Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.32.12.1
      1  1.32.12.1   bouyer /*	$NetBSD: subr_vmem.c,v 1.32.12.1 2007/11/13 16:02:23 bouyer Exp $	*/
      2        1.1     yamt 
      3        1.1     yamt /*-
      4        1.1     yamt  * Copyright (c)2006 YAMAMOTO Takashi,
      5        1.1     yamt  * All rights reserved.
      6        1.1     yamt  *
      7        1.1     yamt  * Redistribution and use in source and binary forms, with or without
      8        1.1     yamt  * modification, are permitted provided that the following conditions
      9        1.1     yamt  * are met:
     10        1.1     yamt  * 1. Redistributions of source code must retain the above copyright
     11        1.1     yamt  *    notice, this list of conditions and the following disclaimer.
     12        1.1     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13        1.1     yamt  *    notice, this list of conditions and the following disclaimer in the
     14        1.1     yamt  *    documentation and/or other materials provided with the distribution.
     15        1.1     yamt  *
     16        1.1     yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17        1.1     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18        1.1     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19        1.1     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20        1.1     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21        1.1     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22        1.1     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23        1.1     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24        1.1     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25        1.1     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26        1.1     yamt  * SUCH DAMAGE.
     27        1.1     yamt  */
     28        1.1     yamt 
     29        1.1     yamt /*
     30        1.1     yamt  * reference:
     31        1.1     yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32        1.1     yamt  *	to Many CPUs and Arbitrary Resources
     33        1.1     yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34       1.18     yamt  *
     35       1.18     yamt  * todo:
     36       1.18     yamt  * -	decide how to import segments for vmem_xalloc.
     37       1.18     yamt  * -	don't rely on malloc(9).
     38        1.1     yamt  */
     39        1.1     yamt 
     40        1.1     yamt #include <sys/cdefs.h>
     41  1.32.12.1   bouyer __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.32.12.1 2007/11/13 16:02:23 bouyer Exp $");
     42        1.1     yamt 
     43        1.1     yamt #define	VMEM_DEBUG
     44        1.5     yamt #if defined(_KERNEL)
     45        1.5     yamt #define	QCACHE
     46        1.5     yamt #endif /* defined(_KERNEL) */
     47        1.1     yamt 
     48        1.1     yamt #include <sys/param.h>
     49        1.1     yamt #include <sys/hash.h>
     50        1.1     yamt #include <sys/queue.h>
     51        1.1     yamt 
     52        1.1     yamt #if defined(_KERNEL)
     53        1.1     yamt #include <sys/systm.h>
     54       1.30     yamt #include <sys/kernel.h>	/* hz */
     55       1.30     yamt #include <sys/callout.h>
     56        1.1     yamt #include <sys/lock.h>
     57        1.1     yamt #include <sys/malloc.h>
     58        1.1     yamt #include <sys/once.h>
     59        1.1     yamt #include <sys/pool.h>
     60        1.3     yamt #include <sys/proc.h>
     61        1.1     yamt #include <sys/vmem.h>
     62       1.30     yamt #include <sys/workqueue.h>
     63        1.1     yamt #else /* defined(_KERNEL) */
     64        1.1     yamt #include "../sys/vmem.h"
     65        1.1     yamt #endif /* defined(_KERNEL) */
     66        1.1     yamt 
     67        1.1     yamt #if defined(_KERNEL)
     68       1.31       ad #define	LOCK_DECL(name)		kmutex_t name
     69        1.1     yamt #else /* defined(_KERNEL) */
     70        1.1     yamt #include <errno.h>
     71        1.1     yamt #include <assert.h>
     72        1.1     yamt #include <stdlib.h>
     73        1.1     yamt 
     74        1.1     yamt #define	KASSERT(a)		assert(a)
     75       1.31       ad #define	LOCK_DECL(name)		/* nothing */
     76       1.31       ad #define	mutex_init(a, b, c)	/* nothing */
     77       1.31       ad #define	mutex_destroy(a)	/* nothing */
     78       1.31       ad #define	mutex_enter(a)		/* nothing */
     79       1.31       ad #define	mutex_exit(a)		/* nothing */
     80       1.31       ad #define	mutex_owned(a)		/* nothing */
     81        1.3     yamt #define	ASSERT_SLEEPABLE(lk, msg) /* nothing */
     82       1.31       ad #define	IPL_VM			0
     83        1.1     yamt #endif /* defined(_KERNEL) */
     84        1.1     yamt 
     85        1.1     yamt struct vmem;
     86        1.1     yamt struct vmem_btag;
     87        1.1     yamt 
     88        1.1     yamt #if defined(VMEM_DEBUG)
     89        1.1     yamt void vmem_dump(const vmem_t *);
     90        1.1     yamt #endif /* defined(VMEM_DEBUG) */
     91        1.1     yamt 
     92        1.4     yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     93       1.30     yamt 
     94       1.30     yamt #define	VMEM_HASHSIZE_MIN	1	/* XXX */
     95       1.30     yamt #define	VMEM_HASHSIZE_MAX	8192	/* XXX */
     96       1.30     yamt #define	VMEM_HASHSIZE_INIT	VMEM_HASHSIZE_MIN
     97        1.1     yamt 
     98        1.1     yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
     99        1.1     yamt 
    100        1.1     yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
    101        1.1     yamt LIST_HEAD(vmem_freelist, vmem_btag);
    102        1.1     yamt LIST_HEAD(vmem_hashlist, vmem_btag);
    103        1.1     yamt 
    104        1.5     yamt #if defined(QCACHE)
    105        1.5     yamt #define	VMEM_QCACHE_IDX_MAX	32
    106        1.5     yamt 
    107        1.5     yamt #define	QC_NAME_MAX	16
    108        1.5     yamt 
    109        1.5     yamt struct qcache {
    110  1.32.12.1   bouyer 	pool_cache_t qc_cache;
    111        1.5     yamt 	vmem_t *qc_vmem;
    112        1.5     yamt 	char qc_name[QC_NAME_MAX];
    113        1.5     yamt };
    114        1.5     yamt typedef struct qcache qcache_t;
    115  1.32.12.1   bouyer #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
    116        1.5     yamt #endif /* defined(QCACHE) */
    117        1.5     yamt 
    118        1.1     yamt /* vmem arena */
    119        1.1     yamt struct vmem {
    120       1.31       ad 	LOCK_DECL(vm_lock);
    121        1.1     yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    122        1.1     yamt 	    vm_flag_t);
    123        1.1     yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    124        1.1     yamt 	vmem_t *vm_source;
    125        1.1     yamt 	struct vmem_seglist vm_seglist;
    126        1.1     yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    127        1.1     yamt 	size_t vm_hashsize;
    128        1.1     yamt 	size_t vm_nbusytag;
    129        1.1     yamt 	struct vmem_hashlist *vm_hashlist;
    130        1.1     yamt 	size_t vm_quantum_mask;
    131        1.1     yamt 	int vm_quantum_shift;
    132        1.1     yamt 	const char *vm_name;
    133       1.30     yamt 	LIST_ENTRY(vmem) vm_alllist;
    134        1.5     yamt 
    135        1.5     yamt #if defined(QCACHE)
    136        1.5     yamt 	/* quantum cache */
    137        1.5     yamt 	size_t vm_qcache_max;
    138        1.5     yamt 	struct pool_allocator vm_qcache_allocator;
    139       1.22     yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    140       1.22     yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    141        1.5     yamt #endif /* defined(QCACHE) */
    142        1.1     yamt };
    143        1.1     yamt 
    144       1.31       ad #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
    145       1.31       ad #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
    146       1.31       ad #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
    147       1.31       ad #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DRIVER, ipl)
    148       1.31       ad #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
    149       1.31       ad #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
    150        1.1     yamt 
    151        1.1     yamt /* boundary tag */
    152        1.1     yamt struct vmem_btag {
    153        1.1     yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    154        1.1     yamt 	union {
    155        1.1     yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    156        1.1     yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    157        1.1     yamt 	} bt_u;
    158        1.1     yamt #define	bt_hashlist	bt_u.u_hashlist
    159        1.1     yamt #define	bt_freelist	bt_u.u_freelist
    160        1.1     yamt 	vmem_addr_t bt_start;
    161        1.1     yamt 	vmem_size_t bt_size;
    162        1.1     yamt 	int bt_type;
    163        1.1     yamt };
    164        1.1     yamt 
    165        1.1     yamt #define	BT_TYPE_SPAN		1
    166        1.1     yamt #define	BT_TYPE_SPAN_STATIC	2
    167        1.1     yamt #define	BT_TYPE_FREE		3
    168        1.1     yamt #define	BT_TYPE_BUSY		4
    169        1.1     yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    170        1.1     yamt 
    171        1.1     yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    172        1.1     yamt 
    173        1.1     yamt typedef struct vmem_btag bt_t;
    174        1.1     yamt 
    175        1.1     yamt /* ---- misc */
    176        1.1     yamt 
    177       1.19     yamt #define	VMEM_ALIGNUP(addr, align) \
    178       1.19     yamt 	(-(-(addr) & -(align)))
    179       1.19     yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    180       1.19     yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    181       1.19     yamt 
    182        1.4     yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    183        1.4     yamt 
    184        1.1     yamt static int
    185        1.1     yamt calc_order(vmem_size_t size)
    186        1.1     yamt {
    187        1.4     yamt 	vmem_size_t target;
    188        1.1     yamt 	int i;
    189        1.1     yamt 
    190        1.1     yamt 	KASSERT(size != 0);
    191        1.1     yamt 
    192        1.1     yamt 	i = 0;
    193        1.4     yamt 	target = size >> 1;
    194        1.4     yamt 	while (ORDER2SIZE(i) <= target) {
    195        1.1     yamt 		i++;
    196        1.1     yamt 	}
    197        1.1     yamt 
    198        1.4     yamt 	KASSERT(ORDER2SIZE(i) <= size);
    199        1.4     yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    200        1.1     yamt 
    201        1.1     yamt 	return i;
    202        1.1     yamt }
    203        1.1     yamt 
    204        1.1     yamt #if defined(_KERNEL)
    205        1.1     yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    206        1.1     yamt #endif /* defined(_KERNEL) */
    207        1.1     yamt 
    208        1.1     yamt static void *
    209        1.1     yamt xmalloc(size_t sz, vm_flag_t flags)
    210        1.1     yamt {
    211        1.1     yamt 
    212        1.1     yamt #if defined(_KERNEL)
    213        1.1     yamt 	return malloc(sz, M_VMEM,
    214        1.1     yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    215        1.1     yamt #else /* defined(_KERNEL) */
    216        1.1     yamt 	return malloc(sz);
    217        1.1     yamt #endif /* defined(_KERNEL) */
    218        1.1     yamt }
    219        1.1     yamt 
    220        1.1     yamt static void
    221        1.1     yamt xfree(void *p)
    222        1.1     yamt {
    223        1.1     yamt 
    224        1.1     yamt #if defined(_KERNEL)
    225        1.1     yamt 	return free(p, M_VMEM);
    226        1.1     yamt #else /* defined(_KERNEL) */
    227        1.1     yamt 	return free(p);
    228        1.1     yamt #endif /* defined(_KERNEL) */
    229        1.1     yamt }
    230        1.1     yamt 
    231        1.1     yamt /* ---- boundary tag */
    232        1.1     yamt 
    233        1.1     yamt #if defined(_KERNEL)
    234  1.32.12.1   bouyer static struct pool_cache bt_cache;
    235        1.1     yamt #endif /* defined(_KERNEL) */
    236        1.1     yamt 
    237        1.1     yamt static bt_t *
    238       1.17     yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    239        1.1     yamt {
    240        1.1     yamt 	bt_t *bt;
    241        1.1     yamt 
    242        1.1     yamt #if defined(_KERNEL)
    243  1.32.12.1   bouyer 	bt = pool_cache_get(&bt_cache,
    244        1.1     yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    245        1.1     yamt #else /* defined(_KERNEL) */
    246        1.1     yamt 	bt = malloc(sizeof *bt);
    247        1.1     yamt #endif /* defined(_KERNEL) */
    248        1.1     yamt 
    249        1.1     yamt 	return bt;
    250        1.1     yamt }
    251        1.1     yamt 
    252        1.1     yamt static void
    253       1.17     yamt bt_free(vmem_t *vm, bt_t *bt)
    254        1.1     yamt {
    255        1.1     yamt 
    256        1.1     yamt #if defined(_KERNEL)
    257  1.32.12.1   bouyer 	pool_cache_put(&bt_cache, bt);
    258        1.1     yamt #else /* defined(_KERNEL) */
    259        1.1     yamt 	free(bt);
    260        1.1     yamt #endif /* defined(_KERNEL) */
    261        1.1     yamt }
    262        1.1     yamt 
    263        1.1     yamt /*
    264        1.1     yamt  * freelist[0] ... [1, 1]
    265        1.1     yamt  * freelist[1] ... [2, 3]
    266        1.1     yamt  * freelist[2] ... [4, 7]
    267        1.1     yamt  * freelist[3] ... [8, 15]
    268        1.1     yamt  *  :
    269        1.1     yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    270        1.1     yamt  *  :
    271        1.1     yamt  */
    272        1.1     yamt 
    273        1.1     yamt static struct vmem_freelist *
    274        1.1     yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    275        1.1     yamt {
    276        1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    277        1.1     yamt 	int idx;
    278        1.1     yamt 
    279        1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    280        1.1     yamt 	KASSERT(size != 0);
    281        1.1     yamt 
    282        1.1     yamt 	idx = calc_order(qsize);
    283        1.1     yamt 	KASSERT(idx >= 0);
    284        1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    285        1.1     yamt 
    286        1.1     yamt 	return &vm->vm_freelist[idx];
    287        1.1     yamt }
    288        1.1     yamt 
    289        1.1     yamt static struct vmem_freelist *
    290        1.1     yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    291        1.1     yamt {
    292        1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    293        1.1     yamt 	int idx;
    294        1.1     yamt 
    295        1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    296        1.1     yamt 	KASSERT(size != 0);
    297        1.1     yamt 
    298        1.1     yamt 	idx = calc_order(qsize);
    299        1.4     yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    300        1.1     yamt 		idx++;
    301        1.1     yamt 		/* check too large request? */
    302        1.1     yamt 	}
    303        1.1     yamt 	KASSERT(idx >= 0);
    304        1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    305        1.1     yamt 
    306        1.1     yamt 	return &vm->vm_freelist[idx];
    307        1.1     yamt }
    308        1.1     yamt 
    309        1.1     yamt /* ---- boundary tag hash */
    310        1.1     yamt 
    311        1.1     yamt static struct vmem_hashlist *
    312        1.1     yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    313        1.1     yamt {
    314        1.1     yamt 	struct vmem_hashlist *list;
    315        1.1     yamt 	unsigned int hash;
    316        1.1     yamt 
    317        1.1     yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    318        1.1     yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    319        1.1     yamt 
    320        1.1     yamt 	return list;
    321        1.1     yamt }
    322        1.1     yamt 
    323        1.1     yamt static bt_t *
    324        1.1     yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    325        1.1     yamt {
    326        1.1     yamt 	struct vmem_hashlist *list;
    327        1.1     yamt 	bt_t *bt;
    328        1.1     yamt 
    329        1.1     yamt 	list = bt_hashhead(vm, addr);
    330        1.1     yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    331        1.1     yamt 		if (bt->bt_start == addr) {
    332        1.1     yamt 			break;
    333        1.1     yamt 		}
    334        1.1     yamt 	}
    335        1.1     yamt 
    336        1.1     yamt 	return bt;
    337        1.1     yamt }
    338        1.1     yamt 
    339        1.1     yamt static void
    340        1.1     yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    341        1.1     yamt {
    342        1.1     yamt 
    343        1.1     yamt 	KASSERT(vm->vm_nbusytag > 0);
    344        1.1     yamt 	vm->vm_nbusytag--;
    345        1.1     yamt 	LIST_REMOVE(bt, bt_hashlist);
    346        1.1     yamt }
    347        1.1     yamt 
    348        1.1     yamt static void
    349        1.1     yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    350        1.1     yamt {
    351        1.1     yamt 	struct vmem_hashlist *list;
    352        1.1     yamt 
    353        1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    354        1.1     yamt 
    355        1.1     yamt 	list = bt_hashhead(vm, bt->bt_start);
    356        1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    357        1.1     yamt 	vm->vm_nbusytag++;
    358        1.1     yamt }
    359        1.1     yamt 
    360        1.1     yamt /* ---- boundary tag list */
    361        1.1     yamt 
    362        1.1     yamt static void
    363        1.1     yamt bt_remseg(vmem_t *vm, bt_t *bt)
    364        1.1     yamt {
    365        1.1     yamt 
    366        1.1     yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    367        1.1     yamt }
    368        1.1     yamt 
    369        1.1     yamt static void
    370        1.1     yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    371        1.1     yamt {
    372        1.1     yamt 
    373        1.1     yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    374        1.1     yamt }
    375        1.1     yamt 
    376        1.1     yamt static void
    377        1.1     yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    378        1.1     yamt {
    379        1.1     yamt 
    380        1.1     yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    381        1.1     yamt }
    382        1.1     yamt 
    383        1.1     yamt static void
    384       1.17     yamt bt_remfree(vmem_t *vm, bt_t *bt)
    385        1.1     yamt {
    386        1.1     yamt 
    387        1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    388        1.1     yamt 
    389        1.1     yamt 	LIST_REMOVE(bt, bt_freelist);
    390        1.1     yamt }
    391        1.1     yamt 
    392        1.1     yamt static void
    393        1.1     yamt bt_insfree(vmem_t *vm, bt_t *bt)
    394        1.1     yamt {
    395        1.1     yamt 	struct vmem_freelist *list;
    396        1.1     yamt 
    397        1.1     yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    398        1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    399        1.1     yamt }
    400        1.1     yamt 
    401        1.1     yamt /* ---- vmem internal functions */
    402        1.1     yamt 
    403       1.30     yamt #if defined(_KERNEL)
    404       1.30     yamt static kmutex_t vmem_list_lock;
    405       1.30     yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
    406       1.30     yamt #endif /* defined(_KERNEL) */
    407       1.30     yamt 
    408        1.5     yamt #if defined(QCACHE)
    409        1.5     yamt static inline vm_flag_t
    410        1.5     yamt prf_to_vmf(int prflags)
    411        1.5     yamt {
    412        1.5     yamt 	vm_flag_t vmflags;
    413        1.5     yamt 
    414        1.5     yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    415        1.5     yamt 	if ((prflags & PR_WAITOK) != 0) {
    416        1.5     yamt 		vmflags = VM_SLEEP;
    417        1.5     yamt 	} else {
    418        1.5     yamt 		vmflags = VM_NOSLEEP;
    419        1.5     yamt 	}
    420        1.5     yamt 	return vmflags;
    421        1.5     yamt }
    422        1.5     yamt 
    423        1.5     yamt static inline int
    424        1.5     yamt vmf_to_prf(vm_flag_t vmflags)
    425        1.5     yamt {
    426        1.5     yamt 	int prflags;
    427        1.5     yamt 
    428        1.7     yamt 	if ((vmflags & VM_SLEEP) != 0) {
    429        1.5     yamt 		prflags = PR_WAITOK;
    430        1.7     yamt 	} else {
    431        1.5     yamt 		prflags = PR_NOWAIT;
    432        1.5     yamt 	}
    433        1.5     yamt 	return prflags;
    434        1.5     yamt }
    435        1.5     yamt 
    436        1.5     yamt static size_t
    437        1.5     yamt qc_poolpage_size(size_t qcache_max)
    438        1.5     yamt {
    439        1.5     yamt 	int i;
    440        1.5     yamt 
    441        1.5     yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    442        1.5     yamt 		/* nothing */
    443        1.5     yamt 	}
    444        1.5     yamt 	return ORDER2SIZE(i);
    445        1.5     yamt }
    446        1.5     yamt 
    447        1.5     yamt static void *
    448        1.5     yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    449        1.5     yamt {
    450        1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    451        1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    452        1.5     yamt 
    453        1.5     yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    454        1.5     yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    455        1.5     yamt }
    456        1.5     yamt 
    457        1.5     yamt static void
    458        1.5     yamt qc_poolpage_free(struct pool *pool, void *addr)
    459        1.5     yamt {
    460        1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    461        1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    462        1.5     yamt 
    463        1.5     yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    464        1.5     yamt }
    465        1.5     yamt 
    466        1.5     yamt static void
    467       1.31       ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
    468        1.5     yamt {
    469       1.22     yamt 	qcache_t *prevqc;
    470        1.5     yamt 	struct pool_allocator *pa;
    471        1.5     yamt 	int qcache_idx_max;
    472        1.5     yamt 	int i;
    473        1.5     yamt 
    474        1.5     yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    475        1.5     yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    476        1.5     yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    477        1.5     yamt 	}
    478        1.5     yamt 	vm->vm_qcache_max = qcache_max;
    479        1.5     yamt 	pa = &vm->vm_qcache_allocator;
    480        1.5     yamt 	memset(pa, 0, sizeof(*pa));
    481        1.5     yamt 	pa->pa_alloc = qc_poolpage_alloc;
    482        1.5     yamt 	pa->pa_free = qc_poolpage_free;
    483        1.5     yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    484        1.5     yamt 
    485        1.5     yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    486       1.22     yamt 	prevqc = NULL;
    487       1.22     yamt 	for (i = qcache_idx_max; i > 0; i--) {
    488       1.22     yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    489        1.5     yamt 		size_t size = i << vm->vm_quantum_shift;
    490        1.5     yamt 
    491        1.5     yamt 		qc->qc_vmem = vm;
    492        1.8   martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    493        1.5     yamt 		    vm->vm_name, size);
    494  1.32.12.1   bouyer 		qc->qc_cache = pool_cache_init(size,
    495  1.32.12.1   bouyer 		    ORDER2SIZE(vm->vm_quantum_shift), 0,
    496  1.32.12.1   bouyer 		    PR_NOALIGN | PR_NOTOUCH /* XXX */,
    497  1.32.12.1   bouyer 		    qc->qc_name, pa, ipl, NULL, NULL, NULL);
    498  1.32.12.1   bouyer 		KASSERT(qc->qc_cache != NULL);	/* XXX */
    499       1.22     yamt 		if (prevqc != NULL &&
    500  1.32.12.1   bouyer 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
    501  1.32.12.1   bouyer 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
    502  1.32.12.1   bouyer 			pool_cache_destroy(qc->qc_cache);
    503       1.22     yamt 			vm->vm_qcache[i - 1] = prevqc;
    504       1.27       ad 			continue;
    505       1.22     yamt 		}
    506  1.32.12.1   bouyer 		qc->qc_cache->pc_pool.pr_qcache = qc;
    507       1.22     yamt 		vm->vm_qcache[i - 1] = qc;
    508       1.22     yamt 		prevqc = qc;
    509        1.5     yamt 	}
    510        1.5     yamt }
    511        1.6     yamt 
    512       1.23     yamt static void
    513       1.23     yamt qc_destroy(vmem_t *vm)
    514       1.23     yamt {
    515       1.23     yamt 	const qcache_t *prevqc;
    516       1.23     yamt 	int i;
    517       1.23     yamt 	int qcache_idx_max;
    518       1.23     yamt 
    519       1.23     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    520       1.23     yamt 	prevqc = NULL;
    521       1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    522       1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    523       1.23     yamt 
    524       1.23     yamt 		if (prevqc == qc) {
    525       1.23     yamt 			continue;
    526       1.23     yamt 		}
    527  1.32.12.1   bouyer 		pool_cache_destroy(qc->qc_cache);
    528       1.23     yamt 		prevqc = qc;
    529       1.23     yamt 	}
    530       1.23     yamt }
    531       1.23     yamt 
    532       1.25  thorpej static bool
    533        1.6     yamt qc_reap(vmem_t *vm)
    534        1.6     yamt {
    535       1.22     yamt 	const qcache_t *prevqc;
    536        1.6     yamt 	int i;
    537        1.6     yamt 	int qcache_idx_max;
    538       1.26  thorpej 	bool didsomething = false;
    539        1.6     yamt 
    540        1.6     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    541       1.22     yamt 	prevqc = NULL;
    542       1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    543       1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    544        1.6     yamt 
    545       1.22     yamt 		if (prevqc == qc) {
    546       1.22     yamt 			continue;
    547       1.22     yamt 		}
    548  1.32.12.1   bouyer 		if (pool_cache_reclaim(qc->qc_cache) != 0) {
    549       1.26  thorpej 			didsomething = true;
    550        1.6     yamt 		}
    551       1.22     yamt 		prevqc = qc;
    552        1.6     yamt 	}
    553        1.6     yamt 
    554        1.6     yamt 	return didsomething;
    555        1.6     yamt }
    556        1.5     yamt #endif /* defined(QCACHE) */
    557        1.5     yamt 
    558        1.1     yamt #if defined(_KERNEL)
    559        1.1     yamt static int
    560        1.1     yamt vmem_init(void)
    561        1.1     yamt {
    562        1.1     yamt 
    563       1.30     yamt 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
    564  1.32.12.1   bouyer 	pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
    565  1.32.12.1   bouyer 	    NULL, IPL_VM, NULL, NULL, NULL);
    566        1.1     yamt 	return 0;
    567        1.1     yamt }
    568        1.1     yamt #endif /* defined(_KERNEL) */
    569        1.1     yamt 
    570        1.1     yamt static vmem_addr_t
    571        1.1     yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    572        1.1     yamt     int spanbttype)
    573        1.1     yamt {
    574        1.1     yamt 	bt_t *btspan;
    575        1.1     yamt 	bt_t *btfree;
    576        1.1     yamt 
    577        1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    578        1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    579        1.1     yamt 
    580        1.1     yamt 	btspan = bt_alloc(vm, flags);
    581        1.1     yamt 	if (btspan == NULL) {
    582        1.1     yamt 		return VMEM_ADDR_NULL;
    583        1.1     yamt 	}
    584        1.1     yamt 	btfree = bt_alloc(vm, flags);
    585        1.1     yamt 	if (btfree == NULL) {
    586        1.1     yamt 		bt_free(vm, btspan);
    587        1.1     yamt 		return VMEM_ADDR_NULL;
    588        1.1     yamt 	}
    589        1.1     yamt 
    590        1.1     yamt 	btspan->bt_type = spanbttype;
    591        1.1     yamt 	btspan->bt_start = addr;
    592        1.1     yamt 	btspan->bt_size = size;
    593        1.1     yamt 
    594        1.1     yamt 	btfree->bt_type = BT_TYPE_FREE;
    595        1.1     yamt 	btfree->bt_start = addr;
    596        1.1     yamt 	btfree->bt_size = size;
    597        1.1     yamt 
    598        1.1     yamt 	VMEM_LOCK(vm);
    599        1.1     yamt 	bt_insseg_tail(vm, btspan);
    600        1.1     yamt 	bt_insseg(vm, btfree, btspan);
    601        1.1     yamt 	bt_insfree(vm, btfree);
    602        1.1     yamt 	VMEM_UNLOCK(vm);
    603        1.1     yamt 
    604        1.1     yamt 	return addr;
    605        1.1     yamt }
    606        1.1     yamt 
    607       1.30     yamt static void
    608       1.30     yamt vmem_destroy1(vmem_t *vm)
    609       1.30     yamt {
    610       1.30     yamt 
    611       1.30     yamt #if defined(QCACHE)
    612       1.30     yamt 	qc_destroy(vm);
    613       1.30     yamt #endif /* defined(QCACHE) */
    614       1.30     yamt 	if (vm->vm_hashlist != NULL) {
    615       1.30     yamt 		int i;
    616       1.30     yamt 
    617       1.30     yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    618       1.30     yamt 			bt_t *bt;
    619       1.30     yamt 
    620       1.30     yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    621       1.30     yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    622       1.30     yamt 				bt_free(vm, bt);
    623       1.30     yamt 			}
    624       1.30     yamt 		}
    625       1.30     yamt 		xfree(vm->vm_hashlist);
    626       1.30     yamt 	}
    627       1.31       ad 	VMEM_LOCK_DESTROY(vm);
    628       1.30     yamt 	xfree(vm);
    629       1.30     yamt }
    630       1.30     yamt 
    631        1.1     yamt static int
    632        1.1     yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    633        1.1     yamt {
    634        1.1     yamt 	vmem_addr_t addr;
    635        1.1     yamt 
    636        1.1     yamt 	if (vm->vm_allocfn == NULL) {
    637        1.1     yamt 		return EINVAL;
    638        1.1     yamt 	}
    639        1.1     yamt 
    640        1.1     yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    641        1.1     yamt 	if (addr == VMEM_ADDR_NULL) {
    642        1.1     yamt 		return ENOMEM;
    643        1.1     yamt 	}
    644        1.1     yamt 
    645        1.1     yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    646        1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    647        1.1     yamt 		return ENOMEM;
    648        1.1     yamt 	}
    649        1.1     yamt 
    650        1.1     yamt 	return 0;
    651        1.1     yamt }
    652        1.1     yamt 
    653        1.1     yamt static int
    654        1.1     yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    655        1.1     yamt {
    656        1.1     yamt 	bt_t *bt;
    657        1.1     yamt 	int i;
    658        1.1     yamt 	struct vmem_hashlist *newhashlist;
    659        1.1     yamt 	struct vmem_hashlist *oldhashlist;
    660        1.1     yamt 	size_t oldhashsize;
    661        1.1     yamt 
    662        1.1     yamt 	KASSERT(newhashsize > 0);
    663        1.1     yamt 
    664        1.1     yamt 	newhashlist =
    665        1.1     yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    666        1.1     yamt 	if (newhashlist == NULL) {
    667        1.1     yamt 		return ENOMEM;
    668        1.1     yamt 	}
    669        1.1     yamt 	for (i = 0; i < newhashsize; i++) {
    670        1.1     yamt 		LIST_INIT(&newhashlist[i]);
    671        1.1     yamt 	}
    672        1.1     yamt 
    673       1.30     yamt 	if (!VMEM_TRYLOCK(vm)) {
    674       1.30     yamt 		xfree(newhashlist);
    675       1.30     yamt 		return EBUSY;
    676       1.30     yamt 	}
    677        1.1     yamt 	oldhashlist = vm->vm_hashlist;
    678        1.1     yamt 	oldhashsize = vm->vm_hashsize;
    679        1.1     yamt 	vm->vm_hashlist = newhashlist;
    680        1.1     yamt 	vm->vm_hashsize = newhashsize;
    681        1.1     yamt 	if (oldhashlist == NULL) {
    682        1.1     yamt 		VMEM_UNLOCK(vm);
    683        1.1     yamt 		return 0;
    684        1.1     yamt 	}
    685        1.1     yamt 	for (i = 0; i < oldhashsize; i++) {
    686        1.1     yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    687        1.1     yamt 			bt_rembusy(vm, bt); /* XXX */
    688        1.1     yamt 			bt_insbusy(vm, bt);
    689        1.1     yamt 		}
    690        1.1     yamt 	}
    691        1.1     yamt 	VMEM_UNLOCK(vm);
    692        1.1     yamt 
    693        1.1     yamt 	xfree(oldhashlist);
    694        1.1     yamt 
    695        1.1     yamt 	return 0;
    696        1.1     yamt }
    697        1.1     yamt 
    698       1.10     yamt /*
    699       1.10     yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    700       1.10     yamt  */
    701       1.10     yamt 
    702       1.10     yamt static vmem_addr_t
    703       1.10     yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    704       1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    705       1.10     yamt {
    706       1.10     yamt 	vmem_addr_t start;
    707       1.10     yamt 	vmem_addr_t end;
    708       1.10     yamt 
    709       1.10     yamt 	KASSERT(bt->bt_size >= size);
    710       1.10     yamt 
    711       1.10     yamt 	/*
    712       1.10     yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    713       1.10     yamt 	 * unsigned integer of the same size.
    714       1.10     yamt 	 */
    715       1.10     yamt 
    716       1.10     yamt 	start = bt->bt_start;
    717       1.10     yamt 	if (start < minaddr) {
    718       1.10     yamt 		start = minaddr;
    719       1.10     yamt 	}
    720       1.10     yamt 	end = BT_END(bt);
    721       1.10     yamt 	if (end > maxaddr - 1) {
    722       1.10     yamt 		end = maxaddr - 1;
    723       1.10     yamt 	}
    724       1.10     yamt 	if (start >= end) {
    725       1.10     yamt 		return VMEM_ADDR_NULL;
    726       1.10     yamt 	}
    727       1.19     yamt 
    728       1.19     yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    729       1.10     yamt 	if (start < bt->bt_start) {
    730       1.10     yamt 		start += align;
    731       1.10     yamt 	}
    732       1.19     yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    733       1.10     yamt 		KASSERT(align < nocross);
    734       1.19     yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    735       1.10     yamt 	}
    736       1.10     yamt 	if (start < end && end - start >= size) {
    737       1.10     yamt 		KASSERT((start & (align - 1)) == phase);
    738       1.19     yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    739       1.10     yamt 		KASSERT(minaddr <= start);
    740       1.10     yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    741       1.10     yamt 		KASSERT(bt->bt_start <= start);
    742       1.10     yamt 		KASSERT(start + size <= BT_END(bt));
    743       1.10     yamt 		return start;
    744       1.10     yamt 	}
    745       1.10     yamt 	return VMEM_ADDR_NULL;
    746       1.10     yamt }
    747       1.10     yamt 
    748        1.1     yamt /* ---- vmem API */
    749        1.1     yamt 
    750        1.1     yamt /*
    751        1.1     yamt  * vmem_create: create an arena.
    752        1.1     yamt  *
    753        1.1     yamt  * => must not be called from interrupt context.
    754        1.1     yamt  */
    755        1.1     yamt 
    756        1.1     yamt vmem_t *
    757        1.1     yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    758        1.1     yamt     vmem_size_t quantum,
    759        1.1     yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    760        1.1     yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    761       1.31       ad     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
    762       1.31       ad     int ipl)
    763        1.1     yamt {
    764        1.1     yamt 	vmem_t *vm;
    765        1.1     yamt 	int i;
    766        1.1     yamt #if defined(_KERNEL)
    767        1.1     yamt 	static ONCE_DECL(control);
    768        1.1     yamt #endif /* defined(_KERNEL) */
    769        1.1     yamt 
    770        1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    771        1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    772        1.1     yamt 
    773        1.1     yamt #if defined(_KERNEL)
    774        1.1     yamt 	if (RUN_ONCE(&control, vmem_init)) {
    775        1.1     yamt 		return NULL;
    776        1.1     yamt 	}
    777        1.1     yamt #endif /* defined(_KERNEL) */
    778        1.1     yamt 	vm = xmalloc(sizeof(*vm), flags);
    779        1.1     yamt 	if (vm == NULL) {
    780        1.1     yamt 		return NULL;
    781        1.1     yamt 	}
    782        1.1     yamt 
    783       1.31       ad 	VMEM_LOCK_INIT(vm, ipl);
    784        1.1     yamt 	vm->vm_name = name;
    785        1.1     yamt 	vm->vm_quantum_mask = quantum - 1;
    786        1.1     yamt 	vm->vm_quantum_shift = calc_order(quantum);
    787        1.4     yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    788        1.1     yamt 	vm->vm_allocfn = allocfn;
    789        1.1     yamt 	vm->vm_freefn = freefn;
    790        1.1     yamt 	vm->vm_source = source;
    791        1.1     yamt 	vm->vm_nbusytag = 0;
    792        1.5     yamt #if defined(QCACHE)
    793       1.31       ad 	qc_init(vm, qcache_max, ipl);
    794        1.5     yamt #endif /* defined(QCACHE) */
    795        1.1     yamt 
    796        1.1     yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    797        1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    798        1.1     yamt 		LIST_INIT(&vm->vm_freelist[i]);
    799        1.1     yamt 	}
    800        1.1     yamt 	vm->vm_hashlist = NULL;
    801        1.1     yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    802       1.30     yamt 		vmem_destroy1(vm);
    803        1.1     yamt 		return NULL;
    804        1.1     yamt 	}
    805        1.1     yamt 
    806        1.1     yamt 	if (size != 0) {
    807        1.1     yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    808       1.30     yamt 			vmem_destroy1(vm);
    809        1.1     yamt 			return NULL;
    810        1.1     yamt 		}
    811        1.1     yamt 	}
    812        1.1     yamt 
    813       1.30     yamt #if defined(_KERNEL)
    814       1.30     yamt 	mutex_enter(&vmem_list_lock);
    815       1.30     yamt 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
    816       1.30     yamt 	mutex_exit(&vmem_list_lock);
    817       1.30     yamt #endif /* defined(_KERNEL) */
    818       1.30     yamt 
    819        1.1     yamt 	return vm;
    820        1.1     yamt }
    821        1.1     yamt 
    822        1.1     yamt void
    823        1.1     yamt vmem_destroy(vmem_t *vm)
    824        1.1     yamt {
    825        1.1     yamt 
    826       1.30     yamt #if defined(_KERNEL)
    827       1.30     yamt 	mutex_enter(&vmem_list_lock);
    828       1.30     yamt 	LIST_REMOVE(vm, vm_alllist);
    829       1.30     yamt 	mutex_exit(&vmem_list_lock);
    830       1.30     yamt #endif /* defined(_KERNEL) */
    831        1.1     yamt 
    832       1.30     yamt 	vmem_destroy1(vm);
    833        1.1     yamt }
    834        1.1     yamt 
    835        1.1     yamt vmem_size_t
    836        1.1     yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    837        1.1     yamt {
    838        1.1     yamt 
    839        1.1     yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    840        1.1     yamt }
    841        1.1     yamt 
    842        1.1     yamt /*
    843        1.1     yamt  * vmem_alloc:
    844        1.1     yamt  *
    845        1.1     yamt  * => caller must ensure appropriate spl,
    846        1.1     yamt  *    if the arena can be accessed from interrupt context.
    847        1.1     yamt  */
    848        1.1     yamt 
    849        1.1     yamt vmem_addr_t
    850        1.1     yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
    851        1.1     yamt {
    852       1.12     yamt 	const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
    853       1.12     yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    854        1.1     yamt 
    855        1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    856        1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    857        1.1     yamt 
    858        1.1     yamt 	KASSERT(size0 > 0);
    859        1.1     yamt 	KASSERT(size > 0);
    860        1.1     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    861        1.3     yamt 	if ((flags & VM_SLEEP) != 0) {
    862       1.16     yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    863        1.3     yamt 	}
    864        1.1     yamt 
    865        1.5     yamt #if defined(QCACHE)
    866        1.5     yamt 	if (size <= vm->vm_qcache_max) {
    867        1.5     yamt 		int qidx = size >> vm->vm_quantum_shift;
    868       1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    869        1.5     yamt 
    870  1.32.12.1   bouyer 		return (vmem_addr_t)pool_cache_get(qc->qc_cache,
    871        1.5     yamt 		    vmf_to_prf(flags));
    872        1.5     yamt 	}
    873        1.5     yamt #endif /* defined(QCACHE) */
    874        1.5     yamt 
    875       1.10     yamt 	return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
    876       1.10     yamt }
    877       1.10     yamt 
    878       1.10     yamt vmem_addr_t
    879       1.10     yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
    880       1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
    881       1.10     yamt     vm_flag_t flags)
    882       1.10     yamt {
    883       1.10     yamt 	struct vmem_freelist *list;
    884       1.10     yamt 	struct vmem_freelist *first;
    885       1.10     yamt 	struct vmem_freelist *end;
    886       1.10     yamt 	bt_t *bt;
    887       1.10     yamt 	bt_t *btnew;
    888       1.10     yamt 	bt_t *btnew2;
    889       1.10     yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
    890       1.10     yamt 	vm_flag_t strat = flags & VM_FITMASK;
    891       1.10     yamt 	vmem_addr_t start;
    892       1.10     yamt 
    893       1.10     yamt 	KASSERT(size0 > 0);
    894       1.10     yamt 	KASSERT(size > 0);
    895       1.10     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    896       1.10     yamt 	if ((flags & VM_SLEEP) != 0) {
    897       1.16     yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    898       1.10     yamt 	}
    899       1.10     yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
    900       1.10     yamt 	KASSERT((align & (align - 1)) == 0);
    901       1.10     yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
    902       1.10     yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
    903       1.10     yamt 	KASSERT((nocross & (nocross - 1)) == 0);
    904       1.10     yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
    905       1.10     yamt 	KASSERT(nocross == 0 || nocross >= size);
    906       1.10     yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
    907       1.19     yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
    908       1.10     yamt 
    909       1.10     yamt 	if (align == 0) {
    910       1.10     yamt 		align = vm->vm_quantum_mask + 1;
    911       1.10     yamt 	}
    912        1.1     yamt 	btnew = bt_alloc(vm, flags);
    913        1.1     yamt 	if (btnew == NULL) {
    914        1.1     yamt 		return VMEM_ADDR_NULL;
    915        1.1     yamt 	}
    916       1.10     yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
    917       1.10     yamt 	if (btnew2 == NULL) {
    918       1.10     yamt 		bt_free(vm, btnew);
    919       1.10     yamt 		return VMEM_ADDR_NULL;
    920       1.10     yamt 	}
    921        1.1     yamt 
    922        1.1     yamt retry_strat:
    923        1.1     yamt 	first = bt_freehead_toalloc(vm, size, strat);
    924        1.1     yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
    925        1.1     yamt retry:
    926        1.1     yamt 	bt = NULL;
    927        1.1     yamt 	VMEM_LOCK(vm);
    928        1.2     yamt 	if (strat == VM_INSTANTFIT) {
    929        1.2     yamt 		for (list = first; list < end; list++) {
    930        1.2     yamt 			bt = LIST_FIRST(list);
    931        1.2     yamt 			if (bt != NULL) {
    932       1.10     yamt 				start = vmem_fit(bt, size, align, phase,
    933       1.10     yamt 				    nocross, minaddr, maxaddr);
    934       1.10     yamt 				if (start != VMEM_ADDR_NULL) {
    935       1.10     yamt 					goto gotit;
    936       1.10     yamt 				}
    937        1.2     yamt 			}
    938        1.2     yamt 		}
    939        1.2     yamt 	} else { /* VM_BESTFIT */
    940        1.2     yamt 		for (list = first; list < end; list++) {
    941        1.2     yamt 			LIST_FOREACH(bt, list, bt_freelist) {
    942        1.2     yamt 				if (bt->bt_size >= size) {
    943       1.10     yamt 					start = vmem_fit(bt, size, align, phase,
    944       1.10     yamt 					    nocross, minaddr, maxaddr);
    945       1.10     yamt 					if (start != VMEM_ADDR_NULL) {
    946       1.10     yamt 						goto gotit;
    947       1.10     yamt 					}
    948        1.2     yamt 				}
    949        1.1     yamt 			}
    950        1.1     yamt 		}
    951        1.1     yamt 	}
    952        1.2     yamt 	VMEM_UNLOCK(vm);
    953        1.1     yamt #if 1
    954        1.2     yamt 	if (strat == VM_INSTANTFIT) {
    955        1.2     yamt 		strat = VM_BESTFIT;
    956        1.2     yamt 		goto retry_strat;
    957        1.2     yamt 	}
    958        1.1     yamt #endif
    959       1.10     yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
    960       1.10     yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
    961       1.10     yamt 
    962       1.10     yamt 		/*
    963       1.10     yamt 		 * XXX should try to import a region large enough to
    964       1.10     yamt 		 * satisfy restrictions?
    965       1.10     yamt 		 */
    966       1.10     yamt 
    967       1.20     yamt 		goto fail;
    968       1.10     yamt 	}
    969        1.2     yamt 	if (vmem_import(vm, size, flags) == 0) {
    970        1.2     yamt 		goto retry;
    971        1.1     yamt 	}
    972        1.2     yamt 	/* XXX */
    973       1.20     yamt fail:
    974       1.20     yamt 	bt_free(vm, btnew);
    975       1.20     yamt 	bt_free(vm, btnew2);
    976        1.2     yamt 	return VMEM_ADDR_NULL;
    977        1.2     yamt 
    978        1.2     yamt gotit:
    979        1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    980        1.1     yamt 	KASSERT(bt->bt_size >= size);
    981        1.1     yamt 	bt_remfree(vm, bt);
    982       1.10     yamt 	if (bt->bt_start != start) {
    983       1.10     yamt 		btnew2->bt_type = BT_TYPE_FREE;
    984       1.10     yamt 		btnew2->bt_start = bt->bt_start;
    985       1.10     yamt 		btnew2->bt_size = start - bt->bt_start;
    986       1.10     yamt 		bt->bt_start = start;
    987       1.10     yamt 		bt->bt_size -= btnew2->bt_size;
    988       1.10     yamt 		bt_insfree(vm, btnew2);
    989       1.10     yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
    990       1.10     yamt 		btnew2 = NULL;
    991       1.10     yamt 	}
    992       1.10     yamt 	KASSERT(bt->bt_start == start);
    993        1.1     yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
    994        1.1     yamt 		/* split */
    995        1.1     yamt 		btnew->bt_type = BT_TYPE_BUSY;
    996        1.1     yamt 		btnew->bt_start = bt->bt_start;
    997        1.1     yamt 		btnew->bt_size = size;
    998        1.1     yamt 		bt->bt_start = bt->bt_start + size;
    999        1.1     yamt 		bt->bt_size -= size;
   1000        1.1     yamt 		bt_insfree(vm, bt);
   1001        1.1     yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
   1002        1.1     yamt 		bt_insbusy(vm, btnew);
   1003        1.1     yamt 		VMEM_UNLOCK(vm);
   1004        1.1     yamt 	} else {
   1005        1.1     yamt 		bt->bt_type = BT_TYPE_BUSY;
   1006        1.1     yamt 		bt_insbusy(vm, bt);
   1007        1.1     yamt 		VMEM_UNLOCK(vm);
   1008        1.1     yamt 		bt_free(vm, btnew);
   1009        1.1     yamt 		btnew = bt;
   1010        1.1     yamt 	}
   1011       1.10     yamt 	if (btnew2 != NULL) {
   1012       1.10     yamt 		bt_free(vm, btnew2);
   1013       1.10     yamt 	}
   1014        1.1     yamt 	KASSERT(btnew->bt_size >= size);
   1015        1.1     yamt 	btnew->bt_type = BT_TYPE_BUSY;
   1016        1.1     yamt 
   1017        1.1     yamt 	return btnew->bt_start;
   1018        1.1     yamt }
   1019        1.1     yamt 
   1020        1.1     yamt /*
   1021        1.1     yamt  * vmem_free:
   1022        1.1     yamt  *
   1023        1.1     yamt  * => caller must ensure appropriate spl,
   1024        1.1     yamt  *    if the arena can be accessed from interrupt context.
   1025        1.1     yamt  */
   1026        1.1     yamt 
   1027        1.1     yamt void
   1028        1.1     yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1029        1.1     yamt {
   1030        1.1     yamt 
   1031        1.1     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1032        1.1     yamt 	KASSERT(size > 0);
   1033        1.1     yamt 
   1034        1.5     yamt #if defined(QCACHE)
   1035        1.5     yamt 	if (size <= vm->vm_qcache_max) {
   1036        1.5     yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1037       1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1038        1.5     yamt 
   1039  1.32.12.1   bouyer 		return pool_cache_put(qc->qc_cache, (void *)addr);
   1040        1.5     yamt 	}
   1041        1.5     yamt #endif /* defined(QCACHE) */
   1042        1.5     yamt 
   1043       1.10     yamt 	vmem_xfree(vm, addr, size);
   1044       1.10     yamt }
   1045       1.10     yamt 
   1046       1.10     yamt void
   1047       1.17     yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1048       1.10     yamt {
   1049       1.10     yamt 	bt_t *bt;
   1050       1.10     yamt 	bt_t *t;
   1051       1.10     yamt 
   1052       1.10     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1053       1.10     yamt 	KASSERT(size > 0);
   1054       1.10     yamt 
   1055        1.1     yamt 	VMEM_LOCK(vm);
   1056        1.1     yamt 
   1057        1.1     yamt 	bt = bt_lookupbusy(vm, addr);
   1058        1.1     yamt 	KASSERT(bt != NULL);
   1059        1.1     yamt 	KASSERT(bt->bt_start == addr);
   1060        1.1     yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1061        1.1     yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1062        1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1063        1.1     yamt 	bt_rembusy(vm, bt);
   1064        1.1     yamt 	bt->bt_type = BT_TYPE_FREE;
   1065        1.1     yamt 
   1066        1.1     yamt 	/* coalesce */
   1067        1.1     yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1068        1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1069        1.1     yamt 		KASSERT(BT_END(bt) == t->bt_start);
   1070        1.1     yamt 		bt_remfree(vm, t);
   1071        1.1     yamt 		bt_remseg(vm, t);
   1072        1.1     yamt 		bt->bt_size += t->bt_size;
   1073        1.1     yamt 		bt_free(vm, t);
   1074        1.1     yamt 	}
   1075        1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1076        1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1077        1.1     yamt 		KASSERT(BT_END(t) == bt->bt_start);
   1078        1.1     yamt 		bt_remfree(vm, t);
   1079        1.1     yamt 		bt_remseg(vm, t);
   1080        1.1     yamt 		bt->bt_size += t->bt_size;
   1081        1.1     yamt 		bt->bt_start = t->bt_start;
   1082        1.1     yamt 		bt_free(vm, t);
   1083        1.1     yamt 	}
   1084        1.1     yamt 
   1085        1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1086        1.1     yamt 	KASSERT(t != NULL);
   1087        1.1     yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1088        1.1     yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1089        1.1     yamt 	    t->bt_size == bt->bt_size) {
   1090        1.1     yamt 		vmem_addr_t spanaddr;
   1091        1.1     yamt 		vmem_size_t spansize;
   1092        1.1     yamt 
   1093        1.1     yamt 		KASSERT(t->bt_start == bt->bt_start);
   1094        1.1     yamt 		spanaddr = bt->bt_start;
   1095        1.1     yamt 		spansize = bt->bt_size;
   1096        1.1     yamt 		bt_remseg(vm, bt);
   1097        1.1     yamt 		bt_free(vm, bt);
   1098        1.1     yamt 		bt_remseg(vm, t);
   1099        1.1     yamt 		bt_free(vm, t);
   1100        1.1     yamt 		VMEM_UNLOCK(vm);
   1101        1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1102        1.1     yamt 	} else {
   1103        1.1     yamt 		bt_insfree(vm, bt);
   1104        1.1     yamt 		VMEM_UNLOCK(vm);
   1105        1.1     yamt 	}
   1106        1.1     yamt }
   1107        1.1     yamt 
   1108        1.1     yamt /*
   1109        1.1     yamt  * vmem_add:
   1110        1.1     yamt  *
   1111        1.1     yamt  * => caller must ensure appropriate spl,
   1112        1.1     yamt  *    if the arena can be accessed from interrupt context.
   1113        1.1     yamt  */
   1114        1.1     yamt 
   1115        1.1     yamt vmem_addr_t
   1116        1.1     yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1117        1.1     yamt {
   1118        1.1     yamt 
   1119        1.1     yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1120        1.1     yamt }
   1121        1.1     yamt 
   1122        1.6     yamt /*
   1123        1.6     yamt  * vmem_reap: reap unused resources.
   1124        1.6     yamt  *
   1125       1.26  thorpej  * => return true if we successfully reaped something.
   1126        1.6     yamt  */
   1127        1.6     yamt 
   1128       1.25  thorpej bool
   1129        1.6     yamt vmem_reap(vmem_t *vm)
   1130        1.6     yamt {
   1131       1.26  thorpej 	bool didsomething = false;
   1132        1.6     yamt 
   1133        1.6     yamt #if defined(QCACHE)
   1134        1.6     yamt 	didsomething = qc_reap(vm);
   1135        1.6     yamt #endif /* defined(QCACHE) */
   1136        1.6     yamt 	return didsomething;
   1137        1.6     yamt }
   1138        1.6     yamt 
   1139       1.30     yamt /* ---- rehash */
   1140       1.30     yamt 
   1141       1.30     yamt #if defined(_KERNEL)
   1142       1.30     yamt static struct callout vmem_rehash_ch;
   1143       1.30     yamt static int vmem_rehash_interval;
   1144       1.30     yamt static struct workqueue *vmem_rehash_wq;
   1145       1.30     yamt static struct work vmem_rehash_wk;
   1146       1.30     yamt 
   1147       1.30     yamt static void
   1148       1.30     yamt vmem_rehash_all(struct work *wk, void *dummy)
   1149       1.30     yamt {
   1150       1.30     yamt 	vmem_t *vm;
   1151       1.30     yamt 
   1152       1.30     yamt 	KASSERT(wk == &vmem_rehash_wk);
   1153       1.30     yamt 	mutex_enter(&vmem_list_lock);
   1154       1.30     yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1155       1.30     yamt 		size_t desired;
   1156       1.30     yamt 		size_t current;
   1157       1.30     yamt 
   1158       1.30     yamt 		if (!VMEM_TRYLOCK(vm)) {
   1159       1.30     yamt 			continue;
   1160       1.30     yamt 		}
   1161       1.30     yamt 		desired = vm->vm_nbusytag;
   1162       1.30     yamt 		current = vm->vm_hashsize;
   1163       1.30     yamt 		VMEM_UNLOCK(vm);
   1164       1.30     yamt 
   1165       1.30     yamt 		if (desired > VMEM_HASHSIZE_MAX) {
   1166       1.30     yamt 			desired = VMEM_HASHSIZE_MAX;
   1167       1.30     yamt 		} else if (desired < VMEM_HASHSIZE_MIN) {
   1168       1.30     yamt 			desired = VMEM_HASHSIZE_MIN;
   1169       1.30     yamt 		}
   1170       1.30     yamt 		if (desired > current * 2 || desired * 2 < current) {
   1171       1.30     yamt 			vmem_rehash(vm, desired, VM_NOSLEEP);
   1172       1.30     yamt 		}
   1173       1.30     yamt 	}
   1174       1.30     yamt 	mutex_exit(&vmem_list_lock);
   1175       1.30     yamt 
   1176       1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1177       1.30     yamt }
   1178       1.30     yamt 
   1179       1.30     yamt static void
   1180       1.30     yamt vmem_rehash_all_kick(void *dummy)
   1181       1.30     yamt {
   1182       1.30     yamt 
   1183       1.32    rmind 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
   1184       1.30     yamt }
   1185       1.30     yamt 
   1186       1.30     yamt void
   1187       1.30     yamt vmem_rehash_start(void)
   1188       1.30     yamt {
   1189       1.30     yamt 	int error;
   1190       1.30     yamt 
   1191       1.30     yamt 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
   1192  1.32.12.1   bouyer 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, 0);
   1193       1.30     yamt 	if (error) {
   1194       1.30     yamt 		panic("%s: workqueue_create %d\n", __func__, error);
   1195       1.30     yamt 	}
   1196       1.31       ad 	callout_init(&vmem_rehash_ch, 0);
   1197       1.30     yamt 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
   1198       1.30     yamt 
   1199       1.30     yamt 	vmem_rehash_interval = hz * 10;
   1200       1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1201       1.30     yamt }
   1202       1.30     yamt #endif /* defined(_KERNEL) */
   1203       1.30     yamt 
   1204        1.1     yamt /* ---- debug */
   1205        1.1     yamt 
   1206        1.1     yamt #if defined(VMEM_DEBUG)
   1207        1.1     yamt 
   1208        1.1     yamt #if !defined(_KERNEL)
   1209        1.1     yamt #include <stdio.h>
   1210        1.1     yamt #endif /* !defined(_KERNEL) */
   1211        1.1     yamt 
   1212        1.1     yamt void bt_dump(const bt_t *);
   1213        1.1     yamt 
   1214        1.1     yamt void
   1215        1.1     yamt bt_dump(const bt_t *bt)
   1216        1.1     yamt {
   1217        1.1     yamt 
   1218        1.1     yamt 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
   1219        1.1     yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1220        1.1     yamt 	    bt->bt_type);
   1221        1.1     yamt }
   1222        1.1     yamt 
   1223        1.1     yamt void
   1224        1.1     yamt vmem_dump(const vmem_t *vm)
   1225        1.1     yamt {
   1226        1.1     yamt 	const bt_t *bt;
   1227        1.1     yamt 	int i;
   1228        1.1     yamt 
   1229        1.1     yamt 	printf("vmem %p '%s'\n", vm, vm->vm_name);
   1230        1.1     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1231        1.1     yamt 		bt_dump(bt);
   1232        1.1     yamt 	}
   1233        1.1     yamt 
   1234        1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1235        1.1     yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1236        1.1     yamt 
   1237        1.1     yamt 		if (LIST_EMPTY(fl)) {
   1238        1.1     yamt 			continue;
   1239        1.1     yamt 		}
   1240        1.1     yamt 
   1241        1.1     yamt 		printf("freelist[%d]\n", i);
   1242        1.1     yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1243        1.1     yamt 			bt_dump(bt);
   1244        1.1     yamt 			if (bt->bt_size) {
   1245        1.1     yamt 			}
   1246        1.1     yamt 		}
   1247        1.1     yamt 	}
   1248        1.1     yamt }
   1249        1.1     yamt 
   1250        1.1     yamt #if !defined(_KERNEL)
   1251        1.1     yamt 
   1252        1.1     yamt int
   1253        1.1     yamt main()
   1254        1.1     yamt {
   1255        1.1     yamt 	vmem_t *vm;
   1256        1.1     yamt 	vmem_addr_t p;
   1257        1.1     yamt 	struct reg {
   1258        1.1     yamt 		vmem_addr_t p;
   1259        1.1     yamt 		vmem_size_t sz;
   1260       1.25  thorpej 		bool x;
   1261        1.1     yamt 	} *reg = NULL;
   1262        1.1     yamt 	int nreg = 0;
   1263        1.1     yamt 	int nalloc = 0;
   1264        1.1     yamt 	int nfree = 0;
   1265        1.1     yamt 	vmem_size_t total = 0;
   1266        1.1     yamt #if 1
   1267        1.1     yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1268        1.1     yamt #else
   1269        1.1     yamt 	vm_flag_t strat = VM_BESTFIT;
   1270        1.1     yamt #endif
   1271        1.1     yamt 
   1272        1.1     yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1273       1.30     yamt 	    NULL, NULL, NULL, 0, VM_SLEEP);
   1274        1.1     yamt 	if (vm == NULL) {
   1275        1.1     yamt 		printf("vmem_create\n");
   1276        1.1     yamt 		exit(EXIT_FAILURE);
   1277        1.1     yamt 	}
   1278        1.1     yamt 	vmem_dump(vm);
   1279        1.1     yamt 
   1280        1.1     yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1281        1.1     yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1282        1.1     yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1283        1.1     yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1284        1.1     yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1285        1.1     yamt 	vmem_dump(vm);
   1286        1.1     yamt 	for (;;) {
   1287        1.1     yamt 		struct reg *r;
   1288       1.10     yamt 		int t = rand() % 100;
   1289        1.1     yamt 
   1290       1.10     yamt 		if (t > 45) {
   1291       1.10     yamt 			/* alloc */
   1292        1.1     yamt 			vmem_size_t sz = rand() % 500 + 1;
   1293       1.25  thorpej 			bool x;
   1294       1.10     yamt 			vmem_size_t align, phase, nocross;
   1295       1.10     yamt 			vmem_addr_t minaddr, maxaddr;
   1296       1.10     yamt 
   1297       1.10     yamt 			if (t > 70) {
   1298       1.26  thorpej 				x = true;
   1299       1.10     yamt 				/* XXX */
   1300       1.10     yamt 				align = 1 << (rand() % 15);
   1301       1.10     yamt 				phase = rand() % 65536;
   1302       1.10     yamt 				nocross = 1 << (rand() % 15);
   1303       1.10     yamt 				if (align <= phase) {
   1304       1.10     yamt 					phase = 0;
   1305       1.10     yamt 				}
   1306       1.19     yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1307       1.19     yamt 				    nocross)) {
   1308       1.10     yamt 					nocross = 0;
   1309       1.10     yamt 				}
   1310       1.10     yamt 				minaddr = rand() % 50000;
   1311       1.10     yamt 				maxaddr = rand() % 70000;
   1312       1.10     yamt 				if (minaddr > maxaddr) {
   1313       1.10     yamt 					minaddr = 0;
   1314       1.10     yamt 					maxaddr = 0;
   1315       1.10     yamt 				}
   1316       1.10     yamt 				printf("=== xalloc %" PRIu64
   1317       1.10     yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1318       1.10     yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1319       1.10     yamt 				    ", max=%" PRIu64 "\n",
   1320       1.10     yamt 				    (uint64_t)sz,
   1321       1.10     yamt 				    (uint64_t)align,
   1322       1.10     yamt 				    (uint64_t)phase,
   1323       1.10     yamt 				    (uint64_t)nocross,
   1324       1.10     yamt 				    (uint64_t)minaddr,
   1325       1.10     yamt 				    (uint64_t)maxaddr);
   1326       1.10     yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1327       1.10     yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1328       1.10     yamt 			} else {
   1329       1.26  thorpej 				x = false;
   1330       1.10     yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1331       1.10     yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1332       1.10     yamt 			}
   1333        1.1     yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1334        1.1     yamt 			vmem_dump(vm);
   1335        1.1     yamt 			if (p == VMEM_ADDR_NULL) {
   1336       1.10     yamt 				if (x) {
   1337       1.10     yamt 					continue;
   1338       1.10     yamt 				}
   1339        1.1     yamt 				break;
   1340        1.1     yamt 			}
   1341        1.1     yamt 			nreg++;
   1342        1.1     yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1343        1.1     yamt 			r = &reg[nreg - 1];
   1344        1.1     yamt 			r->p = p;
   1345        1.1     yamt 			r->sz = sz;
   1346       1.10     yamt 			r->x = x;
   1347        1.1     yamt 			total += sz;
   1348        1.1     yamt 			nalloc++;
   1349        1.1     yamt 		} else if (nreg != 0) {
   1350       1.10     yamt 			/* free */
   1351        1.1     yamt 			r = &reg[rand() % nreg];
   1352        1.1     yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1353        1.1     yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1354       1.10     yamt 			if (r->x) {
   1355       1.10     yamt 				vmem_xfree(vm, r->p, r->sz);
   1356       1.10     yamt 			} else {
   1357       1.10     yamt 				vmem_free(vm, r->p, r->sz);
   1358       1.10     yamt 			}
   1359        1.1     yamt 			total -= r->sz;
   1360        1.1     yamt 			vmem_dump(vm);
   1361        1.1     yamt 			*r = reg[nreg - 1];
   1362        1.1     yamt 			nreg--;
   1363        1.1     yamt 			nfree++;
   1364        1.1     yamt 		}
   1365        1.1     yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1366        1.1     yamt 	}
   1367        1.1     yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1368        1.1     yamt 	    (uint64_t)total, nalloc, nfree);
   1369        1.1     yamt 	exit(EXIT_SUCCESS);
   1370        1.1     yamt }
   1371        1.1     yamt #endif /* !defined(_KERNEL) */
   1372        1.1     yamt #endif /* defined(VMEM_DEBUG) */
   1373