subr_vmem.c revision 1.32 1 1.32 rmind /* $NetBSD: subr_vmem.c,v 1.32 2007/07/12 20:39:56 rmind Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.18 yamt *
35 1.18 yamt * todo:
36 1.18 yamt * - decide how to import segments for vmem_xalloc.
37 1.18 yamt * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.32 rmind __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.32 2007/07/12 20:39:56 rmind Exp $");
42 1.1 yamt
43 1.1 yamt #define VMEM_DEBUG
44 1.5 yamt #if defined(_KERNEL)
45 1.5 yamt #define QCACHE
46 1.5 yamt #endif /* defined(_KERNEL) */
47 1.1 yamt
48 1.1 yamt #include <sys/param.h>
49 1.1 yamt #include <sys/hash.h>
50 1.1 yamt #include <sys/queue.h>
51 1.1 yamt
52 1.1 yamt #if defined(_KERNEL)
53 1.1 yamt #include <sys/systm.h>
54 1.30 yamt #include <sys/kernel.h> /* hz */
55 1.30 yamt #include <sys/callout.h>
56 1.1 yamt #include <sys/lock.h>
57 1.1 yamt #include <sys/malloc.h>
58 1.1 yamt #include <sys/once.h>
59 1.1 yamt #include <sys/pool.h>
60 1.3 yamt #include <sys/proc.h>
61 1.1 yamt #include <sys/vmem.h>
62 1.30 yamt #include <sys/workqueue.h>
63 1.1 yamt #else /* defined(_KERNEL) */
64 1.1 yamt #include "../sys/vmem.h"
65 1.1 yamt #endif /* defined(_KERNEL) */
66 1.1 yamt
67 1.1 yamt #if defined(_KERNEL)
68 1.31 ad #define LOCK_DECL(name) kmutex_t name
69 1.1 yamt #else /* defined(_KERNEL) */
70 1.1 yamt #include <errno.h>
71 1.1 yamt #include <assert.h>
72 1.1 yamt #include <stdlib.h>
73 1.1 yamt
74 1.1 yamt #define KASSERT(a) assert(a)
75 1.31 ad #define LOCK_DECL(name) /* nothing */
76 1.31 ad #define mutex_init(a, b, c) /* nothing */
77 1.31 ad #define mutex_destroy(a) /* nothing */
78 1.31 ad #define mutex_enter(a) /* nothing */
79 1.31 ad #define mutex_exit(a) /* nothing */
80 1.31 ad #define mutex_owned(a) /* nothing */
81 1.3 yamt #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
82 1.31 ad #define IPL_VM 0
83 1.1 yamt #endif /* defined(_KERNEL) */
84 1.1 yamt
85 1.1 yamt struct vmem;
86 1.1 yamt struct vmem_btag;
87 1.1 yamt
88 1.1 yamt #if defined(VMEM_DEBUG)
89 1.1 yamt void vmem_dump(const vmem_t *);
90 1.1 yamt #endif /* defined(VMEM_DEBUG) */
91 1.1 yamt
92 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
93 1.30 yamt
94 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
95 1.30 yamt #define VMEM_HASHSIZE_MAX 8192 /* XXX */
96 1.30 yamt #define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
97 1.1 yamt
98 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
99 1.1 yamt
100 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
101 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
102 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
103 1.1 yamt
104 1.5 yamt #if defined(QCACHE)
105 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
106 1.5 yamt
107 1.5 yamt #define QC_NAME_MAX 16
108 1.5 yamt
109 1.5 yamt struct qcache {
110 1.5 yamt struct pool qc_pool;
111 1.5 yamt struct pool_cache qc_cache;
112 1.5 yamt vmem_t *qc_vmem;
113 1.5 yamt char qc_name[QC_NAME_MAX];
114 1.5 yamt };
115 1.5 yamt typedef struct qcache qcache_t;
116 1.5 yamt #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
117 1.5 yamt #endif /* defined(QCACHE) */
118 1.5 yamt
119 1.1 yamt /* vmem arena */
120 1.1 yamt struct vmem {
121 1.31 ad LOCK_DECL(vm_lock);
122 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
123 1.1 yamt vm_flag_t);
124 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
125 1.1 yamt vmem_t *vm_source;
126 1.1 yamt struct vmem_seglist vm_seglist;
127 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
128 1.1 yamt size_t vm_hashsize;
129 1.1 yamt size_t vm_nbusytag;
130 1.1 yamt struct vmem_hashlist *vm_hashlist;
131 1.1 yamt size_t vm_quantum_mask;
132 1.1 yamt int vm_quantum_shift;
133 1.1 yamt const char *vm_name;
134 1.30 yamt LIST_ENTRY(vmem) vm_alllist;
135 1.5 yamt
136 1.5 yamt #if defined(QCACHE)
137 1.5 yamt /* quantum cache */
138 1.5 yamt size_t vm_qcache_max;
139 1.5 yamt struct pool_allocator vm_qcache_allocator;
140 1.22 yamt qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
141 1.22 yamt qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
142 1.5 yamt #endif /* defined(QCACHE) */
143 1.1 yamt };
144 1.1 yamt
145 1.31 ad #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
146 1.31 ad #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
147 1.31 ad #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
148 1.31 ad #ifdef notyet /* XXX needs vmlocking branch changes */
149 1.31 ad #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DRIVER, ipl)
150 1.31 ad #else
151 1.31 ad #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DRIVER, IPL_VM)
152 1.31 ad #endif
153 1.31 ad #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
154 1.31 ad #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
155 1.1 yamt
156 1.1 yamt /* boundary tag */
157 1.1 yamt struct vmem_btag {
158 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
159 1.1 yamt union {
160 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
161 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
162 1.1 yamt } bt_u;
163 1.1 yamt #define bt_hashlist bt_u.u_hashlist
164 1.1 yamt #define bt_freelist bt_u.u_freelist
165 1.1 yamt vmem_addr_t bt_start;
166 1.1 yamt vmem_size_t bt_size;
167 1.1 yamt int bt_type;
168 1.1 yamt };
169 1.1 yamt
170 1.1 yamt #define BT_TYPE_SPAN 1
171 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
172 1.1 yamt #define BT_TYPE_FREE 3
173 1.1 yamt #define BT_TYPE_BUSY 4
174 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
175 1.1 yamt
176 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
177 1.1 yamt
178 1.1 yamt typedef struct vmem_btag bt_t;
179 1.1 yamt
180 1.1 yamt /* ---- misc */
181 1.1 yamt
182 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
183 1.19 yamt (-(-(addr) & -(align)))
184 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
185 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
186 1.19 yamt
187 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
188 1.4 yamt
189 1.1 yamt static int
190 1.1 yamt calc_order(vmem_size_t size)
191 1.1 yamt {
192 1.4 yamt vmem_size_t target;
193 1.1 yamt int i;
194 1.1 yamt
195 1.1 yamt KASSERT(size != 0);
196 1.1 yamt
197 1.1 yamt i = 0;
198 1.4 yamt target = size >> 1;
199 1.4 yamt while (ORDER2SIZE(i) <= target) {
200 1.1 yamt i++;
201 1.1 yamt }
202 1.1 yamt
203 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
204 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
205 1.1 yamt
206 1.1 yamt return i;
207 1.1 yamt }
208 1.1 yamt
209 1.1 yamt #if defined(_KERNEL)
210 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
211 1.1 yamt #endif /* defined(_KERNEL) */
212 1.1 yamt
213 1.1 yamt static void *
214 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
215 1.1 yamt {
216 1.1 yamt
217 1.1 yamt #if defined(_KERNEL)
218 1.1 yamt return malloc(sz, M_VMEM,
219 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
220 1.1 yamt #else /* defined(_KERNEL) */
221 1.1 yamt return malloc(sz);
222 1.1 yamt #endif /* defined(_KERNEL) */
223 1.1 yamt }
224 1.1 yamt
225 1.1 yamt static void
226 1.1 yamt xfree(void *p)
227 1.1 yamt {
228 1.1 yamt
229 1.1 yamt #if defined(_KERNEL)
230 1.1 yamt return free(p, M_VMEM);
231 1.1 yamt #else /* defined(_KERNEL) */
232 1.1 yamt return free(p);
233 1.1 yamt #endif /* defined(_KERNEL) */
234 1.1 yamt }
235 1.1 yamt
236 1.1 yamt /* ---- boundary tag */
237 1.1 yamt
238 1.1 yamt #if defined(_KERNEL)
239 1.1 yamt static struct pool_cache bt_poolcache;
240 1.28 ad static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL, IPL_VM);
241 1.1 yamt #endif /* defined(_KERNEL) */
242 1.1 yamt
243 1.1 yamt static bt_t *
244 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
245 1.1 yamt {
246 1.1 yamt bt_t *bt;
247 1.1 yamt
248 1.1 yamt #if defined(_KERNEL)
249 1.21 yamt int s;
250 1.21 yamt
251 1.1 yamt /* XXX bootstrap */
252 1.21 yamt s = splvm();
253 1.1 yamt bt = pool_cache_get(&bt_poolcache,
254 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
255 1.21 yamt splx(s);
256 1.1 yamt #else /* defined(_KERNEL) */
257 1.1 yamt bt = malloc(sizeof *bt);
258 1.1 yamt #endif /* defined(_KERNEL) */
259 1.1 yamt
260 1.1 yamt return bt;
261 1.1 yamt }
262 1.1 yamt
263 1.1 yamt static void
264 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
265 1.1 yamt {
266 1.1 yamt
267 1.1 yamt #if defined(_KERNEL)
268 1.21 yamt int s;
269 1.21 yamt
270 1.1 yamt /* XXX bootstrap */
271 1.21 yamt s = splvm();
272 1.1 yamt pool_cache_put(&bt_poolcache, bt);
273 1.21 yamt splx(s);
274 1.1 yamt #else /* defined(_KERNEL) */
275 1.1 yamt free(bt);
276 1.1 yamt #endif /* defined(_KERNEL) */
277 1.1 yamt }
278 1.1 yamt
279 1.1 yamt /*
280 1.1 yamt * freelist[0] ... [1, 1]
281 1.1 yamt * freelist[1] ... [2, 3]
282 1.1 yamt * freelist[2] ... [4, 7]
283 1.1 yamt * freelist[3] ... [8, 15]
284 1.1 yamt * :
285 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
286 1.1 yamt * :
287 1.1 yamt */
288 1.1 yamt
289 1.1 yamt static struct vmem_freelist *
290 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
291 1.1 yamt {
292 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
293 1.1 yamt int idx;
294 1.1 yamt
295 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
296 1.1 yamt KASSERT(size != 0);
297 1.1 yamt
298 1.1 yamt idx = calc_order(qsize);
299 1.1 yamt KASSERT(idx >= 0);
300 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
301 1.1 yamt
302 1.1 yamt return &vm->vm_freelist[idx];
303 1.1 yamt }
304 1.1 yamt
305 1.1 yamt static struct vmem_freelist *
306 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
307 1.1 yamt {
308 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
309 1.1 yamt int idx;
310 1.1 yamt
311 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
312 1.1 yamt KASSERT(size != 0);
313 1.1 yamt
314 1.1 yamt idx = calc_order(qsize);
315 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
316 1.1 yamt idx++;
317 1.1 yamt /* check too large request? */
318 1.1 yamt }
319 1.1 yamt KASSERT(idx >= 0);
320 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
321 1.1 yamt
322 1.1 yamt return &vm->vm_freelist[idx];
323 1.1 yamt }
324 1.1 yamt
325 1.1 yamt /* ---- boundary tag hash */
326 1.1 yamt
327 1.1 yamt static struct vmem_hashlist *
328 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
329 1.1 yamt {
330 1.1 yamt struct vmem_hashlist *list;
331 1.1 yamt unsigned int hash;
332 1.1 yamt
333 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
334 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
335 1.1 yamt
336 1.1 yamt return list;
337 1.1 yamt }
338 1.1 yamt
339 1.1 yamt static bt_t *
340 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
341 1.1 yamt {
342 1.1 yamt struct vmem_hashlist *list;
343 1.1 yamt bt_t *bt;
344 1.1 yamt
345 1.1 yamt list = bt_hashhead(vm, addr);
346 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
347 1.1 yamt if (bt->bt_start == addr) {
348 1.1 yamt break;
349 1.1 yamt }
350 1.1 yamt }
351 1.1 yamt
352 1.1 yamt return bt;
353 1.1 yamt }
354 1.1 yamt
355 1.1 yamt static void
356 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
357 1.1 yamt {
358 1.1 yamt
359 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
360 1.1 yamt vm->vm_nbusytag--;
361 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
362 1.1 yamt }
363 1.1 yamt
364 1.1 yamt static void
365 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
366 1.1 yamt {
367 1.1 yamt struct vmem_hashlist *list;
368 1.1 yamt
369 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
370 1.1 yamt
371 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
372 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
373 1.1 yamt vm->vm_nbusytag++;
374 1.1 yamt }
375 1.1 yamt
376 1.1 yamt /* ---- boundary tag list */
377 1.1 yamt
378 1.1 yamt static void
379 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
380 1.1 yamt {
381 1.1 yamt
382 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
383 1.1 yamt }
384 1.1 yamt
385 1.1 yamt static void
386 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
387 1.1 yamt {
388 1.1 yamt
389 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
390 1.1 yamt }
391 1.1 yamt
392 1.1 yamt static void
393 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
394 1.1 yamt {
395 1.1 yamt
396 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
397 1.1 yamt }
398 1.1 yamt
399 1.1 yamt static void
400 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
401 1.1 yamt {
402 1.1 yamt
403 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
404 1.1 yamt
405 1.1 yamt LIST_REMOVE(bt, bt_freelist);
406 1.1 yamt }
407 1.1 yamt
408 1.1 yamt static void
409 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
410 1.1 yamt {
411 1.1 yamt struct vmem_freelist *list;
412 1.1 yamt
413 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
414 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
415 1.1 yamt }
416 1.1 yamt
417 1.1 yamt /* ---- vmem internal functions */
418 1.1 yamt
419 1.30 yamt #if defined(_KERNEL)
420 1.30 yamt static kmutex_t vmem_list_lock;
421 1.30 yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
422 1.30 yamt #endif /* defined(_KERNEL) */
423 1.30 yamt
424 1.5 yamt #if defined(QCACHE)
425 1.5 yamt static inline vm_flag_t
426 1.5 yamt prf_to_vmf(int prflags)
427 1.5 yamt {
428 1.5 yamt vm_flag_t vmflags;
429 1.5 yamt
430 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
431 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
432 1.5 yamt vmflags = VM_SLEEP;
433 1.5 yamt } else {
434 1.5 yamt vmflags = VM_NOSLEEP;
435 1.5 yamt }
436 1.5 yamt return vmflags;
437 1.5 yamt }
438 1.5 yamt
439 1.5 yamt static inline int
440 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
441 1.5 yamt {
442 1.5 yamt int prflags;
443 1.5 yamt
444 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
445 1.5 yamt prflags = PR_WAITOK;
446 1.7 yamt } else {
447 1.5 yamt prflags = PR_NOWAIT;
448 1.5 yamt }
449 1.5 yamt return prflags;
450 1.5 yamt }
451 1.5 yamt
452 1.5 yamt static size_t
453 1.5 yamt qc_poolpage_size(size_t qcache_max)
454 1.5 yamt {
455 1.5 yamt int i;
456 1.5 yamt
457 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
458 1.5 yamt /* nothing */
459 1.5 yamt }
460 1.5 yamt return ORDER2SIZE(i);
461 1.5 yamt }
462 1.5 yamt
463 1.5 yamt static void *
464 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
465 1.5 yamt {
466 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
467 1.5 yamt vmem_t *vm = qc->qc_vmem;
468 1.5 yamt
469 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
470 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
471 1.5 yamt }
472 1.5 yamt
473 1.5 yamt static void
474 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
475 1.5 yamt {
476 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
477 1.5 yamt vmem_t *vm = qc->qc_vmem;
478 1.5 yamt
479 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
480 1.5 yamt }
481 1.5 yamt
482 1.5 yamt static void
483 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
484 1.5 yamt {
485 1.22 yamt qcache_t *prevqc;
486 1.5 yamt struct pool_allocator *pa;
487 1.5 yamt int qcache_idx_max;
488 1.5 yamt int i;
489 1.5 yamt
490 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
491 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
492 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
493 1.5 yamt }
494 1.5 yamt vm->vm_qcache_max = qcache_max;
495 1.5 yamt pa = &vm->vm_qcache_allocator;
496 1.5 yamt memset(pa, 0, sizeof(*pa));
497 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
498 1.5 yamt pa->pa_free = qc_poolpage_free;
499 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
500 1.5 yamt
501 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
502 1.22 yamt prevqc = NULL;
503 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
504 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
505 1.5 yamt size_t size = i << vm->vm_quantum_shift;
506 1.5 yamt
507 1.5 yamt qc->qc_vmem = vm;
508 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
509 1.5 yamt vm->vm_name, size);
510 1.15 yamt pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
511 1.28 ad 0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa,
512 1.31 ad ipl);
513 1.22 yamt if (prevqc != NULL &&
514 1.22 yamt qc->qc_pool.pr_itemsperpage ==
515 1.22 yamt prevqc->qc_pool.pr_itemsperpage) {
516 1.22 yamt pool_destroy(&qc->qc_pool);
517 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
518 1.27 ad continue;
519 1.22 yamt }
520 1.5 yamt pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
521 1.22 yamt vm->vm_qcache[i - 1] = qc;
522 1.22 yamt prevqc = qc;
523 1.5 yamt }
524 1.5 yamt }
525 1.6 yamt
526 1.23 yamt static void
527 1.23 yamt qc_destroy(vmem_t *vm)
528 1.23 yamt {
529 1.23 yamt const qcache_t *prevqc;
530 1.23 yamt int i;
531 1.23 yamt int qcache_idx_max;
532 1.23 yamt
533 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
534 1.23 yamt prevqc = NULL;
535 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
536 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
537 1.23 yamt
538 1.23 yamt if (prevqc == qc) {
539 1.23 yamt continue;
540 1.23 yamt }
541 1.23 yamt pool_cache_destroy(&qc->qc_cache);
542 1.23 yamt pool_destroy(&qc->qc_pool);
543 1.23 yamt prevqc = qc;
544 1.23 yamt }
545 1.23 yamt }
546 1.23 yamt
547 1.25 thorpej static bool
548 1.6 yamt qc_reap(vmem_t *vm)
549 1.6 yamt {
550 1.22 yamt const qcache_t *prevqc;
551 1.6 yamt int i;
552 1.6 yamt int qcache_idx_max;
553 1.26 thorpej bool didsomething = false;
554 1.6 yamt
555 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
556 1.22 yamt prevqc = NULL;
557 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
558 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
559 1.6 yamt
560 1.22 yamt if (prevqc == qc) {
561 1.22 yamt continue;
562 1.22 yamt }
563 1.6 yamt if (pool_reclaim(&qc->qc_pool) != 0) {
564 1.26 thorpej didsomething = true;
565 1.6 yamt }
566 1.22 yamt prevqc = qc;
567 1.6 yamt }
568 1.6 yamt
569 1.6 yamt return didsomething;
570 1.6 yamt }
571 1.5 yamt #endif /* defined(QCACHE) */
572 1.5 yamt
573 1.1 yamt #if defined(_KERNEL)
574 1.1 yamt static int
575 1.1 yamt vmem_init(void)
576 1.1 yamt {
577 1.1 yamt
578 1.30 yamt mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
579 1.1 yamt pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
580 1.1 yamt return 0;
581 1.1 yamt }
582 1.1 yamt #endif /* defined(_KERNEL) */
583 1.1 yamt
584 1.1 yamt static vmem_addr_t
585 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
586 1.1 yamt int spanbttype)
587 1.1 yamt {
588 1.1 yamt bt_t *btspan;
589 1.1 yamt bt_t *btfree;
590 1.1 yamt
591 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
592 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
593 1.1 yamt
594 1.1 yamt btspan = bt_alloc(vm, flags);
595 1.1 yamt if (btspan == NULL) {
596 1.1 yamt return VMEM_ADDR_NULL;
597 1.1 yamt }
598 1.1 yamt btfree = bt_alloc(vm, flags);
599 1.1 yamt if (btfree == NULL) {
600 1.1 yamt bt_free(vm, btspan);
601 1.1 yamt return VMEM_ADDR_NULL;
602 1.1 yamt }
603 1.1 yamt
604 1.1 yamt btspan->bt_type = spanbttype;
605 1.1 yamt btspan->bt_start = addr;
606 1.1 yamt btspan->bt_size = size;
607 1.1 yamt
608 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
609 1.1 yamt btfree->bt_start = addr;
610 1.1 yamt btfree->bt_size = size;
611 1.1 yamt
612 1.1 yamt VMEM_LOCK(vm);
613 1.1 yamt bt_insseg_tail(vm, btspan);
614 1.1 yamt bt_insseg(vm, btfree, btspan);
615 1.1 yamt bt_insfree(vm, btfree);
616 1.1 yamt VMEM_UNLOCK(vm);
617 1.1 yamt
618 1.1 yamt return addr;
619 1.1 yamt }
620 1.1 yamt
621 1.30 yamt static void
622 1.30 yamt vmem_destroy1(vmem_t *vm)
623 1.30 yamt {
624 1.30 yamt
625 1.30 yamt #if defined(QCACHE)
626 1.30 yamt qc_destroy(vm);
627 1.30 yamt #endif /* defined(QCACHE) */
628 1.30 yamt if (vm->vm_hashlist != NULL) {
629 1.30 yamt int i;
630 1.30 yamt
631 1.30 yamt for (i = 0; i < vm->vm_hashsize; i++) {
632 1.30 yamt bt_t *bt;
633 1.30 yamt
634 1.30 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
635 1.30 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
636 1.30 yamt bt_free(vm, bt);
637 1.30 yamt }
638 1.30 yamt }
639 1.30 yamt xfree(vm->vm_hashlist);
640 1.30 yamt }
641 1.31 ad VMEM_LOCK_DESTROY(vm);
642 1.30 yamt xfree(vm);
643 1.30 yamt }
644 1.30 yamt
645 1.1 yamt static int
646 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
647 1.1 yamt {
648 1.1 yamt vmem_addr_t addr;
649 1.1 yamt
650 1.1 yamt if (vm->vm_allocfn == NULL) {
651 1.1 yamt return EINVAL;
652 1.1 yamt }
653 1.1 yamt
654 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
655 1.1 yamt if (addr == VMEM_ADDR_NULL) {
656 1.1 yamt return ENOMEM;
657 1.1 yamt }
658 1.1 yamt
659 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
660 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
661 1.1 yamt return ENOMEM;
662 1.1 yamt }
663 1.1 yamt
664 1.1 yamt return 0;
665 1.1 yamt }
666 1.1 yamt
667 1.1 yamt static int
668 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
669 1.1 yamt {
670 1.1 yamt bt_t *bt;
671 1.1 yamt int i;
672 1.1 yamt struct vmem_hashlist *newhashlist;
673 1.1 yamt struct vmem_hashlist *oldhashlist;
674 1.1 yamt size_t oldhashsize;
675 1.1 yamt
676 1.1 yamt KASSERT(newhashsize > 0);
677 1.1 yamt
678 1.1 yamt newhashlist =
679 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
680 1.1 yamt if (newhashlist == NULL) {
681 1.1 yamt return ENOMEM;
682 1.1 yamt }
683 1.1 yamt for (i = 0; i < newhashsize; i++) {
684 1.1 yamt LIST_INIT(&newhashlist[i]);
685 1.1 yamt }
686 1.1 yamt
687 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
688 1.30 yamt xfree(newhashlist);
689 1.30 yamt return EBUSY;
690 1.30 yamt }
691 1.1 yamt oldhashlist = vm->vm_hashlist;
692 1.1 yamt oldhashsize = vm->vm_hashsize;
693 1.1 yamt vm->vm_hashlist = newhashlist;
694 1.1 yamt vm->vm_hashsize = newhashsize;
695 1.1 yamt if (oldhashlist == NULL) {
696 1.1 yamt VMEM_UNLOCK(vm);
697 1.1 yamt return 0;
698 1.1 yamt }
699 1.1 yamt for (i = 0; i < oldhashsize; i++) {
700 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
701 1.1 yamt bt_rembusy(vm, bt); /* XXX */
702 1.1 yamt bt_insbusy(vm, bt);
703 1.1 yamt }
704 1.1 yamt }
705 1.1 yamt VMEM_UNLOCK(vm);
706 1.1 yamt
707 1.1 yamt xfree(oldhashlist);
708 1.1 yamt
709 1.1 yamt return 0;
710 1.1 yamt }
711 1.1 yamt
712 1.10 yamt /*
713 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
714 1.10 yamt */
715 1.10 yamt
716 1.10 yamt static vmem_addr_t
717 1.10 yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
718 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
719 1.10 yamt {
720 1.10 yamt vmem_addr_t start;
721 1.10 yamt vmem_addr_t end;
722 1.10 yamt
723 1.10 yamt KASSERT(bt->bt_size >= size);
724 1.10 yamt
725 1.10 yamt /*
726 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
727 1.10 yamt * unsigned integer of the same size.
728 1.10 yamt */
729 1.10 yamt
730 1.10 yamt start = bt->bt_start;
731 1.10 yamt if (start < minaddr) {
732 1.10 yamt start = minaddr;
733 1.10 yamt }
734 1.10 yamt end = BT_END(bt);
735 1.10 yamt if (end > maxaddr - 1) {
736 1.10 yamt end = maxaddr - 1;
737 1.10 yamt }
738 1.10 yamt if (start >= end) {
739 1.10 yamt return VMEM_ADDR_NULL;
740 1.10 yamt }
741 1.19 yamt
742 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
743 1.10 yamt if (start < bt->bt_start) {
744 1.10 yamt start += align;
745 1.10 yamt }
746 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
747 1.10 yamt KASSERT(align < nocross);
748 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
749 1.10 yamt }
750 1.10 yamt if (start < end && end - start >= size) {
751 1.10 yamt KASSERT((start & (align - 1)) == phase);
752 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
753 1.10 yamt KASSERT(minaddr <= start);
754 1.10 yamt KASSERT(maxaddr == 0 || start + size <= maxaddr);
755 1.10 yamt KASSERT(bt->bt_start <= start);
756 1.10 yamt KASSERT(start + size <= BT_END(bt));
757 1.10 yamt return start;
758 1.10 yamt }
759 1.10 yamt return VMEM_ADDR_NULL;
760 1.10 yamt }
761 1.10 yamt
762 1.1 yamt /* ---- vmem API */
763 1.1 yamt
764 1.1 yamt /*
765 1.1 yamt * vmem_create: create an arena.
766 1.1 yamt *
767 1.1 yamt * => must not be called from interrupt context.
768 1.1 yamt */
769 1.1 yamt
770 1.1 yamt vmem_t *
771 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
772 1.1 yamt vmem_size_t quantum,
773 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
774 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
775 1.31 ad vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
776 1.31 ad int ipl)
777 1.1 yamt {
778 1.1 yamt vmem_t *vm;
779 1.1 yamt int i;
780 1.1 yamt #if defined(_KERNEL)
781 1.1 yamt static ONCE_DECL(control);
782 1.1 yamt #endif /* defined(_KERNEL) */
783 1.1 yamt
784 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
785 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
786 1.1 yamt
787 1.1 yamt #if defined(_KERNEL)
788 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
789 1.1 yamt return NULL;
790 1.1 yamt }
791 1.1 yamt #endif /* defined(_KERNEL) */
792 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
793 1.1 yamt if (vm == NULL) {
794 1.1 yamt return NULL;
795 1.1 yamt }
796 1.1 yamt
797 1.31 ad VMEM_LOCK_INIT(vm, ipl);
798 1.1 yamt vm->vm_name = name;
799 1.1 yamt vm->vm_quantum_mask = quantum - 1;
800 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
801 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
802 1.1 yamt vm->vm_allocfn = allocfn;
803 1.1 yamt vm->vm_freefn = freefn;
804 1.1 yamt vm->vm_source = source;
805 1.1 yamt vm->vm_nbusytag = 0;
806 1.5 yamt #if defined(QCACHE)
807 1.31 ad qc_init(vm, qcache_max, ipl);
808 1.5 yamt #endif /* defined(QCACHE) */
809 1.1 yamt
810 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
811 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
812 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
813 1.1 yamt }
814 1.1 yamt vm->vm_hashlist = NULL;
815 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
816 1.30 yamt vmem_destroy1(vm);
817 1.1 yamt return NULL;
818 1.1 yamt }
819 1.1 yamt
820 1.1 yamt if (size != 0) {
821 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
822 1.30 yamt vmem_destroy1(vm);
823 1.1 yamt return NULL;
824 1.1 yamt }
825 1.1 yamt }
826 1.1 yamt
827 1.30 yamt #if defined(_KERNEL)
828 1.30 yamt mutex_enter(&vmem_list_lock);
829 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
830 1.30 yamt mutex_exit(&vmem_list_lock);
831 1.30 yamt #endif /* defined(_KERNEL) */
832 1.30 yamt
833 1.1 yamt return vm;
834 1.1 yamt }
835 1.1 yamt
836 1.1 yamt void
837 1.1 yamt vmem_destroy(vmem_t *vm)
838 1.1 yamt {
839 1.1 yamt
840 1.30 yamt #if defined(_KERNEL)
841 1.30 yamt mutex_enter(&vmem_list_lock);
842 1.30 yamt LIST_REMOVE(vm, vm_alllist);
843 1.30 yamt mutex_exit(&vmem_list_lock);
844 1.30 yamt #endif /* defined(_KERNEL) */
845 1.1 yamt
846 1.30 yamt vmem_destroy1(vm);
847 1.1 yamt }
848 1.1 yamt
849 1.1 yamt vmem_size_t
850 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
851 1.1 yamt {
852 1.1 yamt
853 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
854 1.1 yamt }
855 1.1 yamt
856 1.1 yamt /*
857 1.1 yamt * vmem_alloc:
858 1.1 yamt *
859 1.1 yamt * => caller must ensure appropriate spl,
860 1.1 yamt * if the arena can be accessed from interrupt context.
861 1.1 yamt */
862 1.1 yamt
863 1.1 yamt vmem_addr_t
864 1.1 yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
865 1.1 yamt {
866 1.12 yamt const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
867 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
868 1.1 yamt
869 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
870 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
871 1.1 yamt
872 1.1 yamt KASSERT(size0 > 0);
873 1.1 yamt KASSERT(size > 0);
874 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
875 1.3 yamt if ((flags & VM_SLEEP) != 0) {
876 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
877 1.3 yamt }
878 1.1 yamt
879 1.5 yamt #if defined(QCACHE)
880 1.5 yamt if (size <= vm->vm_qcache_max) {
881 1.5 yamt int qidx = size >> vm->vm_quantum_shift;
882 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
883 1.5 yamt
884 1.5 yamt return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
885 1.5 yamt vmf_to_prf(flags));
886 1.5 yamt }
887 1.5 yamt #endif /* defined(QCACHE) */
888 1.5 yamt
889 1.10 yamt return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
890 1.10 yamt }
891 1.10 yamt
892 1.10 yamt vmem_addr_t
893 1.10 yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
894 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
895 1.10 yamt vm_flag_t flags)
896 1.10 yamt {
897 1.10 yamt struct vmem_freelist *list;
898 1.10 yamt struct vmem_freelist *first;
899 1.10 yamt struct vmem_freelist *end;
900 1.10 yamt bt_t *bt;
901 1.10 yamt bt_t *btnew;
902 1.10 yamt bt_t *btnew2;
903 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
904 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
905 1.10 yamt vmem_addr_t start;
906 1.10 yamt
907 1.10 yamt KASSERT(size0 > 0);
908 1.10 yamt KASSERT(size > 0);
909 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
910 1.10 yamt if ((flags & VM_SLEEP) != 0) {
911 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
912 1.10 yamt }
913 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
914 1.10 yamt KASSERT((align & (align - 1)) == 0);
915 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
916 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
917 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
918 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
919 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
920 1.10 yamt KASSERT(maxaddr == 0 || minaddr < maxaddr);
921 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
922 1.10 yamt
923 1.10 yamt if (align == 0) {
924 1.10 yamt align = vm->vm_quantum_mask + 1;
925 1.10 yamt }
926 1.1 yamt btnew = bt_alloc(vm, flags);
927 1.1 yamt if (btnew == NULL) {
928 1.1 yamt return VMEM_ADDR_NULL;
929 1.1 yamt }
930 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
931 1.10 yamt if (btnew2 == NULL) {
932 1.10 yamt bt_free(vm, btnew);
933 1.10 yamt return VMEM_ADDR_NULL;
934 1.10 yamt }
935 1.1 yamt
936 1.1 yamt retry_strat:
937 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
938 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
939 1.1 yamt retry:
940 1.1 yamt bt = NULL;
941 1.1 yamt VMEM_LOCK(vm);
942 1.2 yamt if (strat == VM_INSTANTFIT) {
943 1.2 yamt for (list = first; list < end; list++) {
944 1.2 yamt bt = LIST_FIRST(list);
945 1.2 yamt if (bt != NULL) {
946 1.10 yamt start = vmem_fit(bt, size, align, phase,
947 1.10 yamt nocross, minaddr, maxaddr);
948 1.10 yamt if (start != VMEM_ADDR_NULL) {
949 1.10 yamt goto gotit;
950 1.10 yamt }
951 1.2 yamt }
952 1.2 yamt }
953 1.2 yamt } else { /* VM_BESTFIT */
954 1.2 yamt for (list = first; list < end; list++) {
955 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
956 1.2 yamt if (bt->bt_size >= size) {
957 1.10 yamt start = vmem_fit(bt, size, align, phase,
958 1.10 yamt nocross, minaddr, maxaddr);
959 1.10 yamt if (start != VMEM_ADDR_NULL) {
960 1.10 yamt goto gotit;
961 1.10 yamt }
962 1.2 yamt }
963 1.1 yamt }
964 1.1 yamt }
965 1.1 yamt }
966 1.2 yamt VMEM_UNLOCK(vm);
967 1.1 yamt #if 1
968 1.2 yamt if (strat == VM_INSTANTFIT) {
969 1.2 yamt strat = VM_BESTFIT;
970 1.2 yamt goto retry_strat;
971 1.2 yamt }
972 1.1 yamt #endif
973 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
974 1.10 yamt nocross != 0 || minaddr != 0 || maxaddr != 0) {
975 1.10 yamt
976 1.10 yamt /*
977 1.10 yamt * XXX should try to import a region large enough to
978 1.10 yamt * satisfy restrictions?
979 1.10 yamt */
980 1.10 yamt
981 1.20 yamt goto fail;
982 1.10 yamt }
983 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
984 1.2 yamt goto retry;
985 1.1 yamt }
986 1.2 yamt /* XXX */
987 1.20 yamt fail:
988 1.20 yamt bt_free(vm, btnew);
989 1.20 yamt bt_free(vm, btnew2);
990 1.2 yamt return VMEM_ADDR_NULL;
991 1.2 yamt
992 1.2 yamt gotit:
993 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
994 1.1 yamt KASSERT(bt->bt_size >= size);
995 1.1 yamt bt_remfree(vm, bt);
996 1.10 yamt if (bt->bt_start != start) {
997 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
998 1.10 yamt btnew2->bt_start = bt->bt_start;
999 1.10 yamt btnew2->bt_size = start - bt->bt_start;
1000 1.10 yamt bt->bt_start = start;
1001 1.10 yamt bt->bt_size -= btnew2->bt_size;
1002 1.10 yamt bt_insfree(vm, btnew2);
1003 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1004 1.10 yamt btnew2 = NULL;
1005 1.10 yamt }
1006 1.10 yamt KASSERT(bt->bt_start == start);
1007 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1008 1.1 yamt /* split */
1009 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1010 1.1 yamt btnew->bt_start = bt->bt_start;
1011 1.1 yamt btnew->bt_size = size;
1012 1.1 yamt bt->bt_start = bt->bt_start + size;
1013 1.1 yamt bt->bt_size -= size;
1014 1.1 yamt bt_insfree(vm, bt);
1015 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1016 1.1 yamt bt_insbusy(vm, btnew);
1017 1.1 yamt VMEM_UNLOCK(vm);
1018 1.1 yamt } else {
1019 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1020 1.1 yamt bt_insbusy(vm, bt);
1021 1.1 yamt VMEM_UNLOCK(vm);
1022 1.1 yamt bt_free(vm, btnew);
1023 1.1 yamt btnew = bt;
1024 1.1 yamt }
1025 1.10 yamt if (btnew2 != NULL) {
1026 1.10 yamt bt_free(vm, btnew2);
1027 1.10 yamt }
1028 1.1 yamt KASSERT(btnew->bt_size >= size);
1029 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1030 1.1 yamt
1031 1.1 yamt return btnew->bt_start;
1032 1.1 yamt }
1033 1.1 yamt
1034 1.1 yamt /*
1035 1.1 yamt * vmem_free:
1036 1.1 yamt *
1037 1.1 yamt * => caller must ensure appropriate spl,
1038 1.1 yamt * if the arena can be accessed from interrupt context.
1039 1.1 yamt */
1040 1.1 yamt
1041 1.1 yamt void
1042 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1043 1.1 yamt {
1044 1.1 yamt
1045 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
1046 1.1 yamt KASSERT(size > 0);
1047 1.1 yamt
1048 1.5 yamt #if defined(QCACHE)
1049 1.5 yamt if (size <= vm->vm_qcache_max) {
1050 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1051 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1052 1.5 yamt
1053 1.5 yamt return pool_cache_put(&qc->qc_cache, (void *)addr);
1054 1.5 yamt }
1055 1.5 yamt #endif /* defined(QCACHE) */
1056 1.5 yamt
1057 1.10 yamt vmem_xfree(vm, addr, size);
1058 1.10 yamt }
1059 1.10 yamt
1060 1.10 yamt void
1061 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1062 1.10 yamt {
1063 1.10 yamt bt_t *bt;
1064 1.10 yamt bt_t *t;
1065 1.10 yamt
1066 1.10 yamt KASSERT(addr != VMEM_ADDR_NULL);
1067 1.10 yamt KASSERT(size > 0);
1068 1.10 yamt
1069 1.1 yamt VMEM_LOCK(vm);
1070 1.1 yamt
1071 1.1 yamt bt = bt_lookupbusy(vm, addr);
1072 1.1 yamt KASSERT(bt != NULL);
1073 1.1 yamt KASSERT(bt->bt_start == addr);
1074 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1075 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1076 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1077 1.1 yamt bt_rembusy(vm, bt);
1078 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1079 1.1 yamt
1080 1.1 yamt /* coalesce */
1081 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1082 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1083 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
1084 1.1 yamt bt_remfree(vm, t);
1085 1.1 yamt bt_remseg(vm, t);
1086 1.1 yamt bt->bt_size += t->bt_size;
1087 1.1 yamt bt_free(vm, t);
1088 1.1 yamt }
1089 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1090 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1091 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
1092 1.1 yamt bt_remfree(vm, t);
1093 1.1 yamt bt_remseg(vm, t);
1094 1.1 yamt bt->bt_size += t->bt_size;
1095 1.1 yamt bt->bt_start = t->bt_start;
1096 1.1 yamt bt_free(vm, t);
1097 1.1 yamt }
1098 1.1 yamt
1099 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1100 1.1 yamt KASSERT(t != NULL);
1101 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1102 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1103 1.1 yamt t->bt_size == bt->bt_size) {
1104 1.1 yamt vmem_addr_t spanaddr;
1105 1.1 yamt vmem_size_t spansize;
1106 1.1 yamt
1107 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1108 1.1 yamt spanaddr = bt->bt_start;
1109 1.1 yamt spansize = bt->bt_size;
1110 1.1 yamt bt_remseg(vm, bt);
1111 1.1 yamt bt_free(vm, bt);
1112 1.1 yamt bt_remseg(vm, t);
1113 1.1 yamt bt_free(vm, t);
1114 1.1 yamt VMEM_UNLOCK(vm);
1115 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1116 1.1 yamt } else {
1117 1.1 yamt bt_insfree(vm, bt);
1118 1.1 yamt VMEM_UNLOCK(vm);
1119 1.1 yamt }
1120 1.1 yamt }
1121 1.1 yamt
1122 1.1 yamt /*
1123 1.1 yamt * vmem_add:
1124 1.1 yamt *
1125 1.1 yamt * => caller must ensure appropriate spl,
1126 1.1 yamt * if the arena can be accessed from interrupt context.
1127 1.1 yamt */
1128 1.1 yamt
1129 1.1 yamt vmem_addr_t
1130 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1131 1.1 yamt {
1132 1.1 yamt
1133 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1134 1.1 yamt }
1135 1.1 yamt
1136 1.6 yamt /*
1137 1.6 yamt * vmem_reap: reap unused resources.
1138 1.6 yamt *
1139 1.26 thorpej * => return true if we successfully reaped something.
1140 1.6 yamt */
1141 1.6 yamt
1142 1.25 thorpej bool
1143 1.6 yamt vmem_reap(vmem_t *vm)
1144 1.6 yamt {
1145 1.26 thorpej bool didsomething = false;
1146 1.6 yamt
1147 1.6 yamt #if defined(QCACHE)
1148 1.6 yamt didsomething = qc_reap(vm);
1149 1.6 yamt #endif /* defined(QCACHE) */
1150 1.6 yamt return didsomething;
1151 1.6 yamt }
1152 1.6 yamt
1153 1.30 yamt /* ---- rehash */
1154 1.30 yamt
1155 1.30 yamt #if defined(_KERNEL)
1156 1.30 yamt static struct callout vmem_rehash_ch;
1157 1.30 yamt static int vmem_rehash_interval;
1158 1.30 yamt static struct workqueue *vmem_rehash_wq;
1159 1.30 yamt static struct work vmem_rehash_wk;
1160 1.30 yamt
1161 1.30 yamt static void
1162 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1163 1.30 yamt {
1164 1.30 yamt vmem_t *vm;
1165 1.30 yamt
1166 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1167 1.30 yamt mutex_enter(&vmem_list_lock);
1168 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1169 1.30 yamt size_t desired;
1170 1.30 yamt size_t current;
1171 1.30 yamt int s;
1172 1.30 yamt
1173 1.30 yamt s = splvm();
1174 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
1175 1.30 yamt splx(s);
1176 1.30 yamt continue;
1177 1.30 yamt }
1178 1.30 yamt desired = vm->vm_nbusytag;
1179 1.30 yamt current = vm->vm_hashsize;
1180 1.30 yamt VMEM_UNLOCK(vm);
1181 1.30 yamt splx(s);
1182 1.30 yamt
1183 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1184 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1185 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1186 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1187 1.30 yamt }
1188 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1189 1.30 yamt s = splvm();
1190 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1191 1.30 yamt splx(s);
1192 1.30 yamt }
1193 1.30 yamt }
1194 1.30 yamt mutex_exit(&vmem_list_lock);
1195 1.30 yamt
1196 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1197 1.30 yamt }
1198 1.30 yamt
1199 1.30 yamt static void
1200 1.30 yamt vmem_rehash_all_kick(void *dummy)
1201 1.30 yamt {
1202 1.30 yamt
1203 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1204 1.30 yamt }
1205 1.30 yamt
1206 1.30 yamt void
1207 1.30 yamt vmem_rehash_start(void)
1208 1.30 yamt {
1209 1.30 yamt int error;
1210 1.30 yamt
1211 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1212 1.30 yamt vmem_rehash_all, NULL, PVM, IPL_SOFTCLOCK, 0);
1213 1.30 yamt if (error) {
1214 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1215 1.30 yamt }
1216 1.31 ad callout_init(&vmem_rehash_ch, 0);
1217 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1218 1.30 yamt
1219 1.30 yamt vmem_rehash_interval = hz * 10;
1220 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1221 1.30 yamt }
1222 1.30 yamt #endif /* defined(_KERNEL) */
1223 1.30 yamt
1224 1.1 yamt /* ---- debug */
1225 1.1 yamt
1226 1.1 yamt #if defined(VMEM_DEBUG)
1227 1.1 yamt
1228 1.1 yamt #if !defined(_KERNEL)
1229 1.1 yamt #include <stdio.h>
1230 1.1 yamt #endif /* !defined(_KERNEL) */
1231 1.1 yamt
1232 1.1 yamt void bt_dump(const bt_t *);
1233 1.1 yamt
1234 1.1 yamt void
1235 1.1 yamt bt_dump(const bt_t *bt)
1236 1.1 yamt {
1237 1.1 yamt
1238 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1239 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1240 1.1 yamt bt->bt_type);
1241 1.1 yamt }
1242 1.1 yamt
1243 1.1 yamt void
1244 1.1 yamt vmem_dump(const vmem_t *vm)
1245 1.1 yamt {
1246 1.1 yamt const bt_t *bt;
1247 1.1 yamt int i;
1248 1.1 yamt
1249 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
1250 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1251 1.1 yamt bt_dump(bt);
1252 1.1 yamt }
1253 1.1 yamt
1254 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1255 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1256 1.1 yamt
1257 1.1 yamt if (LIST_EMPTY(fl)) {
1258 1.1 yamt continue;
1259 1.1 yamt }
1260 1.1 yamt
1261 1.1 yamt printf("freelist[%d]\n", i);
1262 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1263 1.1 yamt bt_dump(bt);
1264 1.1 yamt if (bt->bt_size) {
1265 1.1 yamt }
1266 1.1 yamt }
1267 1.1 yamt }
1268 1.1 yamt }
1269 1.1 yamt
1270 1.1 yamt #if !defined(_KERNEL)
1271 1.1 yamt
1272 1.1 yamt int
1273 1.1 yamt main()
1274 1.1 yamt {
1275 1.1 yamt vmem_t *vm;
1276 1.1 yamt vmem_addr_t p;
1277 1.1 yamt struct reg {
1278 1.1 yamt vmem_addr_t p;
1279 1.1 yamt vmem_size_t sz;
1280 1.25 thorpej bool x;
1281 1.1 yamt } *reg = NULL;
1282 1.1 yamt int nreg = 0;
1283 1.1 yamt int nalloc = 0;
1284 1.1 yamt int nfree = 0;
1285 1.1 yamt vmem_size_t total = 0;
1286 1.1 yamt #if 1
1287 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1288 1.1 yamt #else
1289 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1290 1.1 yamt #endif
1291 1.1 yamt
1292 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1293 1.30 yamt NULL, NULL, NULL, 0, VM_SLEEP);
1294 1.1 yamt if (vm == NULL) {
1295 1.1 yamt printf("vmem_create\n");
1296 1.1 yamt exit(EXIT_FAILURE);
1297 1.1 yamt }
1298 1.1 yamt vmem_dump(vm);
1299 1.1 yamt
1300 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1301 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1302 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1303 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1304 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1305 1.1 yamt vmem_dump(vm);
1306 1.1 yamt for (;;) {
1307 1.1 yamt struct reg *r;
1308 1.10 yamt int t = rand() % 100;
1309 1.1 yamt
1310 1.10 yamt if (t > 45) {
1311 1.10 yamt /* alloc */
1312 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1313 1.25 thorpej bool x;
1314 1.10 yamt vmem_size_t align, phase, nocross;
1315 1.10 yamt vmem_addr_t minaddr, maxaddr;
1316 1.10 yamt
1317 1.10 yamt if (t > 70) {
1318 1.26 thorpej x = true;
1319 1.10 yamt /* XXX */
1320 1.10 yamt align = 1 << (rand() % 15);
1321 1.10 yamt phase = rand() % 65536;
1322 1.10 yamt nocross = 1 << (rand() % 15);
1323 1.10 yamt if (align <= phase) {
1324 1.10 yamt phase = 0;
1325 1.10 yamt }
1326 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1327 1.19 yamt nocross)) {
1328 1.10 yamt nocross = 0;
1329 1.10 yamt }
1330 1.10 yamt minaddr = rand() % 50000;
1331 1.10 yamt maxaddr = rand() % 70000;
1332 1.10 yamt if (minaddr > maxaddr) {
1333 1.10 yamt minaddr = 0;
1334 1.10 yamt maxaddr = 0;
1335 1.10 yamt }
1336 1.10 yamt printf("=== xalloc %" PRIu64
1337 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1338 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1339 1.10 yamt ", max=%" PRIu64 "\n",
1340 1.10 yamt (uint64_t)sz,
1341 1.10 yamt (uint64_t)align,
1342 1.10 yamt (uint64_t)phase,
1343 1.10 yamt (uint64_t)nocross,
1344 1.10 yamt (uint64_t)minaddr,
1345 1.10 yamt (uint64_t)maxaddr);
1346 1.10 yamt p = vmem_xalloc(vm, sz, align, phase, nocross,
1347 1.10 yamt minaddr, maxaddr, strat|VM_SLEEP);
1348 1.10 yamt } else {
1349 1.26 thorpej x = false;
1350 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1351 1.10 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1352 1.10 yamt }
1353 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1354 1.1 yamt vmem_dump(vm);
1355 1.1 yamt if (p == VMEM_ADDR_NULL) {
1356 1.10 yamt if (x) {
1357 1.10 yamt continue;
1358 1.10 yamt }
1359 1.1 yamt break;
1360 1.1 yamt }
1361 1.1 yamt nreg++;
1362 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1363 1.1 yamt r = ®[nreg - 1];
1364 1.1 yamt r->p = p;
1365 1.1 yamt r->sz = sz;
1366 1.10 yamt r->x = x;
1367 1.1 yamt total += sz;
1368 1.1 yamt nalloc++;
1369 1.1 yamt } else if (nreg != 0) {
1370 1.10 yamt /* free */
1371 1.1 yamt r = ®[rand() % nreg];
1372 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1373 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1374 1.10 yamt if (r->x) {
1375 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1376 1.10 yamt } else {
1377 1.10 yamt vmem_free(vm, r->p, r->sz);
1378 1.10 yamt }
1379 1.1 yamt total -= r->sz;
1380 1.1 yamt vmem_dump(vm);
1381 1.1 yamt *r = reg[nreg - 1];
1382 1.1 yamt nreg--;
1383 1.1 yamt nfree++;
1384 1.1 yamt }
1385 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1386 1.1 yamt }
1387 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1388 1.1 yamt (uint64_t)total, nalloc, nfree);
1389 1.1 yamt exit(EXIT_SUCCESS);
1390 1.1 yamt }
1391 1.1 yamt #endif /* !defined(_KERNEL) */
1392 1.1 yamt #endif /* defined(VMEM_DEBUG) */
1393