Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.35
      1  1.35       ad /*	$NetBSD: subr_vmem.c,v 1.35 2007/11/07 00:23:23 ad Exp $	*/
      2   1.1     yamt 
      3   1.1     yamt /*-
      4   1.1     yamt  * Copyright (c)2006 YAMAMOTO Takashi,
      5   1.1     yamt  * All rights reserved.
      6   1.1     yamt  *
      7   1.1     yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1     yamt  * modification, are permitted provided that the following conditions
      9   1.1     yamt  * are met:
     10   1.1     yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1     yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1     yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1     yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1     yamt  *
     16   1.1     yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1     yamt  * SUCH DAMAGE.
     27   1.1     yamt  */
     28   1.1     yamt 
     29   1.1     yamt /*
     30   1.1     yamt  * reference:
     31   1.1     yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32   1.1     yamt  *	to Many CPUs and Arbitrary Resources
     33   1.1     yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34  1.18     yamt  *
     35  1.18     yamt  * todo:
     36  1.18     yamt  * -	decide how to import segments for vmem_xalloc.
     37  1.18     yamt  * -	don't rely on malloc(9).
     38   1.1     yamt  */
     39   1.1     yamt 
     40   1.1     yamt #include <sys/cdefs.h>
     41  1.35       ad __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.35 2007/11/07 00:23:23 ad Exp $");
     42   1.1     yamt 
     43   1.1     yamt #define	VMEM_DEBUG
     44   1.5     yamt #if defined(_KERNEL)
     45   1.5     yamt #define	QCACHE
     46   1.5     yamt #endif /* defined(_KERNEL) */
     47   1.1     yamt 
     48   1.1     yamt #include <sys/param.h>
     49   1.1     yamt #include <sys/hash.h>
     50   1.1     yamt #include <sys/queue.h>
     51   1.1     yamt 
     52   1.1     yamt #if defined(_KERNEL)
     53   1.1     yamt #include <sys/systm.h>
     54  1.30     yamt #include <sys/kernel.h>	/* hz */
     55  1.30     yamt #include <sys/callout.h>
     56   1.1     yamt #include <sys/lock.h>
     57   1.1     yamt #include <sys/malloc.h>
     58   1.1     yamt #include <sys/once.h>
     59   1.1     yamt #include <sys/pool.h>
     60   1.3     yamt #include <sys/proc.h>
     61   1.1     yamt #include <sys/vmem.h>
     62  1.30     yamt #include <sys/workqueue.h>
     63   1.1     yamt #else /* defined(_KERNEL) */
     64   1.1     yamt #include "../sys/vmem.h"
     65   1.1     yamt #endif /* defined(_KERNEL) */
     66   1.1     yamt 
     67   1.1     yamt #if defined(_KERNEL)
     68  1.31       ad #define	LOCK_DECL(name)		kmutex_t name
     69   1.1     yamt #else /* defined(_KERNEL) */
     70   1.1     yamt #include <errno.h>
     71   1.1     yamt #include <assert.h>
     72   1.1     yamt #include <stdlib.h>
     73   1.1     yamt 
     74   1.1     yamt #define	KASSERT(a)		assert(a)
     75  1.31       ad #define	LOCK_DECL(name)		/* nothing */
     76  1.31       ad #define	mutex_init(a, b, c)	/* nothing */
     77  1.31       ad #define	mutex_destroy(a)	/* nothing */
     78  1.31       ad #define	mutex_enter(a)		/* nothing */
     79  1.31       ad #define	mutex_exit(a)		/* nothing */
     80  1.31       ad #define	mutex_owned(a)		/* nothing */
     81   1.3     yamt #define	ASSERT_SLEEPABLE(lk, msg) /* nothing */
     82  1.31       ad #define	IPL_VM			0
     83   1.1     yamt #endif /* defined(_KERNEL) */
     84   1.1     yamt 
     85   1.1     yamt struct vmem;
     86   1.1     yamt struct vmem_btag;
     87   1.1     yamt 
     88   1.1     yamt #if defined(VMEM_DEBUG)
     89   1.1     yamt void vmem_dump(const vmem_t *);
     90   1.1     yamt #endif /* defined(VMEM_DEBUG) */
     91   1.1     yamt 
     92   1.4     yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     93  1.30     yamt 
     94  1.30     yamt #define	VMEM_HASHSIZE_MIN	1	/* XXX */
     95  1.30     yamt #define	VMEM_HASHSIZE_MAX	8192	/* XXX */
     96  1.30     yamt #define	VMEM_HASHSIZE_INIT	VMEM_HASHSIZE_MIN
     97   1.1     yamt 
     98   1.1     yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
     99   1.1     yamt 
    100   1.1     yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
    101   1.1     yamt LIST_HEAD(vmem_freelist, vmem_btag);
    102   1.1     yamt LIST_HEAD(vmem_hashlist, vmem_btag);
    103   1.1     yamt 
    104   1.5     yamt #if defined(QCACHE)
    105   1.5     yamt #define	VMEM_QCACHE_IDX_MAX	32
    106   1.5     yamt 
    107   1.5     yamt #define	QC_NAME_MAX	16
    108   1.5     yamt 
    109   1.5     yamt struct qcache {
    110  1.35       ad 	pool_cache_t qc_cache;
    111   1.5     yamt 	vmem_t *qc_vmem;
    112   1.5     yamt 	char qc_name[QC_NAME_MAX];
    113   1.5     yamt };
    114   1.5     yamt typedef struct qcache qcache_t;
    115  1.35       ad #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
    116   1.5     yamt #endif /* defined(QCACHE) */
    117   1.5     yamt 
    118   1.1     yamt /* vmem arena */
    119   1.1     yamt struct vmem {
    120  1.31       ad 	LOCK_DECL(vm_lock);
    121   1.1     yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    122   1.1     yamt 	    vm_flag_t);
    123   1.1     yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    124   1.1     yamt 	vmem_t *vm_source;
    125   1.1     yamt 	struct vmem_seglist vm_seglist;
    126   1.1     yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    127   1.1     yamt 	size_t vm_hashsize;
    128   1.1     yamt 	size_t vm_nbusytag;
    129   1.1     yamt 	struct vmem_hashlist *vm_hashlist;
    130   1.1     yamt 	size_t vm_quantum_mask;
    131   1.1     yamt 	int vm_quantum_shift;
    132   1.1     yamt 	const char *vm_name;
    133  1.30     yamt 	LIST_ENTRY(vmem) vm_alllist;
    134   1.5     yamt 
    135   1.5     yamt #if defined(QCACHE)
    136   1.5     yamt 	/* quantum cache */
    137   1.5     yamt 	size_t vm_qcache_max;
    138   1.5     yamt 	struct pool_allocator vm_qcache_allocator;
    139  1.22     yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    140  1.22     yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    141   1.5     yamt #endif /* defined(QCACHE) */
    142   1.1     yamt };
    143   1.1     yamt 
    144  1.31       ad #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
    145  1.31       ad #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
    146  1.31       ad #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
    147  1.31       ad #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DRIVER, ipl)
    148  1.31       ad #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
    149  1.31       ad #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
    150   1.1     yamt 
    151   1.1     yamt /* boundary tag */
    152   1.1     yamt struct vmem_btag {
    153   1.1     yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    154   1.1     yamt 	union {
    155   1.1     yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    156   1.1     yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    157   1.1     yamt 	} bt_u;
    158   1.1     yamt #define	bt_hashlist	bt_u.u_hashlist
    159   1.1     yamt #define	bt_freelist	bt_u.u_freelist
    160   1.1     yamt 	vmem_addr_t bt_start;
    161   1.1     yamt 	vmem_size_t bt_size;
    162   1.1     yamt 	int bt_type;
    163   1.1     yamt };
    164   1.1     yamt 
    165   1.1     yamt #define	BT_TYPE_SPAN		1
    166   1.1     yamt #define	BT_TYPE_SPAN_STATIC	2
    167   1.1     yamt #define	BT_TYPE_FREE		3
    168   1.1     yamt #define	BT_TYPE_BUSY		4
    169   1.1     yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    170   1.1     yamt 
    171   1.1     yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    172   1.1     yamt 
    173   1.1     yamt typedef struct vmem_btag bt_t;
    174   1.1     yamt 
    175   1.1     yamt /* ---- misc */
    176   1.1     yamt 
    177  1.19     yamt #define	VMEM_ALIGNUP(addr, align) \
    178  1.19     yamt 	(-(-(addr) & -(align)))
    179  1.19     yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    180  1.19     yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    181  1.19     yamt 
    182   1.4     yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    183   1.4     yamt 
    184   1.1     yamt static int
    185   1.1     yamt calc_order(vmem_size_t size)
    186   1.1     yamt {
    187   1.4     yamt 	vmem_size_t target;
    188   1.1     yamt 	int i;
    189   1.1     yamt 
    190   1.1     yamt 	KASSERT(size != 0);
    191   1.1     yamt 
    192   1.1     yamt 	i = 0;
    193   1.4     yamt 	target = size >> 1;
    194   1.4     yamt 	while (ORDER2SIZE(i) <= target) {
    195   1.1     yamt 		i++;
    196   1.1     yamt 	}
    197   1.1     yamt 
    198   1.4     yamt 	KASSERT(ORDER2SIZE(i) <= size);
    199   1.4     yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    200   1.1     yamt 
    201   1.1     yamt 	return i;
    202   1.1     yamt }
    203   1.1     yamt 
    204   1.1     yamt #if defined(_KERNEL)
    205   1.1     yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    206   1.1     yamt #endif /* defined(_KERNEL) */
    207   1.1     yamt 
    208   1.1     yamt static void *
    209   1.1     yamt xmalloc(size_t sz, vm_flag_t flags)
    210   1.1     yamt {
    211   1.1     yamt 
    212   1.1     yamt #if defined(_KERNEL)
    213   1.1     yamt 	return malloc(sz, M_VMEM,
    214   1.1     yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    215   1.1     yamt #else /* defined(_KERNEL) */
    216   1.1     yamt 	return malloc(sz);
    217   1.1     yamt #endif /* defined(_KERNEL) */
    218   1.1     yamt }
    219   1.1     yamt 
    220   1.1     yamt static void
    221   1.1     yamt xfree(void *p)
    222   1.1     yamt {
    223   1.1     yamt 
    224   1.1     yamt #if defined(_KERNEL)
    225   1.1     yamt 	return free(p, M_VMEM);
    226   1.1     yamt #else /* defined(_KERNEL) */
    227   1.1     yamt 	return free(p);
    228   1.1     yamt #endif /* defined(_KERNEL) */
    229   1.1     yamt }
    230   1.1     yamt 
    231   1.1     yamt /* ---- boundary tag */
    232   1.1     yamt 
    233   1.1     yamt #if defined(_KERNEL)
    234  1.35       ad static struct pool_cache bt_cache;
    235   1.1     yamt #endif /* defined(_KERNEL) */
    236   1.1     yamt 
    237   1.1     yamt static bt_t *
    238  1.17     yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    239   1.1     yamt {
    240   1.1     yamt 	bt_t *bt;
    241   1.1     yamt 
    242   1.1     yamt #if defined(_KERNEL)
    243  1.35       ad 	bt = pool_cache_get(&bt_cache,
    244   1.1     yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    245   1.1     yamt #else /* defined(_KERNEL) */
    246   1.1     yamt 	bt = malloc(sizeof *bt);
    247   1.1     yamt #endif /* defined(_KERNEL) */
    248   1.1     yamt 
    249   1.1     yamt 	return bt;
    250   1.1     yamt }
    251   1.1     yamt 
    252   1.1     yamt static void
    253  1.17     yamt bt_free(vmem_t *vm, bt_t *bt)
    254   1.1     yamt {
    255   1.1     yamt 
    256   1.1     yamt #if defined(_KERNEL)
    257  1.35       ad 	pool_cache_put(&bt_cache, bt);
    258   1.1     yamt #else /* defined(_KERNEL) */
    259   1.1     yamt 	free(bt);
    260   1.1     yamt #endif /* defined(_KERNEL) */
    261   1.1     yamt }
    262   1.1     yamt 
    263   1.1     yamt /*
    264   1.1     yamt  * freelist[0] ... [1, 1]
    265   1.1     yamt  * freelist[1] ... [2, 3]
    266   1.1     yamt  * freelist[2] ... [4, 7]
    267   1.1     yamt  * freelist[3] ... [8, 15]
    268   1.1     yamt  *  :
    269   1.1     yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    270   1.1     yamt  *  :
    271   1.1     yamt  */
    272   1.1     yamt 
    273   1.1     yamt static struct vmem_freelist *
    274   1.1     yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    275   1.1     yamt {
    276   1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    277   1.1     yamt 	int idx;
    278   1.1     yamt 
    279   1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    280   1.1     yamt 	KASSERT(size != 0);
    281   1.1     yamt 
    282   1.1     yamt 	idx = calc_order(qsize);
    283   1.1     yamt 	KASSERT(idx >= 0);
    284   1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    285   1.1     yamt 
    286   1.1     yamt 	return &vm->vm_freelist[idx];
    287   1.1     yamt }
    288   1.1     yamt 
    289   1.1     yamt static struct vmem_freelist *
    290   1.1     yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    291   1.1     yamt {
    292   1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    293   1.1     yamt 	int idx;
    294   1.1     yamt 
    295   1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    296   1.1     yamt 	KASSERT(size != 0);
    297   1.1     yamt 
    298   1.1     yamt 	idx = calc_order(qsize);
    299   1.4     yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    300   1.1     yamt 		idx++;
    301   1.1     yamt 		/* check too large request? */
    302   1.1     yamt 	}
    303   1.1     yamt 	KASSERT(idx >= 0);
    304   1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    305   1.1     yamt 
    306   1.1     yamt 	return &vm->vm_freelist[idx];
    307   1.1     yamt }
    308   1.1     yamt 
    309   1.1     yamt /* ---- boundary tag hash */
    310   1.1     yamt 
    311   1.1     yamt static struct vmem_hashlist *
    312   1.1     yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    313   1.1     yamt {
    314   1.1     yamt 	struct vmem_hashlist *list;
    315   1.1     yamt 	unsigned int hash;
    316   1.1     yamt 
    317   1.1     yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    318   1.1     yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    319   1.1     yamt 
    320   1.1     yamt 	return list;
    321   1.1     yamt }
    322   1.1     yamt 
    323   1.1     yamt static bt_t *
    324   1.1     yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    325   1.1     yamt {
    326   1.1     yamt 	struct vmem_hashlist *list;
    327   1.1     yamt 	bt_t *bt;
    328   1.1     yamt 
    329   1.1     yamt 	list = bt_hashhead(vm, addr);
    330   1.1     yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    331   1.1     yamt 		if (bt->bt_start == addr) {
    332   1.1     yamt 			break;
    333   1.1     yamt 		}
    334   1.1     yamt 	}
    335   1.1     yamt 
    336   1.1     yamt 	return bt;
    337   1.1     yamt }
    338   1.1     yamt 
    339   1.1     yamt static void
    340   1.1     yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    341   1.1     yamt {
    342   1.1     yamt 
    343   1.1     yamt 	KASSERT(vm->vm_nbusytag > 0);
    344   1.1     yamt 	vm->vm_nbusytag--;
    345   1.1     yamt 	LIST_REMOVE(bt, bt_hashlist);
    346   1.1     yamt }
    347   1.1     yamt 
    348   1.1     yamt static void
    349   1.1     yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    350   1.1     yamt {
    351   1.1     yamt 	struct vmem_hashlist *list;
    352   1.1     yamt 
    353   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    354   1.1     yamt 
    355   1.1     yamt 	list = bt_hashhead(vm, bt->bt_start);
    356   1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    357   1.1     yamt 	vm->vm_nbusytag++;
    358   1.1     yamt }
    359   1.1     yamt 
    360   1.1     yamt /* ---- boundary tag list */
    361   1.1     yamt 
    362   1.1     yamt static void
    363   1.1     yamt bt_remseg(vmem_t *vm, bt_t *bt)
    364   1.1     yamt {
    365   1.1     yamt 
    366   1.1     yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    367   1.1     yamt }
    368   1.1     yamt 
    369   1.1     yamt static void
    370   1.1     yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    371   1.1     yamt {
    372   1.1     yamt 
    373   1.1     yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    374   1.1     yamt }
    375   1.1     yamt 
    376   1.1     yamt static void
    377   1.1     yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    378   1.1     yamt {
    379   1.1     yamt 
    380   1.1     yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    381   1.1     yamt }
    382   1.1     yamt 
    383   1.1     yamt static void
    384  1.17     yamt bt_remfree(vmem_t *vm, bt_t *bt)
    385   1.1     yamt {
    386   1.1     yamt 
    387   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    388   1.1     yamt 
    389   1.1     yamt 	LIST_REMOVE(bt, bt_freelist);
    390   1.1     yamt }
    391   1.1     yamt 
    392   1.1     yamt static void
    393   1.1     yamt bt_insfree(vmem_t *vm, bt_t *bt)
    394   1.1     yamt {
    395   1.1     yamt 	struct vmem_freelist *list;
    396   1.1     yamt 
    397   1.1     yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    398   1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    399   1.1     yamt }
    400   1.1     yamt 
    401   1.1     yamt /* ---- vmem internal functions */
    402   1.1     yamt 
    403  1.30     yamt #if defined(_KERNEL)
    404  1.30     yamt static kmutex_t vmem_list_lock;
    405  1.30     yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
    406  1.30     yamt #endif /* defined(_KERNEL) */
    407  1.30     yamt 
    408   1.5     yamt #if defined(QCACHE)
    409   1.5     yamt static inline vm_flag_t
    410   1.5     yamt prf_to_vmf(int prflags)
    411   1.5     yamt {
    412   1.5     yamt 	vm_flag_t vmflags;
    413   1.5     yamt 
    414   1.5     yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    415   1.5     yamt 	if ((prflags & PR_WAITOK) != 0) {
    416   1.5     yamt 		vmflags = VM_SLEEP;
    417   1.5     yamt 	} else {
    418   1.5     yamt 		vmflags = VM_NOSLEEP;
    419   1.5     yamt 	}
    420   1.5     yamt 	return vmflags;
    421   1.5     yamt }
    422   1.5     yamt 
    423   1.5     yamt static inline int
    424   1.5     yamt vmf_to_prf(vm_flag_t vmflags)
    425   1.5     yamt {
    426   1.5     yamt 	int prflags;
    427   1.5     yamt 
    428   1.7     yamt 	if ((vmflags & VM_SLEEP) != 0) {
    429   1.5     yamt 		prflags = PR_WAITOK;
    430   1.7     yamt 	} else {
    431   1.5     yamt 		prflags = PR_NOWAIT;
    432   1.5     yamt 	}
    433   1.5     yamt 	return prflags;
    434   1.5     yamt }
    435   1.5     yamt 
    436   1.5     yamt static size_t
    437   1.5     yamt qc_poolpage_size(size_t qcache_max)
    438   1.5     yamt {
    439   1.5     yamt 	int i;
    440   1.5     yamt 
    441   1.5     yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    442   1.5     yamt 		/* nothing */
    443   1.5     yamt 	}
    444   1.5     yamt 	return ORDER2SIZE(i);
    445   1.5     yamt }
    446   1.5     yamt 
    447   1.5     yamt static void *
    448   1.5     yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    449   1.5     yamt {
    450   1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    451   1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    452   1.5     yamt 
    453   1.5     yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    454   1.5     yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    455   1.5     yamt }
    456   1.5     yamt 
    457   1.5     yamt static void
    458   1.5     yamt qc_poolpage_free(struct pool *pool, void *addr)
    459   1.5     yamt {
    460   1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    461   1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    462   1.5     yamt 
    463   1.5     yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    464   1.5     yamt }
    465   1.5     yamt 
    466   1.5     yamt static void
    467  1.31       ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
    468   1.5     yamt {
    469  1.22     yamt 	qcache_t *prevqc;
    470   1.5     yamt 	struct pool_allocator *pa;
    471   1.5     yamt 	int qcache_idx_max;
    472   1.5     yamt 	int i;
    473   1.5     yamt 
    474   1.5     yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    475   1.5     yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    476   1.5     yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    477   1.5     yamt 	}
    478   1.5     yamt 	vm->vm_qcache_max = qcache_max;
    479   1.5     yamt 	pa = &vm->vm_qcache_allocator;
    480   1.5     yamt 	memset(pa, 0, sizeof(*pa));
    481   1.5     yamt 	pa->pa_alloc = qc_poolpage_alloc;
    482   1.5     yamt 	pa->pa_free = qc_poolpage_free;
    483   1.5     yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    484   1.5     yamt 
    485   1.5     yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    486  1.22     yamt 	prevqc = NULL;
    487  1.22     yamt 	for (i = qcache_idx_max; i > 0; i--) {
    488  1.22     yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    489   1.5     yamt 		size_t size = i << vm->vm_quantum_shift;
    490   1.5     yamt 
    491   1.5     yamt 		qc->qc_vmem = vm;
    492   1.8   martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    493   1.5     yamt 		    vm->vm_name, size);
    494  1.35       ad 		qc->qc_cache = pool_cache_init(size,
    495  1.35       ad 		    ORDER2SIZE(vm->vm_quantum_shift), 0,
    496  1.35       ad 		    PR_NOALIGN | PR_NOTOUCH /* XXX */,
    497  1.35       ad 		    qc->qc_name, pa, ipl, NULL, NULL, NULL);
    498  1.35       ad 		KASSERT(qc->qc_cache != NULL);	/* XXX */
    499  1.22     yamt 		if (prevqc != NULL &&
    500  1.35       ad 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
    501  1.35       ad 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
    502  1.35       ad 			pool_cache_destroy(qc->qc_cache);
    503  1.22     yamt 			vm->vm_qcache[i - 1] = prevqc;
    504  1.27       ad 			continue;
    505  1.22     yamt 		}
    506  1.35       ad 		qc->qc_cache->pc_pool.pr_qcache = qc;
    507  1.22     yamt 		vm->vm_qcache[i - 1] = qc;
    508  1.22     yamt 		prevqc = qc;
    509   1.5     yamt 	}
    510   1.5     yamt }
    511   1.6     yamt 
    512  1.23     yamt static void
    513  1.23     yamt qc_destroy(vmem_t *vm)
    514  1.23     yamt {
    515  1.23     yamt 	const qcache_t *prevqc;
    516  1.23     yamt 	int i;
    517  1.23     yamt 	int qcache_idx_max;
    518  1.23     yamt 
    519  1.23     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    520  1.23     yamt 	prevqc = NULL;
    521  1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    522  1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    523  1.23     yamt 
    524  1.23     yamt 		if (prevqc == qc) {
    525  1.23     yamt 			continue;
    526  1.23     yamt 		}
    527  1.35       ad 		pool_cache_destroy(qc->qc_cache);
    528  1.23     yamt 		prevqc = qc;
    529  1.23     yamt 	}
    530  1.23     yamt }
    531  1.23     yamt 
    532  1.25  thorpej static bool
    533   1.6     yamt qc_reap(vmem_t *vm)
    534   1.6     yamt {
    535  1.22     yamt 	const qcache_t *prevqc;
    536   1.6     yamt 	int i;
    537   1.6     yamt 	int qcache_idx_max;
    538  1.26  thorpej 	bool didsomething = false;
    539   1.6     yamt 
    540   1.6     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    541  1.22     yamt 	prevqc = NULL;
    542  1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    543  1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    544   1.6     yamt 
    545  1.22     yamt 		if (prevqc == qc) {
    546  1.22     yamt 			continue;
    547  1.22     yamt 		}
    548  1.35       ad 		if (pool_cache_reclaim(qc->qc_cache) != 0) {
    549  1.26  thorpej 			didsomething = true;
    550   1.6     yamt 		}
    551  1.22     yamt 		prevqc = qc;
    552   1.6     yamt 	}
    553   1.6     yamt 
    554   1.6     yamt 	return didsomething;
    555   1.6     yamt }
    556   1.5     yamt #endif /* defined(QCACHE) */
    557   1.5     yamt 
    558   1.1     yamt #if defined(_KERNEL)
    559   1.1     yamt static int
    560   1.1     yamt vmem_init(void)
    561   1.1     yamt {
    562   1.1     yamt 
    563  1.30     yamt 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
    564  1.35       ad 	pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
    565  1.35       ad 	    NULL, IPL_VM, NULL, NULL, NULL);
    566   1.1     yamt 	return 0;
    567   1.1     yamt }
    568   1.1     yamt #endif /* defined(_KERNEL) */
    569   1.1     yamt 
    570   1.1     yamt static vmem_addr_t
    571   1.1     yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    572   1.1     yamt     int spanbttype)
    573   1.1     yamt {
    574   1.1     yamt 	bt_t *btspan;
    575   1.1     yamt 	bt_t *btfree;
    576   1.1     yamt 
    577   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    578   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    579   1.1     yamt 
    580   1.1     yamt 	btspan = bt_alloc(vm, flags);
    581   1.1     yamt 	if (btspan == NULL) {
    582   1.1     yamt 		return VMEM_ADDR_NULL;
    583   1.1     yamt 	}
    584   1.1     yamt 	btfree = bt_alloc(vm, flags);
    585   1.1     yamt 	if (btfree == NULL) {
    586   1.1     yamt 		bt_free(vm, btspan);
    587   1.1     yamt 		return VMEM_ADDR_NULL;
    588   1.1     yamt 	}
    589   1.1     yamt 
    590   1.1     yamt 	btspan->bt_type = spanbttype;
    591   1.1     yamt 	btspan->bt_start = addr;
    592   1.1     yamt 	btspan->bt_size = size;
    593   1.1     yamt 
    594   1.1     yamt 	btfree->bt_type = BT_TYPE_FREE;
    595   1.1     yamt 	btfree->bt_start = addr;
    596   1.1     yamt 	btfree->bt_size = size;
    597   1.1     yamt 
    598   1.1     yamt 	VMEM_LOCK(vm);
    599   1.1     yamt 	bt_insseg_tail(vm, btspan);
    600   1.1     yamt 	bt_insseg(vm, btfree, btspan);
    601   1.1     yamt 	bt_insfree(vm, btfree);
    602   1.1     yamt 	VMEM_UNLOCK(vm);
    603   1.1     yamt 
    604   1.1     yamt 	return addr;
    605   1.1     yamt }
    606   1.1     yamt 
    607  1.30     yamt static void
    608  1.30     yamt vmem_destroy1(vmem_t *vm)
    609  1.30     yamt {
    610  1.30     yamt 
    611  1.30     yamt #if defined(QCACHE)
    612  1.30     yamt 	qc_destroy(vm);
    613  1.30     yamt #endif /* defined(QCACHE) */
    614  1.30     yamt 	if (vm->vm_hashlist != NULL) {
    615  1.30     yamt 		int i;
    616  1.30     yamt 
    617  1.30     yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    618  1.30     yamt 			bt_t *bt;
    619  1.30     yamt 
    620  1.30     yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    621  1.30     yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    622  1.30     yamt 				bt_free(vm, bt);
    623  1.30     yamt 			}
    624  1.30     yamt 		}
    625  1.30     yamt 		xfree(vm->vm_hashlist);
    626  1.30     yamt 	}
    627  1.31       ad 	VMEM_LOCK_DESTROY(vm);
    628  1.30     yamt 	xfree(vm);
    629  1.30     yamt }
    630  1.30     yamt 
    631   1.1     yamt static int
    632   1.1     yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    633   1.1     yamt {
    634   1.1     yamt 	vmem_addr_t addr;
    635   1.1     yamt 
    636   1.1     yamt 	if (vm->vm_allocfn == NULL) {
    637   1.1     yamt 		return EINVAL;
    638   1.1     yamt 	}
    639   1.1     yamt 
    640   1.1     yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    641   1.1     yamt 	if (addr == VMEM_ADDR_NULL) {
    642   1.1     yamt 		return ENOMEM;
    643   1.1     yamt 	}
    644   1.1     yamt 
    645   1.1     yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    646   1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    647   1.1     yamt 		return ENOMEM;
    648   1.1     yamt 	}
    649   1.1     yamt 
    650   1.1     yamt 	return 0;
    651   1.1     yamt }
    652   1.1     yamt 
    653   1.1     yamt static int
    654   1.1     yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    655   1.1     yamt {
    656   1.1     yamt 	bt_t *bt;
    657   1.1     yamt 	int i;
    658   1.1     yamt 	struct vmem_hashlist *newhashlist;
    659   1.1     yamt 	struct vmem_hashlist *oldhashlist;
    660   1.1     yamt 	size_t oldhashsize;
    661   1.1     yamt 
    662   1.1     yamt 	KASSERT(newhashsize > 0);
    663   1.1     yamt 
    664   1.1     yamt 	newhashlist =
    665   1.1     yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    666   1.1     yamt 	if (newhashlist == NULL) {
    667   1.1     yamt 		return ENOMEM;
    668   1.1     yamt 	}
    669   1.1     yamt 	for (i = 0; i < newhashsize; i++) {
    670   1.1     yamt 		LIST_INIT(&newhashlist[i]);
    671   1.1     yamt 	}
    672   1.1     yamt 
    673  1.30     yamt 	if (!VMEM_TRYLOCK(vm)) {
    674  1.30     yamt 		xfree(newhashlist);
    675  1.30     yamt 		return EBUSY;
    676  1.30     yamt 	}
    677   1.1     yamt 	oldhashlist = vm->vm_hashlist;
    678   1.1     yamt 	oldhashsize = vm->vm_hashsize;
    679   1.1     yamt 	vm->vm_hashlist = newhashlist;
    680   1.1     yamt 	vm->vm_hashsize = newhashsize;
    681   1.1     yamt 	if (oldhashlist == NULL) {
    682   1.1     yamt 		VMEM_UNLOCK(vm);
    683   1.1     yamt 		return 0;
    684   1.1     yamt 	}
    685   1.1     yamt 	for (i = 0; i < oldhashsize; i++) {
    686   1.1     yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    687   1.1     yamt 			bt_rembusy(vm, bt); /* XXX */
    688   1.1     yamt 			bt_insbusy(vm, bt);
    689   1.1     yamt 		}
    690   1.1     yamt 	}
    691   1.1     yamt 	VMEM_UNLOCK(vm);
    692   1.1     yamt 
    693   1.1     yamt 	xfree(oldhashlist);
    694   1.1     yamt 
    695   1.1     yamt 	return 0;
    696   1.1     yamt }
    697   1.1     yamt 
    698  1.10     yamt /*
    699  1.10     yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    700  1.10     yamt  */
    701  1.10     yamt 
    702  1.10     yamt static vmem_addr_t
    703  1.10     yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    704  1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    705  1.10     yamt {
    706  1.10     yamt 	vmem_addr_t start;
    707  1.10     yamt 	vmem_addr_t end;
    708  1.10     yamt 
    709  1.10     yamt 	KASSERT(bt->bt_size >= size);
    710  1.10     yamt 
    711  1.10     yamt 	/*
    712  1.10     yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    713  1.10     yamt 	 * unsigned integer of the same size.
    714  1.10     yamt 	 */
    715  1.10     yamt 
    716  1.10     yamt 	start = bt->bt_start;
    717  1.10     yamt 	if (start < minaddr) {
    718  1.10     yamt 		start = minaddr;
    719  1.10     yamt 	}
    720  1.10     yamt 	end = BT_END(bt);
    721  1.10     yamt 	if (end > maxaddr - 1) {
    722  1.10     yamt 		end = maxaddr - 1;
    723  1.10     yamt 	}
    724  1.10     yamt 	if (start >= end) {
    725  1.10     yamt 		return VMEM_ADDR_NULL;
    726  1.10     yamt 	}
    727  1.19     yamt 
    728  1.19     yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    729  1.10     yamt 	if (start < bt->bt_start) {
    730  1.10     yamt 		start += align;
    731  1.10     yamt 	}
    732  1.19     yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    733  1.10     yamt 		KASSERT(align < nocross);
    734  1.19     yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    735  1.10     yamt 	}
    736  1.10     yamt 	if (start < end && end - start >= size) {
    737  1.10     yamt 		KASSERT((start & (align - 1)) == phase);
    738  1.19     yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    739  1.10     yamt 		KASSERT(minaddr <= start);
    740  1.10     yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    741  1.10     yamt 		KASSERT(bt->bt_start <= start);
    742  1.10     yamt 		KASSERT(start + size <= BT_END(bt));
    743  1.10     yamt 		return start;
    744  1.10     yamt 	}
    745  1.10     yamt 	return VMEM_ADDR_NULL;
    746  1.10     yamt }
    747  1.10     yamt 
    748   1.1     yamt /* ---- vmem API */
    749   1.1     yamt 
    750   1.1     yamt /*
    751   1.1     yamt  * vmem_create: create an arena.
    752   1.1     yamt  *
    753   1.1     yamt  * => must not be called from interrupt context.
    754   1.1     yamt  */
    755   1.1     yamt 
    756   1.1     yamt vmem_t *
    757   1.1     yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    758   1.1     yamt     vmem_size_t quantum,
    759   1.1     yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    760   1.1     yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    761  1.31       ad     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
    762  1.31       ad     int ipl)
    763   1.1     yamt {
    764   1.1     yamt 	vmem_t *vm;
    765   1.1     yamt 	int i;
    766   1.1     yamt #if defined(_KERNEL)
    767   1.1     yamt 	static ONCE_DECL(control);
    768   1.1     yamt #endif /* defined(_KERNEL) */
    769   1.1     yamt 
    770   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    771   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    772   1.1     yamt 
    773   1.1     yamt #if defined(_KERNEL)
    774   1.1     yamt 	if (RUN_ONCE(&control, vmem_init)) {
    775   1.1     yamt 		return NULL;
    776   1.1     yamt 	}
    777   1.1     yamt #endif /* defined(_KERNEL) */
    778   1.1     yamt 	vm = xmalloc(sizeof(*vm), flags);
    779   1.1     yamt 	if (vm == NULL) {
    780   1.1     yamt 		return NULL;
    781   1.1     yamt 	}
    782   1.1     yamt 
    783  1.31       ad 	VMEM_LOCK_INIT(vm, ipl);
    784   1.1     yamt 	vm->vm_name = name;
    785   1.1     yamt 	vm->vm_quantum_mask = quantum - 1;
    786   1.1     yamt 	vm->vm_quantum_shift = calc_order(quantum);
    787   1.4     yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    788   1.1     yamt 	vm->vm_allocfn = allocfn;
    789   1.1     yamt 	vm->vm_freefn = freefn;
    790   1.1     yamt 	vm->vm_source = source;
    791   1.1     yamt 	vm->vm_nbusytag = 0;
    792   1.5     yamt #if defined(QCACHE)
    793  1.31       ad 	qc_init(vm, qcache_max, ipl);
    794   1.5     yamt #endif /* defined(QCACHE) */
    795   1.1     yamt 
    796   1.1     yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    797   1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    798   1.1     yamt 		LIST_INIT(&vm->vm_freelist[i]);
    799   1.1     yamt 	}
    800   1.1     yamt 	vm->vm_hashlist = NULL;
    801   1.1     yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    802  1.30     yamt 		vmem_destroy1(vm);
    803   1.1     yamt 		return NULL;
    804   1.1     yamt 	}
    805   1.1     yamt 
    806   1.1     yamt 	if (size != 0) {
    807   1.1     yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    808  1.30     yamt 			vmem_destroy1(vm);
    809   1.1     yamt 			return NULL;
    810   1.1     yamt 		}
    811   1.1     yamt 	}
    812   1.1     yamt 
    813  1.30     yamt #if defined(_KERNEL)
    814  1.30     yamt 	mutex_enter(&vmem_list_lock);
    815  1.30     yamt 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
    816  1.30     yamt 	mutex_exit(&vmem_list_lock);
    817  1.30     yamt #endif /* defined(_KERNEL) */
    818  1.30     yamt 
    819   1.1     yamt 	return vm;
    820   1.1     yamt }
    821   1.1     yamt 
    822   1.1     yamt void
    823   1.1     yamt vmem_destroy(vmem_t *vm)
    824   1.1     yamt {
    825   1.1     yamt 
    826  1.30     yamt #if defined(_KERNEL)
    827  1.30     yamt 	mutex_enter(&vmem_list_lock);
    828  1.30     yamt 	LIST_REMOVE(vm, vm_alllist);
    829  1.30     yamt 	mutex_exit(&vmem_list_lock);
    830  1.30     yamt #endif /* defined(_KERNEL) */
    831   1.1     yamt 
    832  1.30     yamt 	vmem_destroy1(vm);
    833   1.1     yamt }
    834   1.1     yamt 
    835   1.1     yamt vmem_size_t
    836   1.1     yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    837   1.1     yamt {
    838   1.1     yamt 
    839   1.1     yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    840   1.1     yamt }
    841   1.1     yamt 
    842   1.1     yamt /*
    843   1.1     yamt  * vmem_alloc:
    844   1.1     yamt  *
    845   1.1     yamt  * => caller must ensure appropriate spl,
    846   1.1     yamt  *    if the arena can be accessed from interrupt context.
    847   1.1     yamt  */
    848   1.1     yamt 
    849   1.1     yamt vmem_addr_t
    850   1.1     yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
    851   1.1     yamt {
    852  1.12     yamt 	const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
    853  1.12     yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    854   1.1     yamt 
    855   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    856   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    857   1.1     yamt 
    858   1.1     yamt 	KASSERT(size0 > 0);
    859   1.1     yamt 	KASSERT(size > 0);
    860   1.1     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    861   1.3     yamt 	if ((flags & VM_SLEEP) != 0) {
    862  1.16     yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    863   1.3     yamt 	}
    864   1.1     yamt 
    865   1.5     yamt #if defined(QCACHE)
    866   1.5     yamt 	if (size <= vm->vm_qcache_max) {
    867   1.5     yamt 		int qidx = size >> vm->vm_quantum_shift;
    868  1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    869   1.5     yamt 
    870  1.35       ad 		return (vmem_addr_t)pool_cache_get(qc->qc_cache,
    871   1.5     yamt 		    vmf_to_prf(flags));
    872   1.5     yamt 	}
    873   1.5     yamt #endif /* defined(QCACHE) */
    874   1.5     yamt 
    875  1.10     yamt 	return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
    876  1.10     yamt }
    877  1.10     yamt 
    878  1.10     yamt vmem_addr_t
    879  1.10     yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
    880  1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
    881  1.10     yamt     vm_flag_t flags)
    882  1.10     yamt {
    883  1.10     yamt 	struct vmem_freelist *list;
    884  1.10     yamt 	struct vmem_freelist *first;
    885  1.10     yamt 	struct vmem_freelist *end;
    886  1.10     yamt 	bt_t *bt;
    887  1.10     yamt 	bt_t *btnew;
    888  1.10     yamt 	bt_t *btnew2;
    889  1.10     yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
    890  1.10     yamt 	vm_flag_t strat = flags & VM_FITMASK;
    891  1.10     yamt 	vmem_addr_t start;
    892  1.10     yamt 
    893  1.10     yamt 	KASSERT(size0 > 0);
    894  1.10     yamt 	KASSERT(size > 0);
    895  1.10     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    896  1.10     yamt 	if ((flags & VM_SLEEP) != 0) {
    897  1.16     yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    898  1.10     yamt 	}
    899  1.10     yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
    900  1.10     yamt 	KASSERT((align & (align - 1)) == 0);
    901  1.10     yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
    902  1.10     yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
    903  1.10     yamt 	KASSERT((nocross & (nocross - 1)) == 0);
    904  1.10     yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
    905  1.10     yamt 	KASSERT(nocross == 0 || nocross >= size);
    906  1.10     yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
    907  1.19     yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
    908  1.10     yamt 
    909  1.10     yamt 	if (align == 0) {
    910  1.10     yamt 		align = vm->vm_quantum_mask + 1;
    911  1.10     yamt 	}
    912   1.1     yamt 	btnew = bt_alloc(vm, flags);
    913   1.1     yamt 	if (btnew == NULL) {
    914   1.1     yamt 		return VMEM_ADDR_NULL;
    915   1.1     yamt 	}
    916  1.10     yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
    917  1.10     yamt 	if (btnew2 == NULL) {
    918  1.10     yamt 		bt_free(vm, btnew);
    919  1.10     yamt 		return VMEM_ADDR_NULL;
    920  1.10     yamt 	}
    921   1.1     yamt 
    922   1.1     yamt retry_strat:
    923   1.1     yamt 	first = bt_freehead_toalloc(vm, size, strat);
    924   1.1     yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
    925   1.1     yamt retry:
    926   1.1     yamt 	bt = NULL;
    927   1.1     yamt 	VMEM_LOCK(vm);
    928   1.2     yamt 	if (strat == VM_INSTANTFIT) {
    929   1.2     yamt 		for (list = first; list < end; list++) {
    930   1.2     yamt 			bt = LIST_FIRST(list);
    931   1.2     yamt 			if (bt != NULL) {
    932  1.10     yamt 				start = vmem_fit(bt, size, align, phase,
    933  1.10     yamt 				    nocross, minaddr, maxaddr);
    934  1.10     yamt 				if (start != VMEM_ADDR_NULL) {
    935  1.10     yamt 					goto gotit;
    936  1.10     yamt 				}
    937   1.2     yamt 			}
    938   1.2     yamt 		}
    939   1.2     yamt 	} else { /* VM_BESTFIT */
    940   1.2     yamt 		for (list = first; list < end; list++) {
    941   1.2     yamt 			LIST_FOREACH(bt, list, bt_freelist) {
    942   1.2     yamt 				if (bt->bt_size >= size) {
    943  1.10     yamt 					start = vmem_fit(bt, size, align, phase,
    944  1.10     yamt 					    nocross, minaddr, maxaddr);
    945  1.10     yamt 					if (start != VMEM_ADDR_NULL) {
    946  1.10     yamt 						goto gotit;
    947  1.10     yamt 					}
    948   1.2     yamt 				}
    949   1.1     yamt 			}
    950   1.1     yamt 		}
    951   1.1     yamt 	}
    952   1.2     yamt 	VMEM_UNLOCK(vm);
    953   1.1     yamt #if 1
    954   1.2     yamt 	if (strat == VM_INSTANTFIT) {
    955   1.2     yamt 		strat = VM_BESTFIT;
    956   1.2     yamt 		goto retry_strat;
    957   1.2     yamt 	}
    958   1.1     yamt #endif
    959  1.10     yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
    960  1.10     yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
    961  1.10     yamt 
    962  1.10     yamt 		/*
    963  1.10     yamt 		 * XXX should try to import a region large enough to
    964  1.10     yamt 		 * satisfy restrictions?
    965  1.10     yamt 		 */
    966  1.10     yamt 
    967  1.20     yamt 		goto fail;
    968  1.10     yamt 	}
    969   1.2     yamt 	if (vmem_import(vm, size, flags) == 0) {
    970   1.2     yamt 		goto retry;
    971   1.1     yamt 	}
    972   1.2     yamt 	/* XXX */
    973  1.20     yamt fail:
    974  1.20     yamt 	bt_free(vm, btnew);
    975  1.20     yamt 	bt_free(vm, btnew2);
    976   1.2     yamt 	return VMEM_ADDR_NULL;
    977   1.2     yamt 
    978   1.2     yamt gotit:
    979   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    980   1.1     yamt 	KASSERT(bt->bt_size >= size);
    981   1.1     yamt 	bt_remfree(vm, bt);
    982  1.10     yamt 	if (bt->bt_start != start) {
    983  1.10     yamt 		btnew2->bt_type = BT_TYPE_FREE;
    984  1.10     yamt 		btnew2->bt_start = bt->bt_start;
    985  1.10     yamt 		btnew2->bt_size = start - bt->bt_start;
    986  1.10     yamt 		bt->bt_start = start;
    987  1.10     yamt 		bt->bt_size -= btnew2->bt_size;
    988  1.10     yamt 		bt_insfree(vm, btnew2);
    989  1.10     yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
    990  1.10     yamt 		btnew2 = NULL;
    991  1.10     yamt 	}
    992  1.10     yamt 	KASSERT(bt->bt_start == start);
    993   1.1     yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
    994   1.1     yamt 		/* split */
    995   1.1     yamt 		btnew->bt_type = BT_TYPE_BUSY;
    996   1.1     yamt 		btnew->bt_start = bt->bt_start;
    997   1.1     yamt 		btnew->bt_size = size;
    998   1.1     yamt 		bt->bt_start = bt->bt_start + size;
    999   1.1     yamt 		bt->bt_size -= size;
   1000   1.1     yamt 		bt_insfree(vm, bt);
   1001   1.1     yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
   1002   1.1     yamt 		bt_insbusy(vm, btnew);
   1003   1.1     yamt 		VMEM_UNLOCK(vm);
   1004   1.1     yamt 	} else {
   1005   1.1     yamt 		bt->bt_type = BT_TYPE_BUSY;
   1006   1.1     yamt 		bt_insbusy(vm, bt);
   1007   1.1     yamt 		VMEM_UNLOCK(vm);
   1008   1.1     yamt 		bt_free(vm, btnew);
   1009   1.1     yamt 		btnew = bt;
   1010   1.1     yamt 	}
   1011  1.10     yamt 	if (btnew2 != NULL) {
   1012  1.10     yamt 		bt_free(vm, btnew2);
   1013  1.10     yamt 	}
   1014   1.1     yamt 	KASSERT(btnew->bt_size >= size);
   1015   1.1     yamt 	btnew->bt_type = BT_TYPE_BUSY;
   1016   1.1     yamt 
   1017   1.1     yamt 	return btnew->bt_start;
   1018   1.1     yamt }
   1019   1.1     yamt 
   1020   1.1     yamt /*
   1021   1.1     yamt  * vmem_free:
   1022   1.1     yamt  *
   1023   1.1     yamt  * => caller must ensure appropriate spl,
   1024   1.1     yamt  *    if the arena can be accessed from interrupt context.
   1025   1.1     yamt  */
   1026   1.1     yamt 
   1027   1.1     yamt void
   1028   1.1     yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1029   1.1     yamt {
   1030   1.1     yamt 
   1031   1.1     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1032   1.1     yamt 	KASSERT(size > 0);
   1033   1.1     yamt 
   1034   1.5     yamt #if defined(QCACHE)
   1035   1.5     yamt 	if (size <= vm->vm_qcache_max) {
   1036   1.5     yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1037  1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1038   1.5     yamt 
   1039  1.35       ad 		return pool_cache_put(qc->qc_cache, (void *)addr);
   1040   1.5     yamt 	}
   1041   1.5     yamt #endif /* defined(QCACHE) */
   1042   1.5     yamt 
   1043  1.10     yamt 	vmem_xfree(vm, addr, size);
   1044  1.10     yamt }
   1045  1.10     yamt 
   1046  1.10     yamt void
   1047  1.17     yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1048  1.10     yamt {
   1049  1.10     yamt 	bt_t *bt;
   1050  1.10     yamt 	bt_t *t;
   1051  1.10     yamt 
   1052  1.10     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1053  1.10     yamt 	KASSERT(size > 0);
   1054  1.10     yamt 
   1055   1.1     yamt 	VMEM_LOCK(vm);
   1056   1.1     yamt 
   1057   1.1     yamt 	bt = bt_lookupbusy(vm, addr);
   1058   1.1     yamt 	KASSERT(bt != NULL);
   1059   1.1     yamt 	KASSERT(bt->bt_start == addr);
   1060   1.1     yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1061   1.1     yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1062   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1063   1.1     yamt 	bt_rembusy(vm, bt);
   1064   1.1     yamt 	bt->bt_type = BT_TYPE_FREE;
   1065   1.1     yamt 
   1066   1.1     yamt 	/* coalesce */
   1067   1.1     yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1068   1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1069   1.1     yamt 		KASSERT(BT_END(bt) == t->bt_start);
   1070   1.1     yamt 		bt_remfree(vm, t);
   1071   1.1     yamt 		bt_remseg(vm, t);
   1072   1.1     yamt 		bt->bt_size += t->bt_size;
   1073   1.1     yamt 		bt_free(vm, t);
   1074   1.1     yamt 	}
   1075   1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1076   1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1077   1.1     yamt 		KASSERT(BT_END(t) == bt->bt_start);
   1078   1.1     yamt 		bt_remfree(vm, t);
   1079   1.1     yamt 		bt_remseg(vm, t);
   1080   1.1     yamt 		bt->bt_size += t->bt_size;
   1081   1.1     yamt 		bt->bt_start = t->bt_start;
   1082   1.1     yamt 		bt_free(vm, t);
   1083   1.1     yamt 	}
   1084   1.1     yamt 
   1085   1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1086   1.1     yamt 	KASSERT(t != NULL);
   1087   1.1     yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1088   1.1     yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1089   1.1     yamt 	    t->bt_size == bt->bt_size) {
   1090   1.1     yamt 		vmem_addr_t spanaddr;
   1091   1.1     yamt 		vmem_size_t spansize;
   1092   1.1     yamt 
   1093   1.1     yamt 		KASSERT(t->bt_start == bt->bt_start);
   1094   1.1     yamt 		spanaddr = bt->bt_start;
   1095   1.1     yamt 		spansize = bt->bt_size;
   1096   1.1     yamt 		bt_remseg(vm, bt);
   1097   1.1     yamt 		bt_free(vm, bt);
   1098   1.1     yamt 		bt_remseg(vm, t);
   1099   1.1     yamt 		bt_free(vm, t);
   1100   1.1     yamt 		VMEM_UNLOCK(vm);
   1101   1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1102   1.1     yamt 	} else {
   1103   1.1     yamt 		bt_insfree(vm, bt);
   1104   1.1     yamt 		VMEM_UNLOCK(vm);
   1105   1.1     yamt 	}
   1106   1.1     yamt }
   1107   1.1     yamt 
   1108   1.1     yamt /*
   1109   1.1     yamt  * vmem_add:
   1110   1.1     yamt  *
   1111   1.1     yamt  * => caller must ensure appropriate spl,
   1112   1.1     yamt  *    if the arena can be accessed from interrupt context.
   1113   1.1     yamt  */
   1114   1.1     yamt 
   1115   1.1     yamt vmem_addr_t
   1116   1.1     yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1117   1.1     yamt {
   1118   1.1     yamt 
   1119   1.1     yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1120   1.1     yamt }
   1121   1.1     yamt 
   1122   1.6     yamt /*
   1123   1.6     yamt  * vmem_reap: reap unused resources.
   1124   1.6     yamt  *
   1125  1.26  thorpej  * => return true if we successfully reaped something.
   1126   1.6     yamt  */
   1127   1.6     yamt 
   1128  1.25  thorpej bool
   1129   1.6     yamt vmem_reap(vmem_t *vm)
   1130   1.6     yamt {
   1131  1.26  thorpej 	bool didsomething = false;
   1132   1.6     yamt 
   1133   1.6     yamt #if defined(QCACHE)
   1134   1.6     yamt 	didsomething = qc_reap(vm);
   1135   1.6     yamt #endif /* defined(QCACHE) */
   1136   1.6     yamt 	return didsomething;
   1137   1.6     yamt }
   1138   1.6     yamt 
   1139  1.30     yamt /* ---- rehash */
   1140  1.30     yamt 
   1141  1.30     yamt #if defined(_KERNEL)
   1142  1.30     yamt static struct callout vmem_rehash_ch;
   1143  1.30     yamt static int vmem_rehash_interval;
   1144  1.30     yamt static struct workqueue *vmem_rehash_wq;
   1145  1.30     yamt static struct work vmem_rehash_wk;
   1146  1.30     yamt 
   1147  1.30     yamt static void
   1148  1.30     yamt vmem_rehash_all(struct work *wk, void *dummy)
   1149  1.30     yamt {
   1150  1.30     yamt 	vmem_t *vm;
   1151  1.30     yamt 
   1152  1.30     yamt 	KASSERT(wk == &vmem_rehash_wk);
   1153  1.30     yamt 	mutex_enter(&vmem_list_lock);
   1154  1.30     yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1155  1.30     yamt 		size_t desired;
   1156  1.30     yamt 		size_t current;
   1157  1.30     yamt 
   1158  1.30     yamt 		if (!VMEM_TRYLOCK(vm)) {
   1159  1.30     yamt 			continue;
   1160  1.30     yamt 		}
   1161  1.30     yamt 		desired = vm->vm_nbusytag;
   1162  1.30     yamt 		current = vm->vm_hashsize;
   1163  1.30     yamt 		VMEM_UNLOCK(vm);
   1164  1.30     yamt 
   1165  1.30     yamt 		if (desired > VMEM_HASHSIZE_MAX) {
   1166  1.30     yamt 			desired = VMEM_HASHSIZE_MAX;
   1167  1.30     yamt 		} else if (desired < VMEM_HASHSIZE_MIN) {
   1168  1.30     yamt 			desired = VMEM_HASHSIZE_MIN;
   1169  1.30     yamt 		}
   1170  1.30     yamt 		if (desired > current * 2 || desired * 2 < current) {
   1171  1.30     yamt 			vmem_rehash(vm, desired, VM_NOSLEEP);
   1172  1.30     yamt 		}
   1173  1.30     yamt 	}
   1174  1.30     yamt 	mutex_exit(&vmem_list_lock);
   1175  1.30     yamt 
   1176  1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1177  1.30     yamt }
   1178  1.30     yamt 
   1179  1.30     yamt static void
   1180  1.30     yamt vmem_rehash_all_kick(void *dummy)
   1181  1.30     yamt {
   1182  1.30     yamt 
   1183  1.32    rmind 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
   1184  1.30     yamt }
   1185  1.30     yamt 
   1186  1.30     yamt void
   1187  1.30     yamt vmem_rehash_start(void)
   1188  1.30     yamt {
   1189  1.30     yamt 	int error;
   1190  1.30     yamt 
   1191  1.30     yamt 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
   1192  1.34       ad 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, 0);
   1193  1.30     yamt 	if (error) {
   1194  1.30     yamt 		panic("%s: workqueue_create %d\n", __func__, error);
   1195  1.30     yamt 	}
   1196  1.31       ad 	callout_init(&vmem_rehash_ch, 0);
   1197  1.30     yamt 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
   1198  1.30     yamt 
   1199  1.30     yamt 	vmem_rehash_interval = hz * 10;
   1200  1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1201  1.30     yamt }
   1202  1.30     yamt #endif /* defined(_KERNEL) */
   1203  1.30     yamt 
   1204   1.1     yamt /* ---- debug */
   1205   1.1     yamt 
   1206   1.1     yamt #if defined(VMEM_DEBUG)
   1207   1.1     yamt 
   1208   1.1     yamt #if !defined(_KERNEL)
   1209   1.1     yamt #include <stdio.h>
   1210   1.1     yamt #endif /* !defined(_KERNEL) */
   1211   1.1     yamt 
   1212   1.1     yamt void bt_dump(const bt_t *);
   1213   1.1     yamt 
   1214   1.1     yamt void
   1215   1.1     yamt bt_dump(const bt_t *bt)
   1216   1.1     yamt {
   1217   1.1     yamt 
   1218   1.1     yamt 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
   1219   1.1     yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1220   1.1     yamt 	    bt->bt_type);
   1221   1.1     yamt }
   1222   1.1     yamt 
   1223   1.1     yamt void
   1224   1.1     yamt vmem_dump(const vmem_t *vm)
   1225   1.1     yamt {
   1226   1.1     yamt 	const bt_t *bt;
   1227   1.1     yamt 	int i;
   1228   1.1     yamt 
   1229   1.1     yamt 	printf("vmem %p '%s'\n", vm, vm->vm_name);
   1230   1.1     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1231   1.1     yamt 		bt_dump(bt);
   1232   1.1     yamt 	}
   1233   1.1     yamt 
   1234   1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1235   1.1     yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1236   1.1     yamt 
   1237   1.1     yamt 		if (LIST_EMPTY(fl)) {
   1238   1.1     yamt 			continue;
   1239   1.1     yamt 		}
   1240   1.1     yamt 
   1241   1.1     yamt 		printf("freelist[%d]\n", i);
   1242   1.1     yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1243   1.1     yamt 			bt_dump(bt);
   1244   1.1     yamt 			if (bt->bt_size) {
   1245   1.1     yamt 			}
   1246   1.1     yamt 		}
   1247   1.1     yamt 	}
   1248   1.1     yamt }
   1249   1.1     yamt 
   1250   1.1     yamt #if !defined(_KERNEL)
   1251   1.1     yamt 
   1252   1.1     yamt int
   1253   1.1     yamt main()
   1254   1.1     yamt {
   1255   1.1     yamt 	vmem_t *vm;
   1256   1.1     yamt 	vmem_addr_t p;
   1257   1.1     yamt 	struct reg {
   1258   1.1     yamt 		vmem_addr_t p;
   1259   1.1     yamt 		vmem_size_t sz;
   1260  1.25  thorpej 		bool x;
   1261   1.1     yamt 	} *reg = NULL;
   1262   1.1     yamt 	int nreg = 0;
   1263   1.1     yamt 	int nalloc = 0;
   1264   1.1     yamt 	int nfree = 0;
   1265   1.1     yamt 	vmem_size_t total = 0;
   1266   1.1     yamt #if 1
   1267   1.1     yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1268   1.1     yamt #else
   1269   1.1     yamt 	vm_flag_t strat = VM_BESTFIT;
   1270   1.1     yamt #endif
   1271   1.1     yamt 
   1272   1.1     yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1273  1.30     yamt 	    NULL, NULL, NULL, 0, VM_SLEEP);
   1274   1.1     yamt 	if (vm == NULL) {
   1275   1.1     yamt 		printf("vmem_create\n");
   1276   1.1     yamt 		exit(EXIT_FAILURE);
   1277   1.1     yamt 	}
   1278   1.1     yamt 	vmem_dump(vm);
   1279   1.1     yamt 
   1280   1.1     yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1281   1.1     yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1282   1.1     yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1283   1.1     yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1284   1.1     yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1285   1.1     yamt 	vmem_dump(vm);
   1286   1.1     yamt 	for (;;) {
   1287   1.1     yamt 		struct reg *r;
   1288  1.10     yamt 		int t = rand() % 100;
   1289   1.1     yamt 
   1290  1.10     yamt 		if (t > 45) {
   1291  1.10     yamt 			/* alloc */
   1292   1.1     yamt 			vmem_size_t sz = rand() % 500 + 1;
   1293  1.25  thorpej 			bool x;
   1294  1.10     yamt 			vmem_size_t align, phase, nocross;
   1295  1.10     yamt 			vmem_addr_t minaddr, maxaddr;
   1296  1.10     yamt 
   1297  1.10     yamt 			if (t > 70) {
   1298  1.26  thorpej 				x = true;
   1299  1.10     yamt 				/* XXX */
   1300  1.10     yamt 				align = 1 << (rand() % 15);
   1301  1.10     yamt 				phase = rand() % 65536;
   1302  1.10     yamt 				nocross = 1 << (rand() % 15);
   1303  1.10     yamt 				if (align <= phase) {
   1304  1.10     yamt 					phase = 0;
   1305  1.10     yamt 				}
   1306  1.19     yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1307  1.19     yamt 				    nocross)) {
   1308  1.10     yamt 					nocross = 0;
   1309  1.10     yamt 				}
   1310  1.10     yamt 				minaddr = rand() % 50000;
   1311  1.10     yamt 				maxaddr = rand() % 70000;
   1312  1.10     yamt 				if (minaddr > maxaddr) {
   1313  1.10     yamt 					minaddr = 0;
   1314  1.10     yamt 					maxaddr = 0;
   1315  1.10     yamt 				}
   1316  1.10     yamt 				printf("=== xalloc %" PRIu64
   1317  1.10     yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1318  1.10     yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1319  1.10     yamt 				    ", max=%" PRIu64 "\n",
   1320  1.10     yamt 				    (uint64_t)sz,
   1321  1.10     yamt 				    (uint64_t)align,
   1322  1.10     yamt 				    (uint64_t)phase,
   1323  1.10     yamt 				    (uint64_t)nocross,
   1324  1.10     yamt 				    (uint64_t)minaddr,
   1325  1.10     yamt 				    (uint64_t)maxaddr);
   1326  1.10     yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1327  1.10     yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1328  1.10     yamt 			} else {
   1329  1.26  thorpej 				x = false;
   1330  1.10     yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1331  1.10     yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1332  1.10     yamt 			}
   1333   1.1     yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1334   1.1     yamt 			vmem_dump(vm);
   1335   1.1     yamt 			if (p == VMEM_ADDR_NULL) {
   1336  1.10     yamt 				if (x) {
   1337  1.10     yamt 					continue;
   1338  1.10     yamt 				}
   1339   1.1     yamt 				break;
   1340   1.1     yamt 			}
   1341   1.1     yamt 			nreg++;
   1342   1.1     yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1343   1.1     yamt 			r = &reg[nreg - 1];
   1344   1.1     yamt 			r->p = p;
   1345   1.1     yamt 			r->sz = sz;
   1346  1.10     yamt 			r->x = x;
   1347   1.1     yamt 			total += sz;
   1348   1.1     yamt 			nalloc++;
   1349   1.1     yamt 		} else if (nreg != 0) {
   1350  1.10     yamt 			/* free */
   1351   1.1     yamt 			r = &reg[rand() % nreg];
   1352   1.1     yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1353   1.1     yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1354  1.10     yamt 			if (r->x) {
   1355  1.10     yamt 				vmem_xfree(vm, r->p, r->sz);
   1356  1.10     yamt 			} else {
   1357  1.10     yamt 				vmem_free(vm, r->p, r->sz);
   1358  1.10     yamt 			}
   1359   1.1     yamt 			total -= r->sz;
   1360   1.1     yamt 			vmem_dump(vm);
   1361   1.1     yamt 			*r = reg[nreg - 1];
   1362   1.1     yamt 			nreg--;
   1363   1.1     yamt 			nfree++;
   1364   1.1     yamt 		}
   1365   1.1     yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1366   1.1     yamt 	}
   1367   1.1     yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1368   1.1     yamt 	    (uint64_t)total, nalloc, nfree);
   1369   1.1     yamt 	exit(EXIT_SUCCESS);
   1370   1.1     yamt }
   1371   1.1     yamt #endif /* !defined(_KERNEL) */
   1372   1.1     yamt #endif /* defined(VMEM_DEBUG) */
   1373