Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.32
      1  1.32    rmind /*	$NetBSD: subr_vmem.c,v 1.32 2007/07/12 20:39:56 rmind Exp $	*/
      2   1.1     yamt 
      3   1.1     yamt /*-
      4   1.1     yamt  * Copyright (c)2006 YAMAMOTO Takashi,
      5   1.1     yamt  * All rights reserved.
      6   1.1     yamt  *
      7   1.1     yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1     yamt  * modification, are permitted provided that the following conditions
      9   1.1     yamt  * are met:
     10   1.1     yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1     yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1     yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1     yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1     yamt  *
     16   1.1     yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1     yamt  * SUCH DAMAGE.
     27   1.1     yamt  */
     28   1.1     yamt 
     29   1.1     yamt /*
     30   1.1     yamt  * reference:
     31   1.1     yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32   1.1     yamt  *	to Many CPUs and Arbitrary Resources
     33   1.1     yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34  1.18     yamt  *
     35  1.18     yamt  * todo:
     36  1.18     yamt  * -	decide how to import segments for vmem_xalloc.
     37  1.18     yamt  * -	don't rely on malloc(9).
     38   1.1     yamt  */
     39   1.1     yamt 
     40   1.1     yamt #include <sys/cdefs.h>
     41  1.32    rmind __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.32 2007/07/12 20:39:56 rmind Exp $");
     42   1.1     yamt 
     43   1.1     yamt #define	VMEM_DEBUG
     44   1.5     yamt #if defined(_KERNEL)
     45   1.5     yamt #define	QCACHE
     46   1.5     yamt #endif /* defined(_KERNEL) */
     47   1.1     yamt 
     48   1.1     yamt #include <sys/param.h>
     49   1.1     yamt #include <sys/hash.h>
     50   1.1     yamt #include <sys/queue.h>
     51   1.1     yamt 
     52   1.1     yamt #if defined(_KERNEL)
     53   1.1     yamt #include <sys/systm.h>
     54  1.30     yamt #include <sys/kernel.h>	/* hz */
     55  1.30     yamt #include <sys/callout.h>
     56   1.1     yamt #include <sys/lock.h>
     57   1.1     yamt #include <sys/malloc.h>
     58   1.1     yamt #include <sys/once.h>
     59   1.1     yamt #include <sys/pool.h>
     60   1.3     yamt #include <sys/proc.h>
     61   1.1     yamt #include <sys/vmem.h>
     62  1.30     yamt #include <sys/workqueue.h>
     63   1.1     yamt #else /* defined(_KERNEL) */
     64   1.1     yamt #include "../sys/vmem.h"
     65   1.1     yamt #endif /* defined(_KERNEL) */
     66   1.1     yamt 
     67   1.1     yamt #if defined(_KERNEL)
     68  1.31       ad #define	LOCK_DECL(name)		kmutex_t name
     69   1.1     yamt #else /* defined(_KERNEL) */
     70   1.1     yamt #include <errno.h>
     71   1.1     yamt #include <assert.h>
     72   1.1     yamt #include <stdlib.h>
     73   1.1     yamt 
     74   1.1     yamt #define	KASSERT(a)		assert(a)
     75  1.31       ad #define	LOCK_DECL(name)		/* nothing */
     76  1.31       ad #define	mutex_init(a, b, c)	/* nothing */
     77  1.31       ad #define	mutex_destroy(a)	/* nothing */
     78  1.31       ad #define	mutex_enter(a)		/* nothing */
     79  1.31       ad #define	mutex_exit(a)		/* nothing */
     80  1.31       ad #define	mutex_owned(a)		/* nothing */
     81   1.3     yamt #define	ASSERT_SLEEPABLE(lk, msg) /* nothing */
     82  1.31       ad #define	IPL_VM			0
     83   1.1     yamt #endif /* defined(_KERNEL) */
     84   1.1     yamt 
     85   1.1     yamt struct vmem;
     86   1.1     yamt struct vmem_btag;
     87   1.1     yamt 
     88   1.1     yamt #if defined(VMEM_DEBUG)
     89   1.1     yamt void vmem_dump(const vmem_t *);
     90   1.1     yamt #endif /* defined(VMEM_DEBUG) */
     91   1.1     yamt 
     92   1.4     yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     93  1.30     yamt 
     94  1.30     yamt #define	VMEM_HASHSIZE_MIN	1	/* XXX */
     95  1.30     yamt #define	VMEM_HASHSIZE_MAX	8192	/* XXX */
     96  1.30     yamt #define	VMEM_HASHSIZE_INIT	VMEM_HASHSIZE_MIN
     97   1.1     yamt 
     98   1.1     yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
     99   1.1     yamt 
    100   1.1     yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
    101   1.1     yamt LIST_HEAD(vmem_freelist, vmem_btag);
    102   1.1     yamt LIST_HEAD(vmem_hashlist, vmem_btag);
    103   1.1     yamt 
    104   1.5     yamt #if defined(QCACHE)
    105   1.5     yamt #define	VMEM_QCACHE_IDX_MAX	32
    106   1.5     yamt 
    107   1.5     yamt #define	QC_NAME_MAX	16
    108   1.5     yamt 
    109   1.5     yamt struct qcache {
    110   1.5     yamt 	struct pool qc_pool;
    111   1.5     yamt 	struct pool_cache qc_cache;
    112   1.5     yamt 	vmem_t *qc_vmem;
    113   1.5     yamt 	char qc_name[QC_NAME_MAX];
    114   1.5     yamt };
    115   1.5     yamt typedef struct qcache qcache_t;
    116   1.5     yamt #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool))
    117   1.5     yamt #endif /* defined(QCACHE) */
    118   1.5     yamt 
    119   1.1     yamt /* vmem arena */
    120   1.1     yamt struct vmem {
    121  1.31       ad 	LOCK_DECL(vm_lock);
    122   1.1     yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    123   1.1     yamt 	    vm_flag_t);
    124   1.1     yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    125   1.1     yamt 	vmem_t *vm_source;
    126   1.1     yamt 	struct vmem_seglist vm_seglist;
    127   1.1     yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    128   1.1     yamt 	size_t vm_hashsize;
    129   1.1     yamt 	size_t vm_nbusytag;
    130   1.1     yamt 	struct vmem_hashlist *vm_hashlist;
    131   1.1     yamt 	size_t vm_quantum_mask;
    132   1.1     yamt 	int vm_quantum_shift;
    133   1.1     yamt 	const char *vm_name;
    134  1.30     yamt 	LIST_ENTRY(vmem) vm_alllist;
    135   1.5     yamt 
    136   1.5     yamt #if defined(QCACHE)
    137   1.5     yamt 	/* quantum cache */
    138   1.5     yamt 	size_t vm_qcache_max;
    139   1.5     yamt 	struct pool_allocator vm_qcache_allocator;
    140  1.22     yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    141  1.22     yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    142   1.5     yamt #endif /* defined(QCACHE) */
    143   1.1     yamt };
    144   1.1     yamt 
    145  1.31       ad #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
    146  1.31       ad #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
    147  1.31       ad #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
    148  1.31       ad #ifdef notyet /* XXX needs vmlocking branch changes */
    149  1.31       ad #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DRIVER, ipl)
    150  1.31       ad #else
    151  1.31       ad #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DRIVER, IPL_VM)
    152  1.31       ad #endif
    153  1.31       ad #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
    154  1.31       ad #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
    155   1.1     yamt 
    156   1.1     yamt /* boundary tag */
    157   1.1     yamt struct vmem_btag {
    158   1.1     yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    159   1.1     yamt 	union {
    160   1.1     yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    161   1.1     yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    162   1.1     yamt 	} bt_u;
    163   1.1     yamt #define	bt_hashlist	bt_u.u_hashlist
    164   1.1     yamt #define	bt_freelist	bt_u.u_freelist
    165   1.1     yamt 	vmem_addr_t bt_start;
    166   1.1     yamt 	vmem_size_t bt_size;
    167   1.1     yamt 	int bt_type;
    168   1.1     yamt };
    169   1.1     yamt 
    170   1.1     yamt #define	BT_TYPE_SPAN		1
    171   1.1     yamt #define	BT_TYPE_SPAN_STATIC	2
    172   1.1     yamt #define	BT_TYPE_FREE		3
    173   1.1     yamt #define	BT_TYPE_BUSY		4
    174   1.1     yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    175   1.1     yamt 
    176   1.1     yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    177   1.1     yamt 
    178   1.1     yamt typedef struct vmem_btag bt_t;
    179   1.1     yamt 
    180   1.1     yamt /* ---- misc */
    181   1.1     yamt 
    182  1.19     yamt #define	VMEM_ALIGNUP(addr, align) \
    183  1.19     yamt 	(-(-(addr) & -(align)))
    184  1.19     yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    185  1.19     yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    186  1.19     yamt 
    187   1.4     yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    188   1.4     yamt 
    189   1.1     yamt static int
    190   1.1     yamt calc_order(vmem_size_t size)
    191   1.1     yamt {
    192   1.4     yamt 	vmem_size_t target;
    193   1.1     yamt 	int i;
    194   1.1     yamt 
    195   1.1     yamt 	KASSERT(size != 0);
    196   1.1     yamt 
    197   1.1     yamt 	i = 0;
    198   1.4     yamt 	target = size >> 1;
    199   1.4     yamt 	while (ORDER2SIZE(i) <= target) {
    200   1.1     yamt 		i++;
    201   1.1     yamt 	}
    202   1.1     yamt 
    203   1.4     yamt 	KASSERT(ORDER2SIZE(i) <= size);
    204   1.4     yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    205   1.1     yamt 
    206   1.1     yamt 	return i;
    207   1.1     yamt }
    208   1.1     yamt 
    209   1.1     yamt #if defined(_KERNEL)
    210   1.1     yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    211   1.1     yamt #endif /* defined(_KERNEL) */
    212   1.1     yamt 
    213   1.1     yamt static void *
    214   1.1     yamt xmalloc(size_t sz, vm_flag_t flags)
    215   1.1     yamt {
    216   1.1     yamt 
    217   1.1     yamt #if defined(_KERNEL)
    218   1.1     yamt 	return malloc(sz, M_VMEM,
    219   1.1     yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    220   1.1     yamt #else /* defined(_KERNEL) */
    221   1.1     yamt 	return malloc(sz);
    222   1.1     yamt #endif /* defined(_KERNEL) */
    223   1.1     yamt }
    224   1.1     yamt 
    225   1.1     yamt static void
    226   1.1     yamt xfree(void *p)
    227   1.1     yamt {
    228   1.1     yamt 
    229   1.1     yamt #if defined(_KERNEL)
    230   1.1     yamt 	return free(p, M_VMEM);
    231   1.1     yamt #else /* defined(_KERNEL) */
    232   1.1     yamt 	return free(p);
    233   1.1     yamt #endif /* defined(_KERNEL) */
    234   1.1     yamt }
    235   1.1     yamt 
    236   1.1     yamt /* ---- boundary tag */
    237   1.1     yamt 
    238   1.1     yamt #if defined(_KERNEL)
    239   1.1     yamt static struct pool_cache bt_poolcache;
    240  1.28       ad static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL, IPL_VM);
    241   1.1     yamt #endif /* defined(_KERNEL) */
    242   1.1     yamt 
    243   1.1     yamt static bt_t *
    244  1.17     yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    245   1.1     yamt {
    246   1.1     yamt 	bt_t *bt;
    247   1.1     yamt 
    248   1.1     yamt #if defined(_KERNEL)
    249  1.21     yamt 	int s;
    250  1.21     yamt 
    251   1.1     yamt 	/* XXX bootstrap */
    252  1.21     yamt 	s = splvm();
    253   1.1     yamt 	bt = pool_cache_get(&bt_poolcache,
    254   1.1     yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    255  1.21     yamt 	splx(s);
    256   1.1     yamt #else /* defined(_KERNEL) */
    257   1.1     yamt 	bt = malloc(sizeof *bt);
    258   1.1     yamt #endif /* defined(_KERNEL) */
    259   1.1     yamt 
    260   1.1     yamt 	return bt;
    261   1.1     yamt }
    262   1.1     yamt 
    263   1.1     yamt static void
    264  1.17     yamt bt_free(vmem_t *vm, bt_t *bt)
    265   1.1     yamt {
    266   1.1     yamt 
    267   1.1     yamt #if defined(_KERNEL)
    268  1.21     yamt 	int s;
    269  1.21     yamt 
    270   1.1     yamt 	/* XXX bootstrap */
    271  1.21     yamt 	s = splvm();
    272   1.1     yamt 	pool_cache_put(&bt_poolcache, bt);
    273  1.21     yamt 	splx(s);
    274   1.1     yamt #else /* defined(_KERNEL) */
    275   1.1     yamt 	free(bt);
    276   1.1     yamt #endif /* defined(_KERNEL) */
    277   1.1     yamt }
    278   1.1     yamt 
    279   1.1     yamt /*
    280   1.1     yamt  * freelist[0] ... [1, 1]
    281   1.1     yamt  * freelist[1] ... [2, 3]
    282   1.1     yamt  * freelist[2] ... [4, 7]
    283   1.1     yamt  * freelist[3] ... [8, 15]
    284   1.1     yamt  *  :
    285   1.1     yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    286   1.1     yamt  *  :
    287   1.1     yamt  */
    288   1.1     yamt 
    289   1.1     yamt static struct vmem_freelist *
    290   1.1     yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    291   1.1     yamt {
    292   1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    293   1.1     yamt 	int idx;
    294   1.1     yamt 
    295   1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    296   1.1     yamt 	KASSERT(size != 0);
    297   1.1     yamt 
    298   1.1     yamt 	idx = calc_order(qsize);
    299   1.1     yamt 	KASSERT(idx >= 0);
    300   1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    301   1.1     yamt 
    302   1.1     yamt 	return &vm->vm_freelist[idx];
    303   1.1     yamt }
    304   1.1     yamt 
    305   1.1     yamt static struct vmem_freelist *
    306   1.1     yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    307   1.1     yamt {
    308   1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    309   1.1     yamt 	int idx;
    310   1.1     yamt 
    311   1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    312   1.1     yamt 	KASSERT(size != 0);
    313   1.1     yamt 
    314   1.1     yamt 	idx = calc_order(qsize);
    315   1.4     yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    316   1.1     yamt 		idx++;
    317   1.1     yamt 		/* check too large request? */
    318   1.1     yamt 	}
    319   1.1     yamt 	KASSERT(idx >= 0);
    320   1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    321   1.1     yamt 
    322   1.1     yamt 	return &vm->vm_freelist[idx];
    323   1.1     yamt }
    324   1.1     yamt 
    325   1.1     yamt /* ---- boundary tag hash */
    326   1.1     yamt 
    327   1.1     yamt static struct vmem_hashlist *
    328   1.1     yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    329   1.1     yamt {
    330   1.1     yamt 	struct vmem_hashlist *list;
    331   1.1     yamt 	unsigned int hash;
    332   1.1     yamt 
    333   1.1     yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    334   1.1     yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    335   1.1     yamt 
    336   1.1     yamt 	return list;
    337   1.1     yamt }
    338   1.1     yamt 
    339   1.1     yamt static bt_t *
    340   1.1     yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    341   1.1     yamt {
    342   1.1     yamt 	struct vmem_hashlist *list;
    343   1.1     yamt 	bt_t *bt;
    344   1.1     yamt 
    345   1.1     yamt 	list = bt_hashhead(vm, addr);
    346   1.1     yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    347   1.1     yamt 		if (bt->bt_start == addr) {
    348   1.1     yamt 			break;
    349   1.1     yamt 		}
    350   1.1     yamt 	}
    351   1.1     yamt 
    352   1.1     yamt 	return bt;
    353   1.1     yamt }
    354   1.1     yamt 
    355   1.1     yamt static void
    356   1.1     yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    357   1.1     yamt {
    358   1.1     yamt 
    359   1.1     yamt 	KASSERT(vm->vm_nbusytag > 0);
    360   1.1     yamt 	vm->vm_nbusytag--;
    361   1.1     yamt 	LIST_REMOVE(bt, bt_hashlist);
    362   1.1     yamt }
    363   1.1     yamt 
    364   1.1     yamt static void
    365   1.1     yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    366   1.1     yamt {
    367   1.1     yamt 	struct vmem_hashlist *list;
    368   1.1     yamt 
    369   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    370   1.1     yamt 
    371   1.1     yamt 	list = bt_hashhead(vm, bt->bt_start);
    372   1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    373   1.1     yamt 	vm->vm_nbusytag++;
    374   1.1     yamt }
    375   1.1     yamt 
    376   1.1     yamt /* ---- boundary tag list */
    377   1.1     yamt 
    378   1.1     yamt static void
    379   1.1     yamt bt_remseg(vmem_t *vm, bt_t *bt)
    380   1.1     yamt {
    381   1.1     yamt 
    382   1.1     yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    383   1.1     yamt }
    384   1.1     yamt 
    385   1.1     yamt static void
    386   1.1     yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    387   1.1     yamt {
    388   1.1     yamt 
    389   1.1     yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    390   1.1     yamt }
    391   1.1     yamt 
    392   1.1     yamt static void
    393   1.1     yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    394   1.1     yamt {
    395   1.1     yamt 
    396   1.1     yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    397   1.1     yamt }
    398   1.1     yamt 
    399   1.1     yamt static void
    400  1.17     yamt bt_remfree(vmem_t *vm, bt_t *bt)
    401   1.1     yamt {
    402   1.1     yamt 
    403   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    404   1.1     yamt 
    405   1.1     yamt 	LIST_REMOVE(bt, bt_freelist);
    406   1.1     yamt }
    407   1.1     yamt 
    408   1.1     yamt static void
    409   1.1     yamt bt_insfree(vmem_t *vm, bt_t *bt)
    410   1.1     yamt {
    411   1.1     yamt 	struct vmem_freelist *list;
    412   1.1     yamt 
    413   1.1     yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    414   1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    415   1.1     yamt }
    416   1.1     yamt 
    417   1.1     yamt /* ---- vmem internal functions */
    418   1.1     yamt 
    419  1.30     yamt #if defined(_KERNEL)
    420  1.30     yamt static kmutex_t vmem_list_lock;
    421  1.30     yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
    422  1.30     yamt #endif /* defined(_KERNEL) */
    423  1.30     yamt 
    424   1.5     yamt #if defined(QCACHE)
    425   1.5     yamt static inline vm_flag_t
    426   1.5     yamt prf_to_vmf(int prflags)
    427   1.5     yamt {
    428   1.5     yamt 	vm_flag_t vmflags;
    429   1.5     yamt 
    430   1.5     yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    431   1.5     yamt 	if ((prflags & PR_WAITOK) != 0) {
    432   1.5     yamt 		vmflags = VM_SLEEP;
    433   1.5     yamt 	} else {
    434   1.5     yamt 		vmflags = VM_NOSLEEP;
    435   1.5     yamt 	}
    436   1.5     yamt 	return vmflags;
    437   1.5     yamt }
    438   1.5     yamt 
    439   1.5     yamt static inline int
    440   1.5     yamt vmf_to_prf(vm_flag_t vmflags)
    441   1.5     yamt {
    442   1.5     yamt 	int prflags;
    443   1.5     yamt 
    444   1.7     yamt 	if ((vmflags & VM_SLEEP) != 0) {
    445   1.5     yamt 		prflags = PR_WAITOK;
    446   1.7     yamt 	} else {
    447   1.5     yamt 		prflags = PR_NOWAIT;
    448   1.5     yamt 	}
    449   1.5     yamt 	return prflags;
    450   1.5     yamt }
    451   1.5     yamt 
    452   1.5     yamt static size_t
    453   1.5     yamt qc_poolpage_size(size_t qcache_max)
    454   1.5     yamt {
    455   1.5     yamt 	int i;
    456   1.5     yamt 
    457   1.5     yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    458   1.5     yamt 		/* nothing */
    459   1.5     yamt 	}
    460   1.5     yamt 	return ORDER2SIZE(i);
    461   1.5     yamt }
    462   1.5     yamt 
    463   1.5     yamt static void *
    464   1.5     yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    465   1.5     yamt {
    466   1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    467   1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    468   1.5     yamt 
    469   1.5     yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    470   1.5     yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    471   1.5     yamt }
    472   1.5     yamt 
    473   1.5     yamt static void
    474   1.5     yamt qc_poolpage_free(struct pool *pool, void *addr)
    475   1.5     yamt {
    476   1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    477   1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    478   1.5     yamt 
    479   1.5     yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    480   1.5     yamt }
    481   1.5     yamt 
    482   1.5     yamt static void
    483  1.31       ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
    484   1.5     yamt {
    485  1.22     yamt 	qcache_t *prevqc;
    486   1.5     yamt 	struct pool_allocator *pa;
    487   1.5     yamt 	int qcache_idx_max;
    488   1.5     yamt 	int i;
    489   1.5     yamt 
    490   1.5     yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    491   1.5     yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    492   1.5     yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    493   1.5     yamt 	}
    494   1.5     yamt 	vm->vm_qcache_max = qcache_max;
    495   1.5     yamt 	pa = &vm->vm_qcache_allocator;
    496   1.5     yamt 	memset(pa, 0, sizeof(*pa));
    497   1.5     yamt 	pa->pa_alloc = qc_poolpage_alloc;
    498   1.5     yamt 	pa->pa_free = qc_poolpage_free;
    499   1.5     yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    500   1.5     yamt 
    501   1.5     yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    502  1.22     yamt 	prevqc = NULL;
    503  1.22     yamt 	for (i = qcache_idx_max; i > 0; i--) {
    504  1.22     yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    505   1.5     yamt 		size_t size = i << vm->vm_quantum_shift;
    506   1.5     yamt 
    507   1.5     yamt 		qc->qc_vmem = vm;
    508   1.8   martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    509   1.5     yamt 		    vm->vm_name, size);
    510  1.15     yamt 		pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
    511  1.28       ad 		    0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa,
    512  1.31       ad 		    ipl);
    513  1.22     yamt 		if (prevqc != NULL &&
    514  1.22     yamt 		    qc->qc_pool.pr_itemsperpage ==
    515  1.22     yamt 		    prevqc->qc_pool.pr_itemsperpage) {
    516  1.22     yamt 			pool_destroy(&qc->qc_pool);
    517  1.22     yamt 			vm->vm_qcache[i - 1] = prevqc;
    518  1.27       ad 			continue;
    519  1.22     yamt 		}
    520   1.5     yamt 		pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
    521  1.22     yamt 		vm->vm_qcache[i - 1] = qc;
    522  1.22     yamt 		prevqc = qc;
    523   1.5     yamt 	}
    524   1.5     yamt }
    525   1.6     yamt 
    526  1.23     yamt static void
    527  1.23     yamt qc_destroy(vmem_t *vm)
    528  1.23     yamt {
    529  1.23     yamt 	const qcache_t *prevqc;
    530  1.23     yamt 	int i;
    531  1.23     yamt 	int qcache_idx_max;
    532  1.23     yamt 
    533  1.23     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    534  1.23     yamt 	prevqc = NULL;
    535  1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    536  1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    537  1.23     yamt 
    538  1.23     yamt 		if (prevqc == qc) {
    539  1.23     yamt 			continue;
    540  1.23     yamt 		}
    541  1.23     yamt 		pool_cache_destroy(&qc->qc_cache);
    542  1.23     yamt 		pool_destroy(&qc->qc_pool);
    543  1.23     yamt 		prevqc = qc;
    544  1.23     yamt 	}
    545  1.23     yamt }
    546  1.23     yamt 
    547  1.25  thorpej static bool
    548   1.6     yamt qc_reap(vmem_t *vm)
    549   1.6     yamt {
    550  1.22     yamt 	const qcache_t *prevqc;
    551   1.6     yamt 	int i;
    552   1.6     yamt 	int qcache_idx_max;
    553  1.26  thorpej 	bool didsomething = false;
    554   1.6     yamt 
    555   1.6     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    556  1.22     yamt 	prevqc = NULL;
    557  1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    558  1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    559   1.6     yamt 
    560  1.22     yamt 		if (prevqc == qc) {
    561  1.22     yamt 			continue;
    562  1.22     yamt 		}
    563   1.6     yamt 		if (pool_reclaim(&qc->qc_pool) != 0) {
    564  1.26  thorpej 			didsomething = true;
    565   1.6     yamt 		}
    566  1.22     yamt 		prevqc = qc;
    567   1.6     yamt 	}
    568   1.6     yamt 
    569   1.6     yamt 	return didsomething;
    570   1.6     yamt }
    571   1.5     yamt #endif /* defined(QCACHE) */
    572   1.5     yamt 
    573   1.1     yamt #if defined(_KERNEL)
    574   1.1     yamt static int
    575   1.1     yamt vmem_init(void)
    576   1.1     yamt {
    577   1.1     yamt 
    578  1.30     yamt 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
    579   1.1     yamt 	pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
    580   1.1     yamt 	return 0;
    581   1.1     yamt }
    582   1.1     yamt #endif /* defined(_KERNEL) */
    583   1.1     yamt 
    584   1.1     yamt static vmem_addr_t
    585   1.1     yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    586   1.1     yamt     int spanbttype)
    587   1.1     yamt {
    588   1.1     yamt 	bt_t *btspan;
    589   1.1     yamt 	bt_t *btfree;
    590   1.1     yamt 
    591   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    592   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    593   1.1     yamt 
    594   1.1     yamt 	btspan = bt_alloc(vm, flags);
    595   1.1     yamt 	if (btspan == NULL) {
    596   1.1     yamt 		return VMEM_ADDR_NULL;
    597   1.1     yamt 	}
    598   1.1     yamt 	btfree = bt_alloc(vm, flags);
    599   1.1     yamt 	if (btfree == NULL) {
    600   1.1     yamt 		bt_free(vm, btspan);
    601   1.1     yamt 		return VMEM_ADDR_NULL;
    602   1.1     yamt 	}
    603   1.1     yamt 
    604   1.1     yamt 	btspan->bt_type = spanbttype;
    605   1.1     yamt 	btspan->bt_start = addr;
    606   1.1     yamt 	btspan->bt_size = size;
    607   1.1     yamt 
    608   1.1     yamt 	btfree->bt_type = BT_TYPE_FREE;
    609   1.1     yamt 	btfree->bt_start = addr;
    610   1.1     yamt 	btfree->bt_size = size;
    611   1.1     yamt 
    612   1.1     yamt 	VMEM_LOCK(vm);
    613   1.1     yamt 	bt_insseg_tail(vm, btspan);
    614   1.1     yamt 	bt_insseg(vm, btfree, btspan);
    615   1.1     yamt 	bt_insfree(vm, btfree);
    616   1.1     yamt 	VMEM_UNLOCK(vm);
    617   1.1     yamt 
    618   1.1     yamt 	return addr;
    619   1.1     yamt }
    620   1.1     yamt 
    621  1.30     yamt static void
    622  1.30     yamt vmem_destroy1(vmem_t *vm)
    623  1.30     yamt {
    624  1.30     yamt 
    625  1.30     yamt #if defined(QCACHE)
    626  1.30     yamt 	qc_destroy(vm);
    627  1.30     yamt #endif /* defined(QCACHE) */
    628  1.30     yamt 	if (vm->vm_hashlist != NULL) {
    629  1.30     yamt 		int i;
    630  1.30     yamt 
    631  1.30     yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    632  1.30     yamt 			bt_t *bt;
    633  1.30     yamt 
    634  1.30     yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    635  1.30     yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    636  1.30     yamt 				bt_free(vm, bt);
    637  1.30     yamt 			}
    638  1.30     yamt 		}
    639  1.30     yamt 		xfree(vm->vm_hashlist);
    640  1.30     yamt 	}
    641  1.31       ad 	VMEM_LOCK_DESTROY(vm);
    642  1.30     yamt 	xfree(vm);
    643  1.30     yamt }
    644  1.30     yamt 
    645   1.1     yamt static int
    646   1.1     yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    647   1.1     yamt {
    648   1.1     yamt 	vmem_addr_t addr;
    649   1.1     yamt 
    650   1.1     yamt 	if (vm->vm_allocfn == NULL) {
    651   1.1     yamt 		return EINVAL;
    652   1.1     yamt 	}
    653   1.1     yamt 
    654   1.1     yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    655   1.1     yamt 	if (addr == VMEM_ADDR_NULL) {
    656   1.1     yamt 		return ENOMEM;
    657   1.1     yamt 	}
    658   1.1     yamt 
    659   1.1     yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    660   1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    661   1.1     yamt 		return ENOMEM;
    662   1.1     yamt 	}
    663   1.1     yamt 
    664   1.1     yamt 	return 0;
    665   1.1     yamt }
    666   1.1     yamt 
    667   1.1     yamt static int
    668   1.1     yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    669   1.1     yamt {
    670   1.1     yamt 	bt_t *bt;
    671   1.1     yamt 	int i;
    672   1.1     yamt 	struct vmem_hashlist *newhashlist;
    673   1.1     yamt 	struct vmem_hashlist *oldhashlist;
    674   1.1     yamt 	size_t oldhashsize;
    675   1.1     yamt 
    676   1.1     yamt 	KASSERT(newhashsize > 0);
    677   1.1     yamt 
    678   1.1     yamt 	newhashlist =
    679   1.1     yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    680   1.1     yamt 	if (newhashlist == NULL) {
    681   1.1     yamt 		return ENOMEM;
    682   1.1     yamt 	}
    683   1.1     yamt 	for (i = 0; i < newhashsize; i++) {
    684   1.1     yamt 		LIST_INIT(&newhashlist[i]);
    685   1.1     yamt 	}
    686   1.1     yamt 
    687  1.30     yamt 	if (!VMEM_TRYLOCK(vm)) {
    688  1.30     yamt 		xfree(newhashlist);
    689  1.30     yamt 		return EBUSY;
    690  1.30     yamt 	}
    691   1.1     yamt 	oldhashlist = vm->vm_hashlist;
    692   1.1     yamt 	oldhashsize = vm->vm_hashsize;
    693   1.1     yamt 	vm->vm_hashlist = newhashlist;
    694   1.1     yamt 	vm->vm_hashsize = newhashsize;
    695   1.1     yamt 	if (oldhashlist == NULL) {
    696   1.1     yamt 		VMEM_UNLOCK(vm);
    697   1.1     yamt 		return 0;
    698   1.1     yamt 	}
    699   1.1     yamt 	for (i = 0; i < oldhashsize; i++) {
    700   1.1     yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    701   1.1     yamt 			bt_rembusy(vm, bt); /* XXX */
    702   1.1     yamt 			bt_insbusy(vm, bt);
    703   1.1     yamt 		}
    704   1.1     yamt 	}
    705   1.1     yamt 	VMEM_UNLOCK(vm);
    706   1.1     yamt 
    707   1.1     yamt 	xfree(oldhashlist);
    708   1.1     yamt 
    709   1.1     yamt 	return 0;
    710   1.1     yamt }
    711   1.1     yamt 
    712  1.10     yamt /*
    713  1.10     yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    714  1.10     yamt  */
    715  1.10     yamt 
    716  1.10     yamt static vmem_addr_t
    717  1.10     yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    718  1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    719  1.10     yamt {
    720  1.10     yamt 	vmem_addr_t start;
    721  1.10     yamt 	vmem_addr_t end;
    722  1.10     yamt 
    723  1.10     yamt 	KASSERT(bt->bt_size >= size);
    724  1.10     yamt 
    725  1.10     yamt 	/*
    726  1.10     yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    727  1.10     yamt 	 * unsigned integer of the same size.
    728  1.10     yamt 	 */
    729  1.10     yamt 
    730  1.10     yamt 	start = bt->bt_start;
    731  1.10     yamt 	if (start < minaddr) {
    732  1.10     yamt 		start = minaddr;
    733  1.10     yamt 	}
    734  1.10     yamt 	end = BT_END(bt);
    735  1.10     yamt 	if (end > maxaddr - 1) {
    736  1.10     yamt 		end = maxaddr - 1;
    737  1.10     yamt 	}
    738  1.10     yamt 	if (start >= end) {
    739  1.10     yamt 		return VMEM_ADDR_NULL;
    740  1.10     yamt 	}
    741  1.19     yamt 
    742  1.19     yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    743  1.10     yamt 	if (start < bt->bt_start) {
    744  1.10     yamt 		start += align;
    745  1.10     yamt 	}
    746  1.19     yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    747  1.10     yamt 		KASSERT(align < nocross);
    748  1.19     yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    749  1.10     yamt 	}
    750  1.10     yamt 	if (start < end && end - start >= size) {
    751  1.10     yamt 		KASSERT((start & (align - 1)) == phase);
    752  1.19     yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    753  1.10     yamt 		KASSERT(minaddr <= start);
    754  1.10     yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    755  1.10     yamt 		KASSERT(bt->bt_start <= start);
    756  1.10     yamt 		KASSERT(start + size <= BT_END(bt));
    757  1.10     yamt 		return start;
    758  1.10     yamt 	}
    759  1.10     yamt 	return VMEM_ADDR_NULL;
    760  1.10     yamt }
    761  1.10     yamt 
    762   1.1     yamt /* ---- vmem API */
    763   1.1     yamt 
    764   1.1     yamt /*
    765   1.1     yamt  * vmem_create: create an arena.
    766   1.1     yamt  *
    767   1.1     yamt  * => must not be called from interrupt context.
    768   1.1     yamt  */
    769   1.1     yamt 
    770   1.1     yamt vmem_t *
    771   1.1     yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    772   1.1     yamt     vmem_size_t quantum,
    773   1.1     yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    774   1.1     yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    775  1.31       ad     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
    776  1.31       ad     int ipl)
    777   1.1     yamt {
    778   1.1     yamt 	vmem_t *vm;
    779   1.1     yamt 	int i;
    780   1.1     yamt #if defined(_KERNEL)
    781   1.1     yamt 	static ONCE_DECL(control);
    782   1.1     yamt #endif /* defined(_KERNEL) */
    783   1.1     yamt 
    784   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    785   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    786   1.1     yamt 
    787   1.1     yamt #if defined(_KERNEL)
    788   1.1     yamt 	if (RUN_ONCE(&control, vmem_init)) {
    789   1.1     yamt 		return NULL;
    790   1.1     yamt 	}
    791   1.1     yamt #endif /* defined(_KERNEL) */
    792   1.1     yamt 	vm = xmalloc(sizeof(*vm), flags);
    793   1.1     yamt 	if (vm == NULL) {
    794   1.1     yamt 		return NULL;
    795   1.1     yamt 	}
    796   1.1     yamt 
    797  1.31       ad 	VMEM_LOCK_INIT(vm, ipl);
    798   1.1     yamt 	vm->vm_name = name;
    799   1.1     yamt 	vm->vm_quantum_mask = quantum - 1;
    800   1.1     yamt 	vm->vm_quantum_shift = calc_order(quantum);
    801   1.4     yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    802   1.1     yamt 	vm->vm_allocfn = allocfn;
    803   1.1     yamt 	vm->vm_freefn = freefn;
    804   1.1     yamt 	vm->vm_source = source;
    805   1.1     yamt 	vm->vm_nbusytag = 0;
    806   1.5     yamt #if defined(QCACHE)
    807  1.31       ad 	qc_init(vm, qcache_max, ipl);
    808   1.5     yamt #endif /* defined(QCACHE) */
    809   1.1     yamt 
    810   1.1     yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    811   1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    812   1.1     yamt 		LIST_INIT(&vm->vm_freelist[i]);
    813   1.1     yamt 	}
    814   1.1     yamt 	vm->vm_hashlist = NULL;
    815   1.1     yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    816  1.30     yamt 		vmem_destroy1(vm);
    817   1.1     yamt 		return NULL;
    818   1.1     yamt 	}
    819   1.1     yamt 
    820   1.1     yamt 	if (size != 0) {
    821   1.1     yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    822  1.30     yamt 			vmem_destroy1(vm);
    823   1.1     yamt 			return NULL;
    824   1.1     yamt 		}
    825   1.1     yamt 	}
    826   1.1     yamt 
    827  1.30     yamt #if defined(_KERNEL)
    828  1.30     yamt 	mutex_enter(&vmem_list_lock);
    829  1.30     yamt 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
    830  1.30     yamt 	mutex_exit(&vmem_list_lock);
    831  1.30     yamt #endif /* defined(_KERNEL) */
    832  1.30     yamt 
    833   1.1     yamt 	return vm;
    834   1.1     yamt }
    835   1.1     yamt 
    836   1.1     yamt void
    837   1.1     yamt vmem_destroy(vmem_t *vm)
    838   1.1     yamt {
    839   1.1     yamt 
    840  1.30     yamt #if defined(_KERNEL)
    841  1.30     yamt 	mutex_enter(&vmem_list_lock);
    842  1.30     yamt 	LIST_REMOVE(vm, vm_alllist);
    843  1.30     yamt 	mutex_exit(&vmem_list_lock);
    844  1.30     yamt #endif /* defined(_KERNEL) */
    845   1.1     yamt 
    846  1.30     yamt 	vmem_destroy1(vm);
    847   1.1     yamt }
    848   1.1     yamt 
    849   1.1     yamt vmem_size_t
    850   1.1     yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    851   1.1     yamt {
    852   1.1     yamt 
    853   1.1     yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    854   1.1     yamt }
    855   1.1     yamt 
    856   1.1     yamt /*
    857   1.1     yamt  * vmem_alloc:
    858   1.1     yamt  *
    859   1.1     yamt  * => caller must ensure appropriate spl,
    860   1.1     yamt  *    if the arena can be accessed from interrupt context.
    861   1.1     yamt  */
    862   1.1     yamt 
    863   1.1     yamt vmem_addr_t
    864   1.1     yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
    865   1.1     yamt {
    866  1.12     yamt 	const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
    867  1.12     yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    868   1.1     yamt 
    869   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    870   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    871   1.1     yamt 
    872   1.1     yamt 	KASSERT(size0 > 0);
    873   1.1     yamt 	KASSERT(size > 0);
    874   1.1     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    875   1.3     yamt 	if ((flags & VM_SLEEP) != 0) {
    876  1.16     yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    877   1.3     yamt 	}
    878   1.1     yamt 
    879   1.5     yamt #if defined(QCACHE)
    880   1.5     yamt 	if (size <= vm->vm_qcache_max) {
    881   1.5     yamt 		int qidx = size >> vm->vm_quantum_shift;
    882  1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    883   1.5     yamt 
    884   1.5     yamt 		return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
    885   1.5     yamt 		    vmf_to_prf(flags));
    886   1.5     yamt 	}
    887   1.5     yamt #endif /* defined(QCACHE) */
    888   1.5     yamt 
    889  1.10     yamt 	return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
    890  1.10     yamt }
    891  1.10     yamt 
    892  1.10     yamt vmem_addr_t
    893  1.10     yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
    894  1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
    895  1.10     yamt     vm_flag_t flags)
    896  1.10     yamt {
    897  1.10     yamt 	struct vmem_freelist *list;
    898  1.10     yamt 	struct vmem_freelist *first;
    899  1.10     yamt 	struct vmem_freelist *end;
    900  1.10     yamt 	bt_t *bt;
    901  1.10     yamt 	bt_t *btnew;
    902  1.10     yamt 	bt_t *btnew2;
    903  1.10     yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
    904  1.10     yamt 	vm_flag_t strat = flags & VM_FITMASK;
    905  1.10     yamt 	vmem_addr_t start;
    906  1.10     yamt 
    907  1.10     yamt 	KASSERT(size0 > 0);
    908  1.10     yamt 	KASSERT(size > 0);
    909  1.10     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    910  1.10     yamt 	if ((flags & VM_SLEEP) != 0) {
    911  1.16     yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    912  1.10     yamt 	}
    913  1.10     yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
    914  1.10     yamt 	KASSERT((align & (align - 1)) == 0);
    915  1.10     yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
    916  1.10     yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
    917  1.10     yamt 	KASSERT((nocross & (nocross - 1)) == 0);
    918  1.10     yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
    919  1.10     yamt 	KASSERT(nocross == 0 || nocross >= size);
    920  1.10     yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
    921  1.19     yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
    922  1.10     yamt 
    923  1.10     yamt 	if (align == 0) {
    924  1.10     yamt 		align = vm->vm_quantum_mask + 1;
    925  1.10     yamt 	}
    926   1.1     yamt 	btnew = bt_alloc(vm, flags);
    927   1.1     yamt 	if (btnew == NULL) {
    928   1.1     yamt 		return VMEM_ADDR_NULL;
    929   1.1     yamt 	}
    930  1.10     yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
    931  1.10     yamt 	if (btnew2 == NULL) {
    932  1.10     yamt 		bt_free(vm, btnew);
    933  1.10     yamt 		return VMEM_ADDR_NULL;
    934  1.10     yamt 	}
    935   1.1     yamt 
    936   1.1     yamt retry_strat:
    937   1.1     yamt 	first = bt_freehead_toalloc(vm, size, strat);
    938   1.1     yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
    939   1.1     yamt retry:
    940   1.1     yamt 	bt = NULL;
    941   1.1     yamt 	VMEM_LOCK(vm);
    942   1.2     yamt 	if (strat == VM_INSTANTFIT) {
    943   1.2     yamt 		for (list = first; list < end; list++) {
    944   1.2     yamt 			bt = LIST_FIRST(list);
    945   1.2     yamt 			if (bt != NULL) {
    946  1.10     yamt 				start = vmem_fit(bt, size, align, phase,
    947  1.10     yamt 				    nocross, minaddr, maxaddr);
    948  1.10     yamt 				if (start != VMEM_ADDR_NULL) {
    949  1.10     yamt 					goto gotit;
    950  1.10     yamt 				}
    951   1.2     yamt 			}
    952   1.2     yamt 		}
    953   1.2     yamt 	} else { /* VM_BESTFIT */
    954   1.2     yamt 		for (list = first; list < end; list++) {
    955   1.2     yamt 			LIST_FOREACH(bt, list, bt_freelist) {
    956   1.2     yamt 				if (bt->bt_size >= size) {
    957  1.10     yamt 					start = vmem_fit(bt, size, align, phase,
    958  1.10     yamt 					    nocross, minaddr, maxaddr);
    959  1.10     yamt 					if (start != VMEM_ADDR_NULL) {
    960  1.10     yamt 						goto gotit;
    961  1.10     yamt 					}
    962   1.2     yamt 				}
    963   1.1     yamt 			}
    964   1.1     yamt 		}
    965   1.1     yamt 	}
    966   1.2     yamt 	VMEM_UNLOCK(vm);
    967   1.1     yamt #if 1
    968   1.2     yamt 	if (strat == VM_INSTANTFIT) {
    969   1.2     yamt 		strat = VM_BESTFIT;
    970   1.2     yamt 		goto retry_strat;
    971   1.2     yamt 	}
    972   1.1     yamt #endif
    973  1.10     yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
    974  1.10     yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
    975  1.10     yamt 
    976  1.10     yamt 		/*
    977  1.10     yamt 		 * XXX should try to import a region large enough to
    978  1.10     yamt 		 * satisfy restrictions?
    979  1.10     yamt 		 */
    980  1.10     yamt 
    981  1.20     yamt 		goto fail;
    982  1.10     yamt 	}
    983   1.2     yamt 	if (vmem_import(vm, size, flags) == 0) {
    984   1.2     yamt 		goto retry;
    985   1.1     yamt 	}
    986   1.2     yamt 	/* XXX */
    987  1.20     yamt fail:
    988  1.20     yamt 	bt_free(vm, btnew);
    989  1.20     yamt 	bt_free(vm, btnew2);
    990   1.2     yamt 	return VMEM_ADDR_NULL;
    991   1.2     yamt 
    992   1.2     yamt gotit:
    993   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    994   1.1     yamt 	KASSERT(bt->bt_size >= size);
    995   1.1     yamt 	bt_remfree(vm, bt);
    996  1.10     yamt 	if (bt->bt_start != start) {
    997  1.10     yamt 		btnew2->bt_type = BT_TYPE_FREE;
    998  1.10     yamt 		btnew2->bt_start = bt->bt_start;
    999  1.10     yamt 		btnew2->bt_size = start - bt->bt_start;
   1000  1.10     yamt 		bt->bt_start = start;
   1001  1.10     yamt 		bt->bt_size -= btnew2->bt_size;
   1002  1.10     yamt 		bt_insfree(vm, btnew2);
   1003  1.10     yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
   1004  1.10     yamt 		btnew2 = NULL;
   1005  1.10     yamt 	}
   1006  1.10     yamt 	KASSERT(bt->bt_start == start);
   1007   1.1     yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
   1008   1.1     yamt 		/* split */
   1009   1.1     yamt 		btnew->bt_type = BT_TYPE_BUSY;
   1010   1.1     yamt 		btnew->bt_start = bt->bt_start;
   1011   1.1     yamt 		btnew->bt_size = size;
   1012   1.1     yamt 		bt->bt_start = bt->bt_start + size;
   1013   1.1     yamt 		bt->bt_size -= size;
   1014   1.1     yamt 		bt_insfree(vm, bt);
   1015   1.1     yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
   1016   1.1     yamt 		bt_insbusy(vm, btnew);
   1017   1.1     yamt 		VMEM_UNLOCK(vm);
   1018   1.1     yamt 	} else {
   1019   1.1     yamt 		bt->bt_type = BT_TYPE_BUSY;
   1020   1.1     yamt 		bt_insbusy(vm, bt);
   1021   1.1     yamt 		VMEM_UNLOCK(vm);
   1022   1.1     yamt 		bt_free(vm, btnew);
   1023   1.1     yamt 		btnew = bt;
   1024   1.1     yamt 	}
   1025  1.10     yamt 	if (btnew2 != NULL) {
   1026  1.10     yamt 		bt_free(vm, btnew2);
   1027  1.10     yamt 	}
   1028   1.1     yamt 	KASSERT(btnew->bt_size >= size);
   1029   1.1     yamt 	btnew->bt_type = BT_TYPE_BUSY;
   1030   1.1     yamt 
   1031   1.1     yamt 	return btnew->bt_start;
   1032   1.1     yamt }
   1033   1.1     yamt 
   1034   1.1     yamt /*
   1035   1.1     yamt  * vmem_free:
   1036   1.1     yamt  *
   1037   1.1     yamt  * => caller must ensure appropriate spl,
   1038   1.1     yamt  *    if the arena can be accessed from interrupt context.
   1039   1.1     yamt  */
   1040   1.1     yamt 
   1041   1.1     yamt void
   1042   1.1     yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1043   1.1     yamt {
   1044   1.1     yamt 
   1045   1.1     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1046   1.1     yamt 	KASSERT(size > 0);
   1047   1.1     yamt 
   1048   1.5     yamt #if defined(QCACHE)
   1049   1.5     yamt 	if (size <= vm->vm_qcache_max) {
   1050   1.5     yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1051  1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1052   1.5     yamt 
   1053   1.5     yamt 		return pool_cache_put(&qc->qc_cache, (void *)addr);
   1054   1.5     yamt 	}
   1055   1.5     yamt #endif /* defined(QCACHE) */
   1056   1.5     yamt 
   1057  1.10     yamt 	vmem_xfree(vm, addr, size);
   1058  1.10     yamt }
   1059  1.10     yamt 
   1060  1.10     yamt void
   1061  1.17     yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1062  1.10     yamt {
   1063  1.10     yamt 	bt_t *bt;
   1064  1.10     yamt 	bt_t *t;
   1065  1.10     yamt 
   1066  1.10     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1067  1.10     yamt 	KASSERT(size > 0);
   1068  1.10     yamt 
   1069   1.1     yamt 	VMEM_LOCK(vm);
   1070   1.1     yamt 
   1071   1.1     yamt 	bt = bt_lookupbusy(vm, addr);
   1072   1.1     yamt 	KASSERT(bt != NULL);
   1073   1.1     yamt 	KASSERT(bt->bt_start == addr);
   1074   1.1     yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1075   1.1     yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1076   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1077   1.1     yamt 	bt_rembusy(vm, bt);
   1078   1.1     yamt 	bt->bt_type = BT_TYPE_FREE;
   1079   1.1     yamt 
   1080   1.1     yamt 	/* coalesce */
   1081   1.1     yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1082   1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1083   1.1     yamt 		KASSERT(BT_END(bt) == t->bt_start);
   1084   1.1     yamt 		bt_remfree(vm, t);
   1085   1.1     yamt 		bt_remseg(vm, t);
   1086   1.1     yamt 		bt->bt_size += t->bt_size;
   1087   1.1     yamt 		bt_free(vm, t);
   1088   1.1     yamt 	}
   1089   1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1090   1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1091   1.1     yamt 		KASSERT(BT_END(t) == bt->bt_start);
   1092   1.1     yamt 		bt_remfree(vm, t);
   1093   1.1     yamt 		bt_remseg(vm, t);
   1094   1.1     yamt 		bt->bt_size += t->bt_size;
   1095   1.1     yamt 		bt->bt_start = t->bt_start;
   1096   1.1     yamt 		bt_free(vm, t);
   1097   1.1     yamt 	}
   1098   1.1     yamt 
   1099   1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1100   1.1     yamt 	KASSERT(t != NULL);
   1101   1.1     yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1102   1.1     yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1103   1.1     yamt 	    t->bt_size == bt->bt_size) {
   1104   1.1     yamt 		vmem_addr_t spanaddr;
   1105   1.1     yamt 		vmem_size_t spansize;
   1106   1.1     yamt 
   1107   1.1     yamt 		KASSERT(t->bt_start == bt->bt_start);
   1108   1.1     yamt 		spanaddr = bt->bt_start;
   1109   1.1     yamt 		spansize = bt->bt_size;
   1110   1.1     yamt 		bt_remseg(vm, bt);
   1111   1.1     yamt 		bt_free(vm, bt);
   1112   1.1     yamt 		bt_remseg(vm, t);
   1113   1.1     yamt 		bt_free(vm, t);
   1114   1.1     yamt 		VMEM_UNLOCK(vm);
   1115   1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1116   1.1     yamt 	} else {
   1117   1.1     yamt 		bt_insfree(vm, bt);
   1118   1.1     yamt 		VMEM_UNLOCK(vm);
   1119   1.1     yamt 	}
   1120   1.1     yamt }
   1121   1.1     yamt 
   1122   1.1     yamt /*
   1123   1.1     yamt  * vmem_add:
   1124   1.1     yamt  *
   1125   1.1     yamt  * => caller must ensure appropriate spl,
   1126   1.1     yamt  *    if the arena can be accessed from interrupt context.
   1127   1.1     yamt  */
   1128   1.1     yamt 
   1129   1.1     yamt vmem_addr_t
   1130   1.1     yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1131   1.1     yamt {
   1132   1.1     yamt 
   1133   1.1     yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1134   1.1     yamt }
   1135   1.1     yamt 
   1136   1.6     yamt /*
   1137   1.6     yamt  * vmem_reap: reap unused resources.
   1138   1.6     yamt  *
   1139  1.26  thorpej  * => return true if we successfully reaped something.
   1140   1.6     yamt  */
   1141   1.6     yamt 
   1142  1.25  thorpej bool
   1143   1.6     yamt vmem_reap(vmem_t *vm)
   1144   1.6     yamt {
   1145  1.26  thorpej 	bool didsomething = false;
   1146   1.6     yamt 
   1147   1.6     yamt #if defined(QCACHE)
   1148   1.6     yamt 	didsomething = qc_reap(vm);
   1149   1.6     yamt #endif /* defined(QCACHE) */
   1150   1.6     yamt 	return didsomething;
   1151   1.6     yamt }
   1152   1.6     yamt 
   1153  1.30     yamt /* ---- rehash */
   1154  1.30     yamt 
   1155  1.30     yamt #if defined(_KERNEL)
   1156  1.30     yamt static struct callout vmem_rehash_ch;
   1157  1.30     yamt static int vmem_rehash_interval;
   1158  1.30     yamt static struct workqueue *vmem_rehash_wq;
   1159  1.30     yamt static struct work vmem_rehash_wk;
   1160  1.30     yamt 
   1161  1.30     yamt static void
   1162  1.30     yamt vmem_rehash_all(struct work *wk, void *dummy)
   1163  1.30     yamt {
   1164  1.30     yamt 	vmem_t *vm;
   1165  1.30     yamt 
   1166  1.30     yamt 	KASSERT(wk == &vmem_rehash_wk);
   1167  1.30     yamt 	mutex_enter(&vmem_list_lock);
   1168  1.30     yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1169  1.30     yamt 		size_t desired;
   1170  1.30     yamt 		size_t current;
   1171  1.30     yamt 		int s;
   1172  1.30     yamt 
   1173  1.30     yamt 		s = splvm();
   1174  1.30     yamt 		if (!VMEM_TRYLOCK(vm)) {
   1175  1.30     yamt 			splx(s);
   1176  1.30     yamt 			continue;
   1177  1.30     yamt 		}
   1178  1.30     yamt 		desired = vm->vm_nbusytag;
   1179  1.30     yamt 		current = vm->vm_hashsize;
   1180  1.30     yamt 		VMEM_UNLOCK(vm);
   1181  1.30     yamt 		splx(s);
   1182  1.30     yamt 
   1183  1.30     yamt 		if (desired > VMEM_HASHSIZE_MAX) {
   1184  1.30     yamt 			desired = VMEM_HASHSIZE_MAX;
   1185  1.30     yamt 		} else if (desired < VMEM_HASHSIZE_MIN) {
   1186  1.30     yamt 			desired = VMEM_HASHSIZE_MIN;
   1187  1.30     yamt 		}
   1188  1.30     yamt 		if (desired > current * 2 || desired * 2 < current) {
   1189  1.30     yamt 			s = splvm();
   1190  1.30     yamt 			vmem_rehash(vm, desired, VM_NOSLEEP);
   1191  1.30     yamt 			splx(s);
   1192  1.30     yamt 		}
   1193  1.30     yamt 	}
   1194  1.30     yamt 	mutex_exit(&vmem_list_lock);
   1195  1.30     yamt 
   1196  1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1197  1.30     yamt }
   1198  1.30     yamt 
   1199  1.30     yamt static void
   1200  1.30     yamt vmem_rehash_all_kick(void *dummy)
   1201  1.30     yamt {
   1202  1.30     yamt 
   1203  1.32    rmind 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
   1204  1.30     yamt }
   1205  1.30     yamt 
   1206  1.30     yamt void
   1207  1.30     yamt vmem_rehash_start(void)
   1208  1.30     yamt {
   1209  1.30     yamt 	int error;
   1210  1.30     yamt 
   1211  1.30     yamt 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
   1212  1.30     yamt 	    vmem_rehash_all, NULL, PVM, IPL_SOFTCLOCK, 0);
   1213  1.30     yamt 	if (error) {
   1214  1.30     yamt 		panic("%s: workqueue_create %d\n", __func__, error);
   1215  1.30     yamt 	}
   1216  1.31       ad 	callout_init(&vmem_rehash_ch, 0);
   1217  1.30     yamt 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
   1218  1.30     yamt 
   1219  1.30     yamt 	vmem_rehash_interval = hz * 10;
   1220  1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1221  1.30     yamt }
   1222  1.30     yamt #endif /* defined(_KERNEL) */
   1223  1.30     yamt 
   1224   1.1     yamt /* ---- debug */
   1225   1.1     yamt 
   1226   1.1     yamt #if defined(VMEM_DEBUG)
   1227   1.1     yamt 
   1228   1.1     yamt #if !defined(_KERNEL)
   1229   1.1     yamt #include <stdio.h>
   1230   1.1     yamt #endif /* !defined(_KERNEL) */
   1231   1.1     yamt 
   1232   1.1     yamt void bt_dump(const bt_t *);
   1233   1.1     yamt 
   1234   1.1     yamt void
   1235   1.1     yamt bt_dump(const bt_t *bt)
   1236   1.1     yamt {
   1237   1.1     yamt 
   1238   1.1     yamt 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
   1239   1.1     yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1240   1.1     yamt 	    bt->bt_type);
   1241   1.1     yamt }
   1242   1.1     yamt 
   1243   1.1     yamt void
   1244   1.1     yamt vmem_dump(const vmem_t *vm)
   1245   1.1     yamt {
   1246   1.1     yamt 	const bt_t *bt;
   1247   1.1     yamt 	int i;
   1248   1.1     yamt 
   1249   1.1     yamt 	printf("vmem %p '%s'\n", vm, vm->vm_name);
   1250   1.1     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1251   1.1     yamt 		bt_dump(bt);
   1252   1.1     yamt 	}
   1253   1.1     yamt 
   1254   1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1255   1.1     yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1256   1.1     yamt 
   1257   1.1     yamt 		if (LIST_EMPTY(fl)) {
   1258   1.1     yamt 			continue;
   1259   1.1     yamt 		}
   1260   1.1     yamt 
   1261   1.1     yamt 		printf("freelist[%d]\n", i);
   1262   1.1     yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1263   1.1     yamt 			bt_dump(bt);
   1264   1.1     yamt 			if (bt->bt_size) {
   1265   1.1     yamt 			}
   1266   1.1     yamt 		}
   1267   1.1     yamt 	}
   1268   1.1     yamt }
   1269   1.1     yamt 
   1270   1.1     yamt #if !defined(_KERNEL)
   1271   1.1     yamt 
   1272   1.1     yamt int
   1273   1.1     yamt main()
   1274   1.1     yamt {
   1275   1.1     yamt 	vmem_t *vm;
   1276   1.1     yamt 	vmem_addr_t p;
   1277   1.1     yamt 	struct reg {
   1278   1.1     yamt 		vmem_addr_t p;
   1279   1.1     yamt 		vmem_size_t sz;
   1280  1.25  thorpej 		bool x;
   1281   1.1     yamt 	} *reg = NULL;
   1282   1.1     yamt 	int nreg = 0;
   1283   1.1     yamt 	int nalloc = 0;
   1284   1.1     yamt 	int nfree = 0;
   1285   1.1     yamt 	vmem_size_t total = 0;
   1286   1.1     yamt #if 1
   1287   1.1     yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1288   1.1     yamt #else
   1289   1.1     yamt 	vm_flag_t strat = VM_BESTFIT;
   1290   1.1     yamt #endif
   1291   1.1     yamt 
   1292   1.1     yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1293  1.30     yamt 	    NULL, NULL, NULL, 0, VM_SLEEP);
   1294   1.1     yamt 	if (vm == NULL) {
   1295   1.1     yamt 		printf("vmem_create\n");
   1296   1.1     yamt 		exit(EXIT_FAILURE);
   1297   1.1     yamt 	}
   1298   1.1     yamt 	vmem_dump(vm);
   1299   1.1     yamt 
   1300   1.1     yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1301   1.1     yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1302   1.1     yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1303   1.1     yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1304   1.1     yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1305   1.1     yamt 	vmem_dump(vm);
   1306   1.1     yamt 	for (;;) {
   1307   1.1     yamt 		struct reg *r;
   1308  1.10     yamt 		int t = rand() % 100;
   1309   1.1     yamt 
   1310  1.10     yamt 		if (t > 45) {
   1311  1.10     yamt 			/* alloc */
   1312   1.1     yamt 			vmem_size_t sz = rand() % 500 + 1;
   1313  1.25  thorpej 			bool x;
   1314  1.10     yamt 			vmem_size_t align, phase, nocross;
   1315  1.10     yamt 			vmem_addr_t minaddr, maxaddr;
   1316  1.10     yamt 
   1317  1.10     yamt 			if (t > 70) {
   1318  1.26  thorpej 				x = true;
   1319  1.10     yamt 				/* XXX */
   1320  1.10     yamt 				align = 1 << (rand() % 15);
   1321  1.10     yamt 				phase = rand() % 65536;
   1322  1.10     yamt 				nocross = 1 << (rand() % 15);
   1323  1.10     yamt 				if (align <= phase) {
   1324  1.10     yamt 					phase = 0;
   1325  1.10     yamt 				}
   1326  1.19     yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1327  1.19     yamt 				    nocross)) {
   1328  1.10     yamt 					nocross = 0;
   1329  1.10     yamt 				}
   1330  1.10     yamt 				minaddr = rand() % 50000;
   1331  1.10     yamt 				maxaddr = rand() % 70000;
   1332  1.10     yamt 				if (minaddr > maxaddr) {
   1333  1.10     yamt 					minaddr = 0;
   1334  1.10     yamt 					maxaddr = 0;
   1335  1.10     yamt 				}
   1336  1.10     yamt 				printf("=== xalloc %" PRIu64
   1337  1.10     yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1338  1.10     yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1339  1.10     yamt 				    ", max=%" PRIu64 "\n",
   1340  1.10     yamt 				    (uint64_t)sz,
   1341  1.10     yamt 				    (uint64_t)align,
   1342  1.10     yamt 				    (uint64_t)phase,
   1343  1.10     yamt 				    (uint64_t)nocross,
   1344  1.10     yamt 				    (uint64_t)minaddr,
   1345  1.10     yamt 				    (uint64_t)maxaddr);
   1346  1.10     yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1347  1.10     yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1348  1.10     yamt 			} else {
   1349  1.26  thorpej 				x = false;
   1350  1.10     yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1351  1.10     yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1352  1.10     yamt 			}
   1353   1.1     yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1354   1.1     yamt 			vmem_dump(vm);
   1355   1.1     yamt 			if (p == VMEM_ADDR_NULL) {
   1356  1.10     yamt 				if (x) {
   1357  1.10     yamt 					continue;
   1358  1.10     yamt 				}
   1359   1.1     yamt 				break;
   1360   1.1     yamt 			}
   1361   1.1     yamt 			nreg++;
   1362   1.1     yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1363   1.1     yamt 			r = &reg[nreg - 1];
   1364   1.1     yamt 			r->p = p;
   1365   1.1     yamt 			r->sz = sz;
   1366  1.10     yamt 			r->x = x;
   1367   1.1     yamt 			total += sz;
   1368   1.1     yamt 			nalloc++;
   1369   1.1     yamt 		} else if (nreg != 0) {
   1370  1.10     yamt 			/* free */
   1371   1.1     yamt 			r = &reg[rand() % nreg];
   1372   1.1     yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1373   1.1     yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1374  1.10     yamt 			if (r->x) {
   1375  1.10     yamt 				vmem_xfree(vm, r->p, r->sz);
   1376  1.10     yamt 			} else {
   1377  1.10     yamt 				vmem_free(vm, r->p, r->sz);
   1378  1.10     yamt 			}
   1379   1.1     yamt 			total -= r->sz;
   1380   1.1     yamt 			vmem_dump(vm);
   1381   1.1     yamt 			*r = reg[nreg - 1];
   1382   1.1     yamt 			nreg--;
   1383   1.1     yamt 			nfree++;
   1384   1.1     yamt 		}
   1385   1.1     yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1386   1.1     yamt 	}
   1387   1.1     yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1388   1.1     yamt 	    (uint64_t)total, nalloc, nfree);
   1389   1.1     yamt 	exit(EXIT_SUCCESS);
   1390   1.1     yamt }
   1391   1.1     yamt #endif /* !defined(_KERNEL) */
   1392   1.1     yamt #endif /* defined(VMEM_DEBUG) */
   1393