subr_vmem.c revision 1.30 1 1.30 yamt /* $NetBSD: subr_vmem.c,v 1.30 2007/06/17 13:34:43 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.18 yamt *
35 1.18 yamt * todo:
36 1.18 yamt * - decide how to import segments for vmem_xalloc.
37 1.18 yamt * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.30 yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.30 2007/06/17 13:34:43 yamt Exp $");
42 1.1 yamt
43 1.1 yamt #define VMEM_DEBUG
44 1.5 yamt #if defined(_KERNEL)
45 1.5 yamt #define QCACHE
46 1.5 yamt #endif /* defined(_KERNEL) */
47 1.1 yamt
48 1.1 yamt #include <sys/param.h>
49 1.1 yamt #include <sys/hash.h>
50 1.1 yamt #include <sys/queue.h>
51 1.1 yamt
52 1.1 yamt #if defined(_KERNEL)
53 1.1 yamt #include <sys/systm.h>
54 1.30 yamt #include <sys/kernel.h> /* hz */
55 1.30 yamt #include <sys/callout.h>
56 1.1 yamt #include <sys/lock.h>
57 1.1 yamt #include <sys/malloc.h>
58 1.1 yamt #include <sys/once.h>
59 1.1 yamt #include <sys/pool.h>
60 1.3 yamt #include <sys/proc.h>
61 1.1 yamt #include <sys/vmem.h>
62 1.30 yamt #include <sys/workqueue.h>
63 1.1 yamt #else /* defined(_KERNEL) */
64 1.1 yamt #include "../sys/vmem.h"
65 1.1 yamt #endif /* defined(_KERNEL) */
66 1.1 yamt
67 1.1 yamt #if defined(_KERNEL)
68 1.1 yamt #define SIMPLELOCK_DECL(name) struct simplelock name
69 1.1 yamt #else /* defined(_KERNEL) */
70 1.1 yamt #include <errno.h>
71 1.1 yamt #include <assert.h>
72 1.1 yamt #include <stdlib.h>
73 1.1 yamt
74 1.1 yamt #define KASSERT(a) assert(a)
75 1.1 yamt #define SIMPLELOCK_DECL(name) /* nothing */
76 1.1 yamt #define LOCK_ASSERT(a) /* nothing */
77 1.1 yamt #define simple_lock_init(a) /* nothing */
78 1.1 yamt #define simple_lock(a) /* nothing */
79 1.30 yamt #define simple_lock_try(a) 1
80 1.1 yamt #define simple_unlock(a) /* nothing */
81 1.3 yamt #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
82 1.1 yamt #endif /* defined(_KERNEL) */
83 1.1 yamt
84 1.1 yamt struct vmem;
85 1.1 yamt struct vmem_btag;
86 1.1 yamt
87 1.1 yamt #if defined(VMEM_DEBUG)
88 1.1 yamt void vmem_dump(const vmem_t *);
89 1.1 yamt #endif /* defined(VMEM_DEBUG) */
90 1.1 yamt
91 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
92 1.30 yamt
93 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
94 1.30 yamt #define VMEM_HASHSIZE_MAX 8192 /* XXX */
95 1.30 yamt #define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
96 1.1 yamt
97 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
98 1.1 yamt
99 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
100 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
101 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
102 1.1 yamt
103 1.5 yamt #if defined(QCACHE)
104 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
105 1.5 yamt
106 1.5 yamt #define QC_NAME_MAX 16
107 1.5 yamt
108 1.5 yamt struct qcache {
109 1.5 yamt struct pool qc_pool;
110 1.5 yamt struct pool_cache qc_cache;
111 1.5 yamt vmem_t *qc_vmem;
112 1.5 yamt char qc_name[QC_NAME_MAX];
113 1.5 yamt };
114 1.5 yamt typedef struct qcache qcache_t;
115 1.5 yamt #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
116 1.5 yamt #endif /* defined(QCACHE) */
117 1.5 yamt
118 1.1 yamt /* vmem arena */
119 1.1 yamt struct vmem {
120 1.1 yamt SIMPLELOCK_DECL(vm_lock);
121 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
122 1.1 yamt vm_flag_t);
123 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
124 1.1 yamt vmem_t *vm_source;
125 1.1 yamt struct vmem_seglist vm_seglist;
126 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
127 1.1 yamt size_t vm_hashsize;
128 1.1 yamt size_t vm_nbusytag;
129 1.1 yamt struct vmem_hashlist *vm_hashlist;
130 1.1 yamt size_t vm_quantum_mask;
131 1.1 yamt int vm_quantum_shift;
132 1.1 yamt const char *vm_name;
133 1.30 yamt LIST_ENTRY(vmem) vm_alllist;
134 1.5 yamt
135 1.5 yamt #if defined(QCACHE)
136 1.5 yamt /* quantum cache */
137 1.5 yamt size_t vm_qcache_max;
138 1.5 yamt struct pool_allocator vm_qcache_allocator;
139 1.22 yamt qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
140 1.22 yamt qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
141 1.5 yamt #endif /* defined(QCACHE) */
142 1.1 yamt };
143 1.1 yamt
144 1.1 yamt #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
145 1.30 yamt #define VMEM_TRYLOCK(vm) simple_lock_try(&vm->vm_lock)
146 1.1 yamt #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
147 1.1 yamt #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
148 1.1 yamt #define VMEM_ASSERT_LOCKED(vm) \
149 1.1 yamt LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
150 1.1 yamt #define VMEM_ASSERT_UNLOCKED(vm) \
151 1.1 yamt LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
152 1.1 yamt
153 1.1 yamt /* boundary tag */
154 1.1 yamt struct vmem_btag {
155 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
156 1.1 yamt union {
157 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
158 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
159 1.1 yamt } bt_u;
160 1.1 yamt #define bt_hashlist bt_u.u_hashlist
161 1.1 yamt #define bt_freelist bt_u.u_freelist
162 1.1 yamt vmem_addr_t bt_start;
163 1.1 yamt vmem_size_t bt_size;
164 1.1 yamt int bt_type;
165 1.1 yamt };
166 1.1 yamt
167 1.1 yamt #define BT_TYPE_SPAN 1
168 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
169 1.1 yamt #define BT_TYPE_FREE 3
170 1.1 yamt #define BT_TYPE_BUSY 4
171 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
172 1.1 yamt
173 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
174 1.1 yamt
175 1.1 yamt typedef struct vmem_btag bt_t;
176 1.1 yamt
177 1.1 yamt /* ---- misc */
178 1.1 yamt
179 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
180 1.19 yamt (-(-(addr) & -(align)))
181 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
182 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
183 1.19 yamt
184 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
185 1.4 yamt
186 1.1 yamt static int
187 1.1 yamt calc_order(vmem_size_t size)
188 1.1 yamt {
189 1.4 yamt vmem_size_t target;
190 1.1 yamt int i;
191 1.1 yamt
192 1.1 yamt KASSERT(size != 0);
193 1.1 yamt
194 1.1 yamt i = 0;
195 1.4 yamt target = size >> 1;
196 1.4 yamt while (ORDER2SIZE(i) <= target) {
197 1.1 yamt i++;
198 1.1 yamt }
199 1.1 yamt
200 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
201 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
202 1.1 yamt
203 1.1 yamt return i;
204 1.1 yamt }
205 1.1 yamt
206 1.1 yamt #if defined(_KERNEL)
207 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
208 1.1 yamt #endif /* defined(_KERNEL) */
209 1.1 yamt
210 1.1 yamt static void *
211 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
212 1.1 yamt {
213 1.1 yamt
214 1.1 yamt #if defined(_KERNEL)
215 1.1 yamt return malloc(sz, M_VMEM,
216 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
217 1.1 yamt #else /* defined(_KERNEL) */
218 1.1 yamt return malloc(sz);
219 1.1 yamt #endif /* defined(_KERNEL) */
220 1.1 yamt }
221 1.1 yamt
222 1.1 yamt static void
223 1.1 yamt xfree(void *p)
224 1.1 yamt {
225 1.1 yamt
226 1.1 yamt #if defined(_KERNEL)
227 1.1 yamt return free(p, M_VMEM);
228 1.1 yamt #else /* defined(_KERNEL) */
229 1.1 yamt return free(p);
230 1.1 yamt #endif /* defined(_KERNEL) */
231 1.1 yamt }
232 1.1 yamt
233 1.1 yamt /* ---- boundary tag */
234 1.1 yamt
235 1.1 yamt #if defined(_KERNEL)
236 1.1 yamt static struct pool_cache bt_poolcache;
237 1.28 ad static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL, IPL_VM);
238 1.1 yamt #endif /* defined(_KERNEL) */
239 1.1 yamt
240 1.1 yamt static bt_t *
241 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
242 1.1 yamt {
243 1.1 yamt bt_t *bt;
244 1.1 yamt
245 1.1 yamt #if defined(_KERNEL)
246 1.21 yamt int s;
247 1.21 yamt
248 1.1 yamt /* XXX bootstrap */
249 1.21 yamt s = splvm();
250 1.1 yamt bt = pool_cache_get(&bt_poolcache,
251 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
252 1.21 yamt splx(s);
253 1.1 yamt #else /* defined(_KERNEL) */
254 1.1 yamt bt = malloc(sizeof *bt);
255 1.1 yamt #endif /* defined(_KERNEL) */
256 1.1 yamt
257 1.1 yamt return bt;
258 1.1 yamt }
259 1.1 yamt
260 1.1 yamt static void
261 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
262 1.1 yamt {
263 1.1 yamt
264 1.1 yamt #if defined(_KERNEL)
265 1.21 yamt int s;
266 1.21 yamt
267 1.1 yamt /* XXX bootstrap */
268 1.21 yamt s = splvm();
269 1.1 yamt pool_cache_put(&bt_poolcache, bt);
270 1.21 yamt splx(s);
271 1.1 yamt #else /* defined(_KERNEL) */
272 1.1 yamt free(bt);
273 1.1 yamt #endif /* defined(_KERNEL) */
274 1.1 yamt }
275 1.1 yamt
276 1.1 yamt /*
277 1.1 yamt * freelist[0] ... [1, 1]
278 1.1 yamt * freelist[1] ... [2, 3]
279 1.1 yamt * freelist[2] ... [4, 7]
280 1.1 yamt * freelist[3] ... [8, 15]
281 1.1 yamt * :
282 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
283 1.1 yamt * :
284 1.1 yamt */
285 1.1 yamt
286 1.1 yamt static struct vmem_freelist *
287 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
288 1.1 yamt {
289 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
290 1.1 yamt int idx;
291 1.1 yamt
292 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
293 1.1 yamt KASSERT(size != 0);
294 1.1 yamt
295 1.1 yamt idx = calc_order(qsize);
296 1.1 yamt KASSERT(idx >= 0);
297 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
298 1.1 yamt
299 1.1 yamt return &vm->vm_freelist[idx];
300 1.1 yamt }
301 1.1 yamt
302 1.1 yamt static struct vmem_freelist *
303 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
304 1.1 yamt {
305 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
306 1.1 yamt int idx;
307 1.1 yamt
308 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
309 1.1 yamt KASSERT(size != 0);
310 1.1 yamt
311 1.1 yamt idx = calc_order(qsize);
312 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
313 1.1 yamt idx++;
314 1.1 yamt /* check too large request? */
315 1.1 yamt }
316 1.1 yamt KASSERT(idx >= 0);
317 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
318 1.1 yamt
319 1.1 yamt return &vm->vm_freelist[idx];
320 1.1 yamt }
321 1.1 yamt
322 1.1 yamt /* ---- boundary tag hash */
323 1.1 yamt
324 1.1 yamt static struct vmem_hashlist *
325 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
326 1.1 yamt {
327 1.1 yamt struct vmem_hashlist *list;
328 1.1 yamt unsigned int hash;
329 1.1 yamt
330 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
331 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
332 1.1 yamt
333 1.1 yamt return list;
334 1.1 yamt }
335 1.1 yamt
336 1.1 yamt static bt_t *
337 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
338 1.1 yamt {
339 1.1 yamt struct vmem_hashlist *list;
340 1.1 yamt bt_t *bt;
341 1.1 yamt
342 1.1 yamt list = bt_hashhead(vm, addr);
343 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
344 1.1 yamt if (bt->bt_start == addr) {
345 1.1 yamt break;
346 1.1 yamt }
347 1.1 yamt }
348 1.1 yamt
349 1.1 yamt return bt;
350 1.1 yamt }
351 1.1 yamt
352 1.1 yamt static void
353 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
354 1.1 yamt {
355 1.1 yamt
356 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
357 1.1 yamt vm->vm_nbusytag--;
358 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
359 1.1 yamt }
360 1.1 yamt
361 1.1 yamt static void
362 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
363 1.1 yamt {
364 1.1 yamt struct vmem_hashlist *list;
365 1.1 yamt
366 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
367 1.1 yamt
368 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
369 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
370 1.1 yamt vm->vm_nbusytag++;
371 1.1 yamt }
372 1.1 yamt
373 1.1 yamt /* ---- boundary tag list */
374 1.1 yamt
375 1.1 yamt static void
376 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
377 1.1 yamt {
378 1.1 yamt
379 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
380 1.1 yamt }
381 1.1 yamt
382 1.1 yamt static void
383 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
384 1.1 yamt {
385 1.1 yamt
386 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
387 1.1 yamt }
388 1.1 yamt
389 1.1 yamt static void
390 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
391 1.1 yamt {
392 1.1 yamt
393 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
394 1.1 yamt }
395 1.1 yamt
396 1.1 yamt static void
397 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
398 1.1 yamt {
399 1.1 yamt
400 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
401 1.1 yamt
402 1.1 yamt LIST_REMOVE(bt, bt_freelist);
403 1.1 yamt }
404 1.1 yamt
405 1.1 yamt static void
406 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
407 1.1 yamt {
408 1.1 yamt struct vmem_freelist *list;
409 1.1 yamt
410 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
411 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
412 1.1 yamt }
413 1.1 yamt
414 1.1 yamt /* ---- vmem internal functions */
415 1.1 yamt
416 1.30 yamt #if defined(_KERNEL)
417 1.30 yamt static kmutex_t vmem_list_lock;
418 1.30 yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
419 1.30 yamt #endif /* defined(_KERNEL) */
420 1.30 yamt
421 1.5 yamt #if defined(QCACHE)
422 1.5 yamt static inline vm_flag_t
423 1.5 yamt prf_to_vmf(int prflags)
424 1.5 yamt {
425 1.5 yamt vm_flag_t vmflags;
426 1.5 yamt
427 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
428 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
429 1.5 yamt vmflags = VM_SLEEP;
430 1.5 yamt } else {
431 1.5 yamt vmflags = VM_NOSLEEP;
432 1.5 yamt }
433 1.5 yamt return vmflags;
434 1.5 yamt }
435 1.5 yamt
436 1.5 yamt static inline int
437 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
438 1.5 yamt {
439 1.5 yamt int prflags;
440 1.5 yamt
441 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
442 1.5 yamt prflags = PR_WAITOK;
443 1.7 yamt } else {
444 1.5 yamt prflags = PR_NOWAIT;
445 1.5 yamt }
446 1.5 yamt return prflags;
447 1.5 yamt }
448 1.5 yamt
449 1.5 yamt static size_t
450 1.5 yamt qc_poolpage_size(size_t qcache_max)
451 1.5 yamt {
452 1.5 yamt int i;
453 1.5 yamt
454 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
455 1.5 yamt /* nothing */
456 1.5 yamt }
457 1.5 yamt return ORDER2SIZE(i);
458 1.5 yamt }
459 1.5 yamt
460 1.5 yamt static void *
461 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
462 1.5 yamt {
463 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
464 1.5 yamt vmem_t *vm = qc->qc_vmem;
465 1.5 yamt
466 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
467 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
468 1.5 yamt }
469 1.5 yamt
470 1.5 yamt static void
471 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
472 1.5 yamt {
473 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
474 1.5 yamt vmem_t *vm = qc->qc_vmem;
475 1.5 yamt
476 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
477 1.5 yamt }
478 1.5 yamt
479 1.5 yamt static void
480 1.5 yamt qc_init(vmem_t *vm, size_t qcache_max)
481 1.5 yamt {
482 1.22 yamt qcache_t *prevqc;
483 1.5 yamt struct pool_allocator *pa;
484 1.5 yamt int qcache_idx_max;
485 1.5 yamt int i;
486 1.5 yamt
487 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
488 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
489 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
490 1.5 yamt }
491 1.5 yamt vm->vm_qcache_max = qcache_max;
492 1.5 yamt pa = &vm->vm_qcache_allocator;
493 1.5 yamt memset(pa, 0, sizeof(*pa));
494 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
495 1.5 yamt pa->pa_free = qc_poolpage_free;
496 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
497 1.5 yamt
498 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
499 1.22 yamt prevqc = NULL;
500 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
501 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
502 1.5 yamt size_t size = i << vm->vm_quantum_shift;
503 1.5 yamt
504 1.5 yamt qc->qc_vmem = vm;
505 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
506 1.5 yamt vm->vm_name, size);
507 1.15 yamt pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
508 1.28 ad 0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa,
509 1.28 ad IPL_NONE);
510 1.22 yamt if (prevqc != NULL &&
511 1.22 yamt qc->qc_pool.pr_itemsperpage ==
512 1.22 yamt prevqc->qc_pool.pr_itemsperpage) {
513 1.22 yamt pool_destroy(&qc->qc_pool);
514 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
515 1.27 ad continue;
516 1.22 yamt }
517 1.5 yamt pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
518 1.22 yamt vm->vm_qcache[i - 1] = qc;
519 1.22 yamt prevqc = qc;
520 1.5 yamt }
521 1.5 yamt }
522 1.6 yamt
523 1.23 yamt static void
524 1.23 yamt qc_destroy(vmem_t *vm)
525 1.23 yamt {
526 1.23 yamt const qcache_t *prevqc;
527 1.23 yamt int i;
528 1.23 yamt int qcache_idx_max;
529 1.23 yamt
530 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
531 1.23 yamt prevqc = NULL;
532 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
533 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
534 1.23 yamt
535 1.23 yamt if (prevqc == qc) {
536 1.23 yamt continue;
537 1.23 yamt }
538 1.23 yamt pool_cache_destroy(&qc->qc_cache);
539 1.23 yamt pool_destroy(&qc->qc_pool);
540 1.23 yamt prevqc = qc;
541 1.23 yamt }
542 1.23 yamt }
543 1.23 yamt
544 1.25 thorpej static bool
545 1.6 yamt qc_reap(vmem_t *vm)
546 1.6 yamt {
547 1.22 yamt const qcache_t *prevqc;
548 1.6 yamt int i;
549 1.6 yamt int qcache_idx_max;
550 1.26 thorpej bool didsomething = false;
551 1.6 yamt
552 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
553 1.22 yamt prevqc = NULL;
554 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
555 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
556 1.6 yamt
557 1.22 yamt if (prevqc == qc) {
558 1.22 yamt continue;
559 1.22 yamt }
560 1.6 yamt if (pool_reclaim(&qc->qc_pool) != 0) {
561 1.26 thorpej didsomething = true;
562 1.6 yamt }
563 1.22 yamt prevqc = qc;
564 1.6 yamt }
565 1.6 yamt
566 1.6 yamt return didsomething;
567 1.6 yamt }
568 1.5 yamt #endif /* defined(QCACHE) */
569 1.5 yamt
570 1.1 yamt #if defined(_KERNEL)
571 1.1 yamt static int
572 1.1 yamt vmem_init(void)
573 1.1 yamt {
574 1.1 yamt
575 1.30 yamt mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
576 1.1 yamt pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
577 1.1 yamt return 0;
578 1.1 yamt }
579 1.1 yamt #endif /* defined(_KERNEL) */
580 1.1 yamt
581 1.1 yamt static vmem_addr_t
582 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
583 1.1 yamt int spanbttype)
584 1.1 yamt {
585 1.1 yamt bt_t *btspan;
586 1.1 yamt bt_t *btfree;
587 1.1 yamt
588 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
589 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
590 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
591 1.1 yamt
592 1.1 yamt btspan = bt_alloc(vm, flags);
593 1.1 yamt if (btspan == NULL) {
594 1.1 yamt return VMEM_ADDR_NULL;
595 1.1 yamt }
596 1.1 yamt btfree = bt_alloc(vm, flags);
597 1.1 yamt if (btfree == NULL) {
598 1.1 yamt bt_free(vm, btspan);
599 1.1 yamt return VMEM_ADDR_NULL;
600 1.1 yamt }
601 1.1 yamt
602 1.1 yamt btspan->bt_type = spanbttype;
603 1.1 yamt btspan->bt_start = addr;
604 1.1 yamt btspan->bt_size = size;
605 1.1 yamt
606 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
607 1.1 yamt btfree->bt_start = addr;
608 1.1 yamt btfree->bt_size = size;
609 1.1 yamt
610 1.1 yamt VMEM_LOCK(vm);
611 1.1 yamt bt_insseg_tail(vm, btspan);
612 1.1 yamt bt_insseg(vm, btfree, btspan);
613 1.1 yamt bt_insfree(vm, btfree);
614 1.1 yamt VMEM_UNLOCK(vm);
615 1.1 yamt
616 1.1 yamt return addr;
617 1.1 yamt }
618 1.1 yamt
619 1.30 yamt static void
620 1.30 yamt vmem_destroy1(vmem_t *vm)
621 1.30 yamt {
622 1.30 yamt
623 1.30 yamt VMEM_ASSERT_UNLOCKED(vm);
624 1.30 yamt
625 1.30 yamt #if defined(QCACHE)
626 1.30 yamt qc_destroy(vm);
627 1.30 yamt #endif /* defined(QCACHE) */
628 1.30 yamt if (vm->vm_hashlist != NULL) {
629 1.30 yamt int i;
630 1.30 yamt
631 1.30 yamt for (i = 0; i < vm->vm_hashsize; i++) {
632 1.30 yamt bt_t *bt;
633 1.30 yamt
634 1.30 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
635 1.30 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
636 1.30 yamt bt_free(vm, bt);
637 1.30 yamt }
638 1.30 yamt }
639 1.30 yamt xfree(vm->vm_hashlist);
640 1.30 yamt }
641 1.30 yamt xfree(vm);
642 1.30 yamt }
643 1.30 yamt
644 1.1 yamt static int
645 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
646 1.1 yamt {
647 1.1 yamt vmem_addr_t addr;
648 1.1 yamt
649 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
650 1.1 yamt
651 1.1 yamt if (vm->vm_allocfn == NULL) {
652 1.1 yamt return EINVAL;
653 1.1 yamt }
654 1.1 yamt
655 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
656 1.1 yamt if (addr == VMEM_ADDR_NULL) {
657 1.1 yamt return ENOMEM;
658 1.1 yamt }
659 1.1 yamt
660 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
661 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
662 1.1 yamt return ENOMEM;
663 1.1 yamt }
664 1.1 yamt
665 1.1 yamt return 0;
666 1.1 yamt }
667 1.1 yamt
668 1.1 yamt static int
669 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
670 1.1 yamt {
671 1.1 yamt bt_t *bt;
672 1.1 yamt int i;
673 1.1 yamt struct vmem_hashlist *newhashlist;
674 1.1 yamt struct vmem_hashlist *oldhashlist;
675 1.1 yamt size_t oldhashsize;
676 1.1 yamt
677 1.1 yamt KASSERT(newhashsize > 0);
678 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
679 1.1 yamt
680 1.1 yamt newhashlist =
681 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
682 1.1 yamt if (newhashlist == NULL) {
683 1.1 yamt return ENOMEM;
684 1.1 yamt }
685 1.1 yamt for (i = 0; i < newhashsize; i++) {
686 1.1 yamt LIST_INIT(&newhashlist[i]);
687 1.1 yamt }
688 1.1 yamt
689 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
690 1.30 yamt xfree(newhashlist);
691 1.30 yamt return EBUSY;
692 1.30 yamt }
693 1.1 yamt oldhashlist = vm->vm_hashlist;
694 1.1 yamt oldhashsize = vm->vm_hashsize;
695 1.1 yamt vm->vm_hashlist = newhashlist;
696 1.1 yamt vm->vm_hashsize = newhashsize;
697 1.1 yamt if (oldhashlist == NULL) {
698 1.1 yamt VMEM_UNLOCK(vm);
699 1.1 yamt return 0;
700 1.1 yamt }
701 1.1 yamt for (i = 0; i < oldhashsize; i++) {
702 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
703 1.1 yamt bt_rembusy(vm, bt); /* XXX */
704 1.1 yamt bt_insbusy(vm, bt);
705 1.1 yamt }
706 1.1 yamt }
707 1.1 yamt VMEM_UNLOCK(vm);
708 1.1 yamt
709 1.1 yamt xfree(oldhashlist);
710 1.1 yamt
711 1.1 yamt return 0;
712 1.1 yamt }
713 1.1 yamt
714 1.10 yamt /*
715 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
716 1.10 yamt */
717 1.10 yamt
718 1.10 yamt static vmem_addr_t
719 1.10 yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
720 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
721 1.10 yamt {
722 1.10 yamt vmem_addr_t start;
723 1.10 yamt vmem_addr_t end;
724 1.10 yamt
725 1.10 yamt KASSERT(bt->bt_size >= size);
726 1.10 yamt
727 1.10 yamt /*
728 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
729 1.10 yamt * unsigned integer of the same size.
730 1.10 yamt */
731 1.10 yamt
732 1.10 yamt start = bt->bt_start;
733 1.10 yamt if (start < minaddr) {
734 1.10 yamt start = minaddr;
735 1.10 yamt }
736 1.10 yamt end = BT_END(bt);
737 1.10 yamt if (end > maxaddr - 1) {
738 1.10 yamt end = maxaddr - 1;
739 1.10 yamt }
740 1.10 yamt if (start >= end) {
741 1.10 yamt return VMEM_ADDR_NULL;
742 1.10 yamt }
743 1.19 yamt
744 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
745 1.10 yamt if (start < bt->bt_start) {
746 1.10 yamt start += align;
747 1.10 yamt }
748 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
749 1.10 yamt KASSERT(align < nocross);
750 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
751 1.10 yamt }
752 1.10 yamt if (start < end && end - start >= size) {
753 1.10 yamt KASSERT((start & (align - 1)) == phase);
754 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
755 1.10 yamt KASSERT(minaddr <= start);
756 1.10 yamt KASSERT(maxaddr == 0 || start + size <= maxaddr);
757 1.10 yamt KASSERT(bt->bt_start <= start);
758 1.10 yamt KASSERT(start + size <= BT_END(bt));
759 1.10 yamt return start;
760 1.10 yamt }
761 1.10 yamt return VMEM_ADDR_NULL;
762 1.10 yamt }
763 1.10 yamt
764 1.1 yamt /* ---- vmem API */
765 1.1 yamt
766 1.1 yamt /*
767 1.1 yamt * vmem_create: create an arena.
768 1.1 yamt *
769 1.1 yamt * => must not be called from interrupt context.
770 1.1 yamt */
771 1.1 yamt
772 1.1 yamt vmem_t *
773 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
774 1.1 yamt vmem_size_t quantum,
775 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
776 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
777 1.1 yamt vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
778 1.1 yamt {
779 1.1 yamt vmem_t *vm;
780 1.1 yamt int i;
781 1.1 yamt #if defined(_KERNEL)
782 1.1 yamt static ONCE_DECL(control);
783 1.1 yamt #endif /* defined(_KERNEL) */
784 1.1 yamt
785 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
786 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
787 1.1 yamt
788 1.1 yamt #if defined(_KERNEL)
789 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
790 1.1 yamt return NULL;
791 1.1 yamt }
792 1.1 yamt #endif /* defined(_KERNEL) */
793 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
794 1.1 yamt if (vm == NULL) {
795 1.1 yamt return NULL;
796 1.1 yamt }
797 1.1 yamt
798 1.1 yamt VMEM_LOCK_INIT(vm);
799 1.1 yamt vm->vm_name = name;
800 1.1 yamt vm->vm_quantum_mask = quantum - 1;
801 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
802 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
803 1.1 yamt vm->vm_allocfn = allocfn;
804 1.1 yamt vm->vm_freefn = freefn;
805 1.1 yamt vm->vm_source = source;
806 1.1 yamt vm->vm_nbusytag = 0;
807 1.5 yamt #if defined(QCACHE)
808 1.5 yamt qc_init(vm, qcache_max);
809 1.5 yamt #endif /* defined(QCACHE) */
810 1.1 yamt
811 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
812 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
813 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
814 1.1 yamt }
815 1.1 yamt vm->vm_hashlist = NULL;
816 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
817 1.30 yamt vmem_destroy1(vm);
818 1.1 yamt return NULL;
819 1.1 yamt }
820 1.1 yamt
821 1.1 yamt if (size != 0) {
822 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
823 1.30 yamt vmem_destroy1(vm);
824 1.1 yamt return NULL;
825 1.1 yamt }
826 1.1 yamt }
827 1.1 yamt
828 1.30 yamt #if defined(_KERNEL)
829 1.30 yamt mutex_enter(&vmem_list_lock);
830 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
831 1.30 yamt mutex_exit(&vmem_list_lock);
832 1.30 yamt #endif /* defined(_KERNEL) */
833 1.30 yamt
834 1.1 yamt return vm;
835 1.1 yamt }
836 1.1 yamt
837 1.1 yamt void
838 1.1 yamt vmem_destroy(vmem_t *vm)
839 1.1 yamt {
840 1.1 yamt
841 1.30 yamt #if defined(_KERNEL)
842 1.30 yamt mutex_enter(&vmem_list_lock);
843 1.30 yamt LIST_REMOVE(vm, vm_alllist);
844 1.30 yamt mutex_exit(&vmem_list_lock);
845 1.30 yamt #endif /* defined(_KERNEL) */
846 1.1 yamt
847 1.30 yamt vmem_destroy1(vm);
848 1.1 yamt }
849 1.1 yamt
850 1.1 yamt vmem_size_t
851 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
852 1.1 yamt {
853 1.1 yamt
854 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
855 1.1 yamt }
856 1.1 yamt
857 1.1 yamt /*
858 1.1 yamt * vmem_alloc:
859 1.1 yamt *
860 1.1 yamt * => caller must ensure appropriate spl,
861 1.1 yamt * if the arena can be accessed from interrupt context.
862 1.1 yamt */
863 1.1 yamt
864 1.1 yamt vmem_addr_t
865 1.1 yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
866 1.1 yamt {
867 1.12 yamt const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
868 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
869 1.1 yamt
870 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
871 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
872 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
873 1.1 yamt
874 1.1 yamt KASSERT(size0 > 0);
875 1.1 yamt KASSERT(size > 0);
876 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
877 1.3 yamt if ((flags & VM_SLEEP) != 0) {
878 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
879 1.3 yamt }
880 1.1 yamt
881 1.5 yamt #if defined(QCACHE)
882 1.5 yamt if (size <= vm->vm_qcache_max) {
883 1.5 yamt int qidx = size >> vm->vm_quantum_shift;
884 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
885 1.5 yamt
886 1.5 yamt return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
887 1.5 yamt vmf_to_prf(flags));
888 1.5 yamt }
889 1.5 yamt #endif /* defined(QCACHE) */
890 1.5 yamt
891 1.10 yamt return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
892 1.10 yamt }
893 1.10 yamt
894 1.10 yamt vmem_addr_t
895 1.10 yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
896 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
897 1.10 yamt vm_flag_t flags)
898 1.10 yamt {
899 1.10 yamt struct vmem_freelist *list;
900 1.10 yamt struct vmem_freelist *first;
901 1.10 yamt struct vmem_freelist *end;
902 1.10 yamt bt_t *bt;
903 1.10 yamt bt_t *btnew;
904 1.10 yamt bt_t *btnew2;
905 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
906 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
907 1.10 yamt vmem_addr_t start;
908 1.10 yamt
909 1.10 yamt KASSERT(size0 > 0);
910 1.10 yamt KASSERT(size > 0);
911 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
912 1.10 yamt if ((flags & VM_SLEEP) != 0) {
913 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
914 1.10 yamt }
915 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
916 1.10 yamt KASSERT((align & (align - 1)) == 0);
917 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
918 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
919 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
920 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
921 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
922 1.10 yamt KASSERT(maxaddr == 0 || minaddr < maxaddr);
923 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
924 1.10 yamt
925 1.10 yamt if (align == 0) {
926 1.10 yamt align = vm->vm_quantum_mask + 1;
927 1.10 yamt }
928 1.1 yamt btnew = bt_alloc(vm, flags);
929 1.1 yamt if (btnew == NULL) {
930 1.1 yamt return VMEM_ADDR_NULL;
931 1.1 yamt }
932 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
933 1.10 yamt if (btnew2 == NULL) {
934 1.10 yamt bt_free(vm, btnew);
935 1.10 yamt return VMEM_ADDR_NULL;
936 1.10 yamt }
937 1.1 yamt
938 1.1 yamt retry_strat:
939 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
940 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
941 1.1 yamt retry:
942 1.1 yamt bt = NULL;
943 1.1 yamt VMEM_LOCK(vm);
944 1.2 yamt if (strat == VM_INSTANTFIT) {
945 1.2 yamt for (list = first; list < end; list++) {
946 1.2 yamt bt = LIST_FIRST(list);
947 1.2 yamt if (bt != NULL) {
948 1.10 yamt start = vmem_fit(bt, size, align, phase,
949 1.10 yamt nocross, minaddr, maxaddr);
950 1.10 yamt if (start != VMEM_ADDR_NULL) {
951 1.10 yamt goto gotit;
952 1.10 yamt }
953 1.2 yamt }
954 1.2 yamt }
955 1.2 yamt } else { /* VM_BESTFIT */
956 1.2 yamt for (list = first; list < end; list++) {
957 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
958 1.2 yamt if (bt->bt_size >= size) {
959 1.10 yamt start = vmem_fit(bt, size, align, phase,
960 1.10 yamt nocross, minaddr, maxaddr);
961 1.10 yamt if (start != VMEM_ADDR_NULL) {
962 1.10 yamt goto gotit;
963 1.10 yamt }
964 1.2 yamt }
965 1.1 yamt }
966 1.1 yamt }
967 1.1 yamt }
968 1.2 yamt VMEM_UNLOCK(vm);
969 1.1 yamt #if 1
970 1.2 yamt if (strat == VM_INSTANTFIT) {
971 1.2 yamt strat = VM_BESTFIT;
972 1.2 yamt goto retry_strat;
973 1.2 yamt }
974 1.1 yamt #endif
975 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
976 1.10 yamt nocross != 0 || minaddr != 0 || maxaddr != 0) {
977 1.10 yamt
978 1.10 yamt /*
979 1.10 yamt * XXX should try to import a region large enough to
980 1.10 yamt * satisfy restrictions?
981 1.10 yamt */
982 1.10 yamt
983 1.20 yamt goto fail;
984 1.10 yamt }
985 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
986 1.2 yamt goto retry;
987 1.1 yamt }
988 1.2 yamt /* XXX */
989 1.20 yamt fail:
990 1.20 yamt bt_free(vm, btnew);
991 1.20 yamt bt_free(vm, btnew2);
992 1.2 yamt return VMEM_ADDR_NULL;
993 1.2 yamt
994 1.2 yamt gotit:
995 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
996 1.1 yamt KASSERT(bt->bt_size >= size);
997 1.1 yamt bt_remfree(vm, bt);
998 1.10 yamt if (bt->bt_start != start) {
999 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
1000 1.10 yamt btnew2->bt_start = bt->bt_start;
1001 1.10 yamt btnew2->bt_size = start - bt->bt_start;
1002 1.10 yamt bt->bt_start = start;
1003 1.10 yamt bt->bt_size -= btnew2->bt_size;
1004 1.10 yamt bt_insfree(vm, btnew2);
1005 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1006 1.10 yamt btnew2 = NULL;
1007 1.10 yamt }
1008 1.10 yamt KASSERT(bt->bt_start == start);
1009 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1010 1.1 yamt /* split */
1011 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1012 1.1 yamt btnew->bt_start = bt->bt_start;
1013 1.1 yamt btnew->bt_size = size;
1014 1.1 yamt bt->bt_start = bt->bt_start + size;
1015 1.1 yamt bt->bt_size -= size;
1016 1.1 yamt bt_insfree(vm, bt);
1017 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1018 1.1 yamt bt_insbusy(vm, btnew);
1019 1.1 yamt VMEM_UNLOCK(vm);
1020 1.1 yamt } else {
1021 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1022 1.1 yamt bt_insbusy(vm, bt);
1023 1.1 yamt VMEM_UNLOCK(vm);
1024 1.1 yamt bt_free(vm, btnew);
1025 1.1 yamt btnew = bt;
1026 1.1 yamt }
1027 1.10 yamt if (btnew2 != NULL) {
1028 1.10 yamt bt_free(vm, btnew2);
1029 1.10 yamt }
1030 1.1 yamt KASSERT(btnew->bt_size >= size);
1031 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1032 1.1 yamt
1033 1.1 yamt return btnew->bt_start;
1034 1.1 yamt }
1035 1.1 yamt
1036 1.1 yamt /*
1037 1.1 yamt * vmem_free:
1038 1.1 yamt *
1039 1.1 yamt * => caller must ensure appropriate spl,
1040 1.1 yamt * if the arena can be accessed from interrupt context.
1041 1.1 yamt */
1042 1.1 yamt
1043 1.1 yamt void
1044 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1045 1.1 yamt {
1046 1.1 yamt
1047 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
1048 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
1049 1.1 yamt KASSERT(size > 0);
1050 1.1 yamt
1051 1.5 yamt #if defined(QCACHE)
1052 1.5 yamt if (size <= vm->vm_qcache_max) {
1053 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1054 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1055 1.5 yamt
1056 1.5 yamt return pool_cache_put(&qc->qc_cache, (void *)addr);
1057 1.5 yamt }
1058 1.5 yamt #endif /* defined(QCACHE) */
1059 1.5 yamt
1060 1.10 yamt vmem_xfree(vm, addr, size);
1061 1.10 yamt }
1062 1.10 yamt
1063 1.10 yamt void
1064 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1065 1.10 yamt {
1066 1.10 yamt bt_t *bt;
1067 1.10 yamt bt_t *t;
1068 1.10 yamt
1069 1.10 yamt VMEM_ASSERT_UNLOCKED(vm);
1070 1.10 yamt KASSERT(addr != VMEM_ADDR_NULL);
1071 1.10 yamt KASSERT(size > 0);
1072 1.10 yamt
1073 1.1 yamt VMEM_LOCK(vm);
1074 1.1 yamt
1075 1.1 yamt bt = bt_lookupbusy(vm, addr);
1076 1.1 yamt KASSERT(bt != NULL);
1077 1.1 yamt KASSERT(bt->bt_start == addr);
1078 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1079 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1080 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1081 1.1 yamt bt_rembusy(vm, bt);
1082 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1083 1.1 yamt
1084 1.1 yamt /* coalesce */
1085 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1086 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1087 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
1088 1.1 yamt bt_remfree(vm, t);
1089 1.1 yamt bt_remseg(vm, t);
1090 1.1 yamt bt->bt_size += t->bt_size;
1091 1.1 yamt bt_free(vm, t);
1092 1.1 yamt }
1093 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1094 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1095 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
1096 1.1 yamt bt_remfree(vm, t);
1097 1.1 yamt bt_remseg(vm, t);
1098 1.1 yamt bt->bt_size += t->bt_size;
1099 1.1 yamt bt->bt_start = t->bt_start;
1100 1.1 yamt bt_free(vm, t);
1101 1.1 yamt }
1102 1.1 yamt
1103 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1104 1.1 yamt KASSERT(t != NULL);
1105 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1106 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1107 1.1 yamt t->bt_size == bt->bt_size) {
1108 1.1 yamt vmem_addr_t spanaddr;
1109 1.1 yamt vmem_size_t spansize;
1110 1.1 yamt
1111 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1112 1.1 yamt spanaddr = bt->bt_start;
1113 1.1 yamt spansize = bt->bt_size;
1114 1.1 yamt bt_remseg(vm, bt);
1115 1.1 yamt bt_free(vm, bt);
1116 1.1 yamt bt_remseg(vm, t);
1117 1.1 yamt bt_free(vm, t);
1118 1.1 yamt VMEM_UNLOCK(vm);
1119 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1120 1.1 yamt } else {
1121 1.1 yamt bt_insfree(vm, bt);
1122 1.1 yamt VMEM_UNLOCK(vm);
1123 1.1 yamt }
1124 1.1 yamt }
1125 1.1 yamt
1126 1.1 yamt /*
1127 1.1 yamt * vmem_add:
1128 1.1 yamt *
1129 1.1 yamt * => caller must ensure appropriate spl,
1130 1.1 yamt * if the arena can be accessed from interrupt context.
1131 1.1 yamt */
1132 1.1 yamt
1133 1.1 yamt vmem_addr_t
1134 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1135 1.1 yamt {
1136 1.1 yamt
1137 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1138 1.1 yamt }
1139 1.1 yamt
1140 1.6 yamt /*
1141 1.6 yamt * vmem_reap: reap unused resources.
1142 1.6 yamt *
1143 1.26 thorpej * => return true if we successfully reaped something.
1144 1.6 yamt */
1145 1.6 yamt
1146 1.25 thorpej bool
1147 1.6 yamt vmem_reap(vmem_t *vm)
1148 1.6 yamt {
1149 1.26 thorpej bool didsomething = false;
1150 1.6 yamt
1151 1.6 yamt VMEM_ASSERT_UNLOCKED(vm);
1152 1.6 yamt
1153 1.6 yamt #if defined(QCACHE)
1154 1.6 yamt didsomething = qc_reap(vm);
1155 1.6 yamt #endif /* defined(QCACHE) */
1156 1.6 yamt return didsomething;
1157 1.6 yamt }
1158 1.6 yamt
1159 1.30 yamt /* ---- rehash */
1160 1.30 yamt
1161 1.30 yamt #if defined(_KERNEL)
1162 1.30 yamt static struct callout vmem_rehash_ch;
1163 1.30 yamt static int vmem_rehash_interval;
1164 1.30 yamt static struct workqueue *vmem_rehash_wq;
1165 1.30 yamt static struct work vmem_rehash_wk;
1166 1.30 yamt
1167 1.30 yamt static void
1168 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1169 1.30 yamt {
1170 1.30 yamt vmem_t *vm;
1171 1.30 yamt
1172 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1173 1.30 yamt mutex_enter(&vmem_list_lock);
1174 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1175 1.30 yamt size_t desired;
1176 1.30 yamt size_t current;
1177 1.30 yamt int s;
1178 1.30 yamt
1179 1.30 yamt s = splvm();
1180 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
1181 1.30 yamt splx(s);
1182 1.30 yamt continue;
1183 1.30 yamt }
1184 1.30 yamt desired = vm->vm_nbusytag;
1185 1.30 yamt current = vm->vm_hashsize;
1186 1.30 yamt VMEM_UNLOCK(vm);
1187 1.30 yamt splx(s);
1188 1.30 yamt
1189 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1190 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1191 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1192 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1193 1.30 yamt }
1194 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1195 1.30 yamt s = splvm();
1196 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1197 1.30 yamt splx(s);
1198 1.30 yamt }
1199 1.30 yamt }
1200 1.30 yamt mutex_exit(&vmem_list_lock);
1201 1.30 yamt
1202 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1203 1.30 yamt }
1204 1.30 yamt
1205 1.30 yamt static void
1206 1.30 yamt vmem_rehash_all_kick(void *dummy)
1207 1.30 yamt {
1208 1.30 yamt
1209 1.30 yamt workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk);
1210 1.30 yamt }
1211 1.30 yamt
1212 1.30 yamt void
1213 1.30 yamt vmem_rehash_start(void)
1214 1.30 yamt {
1215 1.30 yamt int error;
1216 1.30 yamt
1217 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1218 1.30 yamt vmem_rehash_all, NULL, PVM, IPL_SOFTCLOCK, 0);
1219 1.30 yamt if (error) {
1220 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1221 1.30 yamt }
1222 1.30 yamt callout_init(&vmem_rehash_ch);
1223 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1224 1.30 yamt
1225 1.30 yamt vmem_rehash_interval = hz * 10;
1226 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1227 1.30 yamt }
1228 1.30 yamt #endif /* defined(_KERNEL) */
1229 1.30 yamt
1230 1.1 yamt /* ---- debug */
1231 1.1 yamt
1232 1.1 yamt #if defined(VMEM_DEBUG)
1233 1.1 yamt
1234 1.1 yamt #if !defined(_KERNEL)
1235 1.1 yamt #include <stdio.h>
1236 1.1 yamt #endif /* !defined(_KERNEL) */
1237 1.1 yamt
1238 1.1 yamt void bt_dump(const bt_t *);
1239 1.1 yamt
1240 1.1 yamt void
1241 1.1 yamt bt_dump(const bt_t *bt)
1242 1.1 yamt {
1243 1.1 yamt
1244 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1245 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1246 1.1 yamt bt->bt_type);
1247 1.1 yamt }
1248 1.1 yamt
1249 1.1 yamt void
1250 1.1 yamt vmem_dump(const vmem_t *vm)
1251 1.1 yamt {
1252 1.1 yamt const bt_t *bt;
1253 1.1 yamt int i;
1254 1.1 yamt
1255 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
1256 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1257 1.1 yamt bt_dump(bt);
1258 1.1 yamt }
1259 1.1 yamt
1260 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1261 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1262 1.1 yamt
1263 1.1 yamt if (LIST_EMPTY(fl)) {
1264 1.1 yamt continue;
1265 1.1 yamt }
1266 1.1 yamt
1267 1.1 yamt printf("freelist[%d]\n", i);
1268 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1269 1.1 yamt bt_dump(bt);
1270 1.1 yamt if (bt->bt_size) {
1271 1.1 yamt }
1272 1.1 yamt }
1273 1.1 yamt }
1274 1.1 yamt }
1275 1.1 yamt
1276 1.1 yamt #if !defined(_KERNEL)
1277 1.1 yamt
1278 1.1 yamt int
1279 1.1 yamt main()
1280 1.1 yamt {
1281 1.1 yamt vmem_t *vm;
1282 1.1 yamt vmem_addr_t p;
1283 1.1 yamt struct reg {
1284 1.1 yamt vmem_addr_t p;
1285 1.1 yamt vmem_size_t sz;
1286 1.25 thorpej bool x;
1287 1.1 yamt } *reg = NULL;
1288 1.1 yamt int nreg = 0;
1289 1.1 yamt int nalloc = 0;
1290 1.1 yamt int nfree = 0;
1291 1.1 yamt vmem_size_t total = 0;
1292 1.1 yamt #if 1
1293 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1294 1.1 yamt #else
1295 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1296 1.1 yamt #endif
1297 1.1 yamt
1298 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1299 1.30 yamt NULL, NULL, NULL, 0, VM_SLEEP);
1300 1.1 yamt if (vm == NULL) {
1301 1.1 yamt printf("vmem_create\n");
1302 1.1 yamt exit(EXIT_FAILURE);
1303 1.1 yamt }
1304 1.1 yamt vmem_dump(vm);
1305 1.1 yamt
1306 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1307 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1308 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1309 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1310 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1311 1.1 yamt vmem_dump(vm);
1312 1.1 yamt for (;;) {
1313 1.1 yamt struct reg *r;
1314 1.10 yamt int t = rand() % 100;
1315 1.1 yamt
1316 1.10 yamt if (t > 45) {
1317 1.10 yamt /* alloc */
1318 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1319 1.25 thorpej bool x;
1320 1.10 yamt vmem_size_t align, phase, nocross;
1321 1.10 yamt vmem_addr_t minaddr, maxaddr;
1322 1.10 yamt
1323 1.10 yamt if (t > 70) {
1324 1.26 thorpej x = true;
1325 1.10 yamt /* XXX */
1326 1.10 yamt align = 1 << (rand() % 15);
1327 1.10 yamt phase = rand() % 65536;
1328 1.10 yamt nocross = 1 << (rand() % 15);
1329 1.10 yamt if (align <= phase) {
1330 1.10 yamt phase = 0;
1331 1.10 yamt }
1332 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1333 1.19 yamt nocross)) {
1334 1.10 yamt nocross = 0;
1335 1.10 yamt }
1336 1.10 yamt minaddr = rand() % 50000;
1337 1.10 yamt maxaddr = rand() % 70000;
1338 1.10 yamt if (minaddr > maxaddr) {
1339 1.10 yamt minaddr = 0;
1340 1.10 yamt maxaddr = 0;
1341 1.10 yamt }
1342 1.10 yamt printf("=== xalloc %" PRIu64
1343 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1344 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1345 1.10 yamt ", max=%" PRIu64 "\n",
1346 1.10 yamt (uint64_t)sz,
1347 1.10 yamt (uint64_t)align,
1348 1.10 yamt (uint64_t)phase,
1349 1.10 yamt (uint64_t)nocross,
1350 1.10 yamt (uint64_t)minaddr,
1351 1.10 yamt (uint64_t)maxaddr);
1352 1.10 yamt p = vmem_xalloc(vm, sz, align, phase, nocross,
1353 1.10 yamt minaddr, maxaddr, strat|VM_SLEEP);
1354 1.10 yamt } else {
1355 1.26 thorpej x = false;
1356 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1357 1.10 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1358 1.10 yamt }
1359 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1360 1.1 yamt vmem_dump(vm);
1361 1.1 yamt if (p == VMEM_ADDR_NULL) {
1362 1.10 yamt if (x) {
1363 1.10 yamt continue;
1364 1.10 yamt }
1365 1.1 yamt break;
1366 1.1 yamt }
1367 1.1 yamt nreg++;
1368 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1369 1.1 yamt r = ®[nreg - 1];
1370 1.1 yamt r->p = p;
1371 1.1 yamt r->sz = sz;
1372 1.10 yamt r->x = x;
1373 1.1 yamt total += sz;
1374 1.1 yamt nalloc++;
1375 1.1 yamt } else if (nreg != 0) {
1376 1.10 yamt /* free */
1377 1.1 yamt r = ®[rand() % nreg];
1378 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1379 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1380 1.10 yamt if (r->x) {
1381 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1382 1.10 yamt } else {
1383 1.10 yamt vmem_free(vm, r->p, r->sz);
1384 1.10 yamt }
1385 1.1 yamt total -= r->sz;
1386 1.1 yamt vmem_dump(vm);
1387 1.1 yamt *r = reg[nreg - 1];
1388 1.1 yamt nreg--;
1389 1.1 yamt nfree++;
1390 1.1 yamt }
1391 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1392 1.1 yamt }
1393 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1394 1.1 yamt (uint64_t)total, nalloc, nfree);
1395 1.1 yamt exit(EXIT_SUCCESS);
1396 1.1 yamt }
1397 1.1 yamt #endif /* !defined(_KERNEL) */
1398 1.1 yamt #endif /* defined(VMEM_DEBUG) */
1399