Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.33.2.3
      1  1.33.2.3      mjf /*	$NetBSD: subr_vmem.c,v 1.33.2.3 2007/12/27 00:46:08 mjf Exp $	*/
      2       1.1     yamt 
      3       1.1     yamt /*-
      4       1.1     yamt  * Copyright (c)2006 YAMAMOTO Takashi,
      5       1.1     yamt  * All rights reserved.
      6       1.1     yamt  *
      7       1.1     yamt  * Redistribution and use in source and binary forms, with or without
      8       1.1     yamt  * modification, are permitted provided that the following conditions
      9       1.1     yamt  * are met:
     10       1.1     yamt  * 1. Redistributions of source code must retain the above copyright
     11       1.1     yamt  *    notice, this list of conditions and the following disclaimer.
     12       1.1     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1     yamt  *    notice, this list of conditions and the following disclaimer in the
     14       1.1     yamt  *    documentation and/or other materials provided with the distribution.
     15       1.1     yamt  *
     16       1.1     yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17       1.1     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18       1.1     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19       1.1     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20       1.1     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21       1.1     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22       1.1     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23       1.1     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24       1.1     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25       1.1     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26       1.1     yamt  * SUCH DAMAGE.
     27       1.1     yamt  */
     28       1.1     yamt 
     29       1.1     yamt /*
     30       1.1     yamt  * reference:
     31       1.1     yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32       1.1     yamt  *	to Many CPUs and Arbitrary Resources
     33       1.1     yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34      1.18     yamt  *
     35      1.18     yamt  * todo:
     36      1.18     yamt  * -	decide how to import segments for vmem_xalloc.
     37      1.18     yamt  * -	don't rely on malloc(9).
     38       1.1     yamt  */
     39       1.1     yamt 
     40       1.1     yamt #include <sys/cdefs.h>
     41  1.33.2.3      mjf __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.33.2.3 2007/12/27 00:46:08 mjf Exp $");
     42       1.1     yamt 
     43       1.1     yamt #define	VMEM_DEBUG
     44       1.5     yamt #if defined(_KERNEL)
     45  1.33.2.3      mjf #include "opt_ddb.h"
     46       1.5     yamt #define	QCACHE
     47       1.5     yamt #endif /* defined(_KERNEL) */
     48       1.1     yamt 
     49       1.1     yamt #include <sys/param.h>
     50       1.1     yamt #include <sys/hash.h>
     51       1.1     yamt #include <sys/queue.h>
     52       1.1     yamt 
     53       1.1     yamt #if defined(_KERNEL)
     54       1.1     yamt #include <sys/systm.h>
     55      1.30     yamt #include <sys/kernel.h>	/* hz */
     56      1.30     yamt #include <sys/callout.h>
     57       1.1     yamt #include <sys/lock.h>
     58       1.1     yamt #include <sys/malloc.h>
     59       1.1     yamt #include <sys/once.h>
     60       1.1     yamt #include <sys/pool.h>
     61       1.3     yamt #include <sys/proc.h>
     62       1.1     yamt #include <sys/vmem.h>
     63      1.30     yamt #include <sys/workqueue.h>
     64       1.1     yamt #else /* defined(_KERNEL) */
     65       1.1     yamt #include "../sys/vmem.h"
     66       1.1     yamt #endif /* defined(_KERNEL) */
     67       1.1     yamt 
     68       1.1     yamt #if defined(_KERNEL)
     69      1.31       ad #define	LOCK_DECL(name)		kmutex_t name
     70       1.1     yamt #else /* defined(_KERNEL) */
     71       1.1     yamt #include <errno.h>
     72       1.1     yamt #include <assert.h>
     73       1.1     yamt #include <stdlib.h>
     74       1.1     yamt 
     75       1.1     yamt #define	KASSERT(a)		assert(a)
     76      1.31       ad #define	LOCK_DECL(name)		/* nothing */
     77      1.31       ad #define	mutex_init(a, b, c)	/* nothing */
     78      1.31       ad #define	mutex_destroy(a)	/* nothing */
     79      1.31       ad #define	mutex_enter(a)		/* nothing */
     80      1.31       ad #define	mutex_exit(a)		/* nothing */
     81      1.31       ad #define	mutex_owned(a)		/* nothing */
     82       1.3     yamt #define	ASSERT_SLEEPABLE(lk, msg) /* nothing */
     83      1.31       ad #define	IPL_VM			0
     84       1.1     yamt #endif /* defined(_KERNEL) */
     85       1.1     yamt 
     86       1.1     yamt struct vmem;
     87       1.1     yamt struct vmem_btag;
     88       1.1     yamt 
     89       1.1     yamt #if defined(VMEM_DEBUG)
     90       1.1     yamt void vmem_dump(const vmem_t *);
     91       1.1     yamt #endif /* defined(VMEM_DEBUG) */
     92       1.1     yamt 
     93       1.4     yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     94      1.30     yamt 
     95      1.30     yamt #define	VMEM_HASHSIZE_MIN	1	/* XXX */
     96      1.30     yamt #define	VMEM_HASHSIZE_MAX	8192	/* XXX */
     97      1.30     yamt #define	VMEM_HASHSIZE_INIT	VMEM_HASHSIZE_MIN
     98       1.1     yamt 
     99       1.1     yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
    100       1.1     yamt 
    101       1.1     yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
    102       1.1     yamt LIST_HEAD(vmem_freelist, vmem_btag);
    103       1.1     yamt LIST_HEAD(vmem_hashlist, vmem_btag);
    104       1.1     yamt 
    105       1.5     yamt #if defined(QCACHE)
    106       1.5     yamt #define	VMEM_QCACHE_IDX_MAX	32
    107       1.5     yamt 
    108       1.5     yamt #define	QC_NAME_MAX	16
    109       1.5     yamt 
    110       1.5     yamt struct qcache {
    111  1.33.2.1      mjf 	pool_cache_t qc_cache;
    112       1.5     yamt 	vmem_t *qc_vmem;
    113       1.5     yamt 	char qc_name[QC_NAME_MAX];
    114       1.5     yamt };
    115       1.5     yamt typedef struct qcache qcache_t;
    116  1.33.2.1      mjf #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
    117       1.5     yamt #endif /* defined(QCACHE) */
    118       1.5     yamt 
    119       1.1     yamt /* vmem arena */
    120       1.1     yamt struct vmem {
    121      1.31       ad 	LOCK_DECL(vm_lock);
    122       1.1     yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    123       1.1     yamt 	    vm_flag_t);
    124       1.1     yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    125       1.1     yamt 	vmem_t *vm_source;
    126       1.1     yamt 	struct vmem_seglist vm_seglist;
    127       1.1     yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    128       1.1     yamt 	size_t vm_hashsize;
    129       1.1     yamt 	size_t vm_nbusytag;
    130       1.1     yamt 	struct vmem_hashlist *vm_hashlist;
    131       1.1     yamt 	size_t vm_quantum_mask;
    132       1.1     yamt 	int vm_quantum_shift;
    133       1.1     yamt 	const char *vm_name;
    134      1.30     yamt 	LIST_ENTRY(vmem) vm_alllist;
    135       1.5     yamt 
    136       1.5     yamt #if defined(QCACHE)
    137       1.5     yamt 	/* quantum cache */
    138       1.5     yamt 	size_t vm_qcache_max;
    139       1.5     yamt 	struct pool_allocator vm_qcache_allocator;
    140      1.22     yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    141      1.22     yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    142       1.5     yamt #endif /* defined(QCACHE) */
    143       1.1     yamt };
    144       1.1     yamt 
    145      1.31       ad #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
    146      1.31       ad #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
    147      1.31       ad #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
    148  1.33.2.2      mjf #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
    149      1.31       ad #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
    150      1.31       ad #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
    151       1.1     yamt 
    152       1.1     yamt /* boundary tag */
    153       1.1     yamt struct vmem_btag {
    154       1.1     yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    155       1.1     yamt 	union {
    156       1.1     yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    157       1.1     yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    158       1.1     yamt 	} bt_u;
    159       1.1     yamt #define	bt_hashlist	bt_u.u_hashlist
    160       1.1     yamt #define	bt_freelist	bt_u.u_freelist
    161       1.1     yamt 	vmem_addr_t bt_start;
    162       1.1     yamt 	vmem_size_t bt_size;
    163       1.1     yamt 	int bt_type;
    164       1.1     yamt };
    165       1.1     yamt 
    166       1.1     yamt #define	BT_TYPE_SPAN		1
    167       1.1     yamt #define	BT_TYPE_SPAN_STATIC	2
    168       1.1     yamt #define	BT_TYPE_FREE		3
    169       1.1     yamt #define	BT_TYPE_BUSY		4
    170       1.1     yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    171       1.1     yamt 
    172       1.1     yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    173       1.1     yamt 
    174       1.1     yamt typedef struct vmem_btag bt_t;
    175       1.1     yamt 
    176       1.1     yamt /* ---- misc */
    177       1.1     yamt 
    178      1.19     yamt #define	VMEM_ALIGNUP(addr, align) \
    179      1.19     yamt 	(-(-(addr) & -(align)))
    180      1.19     yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    181      1.19     yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    182      1.19     yamt 
    183       1.4     yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    184       1.4     yamt 
    185       1.1     yamt static int
    186       1.1     yamt calc_order(vmem_size_t size)
    187       1.1     yamt {
    188       1.4     yamt 	vmem_size_t target;
    189       1.1     yamt 	int i;
    190       1.1     yamt 
    191       1.1     yamt 	KASSERT(size != 0);
    192       1.1     yamt 
    193       1.1     yamt 	i = 0;
    194       1.4     yamt 	target = size >> 1;
    195       1.4     yamt 	while (ORDER2SIZE(i) <= target) {
    196       1.1     yamt 		i++;
    197       1.1     yamt 	}
    198       1.1     yamt 
    199       1.4     yamt 	KASSERT(ORDER2SIZE(i) <= size);
    200       1.4     yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    201       1.1     yamt 
    202       1.1     yamt 	return i;
    203       1.1     yamt }
    204       1.1     yamt 
    205       1.1     yamt #if defined(_KERNEL)
    206       1.1     yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    207       1.1     yamt #endif /* defined(_KERNEL) */
    208       1.1     yamt 
    209       1.1     yamt static void *
    210       1.1     yamt xmalloc(size_t sz, vm_flag_t flags)
    211       1.1     yamt {
    212       1.1     yamt 
    213       1.1     yamt #if defined(_KERNEL)
    214       1.1     yamt 	return malloc(sz, M_VMEM,
    215       1.1     yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    216       1.1     yamt #else /* defined(_KERNEL) */
    217       1.1     yamt 	return malloc(sz);
    218       1.1     yamt #endif /* defined(_KERNEL) */
    219       1.1     yamt }
    220       1.1     yamt 
    221       1.1     yamt static void
    222       1.1     yamt xfree(void *p)
    223       1.1     yamt {
    224       1.1     yamt 
    225       1.1     yamt #if defined(_KERNEL)
    226       1.1     yamt 	return free(p, M_VMEM);
    227       1.1     yamt #else /* defined(_KERNEL) */
    228       1.1     yamt 	return free(p);
    229       1.1     yamt #endif /* defined(_KERNEL) */
    230       1.1     yamt }
    231       1.1     yamt 
    232       1.1     yamt /* ---- boundary tag */
    233       1.1     yamt 
    234       1.1     yamt #if defined(_KERNEL)
    235  1.33.2.1      mjf static struct pool_cache bt_cache;
    236       1.1     yamt #endif /* defined(_KERNEL) */
    237       1.1     yamt 
    238       1.1     yamt static bt_t *
    239      1.17     yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    240       1.1     yamt {
    241       1.1     yamt 	bt_t *bt;
    242       1.1     yamt 
    243       1.1     yamt #if defined(_KERNEL)
    244  1.33.2.1      mjf 	bt = pool_cache_get(&bt_cache,
    245       1.1     yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    246       1.1     yamt #else /* defined(_KERNEL) */
    247       1.1     yamt 	bt = malloc(sizeof *bt);
    248       1.1     yamt #endif /* defined(_KERNEL) */
    249       1.1     yamt 
    250       1.1     yamt 	return bt;
    251       1.1     yamt }
    252       1.1     yamt 
    253       1.1     yamt static void
    254      1.17     yamt bt_free(vmem_t *vm, bt_t *bt)
    255       1.1     yamt {
    256       1.1     yamt 
    257       1.1     yamt #if defined(_KERNEL)
    258  1.33.2.1      mjf 	pool_cache_put(&bt_cache, bt);
    259       1.1     yamt #else /* defined(_KERNEL) */
    260       1.1     yamt 	free(bt);
    261       1.1     yamt #endif /* defined(_KERNEL) */
    262       1.1     yamt }
    263       1.1     yamt 
    264       1.1     yamt /*
    265       1.1     yamt  * freelist[0] ... [1, 1]
    266       1.1     yamt  * freelist[1] ... [2, 3]
    267       1.1     yamt  * freelist[2] ... [4, 7]
    268       1.1     yamt  * freelist[3] ... [8, 15]
    269       1.1     yamt  *  :
    270       1.1     yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    271       1.1     yamt  *  :
    272       1.1     yamt  */
    273       1.1     yamt 
    274       1.1     yamt static struct vmem_freelist *
    275       1.1     yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    276       1.1     yamt {
    277       1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    278       1.1     yamt 	int idx;
    279       1.1     yamt 
    280       1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    281       1.1     yamt 	KASSERT(size != 0);
    282       1.1     yamt 
    283       1.1     yamt 	idx = calc_order(qsize);
    284       1.1     yamt 	KASSERT(idx >= 0);
    285       1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    286       1.1     yamt 
    287       1.1     yamt 	return &vm->vm_freelist[idx];
    288       1.1     yamt }
    289       1.1     yamt 
    290       1.1     yamt static struct vmem_freelist *
    291       1.1     yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    292       1.1     yamt {
    293       1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    294       1.1     yamt 	int idx;
    295       1.1     yamt 
    296       1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    297       1.1     yamt 	KASSERT(size != 0);
    298       1.1     yamt 
    299       1.1     yamt 	idx = calc_order(qsize);
    300       1.4     yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    301       1.1     yamt 		idx++;
    302       1.1     yamt 		/* check too large request? */
    303       1.1     yamt 	}
    304       1.1     yamt 	KASSERT(idx >= 0);
    305       1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    306       1.1     yamt 
    307       1.1     yamt 	return &vm->vm_freelist[idx];
    308       1.1     yamt }
    309       1.1     yamt 
    310       1.1     yamt /* ---- boundary tag hash */
    311       1.1     yamt 
    312       1.1     yamt static struct vmem_hashlist *
    313       1.1     yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    314       1.1     yamt {
    315       1.1     yamt 	struct vmem_hashlist *list;
    316       1.1     yamt 	unsigned int hash;
    317       1.1     yamt 
    318       1.1     yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    319       1.1     yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    320       1.1     yamt 
    321       1.1     yamt 	return list;
    322       1.1     yamt }
    323       1.1     yamt 
    324       1.1     yamt static bt_t *
    325       1.1     yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    326       1.1     yamt {
    327       1.1     yamt 	struct vmem_hashlist *list;
    328       1.1     yamt 	bt_t *bt;
    329       1.1     yamt 
    330       1.1     yamt 	list = bt_hashhead(vm, addr);
    331       1.1     yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    332       1.1     yamt 		if (bt->bt_start == addr) {
    333       1.1     yamt 			break;
    334       1.1     yamt 		}
    335       1.1     yamt 	}
    336       1.1     yamt 
    337       1.1     yamt 	return bt;
    338       1.1     yamt }
    339       1.1     yamt 
    340       1.1     yamt static void
    341       1.1     yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    342       1.1     yamt {
    343       1.1     yamt 
    344       1.1     yamt 	KASSERT(vm->vm_nbusytag > 0);
    345       1.1     yamt 	vm->vm_nbusytag--;
    346       1.1     yamt 	LIST_REMOVE(bt, bt_hashlist);
    347       1.1     yamt }
    348       1.1     yamt 
    349       1.1     yamt static void
    350       1.1     yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    351       1.1     yamt {
    352       1.1     yamt 	struct vmem_hashlist *list;
    353       1.1     yamt 
    354       1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    355       1.1     yamt 
    356       1.1     yamt 	list = bt_hashhead(vm, bt->bt_start);
    357       1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    358       1.1     yamt 	vm->vm_nbusytag++;
    359       1.1     yamt }
    360       1.1     yamt 
    361       1.1     yamt /* ---- boundary tag list */
    362       1.1     yamt 
    363       1.1     yamt static void
    364       1.1     yamt bt_remseg(vmem_t *vm, bt_t *bt)
    365       1.1     yamt {
    366       1.1     yamt 
    367       1.1     yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    368       1.1     yamt }
    369       1.1     yamt 
    370       1.1     yamt static void
    371       1.1     yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    372       1.1     yamt {
    373       1.1     yamt 
    374       1.1     yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    375       1.1     yamt }
    376       1.1     yamt 
    377       1.1     yamt static void
    378       1.1     yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    379       1.1     yamt {
    380       1.1     yamt 
    381       1.1     yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    382       1.1     yamt }
    383       1.1     yamt 
    384       1.1     yamt static void
    385      1.17     yamt bt_remfree(vmem_t *vm, bt_t *bt)
    386       1.1     yamt {
    387       1.1     yamt 
    388       1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    389       1.1     yamt 
    390       1.1     yamt 	LIST_REMOVE(bt, bt_freelist);
    391       1.1     yamt }
    392       1.1     yamt 
    393       1.1     yamt static void
    394       1.1     yamt bt_insfree(vmem_t *vm, bt_t *bt)
    395       1.1     yamt {
    396       1.1     yamt 	struct vmem_freelist *list;
    397       1.1     yamt 
    398       1.1     yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    399       1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    400       1.1     yamt }
    401       1.1     yamt 
    402       1.1     yamt /* ---- vmem internal functions */
    403       1.1     yamt 
    404      1.30     yamt #if defined(_KERNEL)
    405      1.30     yamt static kmutex_t vmem_list_lock;
    406      1.30     yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
    407      1.30     yamt #endif /* defined(_KERNEL) */
    408      1.30     yamt 
    409       1.5     yamt #if defined(QCACHE)
    410       1.5     yamt static inline vm_flag_t
    411       1.5     yamt prf_to_vmf(int prflags)
    412       1.5     yamt {
    413       1.5     yamt 	vm_flag_t vmflags;
    414       1.5     yamt 
    415       1.5     yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    416       1.5     yamt 	if ((prflags & PR_WAITOK) != 0) {
    417       1.5     yamt 		vmflags = VM_SLEEP;
    418       1.5     yamt 	} else {
    419       1.5     yamt 		vmflags = VM_NOSLEEP;
    420       1.5     yamt 	}
    421       1.5     yamt 	return vmflags;
    422       1.5     yamt }
    423       1.5     yamt 
    424       1.5     yamt static inline int
    425       1.5     yamt vmf_to_prf(vm_flag_t vmflags)
    426       1.5     yamt {
    427       1.5     yamt 	int prflags;
    428       1.5     yamt 
    429       1.7     yamt 	if ((vmflags & VM_SLEEP) != 0) {
    430       1.5     yamt 		prflags = PR_WAITOK;
    431       1.7     yamt 	} else {
    432       1.5     yamt 		prflags = PR_NOWAIT;
    433       1.5     yamt 	}
    434       1.5     yamt 	return prflags;
    435       1.5     yamt }
    436       1.5     yamt 
    437       1.5     yamt static size_t
    438       1.5     yamt qc_poolpage_size(size_t qcache_max)
    439       1.5     yamt {
    440       1.5     yamt 	int i;
    441       1.5     yamt 
    442       1.5     yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    443       1.5     yamt 		/* nothing */
    444       1.5     yamt 	}
    445       1.5     yamt 	return ORDER2SIZE(i);
    446       1.5     yamt }
    447       1.5     yamt 
    448       1.5     yamt static void *
    449       1.5     yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    450       1.5     yamt {
    451       1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    452       1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    453       1.5     yamt 
    454       1.5     yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    455       1.5     yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    456       1.5     yamt }
    457       1.5     yamt 
    458       1.5     yamt static void
    459       1.5     yamt qc_poolpage_free(struct pool *pool, void *addr)
    460       1.5     yamt {
    461       1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    462       1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    463       1.5     yamt 
    464       1.5     yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    465       1.5     yamt }
    466       1.5     yamt 
    467       1.5     yamt static void
    468      1.31       ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
    469       1.5     yamt {
    470      1.22     yamt 	qcache_t *prevqc;
    471       1.5     yamt 	struct pool_allocator *pa;
    472       1.5     yamt 	int qcache_idx_max;
    473       1.5     yamt 	int i;
    474       1.5     yamt 
    475       1.5     yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    476       1.5     yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    477       1.5     yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    478       1.5     yamt 	}
    479       1.5     yamt 	vm->vm_qcache_max = qcache_max;
    480       1.5     yamt 	pa = &vm->vm_qcache_allocator;
    481       1.5     yamt 	memset(pa, 0, sizeof(*pa));
    482       1.5     yamt 	pa->pa_alloc = qc_poolpage_alloc;
    483       1.5     yamt 	pa->pa_free = qc_poolpage_free;
    484       1.5     yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    485       1.5     yamt 
    486       1.5     yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    487      1.22     yamt 	prevqc = NULL;
    488      1.22     yamt 	for (i = qcache_idx_max; i > 0; i--) {
    489      1.22     yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    490       1.5     yamt 		size_t size = i << vm->vm_quantum_shift;
    491       1.5     yamt 
    492       1.5     yamt 		qc->qc_vmem = vm;
    493       1.8   martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    494       1.5     yamt 		    vm->vm_name, size);
    495  1.33.2.1      mjf 		qc->qc_cache = pool_cache_init(size,
    496  1.33.2.1      mjf 		    ORDER2SIZE(vm->vm_quantum_shift), 0,
    497  1.33.2.1      mjf 		    PR_NOALIGN | PR_NOTOUCH /* XXX */,
    498  1.33.2.1      mjf 		    qc->qc_name, pa, ipl, NULL, NULL, NULL);
    499  1.33.2.1      mjf 		KASSERT(qc->qc_cache != NULL);	/* XXX */
    500      1.22     yamt 		if (prevqc != NULL &&
    501  1.33.2.1      mjf 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
    502  1.33.2.1      mjf 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
    503  1.33.2.1      mjf 			pool_cache_destroy(qc->qc_cache);
    504      1.22     yamt 			vm->vm_qcache[i - 1] = prevqc;
    505      1.27       ad 			continue;
    506      1.22     yamt 		}
    507  1.33.2.1      mjf 		qc->qc_cache->pc_pool.pr_qcache = qc;
    508      1.22     yamt 		vm->vm_qcache[i - 1] = qc;
    509      1.22     yamt 		prevqc = qc;
    510       1.5     yamt 	}
    511       1.5     yamt }
    512       1.6     yamt 
    513      1.23     yamt static void
    514      1.23     yamt qc_destroy(vmem_t *vm)
    515      1.23     yamt {
    516      1.23     yamt 	const qcache_t *prevqc;
    517      1.23     yamt 	int i;
    518      1.23     yamt 	int qcache_idx_max;
    519      1.23     yamt 
    520      1.23     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    521      1.23     yamt 	prevqc = NULL;
    522      1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    523      1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    524      1.23     yamt 
    525      1.23     yamt 		if (prevqc == qc) {
    526      1.23     yamt 			continue;
    527      1.23     yamt 		}
    528  1.33.2.1      mjf 		pool_cache_destroy(qc->qc_cache);
    529      1.23     yamt 		prevqc = qc;
    530      1.23     yamt 	}
    531      1.23     yamt }
    532      1.23     yamt 
    533      1.25  thorpej static bool
    534       1.6     yamt qc_reap(vmem_t *vm)
    535       1.6     yamt {
    536      1.22     yamt 	const qcache_t *prevqc;
    537       1.6     yamt 	int i;
    538       1.6     yamt 	int qcache_idx_max;
    539      1.26  thorpej 	bool didsomething = false;
    540       1.6     yamt 
    541       1.6     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    542      1.22     yamt 	prevqc = NULL;
    543      1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    544      1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    545       1.6     yamt 
    546      1.22     yamt 		if (prevqc == qc) {
    547      1.22     yamt 			continue;
    548      1.22     yamt 		}
    549  1.33.2.1      mjf 		if (pool_cache_reclaim(qc->qc_cache) != 0) {
    550      1.26  thorpej 			didsomething = true;
    551       1.6     yamt 		}
    552      1.22     yamt 		prevqc = qc;
    553       1.6     yamt 	}
    554       1.6     yamt 
    555       1.6     yamt 	return didsomething;
    556       1.6     yamt }
    557       1.5     yamt #endif /* defined(QCACHE) */
    558       1.5     yamt 
    559       1.1     yamt #if defined(_KERNEL)
    560       1.1     yamt static int
    561       1.1     yamt vmem_init(void)
    562       1.1     yamt {
    563       1.1     yamt 
    564      1.30     yamt 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
    565  1.33.2.1      mjf 	pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
    566  1.33.2.1      mjf 	    NULL, IPL_VM, NULL, NULL, NULL);
    567       1.1     yamt 	return 0;
    568       1.1     yamt }
    569       1.1     yamt #endif /* defined(_KERNEL) */
    570       1.1     yamt 
    571       1.1     yamt static vmem_addr_t
    572       1.1     yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    573       1.1     yamt     int spanbttype)
    574       1.1     yamt {
    575       1.1     yamt 	bt_t *btspan;
    576       1.1     yamt 	bt_t *btfree;
    577       1.1     yamt 
    578       1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    579       1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    580       1.1     yamt 
    581       1.1     yamt 	btspan = bt_alloc(vm, flags);
    582       1.1     yamt 	if (btspan == NULL) {
    583       1.1     yamt 		return VMEM_ADDR_NULL;
    584       1.1     yamt 	}
    585       1.1     yamt 	btfree = bt_alloc(vm, flags);
    586       1.1     yamt 	if (btfree == NULL) {
    587       1.1     yamt 		bt_free(vm, btspan);
    588       1.1     yamt 		return VMEM_ADDR_NULL;
    589       1.1     yamt 	}
    590       1.1     yamt 
    591       1.1     yamt 	btspan->bt_type = spanbttype;
    592       1.1     yamt 	btspan->bt_start = addr;
    593       1.1     yamt 	btspan->bt_size = size;
    594       1.1     yamt 
    595       1.1     yamt 	btfree->bt_type = BT_TYPE_FREE;
    596       1.1     yamt 	btfree->bt_start = addr;
    597       1.1     yamt 	btfree->bt_size = size;
    598       1.1     yamt 
    599       1.1     yamt 	VMEM_LOCK(vm);
    600       1.1     yamt 	bt_insseg_tail(vm, btspan);
    601       1.1     yamt 	bt_insseg(vm, btfree, btspan);
    602       1.1     yamt 	bt_insfree(vm, btfree);
    603       1.1     yamt 	VMEM_UNLOCK(vm);
    604       1.1     yamt 
    605       1.1     yamt 	return addr;
    606       1.1     yamt }
    607       1.1     yamt 
    608      1.30     yamt static void
    609      1.30     yamt vmem_destroy1(vmem_t *vm)
    610      1.30     yamt {
    611      1.30     yamt 
    612      1.30     yamt #if defined(QCACHE)
    613      1.30     yamt 	qc_destroy(vm);
    614      1.30     yamt #endif /* defined(QCACHE) */
    615      1.30     yamt 	if (vm->vm_hashlist != NULL) {
    616      1.30     yamt 		int i;
    617      1.30     yamt 
    618      1.30     yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    619      1.30     yamt 			bt_t *bt;
    620      1.30     yamt 
    621      1.30     yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    622      1.30     yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    623      1.30     yamt 				bt_free(vm, bt);
    624      1.30     yamt 			}
    625      1.30     yamt 		}
    626      1.30     yamt 		xfree(vm->vm_hashlist);
    627      1.30     yamt 	}
    628      1.31       ad 	VMEM_LOCK_DESTROY(vm);
    629      1.30     yamt 	xfree(vm);
    630      1.30     yamt }
    631      1.30     yamt 
    632       1.1     yamt static int
    633       1.1     yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    634       1.1     yamt {
    635       1.1     yamt 	vmem_addr_t addr;
    636       1.1     yamt 
    637       1.1     yamt 	if (vm->vm_allocfn == NULL) {
    638       1.1     yamt 		return EINVAL;
    639       1.1     yamt 	}
    640       1.1     yamt 
    641       1.1     yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    642       1.1     yamt 	if (addr == VMEM_ADDR_NULL) {
    643       1.1     yamt 		return ENOMEM;
    644       1.1     yamt 	}
    645       1.1     yamt 
    646       1.1     yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    647       1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    648       1.1     yamt 		return ENOMEM;
    649       1.1     yamt 	}
    650       1.1     yamt 
    651       1.1     yamt 	return 0;
    652       1.1     yamt }
    653       1.1     yamt 
    654       1.1     yamt static int
    655       1.1     yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    656       1.1     yamt {
    657       1.1     yamt 	bt_t *bt;
    658       1.1     yamt 	int i;
    659       1.1     yamt 	struct vmem_hashlist *newhashlist;
    660       1.1     yamt 	struct vmem_hashlist *oldhashlist;
    661       1.1     yamt 	size_t oldhashsize;
    662       1.1     yamt 
    663       1.1     yamt 	KASSERT(newhashsize > 0);
    664       1.1     yamt 
    665       1.1     yamt 	newhashlist =
    666       1.1     yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    667       1.1     yamt 	if (newhashlist == NULL) {
    668       1.1     yamt 		return ENOMEM;
    669       1.1     yamt 	}
    670       1.1     yamt 	for (i = 0; i < newhashsize; i++) {
    671       1.1     yamt 		LIST_INIT(&newhashlist[i]);
    672       1.1     yamt 	}
    673       1.1     yamt 
    674      1.30     yamt 	if (!VMEM_TRYLOCK(vm)) {
    675      1.30     yamt 		xfree(newhashlist);
    676      1.30     yamt 		return EBUSY;
    677      1.30     yamt 	}
    678       1.1     yamt 	oldhashlist = vm->vm_hashlist;
    679       1.1     yamt 	oldhashsize = vm->vm_hashsize;
    680       1.1     yamt 	vm->vm_hashlist = newhashlist;
    681       1.1     yamt 	vm->vm_hashsize = newhashsize;
    682       1.1     yamt 	if (oldhashlist == NULL) {
    683       1.1     yamt 		VMEM_UNLOCK(vm);
    684       1.1     yamt 		return 0;
    685       1.1     yamt 	}
    686       1.1     yamt 	for (i = 0; i < oldhashsize; i++) {
    687       1.1     yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    688       1.1     yamt 			bt_rembusy(vm, bt); /* XXX */
    689       1.1     yamt 			bt_insbusy(vm, bt);
    690       1.1     yamt 		}
    691       1.1     yamt 	}
    692       1.1     yamt 	VMEM_UNLOCK(vm);
    693       1.1     yamt 
    694       1.1     yamt 	xfree(oldhashlist);
    695       1.1     yamt 
    696       1.1     yamt 	return 0;
    697       1.1     yamt }
    698       1.1     yamt 
    699      1.10     yamt /*
    700      1.10     yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    701      1.10     yamt  */
    702      1.10     yamt 
    703      1.10     yamt static vmem_addr_t
    704      1.10     yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    705      1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    706      1.10     yamt {
    707      1.10     yamt 	vmem_addr_t start;
    708      1.10     yamt 	vmem_addr_t end;
    709      1.10     yamt 
    710      1.10     yamt 	KASSERT(bt->bt_size >= size);
    711      1.10     yamt 
    712      1.10     yamt 	/*
    713      1.10     yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    714      1.10     yamt 	 * unsigned integer of the same size.
    715      1.10     yamt 	 */
    716      1.10     yamt 
    717      1.10     yamt 	start = bt->bt_start;
    718      1.10     yamt 	if (start < minaddr) {
    719      1.10     yamt 		start = minaddr;
    720      1.10     yamt 	}
    721      1.10     yamt 	end = BT_END(bt);
    722      1.10     yamt 	if (end > maxaddr - 1) {
    723      1.10     yamt 		end = maxaddr - 1;
    724      1.10     yamt 	}
    725      1.10     yamt 	if (start >= end) {
    726      1.10     yamt 		return VMEM_ADDR_NULL;
    727      1.10     yamt 	}
    728      1.19     yamt 
    729      1.19     yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    730      1.10     yamt 	if (start < bt->bt_start) {
    731      1.10     yamt 		start += align;
    732      1.10     yamt 	}
    733      1.19     yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    734      1.10     yamt 		KASSERT(align < nocross);
    735      1.19     yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    736      1.10     yamt 	}
    737      1.10     yamt 	if (start < end && end - start >= size) {
    738      1.10     yamt 		KASSERT((start & (align - 1)) == phase);
    739      1.19     yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    740      1.10     yamt 		KASSERT(minaddr <= start);
    741      1.10     yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    742      1.10     yamt 		KASSERT(bt->bt_start <= start);
    743      1.10     yamt 		KASSERT(start + size <= BT_END(bt));
    744      1.10     yamt 		return start;
    745      1.10     yamt 	}
    746      1.10     yamt 	return VMEM_ADDR_NULL;
    747      1.10     yamt }
    748      1.10     yamt 
    749       1.1     yamt /* ---- vmem API */
    750       1.1     yamt 
    751       1.1     yamt /*
    752       1.1     yamt  * vmem_create: create an arena.
    753       1.1     yamt  *
    754       1.1     yamt  * => must not be called from interrupt context.
    755       1.1     yamt  */
    756       1.1     yamt 
    757       1.1     yamt vmem_t *
    758       1.1     yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    759       1.1     yamt     vmem_size_t quantum,
    760       1.1     yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    761       1.1     yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    762      1.31       ad     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
    763      1.31       ad     int ipl)
    764       1.1     yamt {
    765       1.1     yamt 	vmem_t *vm;
    766       1.1     yamt 	int i;
    767       1.1     yamt #if defined(_KERNEL)
    768       1.1     yamt 	static ONCE_DECL(control);
    769       1.1     yamt #endif /* defined(_KERNEL) */
    770       1.1     yamt 
    771       1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    772       1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    773       1.1     yamt 
    774       1.1     yamt #if defined(_KERNEL)
    775       1.1     yamt 	if (RUN_ONCE(&control, vmem_init)) {
    776       1.1     yamt 		return NULL;
    777       1.1     yamt 	}
    778       1.1     yamt #endif /* defined(_KERNEL) */
    779       1.1     yamt 	vm = xmalloc(sizeof(*vm), flags);
    780       1.1     yamt 	if (vm == NULL) {
    781       1.1     yamt 		return NULL;
    782       1.1     yamt 	}
    783       1.1     yamt 
    784      1.31       ad 	VMEM_LOCK_INIT(vm, ipl);
    785       1.1     yamt 	vm->vm_name = name;
    786       1.1     yamt 	vm->vm_quantum_mask = quantum - 1;
    787       1.1     yamt 	vm->vm_quantum_shift = calc_order(quantum);
    788       1.4     yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    789       1.1     yamt 	vm->vm_allocfn = allocfn;
    790       1.1     yamt 	vm->vm_freefn = freefn;
    791       1.1     yamt 	vm->vm_source = source;
    792       1.1     yamt 	vm->vm_nbusytag = 0;
    793       1.5     yamt #if defined(QCACHE)
    794      1.31       ad 	qc_init(vm, qcache_max, ipl);
    795       1.5     yamt #endif /* defined(QCACHE) */
    796       1.1     yamt 
    797       1.1     yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    798       1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    799       1.1     yamt 		LIST_INIT(&vm->vm_freelist[i]);
    800       1.1     yamt 	}
    801       1.1     yamt 	vm->vm_hashlist = NULL;
    802       1.1     yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    803      1.30     yamt 		vmem_destroy1(vm);
    804       1.1     yamt 		return NULL;
    805       1.1     yamt 	}
    806       1.1     yamt 
    807       1.1     yamt 	if (size != 0) {
    808       1.1     yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    809      1.30     yamt 			vmem_destroy1(vm);
    810       1.1     yamt 			return NULL;
    811       1.1     yamt 		}
    812       1.1     yamt 	}
    813       1.1     yamt 
    814      1.30     yamt #if defined(_KERNEL)
    815      1.30     yamt 	mutex_enter(&vmem_list_lock);
    816      1.30     yamt 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
    817      1.30     yamt 	mutex_exit(&vmem_list_lock);
    818      1.30     yamt #endif /* defined(_KERNEL) */
    819      1.30     yamt 
    820       1.1     yamt 	return vm;
    821       1.1     yamt }
    822       1.1     yamt 
    823       1.1     yamt void
    824       1.1     yamt vmem_destroy(vmem_t *vm)
    825       1.1     yamt {
    826       1.1     yamt 
    827      1.30     yamt #if defined(_KERNEL)
    828      1.30     yamt 	mutex_enter(&vmem_list_lock);
    829      1.30     yamt 	LIST_REMOVE(vm, vm_alllist);
    830      1.30     yamt 	mutex_exit(&vmem_list_lock);
    831      1.30     yamt #endif /* defined(_KERNEL) */
    832       1.1     yamt 
    833      1.30     yamt 	vmem_destroy1(vm);
    834       1.1     yamt }
    835       1.1     yamt 
    836       1.1     yamt vmem_size_t
    837       1.1     yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    838       1.1     yamt {
    839       1.1     yamt 
    840       1.1     yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    841       1.1     yamt }
    842       1.1     yamt 
    843       1.1     yamt /*
    844       1.1     yamt  * vmem_alloc:
    845       1.1     yamt  *
    846       1.1     yamt  * => caller must ensure appropriate spl,
    847       1.1     yamt  *    if the arena can be accessed from interrupt context.
    848       1.1     yamt  */
    849       1.1     yamt 
    850       1.1     yamt vmem_addr_t
    851  1.33.2.3      mjf vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    852       1.1     yamt {
    853      1.12     yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    854       1.1     yamt 
    855       1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    856       1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    857       1.1     yamt 
    858       1.1     yamt 	KASSERT(size > 0);
    859       1.1     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    860       1.3     yamt 	if ((flags & VM_SLEEP) != 0) {
    861      1.16     yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    862       1.3     yamt 	}
    863       1.1     yamt 
    864       1.5     yamt #if defined(QCACHE)
    865       1.5     yamt 	if (size <= vm->vm_qcache_max) {
    866  1.33.2.3      mjf 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
    867      1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    868       1.5     yamt 
    869  1.33.2.1      mjf 		return (vmem_addr_t)pool_cache_get(qc->qc_cache,
    870       1.5     yamt 		    vmf_to_prf(flags));
    871       1.5     yamt 	}
    872       1.5     yamt #endif /* defined(QCACHE) */
    873       1.5     yamt 
    874  1.33.2.3      mjf 	return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
    875      1.10     yamt }
    876      1.10     yamt 
    877      1.10     yamt vmem_addr_t
    878      1.10     yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
    879      1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
    880      1.10     yamt     vm_flag_t flags)
    881      1.10     yamt {
    882      1.10     yamt 	struct vmem_freelist *list;
    883      1.10     yamt 	struct vmem_freelist *first;
    884      1.10     yamt 	struct vmem_freelist *end;
    885      1.10     yamt 	bt_t *bt;
    886      1.10     yamt 	bt_t *btnew;
    887      1.10     yamt 	bt_t *btnew2;
    888      1.10     yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
    889      1.10     yamt 	vm_flag_t strat = flags & VM_FITMASK;
    890      1.10     yamt 	vmem_addr_t start;
    891      1.10     yamt 
    892      1.10     yamt 	KASSERT(size0 > 0);
    893      1.10     yamt 	KASSERT(size > 0);
    894      1.10     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    895      1.10     yamt 	if ((flags & VM_SLEEP) != 0) {
    896      1.16     yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    897      1.10     yamt 	}
    898      1.10     yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
    899      1.10     yamt 	KASSERT((align & (align - 1)) == 0);
    900      1.10     yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
    901      1.10     yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
    902      1.10     yamt 	KASSERT((nocross & (nocross - 1)) == 0);
    903      1.10     yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
    904      1.10     yamt 	KASSERT(nocross == 0 || nocross >= size);
    905      1.10     yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
    906      1.19     yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
    907      1.10     yamt 
    908      1.10     yamt 	if (align == 0) {
    909      1.10     yamt 		align = vm->vm_quantum_mask + 1;
    910      1.10     yamt 	}
    911       1.1     yamt 	btnew = bt_alloc(vm, flags);
    912       1.1     yamt 	if (btnew == NULL) {
    913       1.1     yamt 		return VMEM_ADDR_NULL;
    914       1.1     yamt 	}
    915      1.10     yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
    916      1.10     yamt 	if (btnew2 == NULL) {
    917      1.10     yamt 		bt_free(vm, btnew);
    918      1.10     yamt 		return VMEM_ADDR_NULL;
    919      1.10     yamt 	}
    920       1.1     yamt 
    921       1.1     yamt retry_strat:
    922       1.1     yamt 	first = bt_freehead_toalloc(vm, size, strat);
    923       1.1     yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
    924       1.1     yamt retry:
    925       1.1     yamt 	bt = NULL;
    926       1.1     yamt 	VMEM_LOCK(vm);
    927       1.2     yamt 	if (strat == VM_INSTANTFIT) {
    928       1.2     yamt 		for (list = first; list < end; list++) {
    929       1.2     yamt 			bt = LIST_FIRST(list);
    930       1.2     yamt 			if (bt != NULL) {
    931      1.10     yamt 				start = vmem_fit(bt, size, align, phase,
    932      1.10     yamt 				    nocross, minaddr, maxaddr);
    933      1.10     yamt 				if (start != VMEM_ADDR_NULL) {
    934      1.10     yamt 					goto gotit;
    935      1.10     yamt 				}
    936       1.2     yamt 			}
    937       1.2     yamt 		}
    938       1.2     yamt 	} else { /* VM_BESTFIT */
    939       1.2     yamt 		for (list = first; list < end; list++) {
    940       1.2     yamt 			LIST_FOREACH(bt, list, bt_freelist) {
    941       1.2     yamt 				if (bt->bt_size >= size) {
    942      1.10     yamt 					start = vmem_fit(bt, size, align, phase,
    943      1.10     yamt 					    nocross, minaddr, maxaddr);
    944      1.10     yamt 					if (start != VMEM_ADDR_NULL) {
    945      1.10     yamt 						goto gotit;
    946      1.10     yamt 					}
    947       1.2     yamt 				}
    948       1.1     yamt 			}
    949       1.1     yamt 		}
    950       1.1     yamt 	}
    951       1.2     yamt 	VMEM_UNLOCK(vm);
    952       1.1     yamt #if 1
    953       1.2     yamt 	if (strat == VM_INSTANTFIT) {
    954       1.2     yamt 		strat = VM_BESTFIT;
    955       1.2     yamt 		goto retry_strat;
    956       1.2     yamt 	}
    957       1.1     yamt #endif
    958      1.10     yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
    959      1.10     yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
    960      1.10     yamt 
    961      1.10     yamt 		/*
    962      1.10     yamt 		 * XXX should try to import a region large enough to
    963      1.10     yamt 		 * satisfy restrictions?
    964      1.10     yamt 		 */
    965      1.10     yamt 
    966      1.20     yamt 		goto fail;
    967      1.10     yamt 	}
    968       1.2     yamt 	if (vmem_import(vm, size, flags) == 0) {
    969       1.2     yamt 		goto retry;
    970       1.1     yamt 	}
    971       1.2     yamt 	/* XXX */
    972      1.20     yamt fail:
    973      1.20     yamt 	bt_free(vm, btnew);
    974      1.20     yamt 	bt_free(vm, btnew2);
    975       1.2     yamt 	return VMEM_ADDR_NULL;
    976       1.2     yamt 
    977       1.2     yamt gotit:
    978       1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    979       1.1     yamt 	KASSERT(bt->bt_size >= size);
    980       1.1     yamt 	bt_remfree(vm, bt);
    981      1.10     yamt 	if (bt->bt_start != start) {
    982      1.10     yamt 		btnew2->bt_type = BT_TYPE_FREE;
    983      1.10     yamt 		btnew2->bt_start = bt->bt_start;
    984      1.10     yamt 		btnew2->bt_size = start - bt->bt_start;
    985      1.10     yamt 		bt->bt_start = start;
    986      1.10     yamt 		bt->bt_size -= btnew2->bt_size;
    987      1.10     yamt 		bt_insfree(vm, btnew2);
    988      1.10     yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
    989      1.10     yamt 		btnew2 = NULL;
    990      1.10     yamt 	}
    991      1.10     yamt 	KASSERT(bt->bt_start == start);
    992       1.1     yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
    993       1.1     yamt 		/* split */
    994       1.1     yamt 		btnew->bt_type = BT_TYPE_BUSY;
    995       1.1     yamt 		btnew->bt_start = bt->bt_start;
    996       1.1     yamt 		btnew->bt_size = size;
    997       1.1     yamt 		bt->bt_start = bt->bt_start + size;
    998       1.1     yamt 		bt->bt_size -= size;
    999       1.1     yamt 		bt_insfree(vm, bt);
   1000       1.1     yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
   1001       1.1     yamt 		bt_insbusy(vm, btnew);
   1002       1.1     yamt 		VMEM_UNLOCK(vm);
   1003       1.1     yamt 	} else {
   1004       1.1     yamt 		bt->bt_type = BT_TYPE_BUSY;
   1005       1.1     yamt 		bt_insbusy(vm, bt);
   1006       1.1     yamt 		VMEM_UNLOCK(vm);
   1007       1.1     yamt 		bt_free(vm, btnew);
   1008       1.1     yamt 		btnew = bt;
   1009       1.1     yamt 	}
   1010      1.10     yamt 	if (btnew2 != NULL) {
   1011      1.10     yamt 		bt_free(vm, btnew2);
   1012      1.10     yamt 	}
   1013       1.1     yamt 	KASSERT(btnew->bt_size >= size);
   1014       1.1     yamt 	btnew->bt_type = BT_TYPE_BUSY;
   1015       1.1     yamt 
   1016       1.1     yamt 	return btnew->bt_start;
   1017       1.1     yamt }
   1018       1.1     yamt 
   1019       1.1     yamt /*
   1020       1.1     yamt  * vmem_free:
   1021       1.1     yamt  *
   1022       1.1     yamt  * => caller must ensure appropriate spl,
   1023       1.1     yamt  *    if the arena can be accessed from interrupt context.
   1024       1.1     yamt  */
   1025       1.1     yamt 
   1026       1.1     yamt void
   1027       1.1     yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1028       1.1     yamt {
   1029       1.1     yamt 
   1030       1.1     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1031       1.1     yamt 	KASSERT(size > 0);
   1032       1.1     yamt 
   1033       1.5     yamt #if defined(QCACHE)
   1034       1.5     yamt 	if (size <= vm->vm_qcache_max) {
   1035       1.5     yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1036      1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1037       1.5     yamt 
   1038  1.33.2.1      mjf 		return pool_cache_put(qc->qc_cache, (void *)addr);
   1039       1.5     yamt 	}
   1040       1.5     yamt #endif /* defined(QCACHE) */
   1041       1.5     yamt 
   1042      1.10     yamt 	vmem_xfree(vm, addr, size);
   1043      1.10     yamt }
   1044      1.10     yamt 
   1045      1.10     yamt void
   1046      1.17     yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1047      1.10     yamt {
   1048      1.10     yamt 	bt_t *bt;
   1049      1.10     yamt 	bt_t *t;
   1050      1.10     yamt 
   1051      1.10     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1052      1.10     yamt 	KASSERT(size > 0);
   1053      1.10     yamt 
   1054       1.1     yamt 	VMEM_LOCK(vm);
   1055       1.1     yamt 
   1056       1.1     yamt 	bt = bt_lookupbusy(vm, addr);
   1057       1.1     yamt 	KASSERT(bt != NULL);
   1058       1.1     yamt 	KASSERT(bt->bt_start == addr);
   1059       1.1     yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1060       1.1     yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1061       1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1062       1.1     yamt 	bt_rembusy(vm, bt);
   1063       1.1     yamt 	bt->bt_type = BT_TYPE_FREE;
   1064       1.1     yamt 
   1065       1.1     yamt 	/* coalesce */
   1066       1.1     yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1067       1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1068       1.1     yamt 		KASSERT(BT_END(bt) == t->bt_start);
   1069       1.1     yamt 		bt_remfree(vm, t);
   1070       1.1     yamt 		bt_remseg(vm, t);
   1071       1.1     yamt 		bt->bt_size += t->bt_size;
   1072       1.1     yamt 		bt_free(vm, t);
   1073       1.1     yamt 	}
   1074       1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1075       1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1076       1.1     yamt 		KASSERT(BT_END(t) == bt->bt_start);
   1077       1.1     yamt 		bt_remfree(vm, t);
   1078       1.1     yamt 		bt_remseg(vm, t);
   1079       1.1     yamt 		bt->bt_size += t->bt_size;
   1080       1.1     yamt 		bt->bt_start = t->bt_start;
   1081       1.1     yamt 		bt_free(vm, t);
   1082       1.1     yamt 	}
   1083       1.1     yamt 
   1084       1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1085       1.1     yamt 	KASSERT(t != NULL);
   1086       1.1     yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1087       1.1     yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1088       1.1     yamt 	    t->bt_size == bt->bt_size) {
   1089       1.1     yamt 		vmem_addr_t spanaddr;
   1090       1.1     yamt 		vmem_size_t spansize;
   1091       1.1     yamt 
   1092       1.1     yamt 		KASSERT(t->bt_start == bt->bt_start);
   1093       1.1     yamt 		spanaddr = bt->bt_start;
   1094       1.1     yamt 		spansize = bt->bt_size;
   1095       1.1     yamt 		bt_remseg(vm, bt);
   1096       1.1     yamt 		bt_free(vm, bt);
   1097       1.1     yamt 		bt_remseg(vm, t);
   1098       1.1     yamt 		bt_free(vm, t);
   1099       1.1     yamt 		VMEM_UNLOCK(vm);
   1100       1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1101       1.1     yamt 	} else {
   1102       1.1     yamt 		bt_insfree(vm, bt);
   1103       1.1     yamt 		VMEM_UNLOCK(vm);
   1104       1.1     yamt 	}
   1105       1.1     yamt }
   1106       1.1     yamt 
   1107       1.1     yamt /*
   1108       1.1     yamt  * vmem_add:
   1109       1.1     yamt  *
   1110       1.1     yamt  * => caller must ensure appropriate spl,
   1111       1.1     yamt  *    if the arena can be accessed from interrupt context.
   1112       1.1     yamt  */
   1113       1.1     yamt 
   1114       1.1     yamt vmem_addr_t
   1115       1.1     yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1116       1.1     yamt {
   1117       1.1     yamt 
   1118       1.1     yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1119       1.1     yamt }
   1120       1.1     yamt 
   1121       1.6     yamt /*
   1122       1.6     yamt  * vmem_reap: reap unused resources.
   1123       1.6     yamt  *
   1124      1.26  thorpej  * => return true if we successfully reaped something.
   1125       1.6     yamt  */
   1126       1.6     yamt 
   1127      1.25  thorpej bool
   1128       1.6     yamt vmem_reap(vmem_t *vm)
   1129       1.6     yamt {
   1130      1.26  thorpej 	bool didsomething = false;
   1131       1.6     yamt 
   1132       1.6     yamt #if defined(QCACHE)
   1133       1.6     yamt 	didsomething = qc_reap(vm);
   1134       1.6     yamt #endif /* defined(QCACHE) */
   1135       1.6     yamt 	return didsomething;
   1136       1.6     yamt }
   1137       1.6     yamt 
   1138      1.30     yamt /* ---- rehash */
   1139      1.30     yamt 
   1140      1.30     yamt #if defined(_KERNEL)
   1141      1.30     yamt static struct callout vmem_rehash_ch;
   1142      1.30     yamt static int vmem_rehash_interval;
   1143      1.30     yamt static struct workqueue *vmem_rehash_wq;
   1144      1.30     yamt static struct work vmem_rehash_wk;
   1145      1.30     yamt 
   1146      1.30     yamt static void
   1147      1.30     yamt vmem_rehash_all(struct work *wk, void *dummy)
   1148      1.30     yamt {
   1149      1.30     yamt 	vmem_t *vm;
   1150      1.30     yamt 
   1151      1.30     yamt 	KASSERT(wk == &vmem_rehash_wk);
   1152      1.30     yamt 	mutex_enter(&vmem_list_lock);
   1153      1.30     yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1154      1.30     yamt 		size_t desired;
   1155      1.30     yamt 		size_t current;
   1156      1.30     yamt 
   1157      1.30     yamt 		if (!VMEM_TRYLOCK(vm)) {
   1158      1.30     yamt 			continue;
   1159      1.30     yamt 		}
   1160      1.30     yamt 		desired = vm->vm_nbusytag;
   1161      1.30     yamt 		current = vm->vm_hashsize;
   1162      1.30     yamt 		VMEM_UNLOCK(vm);
   1163      1.30     yamt 
   1164      1.30     yamt 		if (desired > VMEM_HASHSIZE_MAX) {
   1165      1.30     yamt 			desired = VMEM_HASHSIZE_MAX;
   1166      1.30     yamt 		} else if (desired < VMEM_HASHSIZE_MIN) {
   1167      1.30     yamt 			desired = VMEM_HASHSIZE_MIN;
   1168      1.30     yamt 		}
   1169      1.30     yamt 		if (desired > current * 2 || desired * 2 < current) {
   1170      1.30     yamt 			vmem_rehash(vm, desired, VM_NOSLEEP);
   1171      1.30     yamt 		}
   1172      1.30     yamt 	}
   1173      1.30     yamt 	mutex_exit(&vmem_list_lock);
   1174      1.30     yamt 
   1175      1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1176      1.30     yamt }
   1177      1.30     yamt 
   1178      1.30     yamt static void
   1179      1.30     yamt vmem_rehash_all_kick(void *dummy)
   1180      1.30     yamt {
   1181      1.30     yamt 
   1182      1.32    rmind 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
   1183      1.30     yamt }
   1184      1.30     yamt 
   1185      1.30     yamt void
   1186      1.30     yamt vmem_rehash_start(void)
   1187      1.30     yamt {
   1188      1.30     yamt 	int error;
   1189      1.30     yamt 
   1190      1.30     yamt 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
   1191  1.33.2.1      mjf 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, 0);
   1192      1.30     yamt 	if (error) {
   1193      1.30     yamt 		panic("%s: workqueue_create %d\n", __func__, error);
   1194      1.30     yamt 	}
   1195      1.31       ad 	callout_init(&vmem_rehash_ch, 0);
   1196      1.30     yamt 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
   1197      1.30     yamt 
   1198      1.30     yamt 	vmem_rehash_interval = hz * 10;
   1199      1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1200      1.30     yamt }
   1201      1.30     yamt #endif /* defined(_KERNEL) */
   1202      1.30     yamt 
   1203       1.1     yamt /* ---- debug */
   1204       1.1     yamt 
   1205  1.33.2.3      mjf #if defined(DDB)
   1206  1.33.2.3      mjf static bt_t *
   1207  1.33.2.3      mjf vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
   1208  1.33.2.3      mjf {
   1209  1.33.2.3      mjf 	bt_t *bt;
   1210  1.33.2.3      mjf 
   1211  1.33.2.3      mjf 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1212  1.33.2.3      mjf 		if (BT_ISSPAN_P(bt)) {
   1213  1.33.2.3      mjf 			continue;
   1214  1.33.2.3      mjf 		}
   1215  1.33.2.3      mjf 		if (bt->bt_start <= addr && addr < BT_END(bt)) {
   1216  1.33.2.3      mjf 			return bt;
   1217  1.33.2.3      mjf 		}
   1218  1.33.2.3      mjf 	}
   1219  1.33.2.3      mjf 
   1220  1.33.2.3      mjf 	return NULL;
   1221  1.33.2.3      mjf }
   1222  1.33.2.3      mjf 
   1223  1.33.2.3      mjf void
   1224  1.33.2.3      mjf vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1225  1.33.2.3      mjf {
   1226  1.33.2.3      mjf 	vmem_t *vm;
   1227  1.33.2.3      mjf 
   1228  1.33.2.3      mjf 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1229  1.33.2.3      mjf 		bt_t *bt;
   1230  1.33.2.3      mjf 
   1231  1.33.2.3      mjf 		bt = vmem_whatis_lookup(vm, addr);
   1232  1.33.2.3      mjf 		if (bt == NULL) {
   1233  1.33.2.3      mjf 			continue;
   1234  1.33.2.3      mjf 		}
   1235  1.33.2.3      mjf 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
   1236  1.33.2.3      mjf 		    (void *)addr, (void *)bt->bt_start,
   1237  1.33.2.3      mjf 		    (size_t)(addr - bt->bt_start), vm->vm_name,
   1238  1.33.2.3      mjf 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
   1239  1.33.2.3      mjf 	}
   1240  1.33.2.3      mjf }
   1241  1.33.2.3      mjf #endif /* defined(DDB) */
   1242  1.33.2.3      mjf 
   1243       1.1     yamt #if defined(VMEM_DEBUG)
   1244       1.1     yamt 
   1245       1.1     yamt #if !defined(_KERNEL)
   1246       1.1     yamt #include <stdio.h>
   1247       1.1     yamt #endif /* !defined(_KERNEL) */
   1248       1.1     yamt 
   1249       1.1     yamt void bt_dump(const bt_t *);
   1250       1.1     yamt 
   1251       1.1     yamt void
   1252       1.1     yamt bt_dump(const bt_t *bt)
   1253       1.1     yamt {
   1254       1.1     yamt 
   1255       1.1     yamt 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
   1256       1.1     yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1257       1.1     yamt 	    bt->bt_type);
   1258       1.1     yamt }
   1259       1.1     yamt 
   1260       1.1     yamt void
   1261       1.1     yamt vmem_dump(const vmem_t *vm)
   1262       1.1     yamt {
   1263       1.1     yamt 	const bt_t *bt;
   1264       1.1     yamt 	int i;
   1265       1.1     yamt 
   1266       1.1     yamt 	printf("vmem %p '%s'\n", vm, vm->vm_name);
   1267       1.1     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1268       1.1     yamt 		bt_dump(bt);
   1269       1.1     yamt 	}
   1270       1.1     yamt 
   1271       1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1272       1.1     yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1273       1.1     yamt 
   1274       1.1     yamt 		if (LIST_EMPTY(fl)) {
   1275       1.1     yamt 			continue;
   1276       1.1     yamt 		}
   1277       1.1     yamt 
   1278       1.1     yamt 		printf("freelist[%d]\n", i);
   1279       1.1     yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1280       1.1     yamt 			bt_dump(bt);
   1281       1.1     yamt 			if (bt->bt_size) {
   1282       1.1     yamt 			}
   1283       1.1     yamt 		}
   1284       1.1     yamt 	}
   1285       1.1     yamt }
   1286       1.1     yamt 
   1287       1.1     yamt #if !defined(_KERNEL)
   1288       1.1     yamt 
   1289       1.1     yamt int
   1290       1.1     yamt main()
   1291       1.1     yamt {
   1292       1.1     yamt 	vmem_t *vm;
   1293       1.1     yamt 	vmem_addr_t p;
   1294       1.1     yamt 	struct reg {
   1295       1.1     yamt 		vmem_addr_t p;
   1296       1.1     yamt 		vmem_size_t sz;
   1297      1.25  thorpej 		bool x;
   1298       1.1     yamt 	} *reg = NULL;
   1299       1.1     yamt 	int nreg = 0;
   1300       1.1     yamt 	int nalloc = 0;
   1301       1.1     yamt 	int nfree = 0;
   1302       1.1     yamt 	vmem_size_t total = 0;
   1303       1.1     yamt #if 1
   1304       1.1     yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1305       1.1     yamt #else
   1306       1.1     yamt 	vm_flag_t strat = VM_BESTFIT;
   1307       1.1     yamt #endif
   1308       1.1     yamt 
   1309       1.1     yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1310      1.30     yamt 	    NULL, NULL, NULL, 0, VM_SLEEP);
   1311       1.1     yamt 	if (vm == NULL) {
   1312       1.1     yamt 		printf("vmem_create\n");
   1313       1.1     yamt 		exit(EXIT_FAILURE);
   1314       1.1     yamt 	}
   1315       1.1     yamt 	vmem_dump(vm);
   1316       1.1     yamt 
   1317       1.1     yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1318       1.1     yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1319       1.1     yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1320       1.1     yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1321       1.1     yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1322       1.1     yamt 	vmem_dump(vm);
   1323       1.1     yamt 	for (;;) {
   1324       1.1     yamt 		struct reg *r;
   1325      1.10     yamt 		int t = rand() % 100;
   1326       1.1     yamt 
   1327      1.10     yamt 		if (t > 45) {
   1328      1.10     yamt 			/* alloc */
   1329       1.1     yamt 			vmem_size_t sz = rand() % 500 + 1;
   1330      1.25  thorpej 			bool x;
   1331      1.10     yamt 			vmem_size_t align, phase, nocross;
   1332      1.10     yamt 			vmem_addr_t minaddr, maxaddr;
   1333      1.10     yamt 
   1334      1.10     yamt 			if (t > 70) {
   1335      1.26  thorpej 				x = true;
   1336      1.10     yamt 				/* XXX */
   1337      1.10     yamt 				align = 1 << (rand() % 15);
   1338      1.10     yamt 				phase = rand() % 65536;
   1339      1.10     yamt 				nocross = 1 << (rand() % 15);
   1340      1.10     yamt 				if (align <= phase) {
   1341      1.10     yamt 					phase = 0;
   1342      1.10     yamt 				}
   1343      1.19     yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1344      1.19     yamt 				    nocross)) {
   1345      1.10     yamt 					nocross = 0;
   1346      1.10     yamt 				}
   1347      1.10     yamt 				minaddr = rand() % 50000;
   1348      1.10     yamt 				maxaddr = rand() % 70000;
   1349      1.10     yamt 				if (minaddr > maxaddr) {
   1350      1.10     yamt 					minaddr = 0;
   1351      1.10     yamt 					maxaddr = 0;
   1352      1.10     yamt 				}
   1353      1.10     yamt 				printf("=== xalloc %" PRIu64
   1354      1.10     yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1355      1.10     yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1356      1.10     yamt 				    ", max=%" PRIu64 "\n",
   1357      1.10     yamt 				    (uint64_t)sz,
   1358      1.10     yamt 				    (uint64_t)align,
   1359      1.10     yamt 				    (uint64_t)phase,
   1360      1.10     yamt 				    (uint64_t)nocross,
   1361      1.10     yamt 				    (uint64_t)minaddr,
   1362      1.10     yamt 				    (uint64_t)maxaddr);
   1363      1.10     yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1364      1.10     yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1365      1.10     yamt 			} else {
   1366      1.26  thorpej 				x = false;
   1367      1.10     yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1368      1.10     yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1369      1.10     yamt 			}
   1370       1.1     yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1371       1.1     yamt 			vmem_dump(vm);
   1372       1.1     yamt 			if (p == VMEM_ADDR_NULL) {
   1373      1.10     yamt 				if (x) {
   1374      1.10     yamt 					continue;
   1375      1.10     yamt 				}
   1376       1.1     yamt 				break;
   1377       1.1     yamt 			}
   1378       1.1     yamt 			nreg++;
   1379       1.1     yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1380       1.1     yamt 			r = &reg[nreg - 1];
   1381       1.1     yamt 			r->p = p;
   1382       1.1     yamt 			r->sz = sz;
   1383      1.10     yamt 			r->x = x;
   1384       1.1     yamt 			total += sz;
   1385       1.1     yamt 			nalloc++;
   1386       1.1     yamt 		} else if (nreg != 0) {
   1387      1.10     yamt 			/* free */
   1388       1.1     yamt 			r = &reg[rand() % nreg];
   1389       1.1     yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1390       1.1     yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1391      1.10     yamt 			if (r->x) {
   1392      1.10     yamt 				vmem_xfree(vm, r->p, r->sz);
   1393      1.10     yamt 			} else {
   1394      1.10     yamt 				vmem_free(vm, r->p, r->sz);
   1395      1.10     yamt 			}
   1396       1.1     yamt 			total -= r->sz;
   1397       1.1     yamt 			vmem_dump(vm);
   1398       1.1     yamt 			*r = reg[nreg - 1];
   1399       1.1     yamt 			nreg--;
   1400       1.1     yamt 			nfree++;
   1401       1.1     yamt 		}
   1402       1.1     yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1403       1.1     yamt 	}
   1404       1.1     yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1405       1.1     yamt 	    (uint64_t)total, nalloc, nfree);
   1406       1.1     yamt 	exit(EXIT_SUCCESS);
   1407       1.1     yamt }
   1408       1.1     yamt #endif /* !defined(_KERNEL) */
   1409       1.1     yamt #endif /* defined(VMEM_DEBUG) */
   1410