subr_vmem.c revision 1.37 1 1.37 yamt /* $NetBSD: subr_vmem.c,v 1.37 2007/12/13 02:45:10 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.18 yamt *
35 1.18 yamt * todo:
36 1.18 yamt * - decide how to import segments for vmem_xalloc.
37 1.18 yamt * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.37 yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.37 2007/12/13 02:45:10 yamt Exp $");
42 1.1 yamt
43 1.1 yamt #define VMEM_DEBUG
44 1.5 yamt #if defined(_KERNEL)
45 1.37 yamt #include "opt_ddb.h"
46 1.5 yamt #define QCACHE
47 1.5 yamt #endif /* defined(_KERNEL) */
48 1.1 yamt
49 1.1 yamt #include <sys/param.h>
50 1.1 yamt #include <sys/hash.h>
51 1.1 yamt #include <sys/queue.h>
52 1.1 yamt
53 1.1 yamt #if defined(_KERNEL)
54 1.1 yamt #include <sys/systm.h>
55 1.30 yamt #include <sys/kernel.h> /* hz */
56 1.30 yamt #include <sys/callout.h>
57 1.1 yamt #include <sys/lock.h>
58 1.1 yamt #include <sys/malloc.h>
59 1.1 yamt #include <sys/once.h>
60 1.1 yamt #include <sys/pool.h>
61 1.3 yamt #include <sys/proc.h>
62 1.1 yamt #include <sys/vmem.h>
63 1.30 yamt #include <sys/workqueue.h>
64 1.1 yamt #else /* defined(_KERNEL) */
65 1.1 yamt #include "../sys/vmem.h"
66 1.1 yamt #endif /* defined(_KERNEL) */
67 1.1 yamt
68 1.1 yamt #if defined(_KERNEL)
69 1.31 ad #define LOCK_DECL(name) kmutex_t name
70 1.1 yamt #else /* defined(_KERNEL) */
71 1.1 yamt #include <errno.h>
72 1.1 yamt #include <assert.h>
73 1.1 yamt #include <stdlib.h>
74 1.1 yamt
75 1.1 yamt #define KASSERT(a) assert(a)
76 1.31 ad #define LOCK_DECL(name) /* nothing */
77 1.31 ad #define mutex_init(a, b, c) /* nothing */
78 1.31 ad #define mutex_destroy(a) /* nothing */
79 1.31 ad #define mutex_enter(a) /* nothing */
80 1.31 ad #define mutex_exit(a) /* nothing */
81 1.31 ad #define mutex_owned(a) /* nothing */
82 1.3 yamt #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
83 1.31 ad #define IPL_VM 0
84 1.1 yamt #endif /* defined(_KERNEL) */
85 1.1 yamt
86 1.1 yamt struct vmem;
87 1.1 yamt struct vmem_btag;
88 1.1 yamt
89 1.1 yamt #if defined(VMEM_DEBUG)
90 1.1 yamt void vmem_dump(const vmem_t *);
91 1.1 yamt #endif /* defined(VMEM_DEBUG) */
92 1.1 yamt
93 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
94 1.30 yamt
95 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
96 1.30 yamt #define VMEM_HASHSIZE_MAX 8192 /* XXX */
97 1.30 yamt #define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
98 1.1 yamt
99 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
100 1.1 yamt
101 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
102 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
103 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
104 1.1 yamt
105 1.5 yamt #if defined(QCACHE)
106 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
107 1.5 yamt
108 1.5 yamt #define QC_NAME_MAX 16
109 1.5 yamt
110 1.5 yamt struct qcache {
111 1.35 ad pool_cache_t qc_cache;
112 1.5 yamt vmem_t *qc_vmem;
113 1.5 yamt char qc_name[QC_NAME_MAX];
114 1.5 yamt };
115 1.5 yamt typedef struct qcache qcache_t;
116 1.35 ad #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
117 1.5 yamt #endif /* defined(QCACHE) */
118 1.5 yamt
119 1.1 yamt /* vmem arena */
120 1.1 yamt struct vmem {
121 1.31 ad LOCK_DECL(vm_lock);
122 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
123 1.1 yamt vm_flag_t);
124 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
125 1.1 yamt vmem_t *vm_source;
126 1.1 yamt struct vmem_seglist vm_seglist;
127 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
128 1.1 yamt size_t vm_hashsize;
129 1.1 yamt size_t vm_nbusytag;
130 1.1 yamt struct vmem_hashlist *vm_hashlist;
131 1.1 yamt size_t vm_quantum_mask;
132 1.1 yamt int vm_quantum_shift;
133 1.1 yamt const char *vm_name;
134 1.30 yamt LIST_ENTRY(vmem) vm_alllist;
135 1.5 yamt
136 1.5 yamt #if defined(QCACHE)
137 1.5 yamt /* quantum cache */
138 1.5 yamt size_t vm_qcache_max;
139 1.5 yamt struct pool_allocator vm_qcache_allocator;
140 1.22 yamt qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
141 1.22 yamt qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
142 1.5 yamt #endif /* defined(QCACHE) */
143 1.1 yamt };
144 1.1 yamt
145 1.31 ad #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
146 1.31 ad #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
147 1.31 ad #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
148 1.36 ad #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
149 1.31 ad #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
150 1.31 ad #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
151 1.1 yamt
152 1.1 yamt /* boundary tag */
153 1.1 yamt struct vmem_btag {
154 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
155 1.1 yamt union {
156 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
157 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
158 1.1 yamt } bt_u;
159 1.1 yamt #define bt_hashlist bt_u.u_hashlist
160 1.1 yamt #define bt_freelist bt_u.u_freelist
161 1.1 yamt vmem_addr_t bt_start;
162 1.1 yamt vmem_size_t bt_size;
163 1.1 yamt int bt_type;
164 1.1 yamt };
165 1.1 yamt
166 1.1 yamt #define BT_TYPE_SPAN 1
167 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
168 1.1 yamt #define BT_TYPE_FREE 3
169 1.1 yamt #define BT_TYPE_BUSY 4
170 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
171 1.1 yamt
172 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
173 1.1 yamt
174 1.1 yamt typedef struct vmem_btag bt_t;
175 1.1 yamt
176 1.1 yamt /* ---- misc */
177 1.1 yamt
178 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
179 1.19 yamt (-(-(addr) & -(align)))
180 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
181 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
182 1.19 yamt
183 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
184 1.4 yamt
185 1.1 yamt static int
186 1.1 yamt calc_order(vmem_size_t size)
187 1.1 yamt {
188 1.4 yamt vmem_size_t target;
189 1.1 yamt int i;
190 1.1 yamt
191 1.1 yamt KASSERT(size != 0);
192 1.1 yamt
193 1.1 yamt i = 0;
194 1.4 yamt target = size >> 1;
195 1.4 yamt while (ORDER2SIZE(i) <= target) {
196 1.1 yamt i++;
197 1.1 yamt }
198 1.1 yamt
199 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
200 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
201 1.1 yamt
202 1.1 yamt return i;
203 1.1 yamt }
204 1.1 yamt
205 1.1 yamt #if defined(_KERNEL)
206 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
207 1.1 yamt #endif /* defined(_KERNEL) */
208 1.1 yamt
209 1.1 yamt static void *
210 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
211 1.1 yamt {
212 1.1 yamt
213 1.1 yamt #if defined(_KERNEL)
214 1.1 yamt return malloc(sz, M_VMEM,
215 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
216 1.1 yamt #else /* defined(_KERNEL) */
217 1.1 yamt return malloc(sz);
218 1.1 yamt #endif /* defined(_KERNEL) */
219 1.1 yamt }
220 1.1 yamt
221 1.1 yamt static void
222 1.1 yamt xfree(void *p)
223 1.1 yamt {
224 1.1 yamt
225 1.1 yamt #if defined(_KERNEL)
226 1.1 yamt return free(p, M_VMEM);
227 1.1 yamt #else /* defined(_KERNEL) */
228 1.1 yamt return free(p);
229 1.1 yamt #endif /* defined(_KERNEL) */
230 1.1 yamt }
231 1.1 yamt
232 1.1 yamt /* ---- boundary tag */
233 1.1 yamt
234 1.1 yamt #if defined(_KERNEL)
235 1.35 ad static struct pool_cache bt_cache;
236 1.1 yamt #endif /* defined(_KERNEL) */
237 1.1 yamt
238 1.1 yamt static bt_t *
239 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
240 1.1 yamt {
241 1.1 yamt bt_t *bt;
242 1.1 yamt
243 1.1 yamt #if defined(_KERNEL)
244 1.35 ad bt = pool_cache_get(&bt_cache,
245 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
246 1.1 yamt #else /* defined(_KERNEL) */
247 1.1 yamt bt = malloc(sizeof *bt);
248 1.1 yamt #endif /* defined(_KERNEL) */
249 1.1 yamt
250 1.1 yamt return bt;
251 1.1 yamt }
252 1.1 yamt
253 1.1 yamt static void
254 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
255 1.1 yamt {
256 1.1 yamt
257 1.1 yamt #if defined(_KERNEL)
258 1.35 ad pool_cache_put(&bt_cache, bt);
259 1.1 yamt #else /* defined(_KERNEL) */
260 1.1 yamt free(bt);
261 1.1 yamt #endif /* defined(_KERNEL) */
262 1.1 yamt }
263 1.1 yamt
264 1.1 yamt /*
265 1.1 yamt * freelist[0] ... [1, 1]
266 1.1 yamt * freelist[1] ... [2, 3]
267 1.1 yamt * freelist[2] ... [4, 7]
268 1.1 yamt * freelist[3] ... [8, 15]
269 1.1 yamt * :
270 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
271 1.1 yamt * :
272 1.1 yamt */
273 1.1 yamt
274 1.1 yamt static struct vmem_freelist *
275 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
276 1.1 yamt {
277 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
278 1.1 yamt int idx;
279 1.1 yamt
280 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
281 1.1 yamt KASSERT(size != 0);
282 1.1 yamt
283 1.1 yamt idx = calc_order(qsize);
284 1.1 yamt KASSERT(idx >= 0);
285 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
286 1.1 yamt
287 1.1 yamt return &vm->vm_freelist[idx];
288 1.1 yamt }
289 1.1 yamt
290 1.1 yamt static struct vmem_freelist *
291 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
292 1.1 yamt {
293 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
294 1.1 yamt int idx;
295 1.1 yamt
296 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
297 1.1 yamt KASSERT(size != 0);
298 1.1 yamt
299 1.1 yamt idx = calc_order(qsize);
300 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
301 1.1 yamt idx++;
302 1.1 yamt /* check too large request? */
303 1.1 yamt }
304 1.1 yamt KASSERT(idx >= 0);
305 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
306 1.1 yamt
307 1.1 yamt return &vm->vm_freelist[idx];
308 1.1 yamt }
309 1.1 yamt
310 1.1 yamt /* ---- boundary tag hash */
311 1.1 yamt
312 1.1 yamt static struct vmem_hashlist *
313 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
314 1.1 yamt {
315 1.1 yamt struct vmem_hashlist *list;
316 1.1 yamt unsigned int hash;
317 1.1 yamt
318 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
319 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
320 1.1 yamt
321 1.1 yamt return list;
322 1.1 yamt }
323 1.1 yamt
324 1.1 yamt static bt_t *
325 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
326 1.1 yamt {
327 1.1 yamt struct vmem_hashlist *list;
328 1.1 yamt bt_t *bt;
329 1.1 yamt
330 1.1 yamt list = bt_hashhead(vm, addr);
331 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
332 1.1 yamt if (bt->bt_start == addr) {
333 1.1 yamt break;
334 1.1 yamt }
335 1.1 yamt }
336 1.1 yamt
337 1.1 yamt return bt;
338 1.1 yamt }
339 1.1 yamt
340 1.1 yamt static void
341 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
342 1.1 yamt {
343 1.1 yamt
344 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
345 1.1 yamt vm->vm_nbusytag--;
346 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
347 1.1 yamt }
348 1.1 yamt
349 1.1 yamt static void
350 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
351 1.1 yamt {
352 1.1 yamt struct vmem_hashlist *list;
353 1.1 yamt
354 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
355 1.1 yamt
356 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
357 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
358 1.1 yamt vm->vm_nbusytag++;
359 1.1 yamt }
360 1.1 yamt
361 1.1 yamt /* ---- boundary tag list */
362 1.1 yamt
363 1.1 yamt static void
364 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
365 1.1 yamt {
366 1.1 yamt
367 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
368 1.1 yamt }
369 1.1 yamt
370 1.1 yamt static void
371 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
372 1.1 yamt {
373 1.1 yamt
374 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
375 1.1 yamt }
376 1.1 yamt
377 1.1 yamt static void
378 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
379 1.1 yamt {
380 1.1 yamt
381 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
382 1.1 yamt }
383 1.1 yamt
384 1.1 yamt static void
385 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
386 1.1 yamt {
387 1.1 yamt
388 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
389 1.1 yamt
390 1.1 yamt LIST_REMOVE(bt, bt_freelist);
391 1.1 yamt }
392 1.1 yamt
393 1.1 yamt static void
394 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
395 1.1 yamt {
396 1.1 yamt struct vmem_freelist *list;
397 1.1 yamt
398 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
399 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
400 1.1 yamt }
401 1.1 yamt
402 1.1 yamt /* ---- vmem internal functions */
403 1.1 yamt
404 1.30 yamt #if defined(_KERNEL)
405 1.30 yamt static kmutex_t vmem_list_lock;
406 1.30 yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
407 1.30 yamt #endif /* defined(_KERNEL) */
408 1.30 yamt
409 1.5 yamt #if defined(QCACHE)
410 1.5 yamt static inline vm_flag_t
411 1.5 yamt prf_to_vmf(int prflags)
412 1.5 yamt {
413 1.5 yamt vm_flag_t vmflags;
414 1.5 yamt
415 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
416 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
417 1.5 yamt vmflags = VM_SLEEP;
418 1.5 yamt } else {
419 1.5 yamt vmflags = VM_NOSLEEP;
420 1.5 yamt }
421 1.5 yamt return vmflags;
422 1.5 yamt }
423 1.5 yamt
424 1.5 yamt static inline int
425 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
426 1.5 yamt {
427 1.5 yamt int prflags;
428 1.5 yamt
429 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
430 1.5 yamt prflags = PR_WAITOK;
431 1.7 yamt } else {
432 1.5 yamt prflags = PR_NOWAIT;
433 1.5 yamt }
434 1.5 yamt return prflags;
435 1.5 yamt }
436 1.5 yamt
437 1.5 yamt static size_t
438 1.5 yamt qc_poolpage_size(size_t qcache_max)
439 1.5 yamt {
440 1.5 yamt int i;
441 1.5 yamt
442 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
443 1.5 yamt /* nothing */
444 1.5 yamt }
445 1.5 yamt return ORDER2SIZE(i);
446 1.5 yamt }
447 1.5 yamt
448 1.5 yamt static void *
449 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
450 1.5 yamt {
451 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
452 1.5 yamt vmem_t *vm = qc->qc_vmem;
453 1.5 yamt
454 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
455 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
456 1.5 yamt }
457 1.5 yamt
458 1.5 yamt static void
459 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
460 1.5 yamt {
461 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
462 1.5 yamt vmem_t *vm = qc->qc_vmem;
463 1.5 yamt
464 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
465 1.5 yamt }
466 1.5 yamt
467 1.5 yamt static void
468 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
469 1.5 yamt {
470 1.22 yamt qcache_t *prevqc;
471 1.5 yamt struct pool_allocator *pa;
472 1.5 yamt int qcache_idx_max;
473 1.5 yamt int i;
474 1.5 yamt
475 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
476 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
477 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
478 1.5 yamt }
479 1.5 yamt vm->vm_qcache_max = qcache_max;
480 1.5 yamt pa = &vm->vm_qcache_allocator;
481 1.5 yamt memset(pa, 0, sizeof(*pa));
482 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
483 1.5 yamt pa->pa_free = qc_poolpage_free;
484 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
485 1.5 yamt
486 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
487 1.22 yamt prevqc = NULL;
488 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
489 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
490 1.5 yamt size_t size = i << vm->vm_quantum_shift;
491 1.5 yamt
492 1.5 yamt qc->qc_vmem = vm;
493 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
494 1.5 yamt vm->vm_name, size);
495 1.35 ad qc->qc_cache = pool_cache_init(size,
496 1.35 ad ORDER2SIZE(vm->vm_quantum_shift), 0,
497 1.35 ad PR_NOALIGN | PR_NOTOUCH /* XXX */,
498 1.35 ad qc->qc_name, pa, ipl, NULL, NULL, NULL);
499 1.35 ad KASSERT(qc->qc_cache != NULL); /* XXX */
500 1.22 yamt if (prevqc != NULL &&
501 1.35 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
502 1.35 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
503 1.35 ad pool_cache_destroy(qc->qc_cache);
504 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
505 1.27 ad continue;
506 1.22 yamt }
507 1.35 ad qc->qc_cache->pc_pool.pr_qcache = qc;
508 1.22 yamt vm->vm_qcache[i - 1] = qc;
509 1.22 yamt prevqc = qc;
510 1.5 yamt }
511 1.5 yamt }
512 1.6 yamt
513 1.23 yamt static void
514 1.23 yamt qc_destroy(vmem_t *vm)
515 1.23 yamt {
516 1.23 yamt const qcache_t *prevqc;
517 1.23 yamt int i;
518 1.23 yamt int qcache_idx_max;
519 1.23 yamt
520 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
521 1.23 yamt prevqc = NULL;
522 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
523 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
524 1.23 yamt
525 1.23 yamt if (prevqc == qc) {
526 1.23 yamt continue;
527 1.23 yamt }
528 1.35 ad pool_cache_destroy(qc->qc_cache);
529 1.23 yamt prevqc = qc;
530 1.23 yamt }
531 1.23 yamt }
532 1.23 yamt
533 1.25 thorpej static bool
534 1.6 yamt qc_reap(vmem_t *vm)
535 1.6 yamt {
536 1.22 yamt const qcache_t *prevqc;
537 1.6 yamt int i;
538 1.6 yamt int qcache_idx_max;
539 1.26 thorpej bool didsomething = false;
540 1.6 yamt
541 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
542 1.22 yamt prevqc = NULL;
543 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
544 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
545 1.6 yamt
546 1.22 yamt if (prevqc == qc) {
547 1.22 yamt continue;
548 1.22 yamt }
549 1.35 ad if (pool_cache_reclaim(qc->qc_cache) != 0) {
550 1.26 thorpej didsomething = true;
551 1.6 yamt }
552 1.22 yamt prevqc = qc;
553 1.6 yamt }
554 1.6 yamt
555 1.6 yamt return didsomething;
556 1.6 yamt }
557 1.5 yamt #endif /* defined(QCACHE) */
558 1.5 yamt
559 1.1 yamt #if defined(_KERNEL)
560 1.1 yamt static int
561 1.1 yamt vmem_init(void)
562 1.1 yamt {
563 1.1 yamt
564 1.30 yamt mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
565 1.35 ad pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
566 1.35 ad NULL, IPL_VM, NULL, NULL, NULL);
567 1.1 yamt return 0;
568 1.1 yamt }
569 1.1 yamt #endif /* defined(_KERNEL) */
570 1.1 yamt
571 1.1 yamt static vmem_addr_t
572 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
573 1.1 yamt int spanbttype)
574 1.1 yamt {
575 1.1 yamt bt_t *btspan;
576 1.1 yamt bt_t *btfree;
577 1.1 yamt
578 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
579 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
580 1.1 yamt
581 1.1 yamt btspan = bt_alloc(vm, flags);
582 1.1 yamt if (btspan == NULL) {
583 1.1 yamt return VMEM_ADDR_NULL;
584 1.1 yamt }
585 1.1 yamt btfree = bt_alloc(vm, flags);
586 1.1 yamt if (btfree == NULL) {
587 1.1 yamt bt_free(vm, btspan);
588 1.1 yamt return VMEM_ADDR_NULL;
589 1.1 yamt }
590 1.1 yamt
591 1.1 yamt btspan->bt_type = spanbttype;
592 1.1 yamt btspan->bt_start = addr;
593 1.1 yamt btspan->bt_size = size;
594 1.1 yamt
595 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
596 1.1 yamt btfree->bt_start = addr;
597 1.1 yamt btfree->bt_size = size;
598 1.1 yamt
599 1.1 yamt VMEM_LOCK(vm);
600 1.1 yamt bt_insseg_tail(vm, btspan);
601 1.1 yamt bt_insseg(vm, btfree, btspan);
602 1.1 yamt bt_insfree(vm, btfree);
603 1.1 yamt VMEM_UNLOCK(vm);
604 1.1 yamt
605 1.1 yamt return addr;
606 1.1 yamt }
607 1.1 yamt
608 1.30 yamt static void
609 1.30 yamt vmem_destroy1(vmem_t *vm)
610 1.30 yamt {
611 1.30 yamt
612 1.30 yamt #if defined(QCACHE)
613 1.30 yamt qc_destroy(vm);
614 1.30 yamt #endif /* defined(QCACHE) */
615 1.30 yamt if (vm->vm_hashlist != NULL) {
616 1.30 yamt int i;
617 1.30 yamt
618 1.30 yamt for (i = 0; i < vm->vm_hashsize; i++) {
619 1.30 yamt bt_t *bt;
620 1.30 yamt
621 1.30 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
622 1.30 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
623 1.30 yamt bt_free(vm, bt);
624 1.30 yamt }
625 1.30 yamt }
626 1.30 yamt xfree(vm->vm_hashlist);
627 1.30 yamt }
628 1.31 ad VMEM_LOCK_DESTROY(vm);
629 1.30 yamt xfree(vm);
630 1.30 yamt }
631 1.30 yamt
632 1.1 yamt static int
633 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
634 1.1 yamt {
635 1.1 yamt vmem_addr_t addr;
636 1.1 yamt
637 1.1 yamt if (vm->vm_allocfn == NULL) {
638 1.1 yamt return EINVAL;
639 1.1 yamt }
640 1.1 yamt
641 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
642 1.1 yamt if (addr == VMEM_ADDR_NULL) {
643 1.1 yamt return ENOMEM;
644 1.1 yamt }
645 1.1 yamt
646 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
647 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
648 1.1 yamt return ENOMEM;
649 1.1 yamt }
650 1.1 yamt
651 1.1 yamt return 0;
652 1.1 yamt }
653 1.1 yamt
654 1.1 yamt static int
655 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
656 1.1 yamt {
657 1.1 yamt bt_t *bt;
658 1.1 yamt int i;
659 1.1 yamt struct vmem_hashlist *newhashlist;
660 1.1 yamt struct vmem_hashlist *oldhashlist;
661 1.1 yamt size_t oldhashsize;
662 1.1 yamt
663 1.1 yamt KASSERT(newhashsize > 0);
664 1.1 yamt
665 1.1 yamt newhashlist =
666 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
667 1.1 yamt if (newhashlist == NULL) {
668 1.1 yamt return ENOMEM;
669 1.1 yamt }
670 1.1 yamt for (i = 0; i < newhashsize; i++) {
671 1.1 yamt LIST_INIT(&newhashlist[i]);
672 1.1 yamt }
673 1.1 yamt
674 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
675 1.30 yamt xfree(newhashlist);
676 1.30 yamt return EBUSY;
677 1.30 yamt }
678 1.1 yamt oldhashlist = vm->vm_hashlist;
679 1.1 yamt oldhashsize = vm->vm_hashsize;
680 1.1 yamt vm->vm_hashlist = newhashlist;
681 1.1 yamt vm->vm_hashsize = newhashsize;
682 1.1 yamt if (oldhashlist == NULL) {
683 1.1 yamt VMEM_UNLOCK(vm);
684 1.1 yamt return 0;
685 1.1 yamt }
686 1.1 yamt for (i = 0; i < oldhashsize; i++) {
687 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
688 1.1 yamt bt_rembusy(vm, bt); /* XXX */
689 1.1 yamt bt_insbusy(vm, bt);
690 1.1 yamt }
691 1.1 yamt }
692 1.1 yamt VMEM_UNLOCK(vm);
693 1.1 yamt
694 1.1 yamt xfree(oldhashlist);
695 1.1 yamt
696 1.1 yamt return 0;
697 1.1 yamt }
698 1.1 yamt
699 1.10 yamt /*
700 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
701 1.10 yamt */
702 1.10 yamt
703 1.10 yamt static vmem_addr_t
704 1.10 yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
705 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
706 1.10 yamt {
707 1.10 yamt vmem_addr_t start;
708 1.10 yamt vmem_addr_t end;
709 1.10 yamt
710 1.10 yamt KASSERT(bt->bt_size >= size);
711 1.10 yamt
712 1.10 yamt /*
713 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
714 1.10 yamt * unsigned integer of the same size.
715 1.10 yamt */
716 1.10 yamt
717 1.10 yamt start = bt->bt_start;
718 1.10 yamt if (start < minaddr) {
719 1.10 yamt start = minaddr;
720 1.10 yamt }
721 1.10 yamt end = BT_END(bt);
722 1.10 yamt if (end > maxaddr - 1) {
723 1.10 yamt end = maxaddr - 1;
724 1.10 yamt }
725 1.10 yamt if (start >= end) {
726 1.10 yamt return VMEM_ADDR_NULL;
727 1.10 yamt }
728 1.19 yamt
729 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
730 1.10 yamt if (start < bt->bt_start) {
731 1.10 yamt start += align;
732 1.10 yamt }
733 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
734 1.10 yamt KASSERT(align < nocross);
735 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
736 1.10 yamt }
737 1.10 yamt if (start < end && end - start >= size) {
738 1.10 yamt KASSERT((start & (align - 1)) == phase);
739 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
740 1.10 yamt KASSERT(minaddr <= start);
741 1.10 yamt KASSERT(maxaddr == 0 || start + size <= maxaddr);
742 1.10 yamt KASSERT(bt->bt_start <= start);
743 1.10 yamt KASSERT(start + size <= BT_END(bt));
744 1.10 yamt return start;
745 1.10 yamt }
746 1.10 yamt return VMEM_ADDR_NULL;
747 1.10 yamt }
748 1.10 yamt
749 1.1 yamt /* ---- vmem API */
750 1.1 yamt
751 1.1 yamt /*
752 1.1 yamt * vmem_create: create an arena.
753 1.1 yamt *
754 1.1 yamt * => must not be called from interrupt context.
755 1.1 yamt */
756 1.1 yamt
757 1.1 yamt vmem_t *
758 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
759 1.1 yamt vmem_size_t quantum,
760 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
761 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
762 1.31 ad vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
763 1.31 ad int ipl)
764 1.1 yamt {
765 1.1 yamt vmem_t *vm;
766 1.1 yamt int i;
767 1.1 yamt #if defined(_KERNEL)
768 1.1 yamt static ONCE_DECL(control);
769 1.1 yamt #endif /* defined(_KERNEL) */
770 1.1 yamt
771 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
772 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
773 1.1 yamt
774 1.1 yamt #if defined(_KERNEL)
775 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
776 1.1 yamt return NULL;
777 1.1 yamt }
778 1.1 yamt #endif /* defined(_KERNEL) */
779 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
780 1.1 yamt if (vm == NULL) {
781 1.1 yamt return NULL;
782 1.1 yamt }
783 1.1 yamt
784 1.31 ad VMEM_LOCK_INIT(vm, ipl);
785 1.1 yamt vm->vm_name = name;
786 1.1 yamt vm->vm_quantum_mask = quantum - 1;
787 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
788 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
789 1.1 yamt vm->vm_allocfn = allocfn;
790 1.1 yamt vm->vm_freefn = freefn;
791 1.1 yamt vm->vm_source = source;
792 1.1 yamt vm->vm_nbusytag = 0;
793 1.5 yamt #if defined(QCACHE)
794 1.31 ad qc_init(vm, qcache_max, ipl);
795 1.5 yamt #endif /* defined(QCACHE) */
796 1.1 yamt
797 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
798 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
799 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
800 1.1 yamt }
801 1.1 yamt vm->vm_hashlist = NULL;
802 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
803 1.30 yamt vmem_destroy1(vm);
804 1.1 yamt return NULL;
805 1.1 yamt }
806 1.1 yamt
807 1.1 yamt if (size != 0) {
808 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
809 1.30 yamt vmem_destroy1(vm);
810 1.1 yamt return NULL;
811 1.1 yamt }
812 1.1 yamt }
813 1.1 yamt
814 1.30 yamt #if defined(_KERNEL)
815 1.30 yamt mutex_enter(&vmem_list_lock);
816 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
817 1.30 yamt mutex_exit(&vmem_list_lock);
818 1.30 yamt #endif /* defined(_KERNEL) */
819 1.30 yamt
820 1.1 yamt return vm;
821 1.1 yamt }
822 1.1 yamt
823 1.1 yamt void
824 1.1 yamt vmem_destroy(vmem_t *vm)
825 1.1 yamt {
826 1.1 yamt
827 1.30 yamt #if defined(_KERNEL)
828 1.30 yamt mutex_enter(&vmem_list_lock);
829 1.30 yamt LIST_REMOVE(vm, vm_alllist);
830 1.30 yamt mutex_exit(&vmem_list_lock);
831 1.30 yamt #endif /* defined(_KERNEL) */
832 1.1 yamt
833 1.30 yamt vmem_destroy1(vm);
834 1.1 yamt }
835 1.1 yamt
836 1.1 yamt vmem_size_t
837 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
838 1.1 yamt {
839 1.1 yamt
840 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
841 1.1 yamt }
842 1.1 yamt
843 1.1 yamt /*
844 1.1 yamt * vmem_alloc:
845 1.1 yamt *
846 1.1 yamt * => caller must ensure appropriate spl,
847 1.1 yamt * if the arena can be accessed from interrupt context.
848 1.1 yamt */
849 1.1 yamt
850 1.1 yamt vmem_addr_t
851 1.1 yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
852 1.1 yamt {
853 1.12 yamt const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
854 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
855 1.1 yamt
856 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
857 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
858 1.1 yamt
859 1.1 yamt KASSERT(size0 > 0);
860 1.1 yamt KASSERT(size > 0);
861 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
862 1.3 yamt if ((flags & VM_SLEEP) != 0) {
863 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
864 1.3 yamt }
865 1.1 yamt
866 1.5 yamt #if defined(QCACHE)
867 1.5 yamt if (size <= vm->vm_qcache_max) {
868 1.5 yamt int qidx = size >> vm->vm_quantum_shift;
869 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
870 1.5 yamt
871 1.35 ad return (vmem_addr_t)pool_cache_get(qc->qc_cache,
872 1.5 yamt vmf_to_prf(flags));
873 1.5 yamt }
874 1.5 yamt #endif /* defined(QCACHE) */
875 1.5 yamt
876 1.10 yamt return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
877 1.10 yamt }
878 1.10 yamt
879 1.10 yamt vmem_addr_t
880 1.10 yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
881 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
882 1.10 yamt vm_flag_t flags)
883 1.10 yamt {
884 1.10 yamt struct vmem_freelist *list;
885 1.10 yamt struct vmem_freelist *first;
886 1.10 yamt struct vmem_freelist *end;
887 1.10 yamt bt_t *bt;
888 1.10 yamt bt_t *btnew;
889 1.10 yamt bt_t *btnew2;
890 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
891 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
892 1.10 yamt vmem_addr_t start;
893 1.10 yamt
894 1.10 yamt KASSERT(size0 > 0);
895 1.10 yamt KASSERT(size > 0);
896 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
897 1.10 yamt if ((flags & VM_SLEEP) != 0) {
898 1.16 yamt ASSERT_SLEEPABLE(NULL, __func__);
899 1.10 yamt }
900 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
901 1.10 yamt KASSERT((align & (align - 1)) == 0);
902 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
903 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
904 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
905 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
906 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
907 1.10 yamt KASSERT(maxaddr == 0 || minaddr < maxaddr);
908 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
909 1.10 yamt
910 1.10 yamt if (align == 0) {
911 1.10 yamt align = vm->vm_quantum_mask + 1;
912 1.10 yamt }
913 1.1 yamt btnew = bt_alloc(vm, flags);
914 1.1 yamt if (btnew == NULL) {
915 1.1 yamt return VMEM_ADDR_NULL;
916 1.1 yamt }
917 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
918 1.10 yamt if (btnew2 == NULL) {
919 1.10 yamt bt_free(vm, btnew);
920 1.10 yamt return VMEM_ADDR_NULL;
921 1.10 yamt }
922 1.1 yamt
923 1.1 yamt retry_strat:
924 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
925 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
926 1.1 yamt retry:
927 1.1 yamt bt = NULL;
928 1.1 yamt VMEM_LOCK(vm);
929 1.2 yamt if (strat == VM_INSTANTFIT) {
930 1.2 yamt for (list = first; list < end; list++) {
931 1.2 yamt bt = LIST_FIRST(list);
932 1.2 yamt if (bt != NULL) {
933 1.10 yamt start = vmem_fit(bt, size, align, phase,
934 1.10 yamt nocross, minaddr, maxaddr);
935 1.10 yamt if (start != VMEM_ADDR_NULL) {
936 1.10 yamt goto gotit;
937 1.10 yamt }
938 1.2 yamt }
939 1.2 yamt }
940 1.2 yamt } else { /* VM_BESTFIT */
941 1.2 yamt for (list = first; list < end; list++) {
942 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
943 1.2 yamt if (bt->bt_size >= size) {
944 1.10 yamt start = vmem_fit(bt, size, align, phase,
945 1.10 yamt nocross, minaddr, maxaddr);
946 1.10 yamt if (start != VMEM_ADDR_NULL) {
947 1.10 yamt goto gotit;
948 1.10 yamt }
949 1.2 yamt }
950 1.1 yamt }
951 1.1 yamt }
952 1.1 yamt }
953 1.2 yamt VMEM_UNLOCK(vm);
954 1.1 yamt #if 1
955 1.2 yamt if (strat == VM_INSTANTFIT) {
956 1.2 yamt strat = VM_BESTFIT;
957 1.2 yamt goto retry_strat;
958 1.2 yamt }
959 1.1 yamt #endif
960 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
961 1.10 yamt nocross != 0 || minaddr != 0 || maxaddr != 0) {
962 1.10 yamt
963 1.10 yamt /*
964 1.10 yamt * XXX should try to import a region large enough to
965 1.10 yamt * satisfy restrictions?
966 1.10 yamt */
967 1.10 yamt
968 1.20 yamt goto fail;
969 1.10 yamt }
970 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
971 1.2 yamt goto retry;
972 1.1 yamt }
973 1.2 yamt /* XXX */
974 1.20 yamt fail:
975 1.20 yamt bt_free(vm, btnew);
976 1.20 yamt bt_free(vm, btnew2);
977 1.2 yamt return VMEM_ADDR_NULL;
978 1.2 yamt
979 1.2 yamt gotit:
980 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
981 1.1 yamt KASSERT(bt->bt_size >= size);
982 1.1 yamt bt_remfree(vm, bt);
983 1.10 yamt if (bt->bt_start != start) {
984 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
985 1.10 yamt btnew2->bt_start = bt->bt_start;
986 1.10 yamt btnew2->bt_size = start - bt->bt_start;
987 1.10 yamt bt->bt_start = start;
988 1.10 yamt bt->bt_size -= btnew2->bt_size;
989 1.10 yamt bt_insfree(vm, btnew2);
990 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
991 1.10 yamt btnew2 = NULL;
992 1.10 yamt }
993 1.10 yamt KASSERT(bt->bt_start == start);
994 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
995 1.1 yamt /* split */
996 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
997 1.1 yamt btnew->bt_start = bt->bt_start;
998 1.1 yamt btnew->bt_size = size;
999 1.1 yamt bt->bt_start = bt->bt_start + size;
1000 1.1 yamt bt->bt_size -= size;
1001 1.1 yamt bt_insfree(vm, bt);
1002 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1003 1.1 yamt bt_insbusy(vm, btnew);
1004 1.1 yamt VMEM_UNLOCK(vm);
1005 1.1 yamt } else {
1006 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1007 1.1 yamt bt_insbusy(vm, bt);
1008 1.1 yamt VMEM_UNLOCK(vm);
1009 1.1 yamt bt_free(vm, btnew);
1010 1.1 yamt btnew = bt;
1011 1.1 yamt }
1012 1.10 yamt if (btnew2 != NULL) {
1013 1.10 yamt bt_free(vm, btnew2);
1014 1.10 yamt }
1015 1.1 yamt KASSERT(btnew->bt_size >= size);
1016 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1017 1.1 yamt
1018 1.1 yamt return btnew->bt_start;
1019 1.1 yamt }
1020 1.1 yamt
1021 1.1 yamt /*
1022 1.1 yamt * vmem_free:
1023 1.1 yamt *
1024 1.1 yamt * => caller must ensure appropriate spl,
1025 1.1 yamt * if the arena can be accessed from interrupt context.
1026 1.1 yamt */
1027 1.1 yamt
1028 1.1 yamt void
1029 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1030 1.1 yamt {
1031 1.1 yamt
1032 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
1033 1.1 yamt KASSERT(size > 0);
1034 1.1 yamt
1035 1.5 yamt #if defined(QCACHE)
1036 1.5 yamt if (size <= vm->vm_qcache_max) {
1037 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1038 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1039 1.5 yamt
1040 1.35 ad return pool_cache_put(qc->qc_cache, (void *)addr);
1041 1.5 yamt }
1042 1.5 yamt #endif /* defined(QCACHE) */
1043 1.5 yamt
1044 1.10 yamt vmem_xfree(vm, addr, size);
1045 1.10 yamt }
1046 1.10 yamt
1047 1.10 yamt void
1048 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1049 1.10 yamt {
1050 1.10 yamt bt_t *bt;
1051 1.10 yamt bt_t *t;
1052 1.10 yamt
1053 1.10 yamt KASSERT(addr != VMEM_ADDR_NULL);
1054 1.10 yamt KASSERT(size > 0);
1055 1.10 yamt
1056 1.1 yamt VMEM_LOCK(vm);
1057 1.1 yamt
1058 1.1 yamt bt = bt_lookupbusy(vm, addr);
1059 1.1 yamt KASSERT(bt != NULL);
1060 1.1 yamt KASSERT(bt->bt_start == addr);
1061 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1062 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1063 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1064 1.1 yamt bt_rembusy(vm, bt);
1065 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1066 1.1 yamt
1067 1.1 yamt /* coalesce */
1068 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1069 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1070 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
1071 1.1 yamt bt_remfree(vm, t);
1072 1.1 yamt bt_remseg(vm, t);
1073 1.1 yamt bt->bt_size += t->bt_size;
1074 1.1 yamt bt_free(vm, t);
1075 1.1 yamt }
1076 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1077 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1078 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
1079 1.1 yamt bt_remfree(vm, t);
1080 1.1 yamt bt_remseg(vm, t);
1081 1.1 yamt bt->bt_size += t->bt_size;
1082 1.1 yamt bt->bt_start = t->bt_start;
1083 1.1 yamt bt_free(vm, t);
1084 1.1 yamt }
1085 1.1 yamt
1086 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1087 1.1 yamt KASSERT(t != NULL);
1088 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1089 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1090 1.1 yamt t->bt_size == bt->bt_size) {
1091 1.1 yamt vmem_addr_t spanaddr;
1092 1.1 yamt vmem_size_t spansize;
1093 1.1 yamt
1094 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1095 1.1 yamt spanaddr = bt->bt_start;
1096 1.1 yamt spansize = bt->bt_size;
1097 1.1 yamt bt_remseg(vm, bt);
1098 1.1 yamt bt_free(vm, bt);
1099 1.1 yamt bt_remseg(vm, t);
1100 1.1 yamt bt_free(vm, t);
1101 1.1 yamt VMEM_UNLOCK(vm);
1102 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1103 1.1 yamt } else {
1104 1.1 yamt bt_insfree(vm, bt);
1105 1.1 yamt VMEM_UNLOCK(vm);
1106 1.1 yamt }
1107 1.1 yamt }
1108 1.1 yamt
1109 1.1 yamt /*
1110 1.1 yamt * vmem_add:
1111 1.1 yamt *
1112 1.1 yamt * => caller must ensure appropriate spl,
1113 1.1 yamt * if the arena can be accessed from interrupt context.
1114 1.1 yamt */
1115 1.1 yamt
1116 1.1 yamt vmem_addr_t
1117 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1118 1.1 yamt {
1119 1.1 yamt
1120 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1121 1.1 yamt }
1122 1.1 yamt
1123 1.6 yamt /*
1124 1.6 yamt * vmem_reap: reap unused resources.
1125 1.6 yamt *
1126 1.26 thorpej * => return true if we successfully reaped something.
1127 1.6 yamt */
1128 1.6 yamt
1129 1.25 thorpej bool
1130 1.6 yamt vmem_reap(vmem_t *vm)
1131 1.6 yamt {
1132 1.26 thorpej bool didsomething = false;
1133 1.6 yamt
1134 1.6 yamt #if defined(QCACHE)
1135 1.6 yamt didsomething = qc_reap(vm);
1136 1.6 yamt #endif /* defined(QCACHE) */
1137 1.6 yamt return didsomething;
1138 1.6 yamt }
1139 1.6 yamt
1140 1.30 yamt /* ---- rehash */
1141 1.30 yamt
1142 1.30 yamt #if defined(_KERNEL)
1143 1.30 yamt static struct callout vmem_rehash_ch;
1144 1.30 yamt static int vmem_rehash_interval;
1145 1.30 yamt static struct workqueue *vmem_rehash_wq;
1146 1.30 yamt static struct work vmem_rehash_wk;
1147 1.30 yamt
1148 1.30 yamt static void
1149 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1150 1.30 yamt {
1151 1.30 yamt vmem_t *vm;
1152 1.30 yamt
1153 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1154 1.30 yamt mutex_enter(&vmem_list_lock);
1155 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1156 1.30 yamt size_t desired;
1157 1.30 yamt size_t current;
1158 1.30 yamt
1159 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
1160 1.30 yamt continue;
1161 1.30 yamt }
1162 1.30 yamt desired = vm->vm_nbusytag;
1163 1.30 yamt current = vm->vm_hashsize;
1164 1.30 yamt VMEM_UNLOCK(vm);
1165 1.30 yamt
1166 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1167 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1168 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1169 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1170 1.30 yamt }
1171 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1172 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1173 1.30 yamt }
1174 1.30 yamt }
1175 1.30 yamt mutex_exit(&vmem_list_lock);
1176 1.30 yamt
1177 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1178 1.30 yamt }
1179 1.30 yamt
1180 1.30 yamt static void
1181 1.30 yamt vmem_rehash_all_kick(void *dummy)
1182 1.30 yamt {
1183 1.30 yamt
1184 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1185 1.30 yamt }
1186 1.30 yamt
1187 1.30 yamt void
1188 1.30 yamt vmem_rehash_start(void)
1189 1.30 yamt {
1190 1.30 yamt int error;
1191 1.30 yamt
1192 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1193 1.34 ad vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, 0);
1194 1.30 yamt if (error) {
1195 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1196 1.30 yamt }
1197 1.31 ad callout_init(&vmem_rehash_ch, 0);
1198 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1199 1.30 yamt
1200 1.30 yamt vmem_rehash_interval = hz * 10;
1201 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1202 1.30 yamt }
1203 1.30 yamt #endif /* defined(_KERNEL) */
1204 1.30 yamt
1205 1.1 yamt /* ---- debug */
1206 1.1 yamt
1207 1.37 yamt #if defined(DDB)
1208 1.37 yamt static bt_t *
1209 1.37 yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1210 1.37 yamt {
1211 1.37 yamt int i;
1212 1.37 yamt
1213 1.37 yamt for (i = 0; i < vm->vm_hashsize; i++) {
1214 1.37 yamt bt_t *bt;
1215 1.37 yamt
1216 1.37 yamt LIST_FOREACH(bt, &vm->vm_hashlist[i], bt_hashlist) {
1217 1.37 yamt if (bt->bt_start <= addr && addr < BT_END(bt)) {
1218 1.37 yamt return bt;
1219 1.37 yamt }
1220 1.37 yamt }
1221 1.37 yamt }
1222 1.37 yamt
1223 1.37 yamt return NULL;
1224 1.37 yamt }
1225 1.37 yamt
1226 1.37 yamt void
1227 1.37 yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1228 1.37 yamt {
1229 1.37 yamt vmem_t *vm;
1230 1.37 yamt
1231 1.37 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1232 1.37 yamt bt_t *bt;
1233 1.37 yamt
1234 1.37 yamt bt = vmem_whatis_lookup(vm, addr);
1235 1.37 yamt if (bt == NULL) {
1236 1.37 yamt continue;
1237 1.37 yamt }
1238 1.37 yamt (*pr)("%p is %p+%zu from VMEM '%s'\n",
1239 1.37 yamt (void *)addr, (void *)bt->bt_start,
1240 1.37 yamt (size_t)(addr - bt->bt_start), vm->vm_name);
1241 1.37 yamt }
1242 1.37 yamt }
1243 1.37 yamt #endif /* defined(DDB) */
1244 1.37 yamt
1245 1.1 yamt #if defined(VMEM_DEBUG)
1246 1.1 yamt
1247 1.1 yamt #if !defined(_KERNEL)
1248 1.1 yamt #include <stdio.h>
1249 1.1 yamt #endif /* !defined(_KERNEL) */
1250 1.1 yamt
1251 1.1 yamt void bt_dump(const bt_t *);
1252 1.1 yamt
1253 1.1 yamt void
1254 1.1 yamt bt_dump(const bt_t *bt)
1255 1.1 yamt {
1256 1.1 yamt
1257 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1258 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1259 1.1 yamt bt->bt_type);
1260 1.1 yamt }
1261 1.1 yamt
1262 1.1 yamt void
1263 1.1 yamt vmem_dump(const vmem_t *vm)
1264 1.1 yamt {
1265 1.1 yamt const bt_t *bt;
1266 1.1 yamt int i;
1267 1.1 yamt
1268 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
1269 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1270 1.1 yamt bt_dump(bt);
1271 1.1 yamt }
1272 1.1 yamt
1273 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1274 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1275 1.1 yamt
1276 1.1 yamt if (LIST_EMPTY(fl)) {
1277 1.1 yamt continue;
1278 1.1 yamt }
1279 1.1 yamt
1280 1.1 yamt printf("freelist[%d]\n", i);
1281 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1282 1.1 yamt bt_dump(bt);
1283 1.1 yamt if (bt->bt_size) {
1284 1.1 yamt }
1285 1.1 yamt }
1286 1.1 yamt }
1287 1.1 yamt }
1288 1.1 yamt
1289 1.1 yamt #if !defined(_KERNEL)
1290 1.1 yamt
1291 1.1 yamt int
1292 1.1 yamt main()
1293 1.1 yamt {
1294 1.1 yamt vmem_t *vm;
1295 1.1 yamt vmem_addr_t p;
1296 1.1 yamt struct reg {
1297 1.1 yamt vmem_addr_t p;
1298 1.1 yamt vmem_size_t sz;
1299 1.25 thorpej bool x;
1300 1.1 yamt } *reg = NULL;
1301 1.1 yamt int nreg = 0;
1302 1.1 yamt int nalloc = 0;
1303 1.1 yamt int nfree = 0;
1304 1.1 yamt vmem_size_t total = 0;
1305 1.1 yamt #if 1
1306 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1307 1.1 yamt #else
1308 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1309 1.1 yamt #endif
1310 1.1 yamt
1311 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1312 1.30 yamt NULL, NULL, NULL, 0, VM_SLEEP);
1313 1.1 yamt if (vm == NULL) {
1314 1.1 yamt printf("vmem_create\n");
1315 1.1 yamt exit(EXIT_FAILURE);
1316 1.1 yamt }
1317 1.1 yamt vmem_dump(vm);
1318 1.1 yamt
1319 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1320 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1321 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1322 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1323 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1324 1.1 yamt vmem_dump(vm);
1325 1.1 yamt for (;;) {
1326 1.1 yamt struct reg *r;
1327 1.10 yamt int t = rand() % 100;
1328 1.1 yamt
1329 1.10 yamt if (t > 45) {
1330 1.10 yamt /* alloc */
1331 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1332 1.25 thorpej bool x;
1333 1.10 yamt vmem_size_t align, phase, nocross;
1334 1.10 yamt vmem_addr_t minaddr, maxaddr;
1335 1.10 yamt
1336 1.10 yamt if (t > 70) {
1337 1.26 thorpej x = true;
1338 1.10 yamt /* XXX */
1339 1.10 yamt align = 1 << (rand() % 15);
1340 1.10 yamt phase = rand() % 65536;
1341 1.10 yamt nocross = 1 << (rand() % 15);
1342 1.10 yamt if (align <= phase) {
1343 1.10 yamt phase = 0;
1344 1.10 yamt }
1345 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1346 1.19 yamt nocross)) {
1347 1.10 yamt nocross = 0;
1348 1.10 yamt }
1349 1.10 yamt minaddr = rand() % 50000;
1350 1.10 yamt maxaddr = rand() % 70000;
1351 1.10 yamt if (minaddr > maxaddr) {
1352 1.10 yamt minaddr = 0;
1353 1.10 yamt maxaddr = 0;
1354 1.10 yamt }
1355 1.10 yamt printf("=== xalloc %" PRIu64
1356 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1357 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1358 1.10 yamt ", max=%" PRIu64 "\n",
1359 1.10 yamt (uint64_t)sz,
1360 1.10 yamt (uint64_t)align,
1361 1.10 yamt (uint64_t)phase,
1362 1.10 yamt (uint64_t)nocross,
1363 1.10 yamt (uint64_t)minaddr,
1364 1.10 yamt (uint64_t)maxaddr);
1365 1.10 yamt p = vmem_xalloc(vm, sz, align, phase, nocross,
1366 1.10 yamt minaddr, maxaddr, strat|VM_SLEEP);
1367 1.10 yamt } else {
1368 1.26 thorpej x = false;
1369 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1370 1.10 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1371 1.10 yamt }
1372 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1373 1.1 yamt vmem_dump(vm);
1374 1.1 yamt if (p == VMEM_ADDR_NULL) {
1375 1.10 yamt if (x) {
1376 1.10 yamt continue;
1377 1.10 yamt }
1378 1.1 yamt break;
1379 1.1 yamt }
1380 1.1 yamt nreg++;
1381 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1382 1.1 yamt r = ®[nreg - 1];
1383 1.1 yamt r->p = p;
1384 1.1 yamt r->sz = sz;
1385 1.10 yamt r->x = x;
1386 1.1 yamt total += sz;
1387 1.1 yamt nalloc++;
1388 1.1 yamt } else if (nreg != 0) {
1389 1.10 yamt /* free */
1390 1.1 yamt r = ®[rand() % nreg];
1391 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1392 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1393 1.10 yamt if (r->x) {
1394 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1395 1.10 yamt } else {
1396 1.10 yamt vmem_free(vm, r->p, r->sz);
1397 1.10 yamt }
1398 1.1 yamt total -= r->sz;
1399 1.1 yamt vmem_dump(vm);
1400 1.1 yamt *r = reg[nreg - 1];
1401 1.1 yamt nreg--;
1402 1.1 yamt nfree++;
1403 1.1 yamt }
1404 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1405 1.1 yamt }
1406 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1407 1.1 yamt (uint64_t)total, nalloc, nfree);
1408 1.1 yamt exit(EXIT_SUCCESS);
1409 1.1 yamt }
1410 1.1 yamt #endif /* !defined(_KERNEL) */
1411 1.1 yamt #endif /* defined(VMEM_DEBUG) */
1412