_TYPE_FREE;
700 1.1 yamt
701 1.1 yamt /* coalesce */
702 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
703 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
704 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
705 1.1 yamt bt_remfree(vm, t);
706 1.1 yamt bt_remseg(vm, t);
707 1.1 yamt bt->bt_size += t->bt_size;
708 1.1 yamt bt_free(vm, t);
709 1.1 yamt }
710 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
711 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
712 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
713 1.1 yamt bt_remfree(vm, t);
714 1.1 yamt bt_remseg(vm, t);
715 1.1 yamt bt->bt_size += t->bt_size;
716 1.1 yamt bt->bt_start = t->bt_start;
717 1.1 yamt bt_free(vm, t);
718 1.1 yamt }
719 1.1 yamt
720 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
721 1.1 yamt KASSERT(t != NULL);
722 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
723 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
724 1.1 yamt t->bt_size == bt->bt_size) {
725 1.1 yamt vmem_addr_t spanaddr;
726 1.1 yamt vmem_size_t spansize;
727 1.1 yamt
728 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
729 1.1 yamt spanaddr = bt->bt_start;
730 1.1 yamt spansize = bt->bt_size;
731 1.1 yamt bt_remseg(vm, bt);
732 1.1 yamt bt_free(vm, bt);
733 1.1 yamt bt_remseg(vm, t);
734 1.1 yamt bt_free(vm, t);
735 1.1 yamt VMEM_UNLOCK(vm);
736 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
737 1.1 yamt } else {
738 1.1 yamt bt_insfree(vm, bt);
739 1.1 yamt VMEM_UNLOCK(vm);
740 1.1 yamt }
741 1.1 yamt }
742 1.1 yamt
743 1.1 yamt /*
744 1.1 yamt * vmem_add:
745 1.1 yamt *
746 1.1 yamt * => caller must ensure appropriate spl,
747 1.1 yamt * if the arena can be accessed from interrupt context.
748 1.1 yamt */
749 1.1 yamt
750 1.1 yamt vmem_addr_t
751 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
752 1.1 yamt {
753 1.1 yamt
754 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
755 1.1 yamt }
756 1.1 yamt
757 1.1 yamt /* ---- debug */
758 1.1 yamt
759 1.1 yamt #if defined(VMEM_DEBUG)
760 1.1 yamt
761 1.1 yamt #if !defined(_KERNEL)
762 1.1 yamt #include <stdio.h>
763 1.1 yamt #endif /* !defined(_KERNEL) */
764 1.1 yamt
765 1.1 yamt void bt_dump(const bt_t *);
766 1.1 yamt
767 1.1 yamt void
768 1.1 yamt bt_dump(const bt_t *bt)
769 1.1 yamt {
770 1.1 yamt
771 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
772 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
773 1.1 yamt bt->bt_type);
774 1.1 yamt }
775 1.1 yamt
776 1.1 yamt void
777 1.1 yamt vmem_dump(const vmem_t *vm)
778 1.1 yamt {
779 1.1 yamt const bt_t *bt;
780 1.1 yamt int i;
781 1.1 yamt
782 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
783 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
784 1.1 yamt bt_dump(bt);
785 1.1 yamt }
786 1.1 yamt
787 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
788 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
789 1.1 yamt
790 1.1 yamt if (LIST_EMPTY(fl)) {
791 1.1 yamt continue;
792 1.1 yamt }
793 1.1 yamt
794 1.1 yamt printf("freelist[%d]\n", i);
795 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
796 1.1 yamt bt_dump(bt);
797 1.1 yamt if (bt->bt_size) {
798 1.1 yamt }
799 1.1 yamt }
800 1.1 yamt }
801 1.1 yamt }
802 1.1 yamt
803 1.1 yamt #if !defined(_KERNEL)
804 1.1 yamt
805 1.1 yamt #include <stdlib.h>
806 1.1 yamt
807 1.1 yamt int
808 1.1 yamt main()
809 1.1 yamt {
810 1.1 yamt vmem_t *vm;
811 1.1 yamt vmem_addr_t p;
812 1.1 yamt struct reg {
813 1.1 yamt vmem_addr_t p;
814 1.1 yamt vmem_size_t sz;
815 1.1 yamt } *reg = NULL;
816 1.1 yamt int nreg = 0;
817 1.1 yamt int nalloc = 0;
818 1.1 yamt int nfree = 0;
819 1.1 yamt vmem_size_t total = 0;
820 1.1 yamt #if 1
821 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
822 1.1 yamt #else
823 1.1 yamt vm_flag_t strat = VM_BESTFIT;
824 1.1 yamt #endif
825 1.1 yamt
826 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
827 1.1 yamt NULL, NULL, NULL, 0, VM_NOSLEEP);
828 1.1 yamt if (vm == NULL) {
829 1.1 yamt printf("vmem_create\n");
830 1.1 yamt exit(EXIT_FAILURE);
831 1.1 yamt }
832 1.1 yamt vmem_dump(vm);
833 1.1 yamt
834 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
835 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
836 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
837 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
838 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
839 1.1 yamt vmem_dump(vm);
840 1.1 yamt for (;;) {
841 1.1 yamt struct reg *r;
842 1.1 yamt
843 1.1 yamt if (rand() % 100 > 40) {
844 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
845 1.1 yamt
846 1.1 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
847 1.1 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
848 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
849 1.1 yamt vmem_dump(vm);
850 1.1 yamt if (p == VMEM_ADDR_NULL) {
851 1.1 yamt break;
852 1.1 yamt }
853 1.1 yamt nreg++;
854 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
855 1.1 yamt r = ®[nreg - 1];
856 1.1 yamt r->p = p;
857 1.1 yamt r->sz = sz;
858 1.1 yamt total += sz;
859 1.1 yamt nalloc++;
860 1.1 yamt } else if (nreg != 0) {
861 1.1 yamt r = ®[rand() % nreg];
862 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
863 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
864 1.1 yamt vmem_free(vm, r->p, r->sz);
865 1.1 yamt total -= r->sz;
866 1.1 yamt vmem_dump(vm);
867 1.1 yamt *r = reg[nreg - 1];
868 1.1 yamt nreg--;
869 1.1 yamt nfree++;
870 1.1 yamt }
871 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
872 1.1 yamt }
873 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
874 1.1 yamt (uint64_t)total, nalloc, nfree);
875 1.1 yamt exit(EXIT_SUCCESS);
876 1.1 yamt }
877 1.1 yamt #endif /* !defined(_KERNEL) */
878 1.1 yamt #endif /* defined(VMEM_DEBUG) */
879