Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.51
      1  1.51  christos /*	$NetBSD: subr_vmem.c,v 1.51 2008/12/10 18:07:30 christos Exp $	*/
      2   1.1      yamt 
      3   1.1      yamt /*-
      4   1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
      5   1.1      yamt  * All rights reserved.
      6   1.1      yamt  *
      7   1.1      yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1      yamt  * modification, are permitted provided that the following conditions
      9   1.1      yamt  * are met:
     10   1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1      yamt  *
     16   1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1      yamt  * SUCH DAMAGE.
     27   1.1      yamt  */
     28   1.1      yamt 
     29   1.1      yamt /*
     30   1.1      yamt  * reference:
     31   1.1      yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32   1.1      yamt  *	to Many CPUs and Arbitrary Resources
     33   1.1      yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34  1.18      yamt  *
     35  1.18      yamt  * todo:
     36  1.18      yamt  * -	decide how to import segments for vmem_xalloc.
     37  1.18      yamt  * -	don't rely on malloc(9).
     38   1.1      yamt  */
     39   1.1      yamt 
     40   1.1      yamt #include <sys/cdefs.h>
     41  1.51  christos __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.51 2008/12/10 18:07:30 christos Exp $");
     42   1.1      yamt 
     43   1.5      yamt #if defined(_KERNEL)
     44  1.37      yamt #include "opt_ddb.h"
     45   1.5      yamt #define	QCACHE
     46   1.5      yamt #endif /* defined(_KERNEL) */
     47   1.1      yamt 
     48   1.1      yamt #include <sys/param.h>
     49   1.1      yamt #include <sys/hash.h>
     50   1.1      yamt #include <sys/queue.h>
     51   1.1      yamt 
     52   1.1      yamt #if defined(_KERNEL)
     53   1.1      yamt #include <sys/systm.h>
     54  1.30      yamt #include <sys/kernel.h>	/* hz */
     55  1.30      yamt #include <sys/callout.h>
     56   1.1      yamt #include <sys/malloc.h>
     57   1.1      yamt #include <sys/once.h>
     58   1.1      yamt #include <sys/pool.h>
     59   1.1      yamt #include <sys/vmem.h>
     60  1.30      yamt #include <sys/workqueue.h>
     61   1.1      yamt #else /* defined(_KERNEL) */
     62   1.1      yamt #include "../sys/vmem.h"
     63   1.1      yamt #endif /* defined(_KERNEL) */
     64   1.1      yamt 
     65   1.1      yamt #if defined(_KERNEL)
     66  1.31        ad #define	LOCK_DECL(name)		kmutex_t name
     67   1.1      yamt #else /* defined(_KERNEL) */
     68   1.1      yamt #include <errno.h>
     69   1.1      yamt #include <assert.h>
     70   1.1      yamt #include <stdlib.h>
     71   1.1      yamt 
     72   1.1      yamt #define	KASSERT(a)		assert(a)
     73  1.31        ad #define	LOCK_DECL(name)		/* nothing */
     74  1.31        ad #define	mutex_init(a, b, c)	/* nothing */
     75  1.31        ad #define	mutex_destroy(a)	/* nothing */
     76  1.31        ad #define	mutex_enter(a)		/* nothing */
     77  1.31        ad #define	mutex_exit(a)		/* nothing */
     78  1.31        ad #define	mutex_owned(a)		/* nothing */
     79  1.42      yamt #define	ASSERT_SLEEPABLE()	 /* nothing */
     80  1.31        ad #define	IPL_VM			0
     81   1.1      yamt #endif /* defined(_KERNEL) */
     82   1.1      yamt 
     83   1.1      yamt struct vmem;
     84   1.1      yamt struct vmem_btag;
     85   1.1      yamt 
     86   1.1      yamt #if defined(VMEM_DEBUG)
     87   1.1      yamt void vmem_dump(const vmem_t *);
     88   1.1      yamt #endif /* defined(VMEM_DEBUG) */
     89   1.1      yamt 
     90   1.4      yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     91  1.30      yamt 
     92  1.30      yamt #define	VMEM_HASHSIZE_MIN	1	/* XXX */
     93  1.30      yamt #define	VMEM_HASHSIZE_MAX	8192	/* XXX */
     94  1.30      yamt #define	VMEM_HASHSIZE_INIT	VMEM_HASHSIZE_MIN
     95   1.1      yamt 
     96   1.1      yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
     97   1.1      yamt 
     98   1.1      yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
     99   1.1      yamt LIST_HEAD(vmem_freelist, vmem_btag);
    100   1.1      yamt LIST_HEAD(vmem_hashlist, vmem_btag);
    101   1.1      yamt 
    102   1.5      yamt #if defined(QCACHE)
    103   1.5      yamt #define	VMEM_QCACHE_IDX_MAX	32
    104   1.5      yamt 
    105   1.5      yamt #define	QC_NAME_MAX	16
    106   1.5      yamt 
    107   1.5      yamt struct qcache {
    108  1.35        ad 	pool_cache_t qc_cache;
    109   1.5      yamt 	vmem_t *qc_vmem;
    110   1.5      yamt 	char qc_name[QC_NAME_MAX];
    111   1.5      yamt };
    112   1.5      yamt typedef struct qcache qcache_t;
    113  1.35        ad #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
    114   1.5      yamt #endif /* defined(QCACHE) */
    115   1.5      yamt 
    116   1.1      yamt /* vmem arena */
    117   1.1      yamt struct vmem {
    118  1.31        ad 	LOCK_DECL(vm_lock);
    119   1.1      yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    120   1.1      yamt 	    vm_flag_t);
    121   1.1      yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    122   1.1      yamt 	vmem_t *vm_source;
    123   1.1      yamt 	struct vmem_seglist vm_seglist;
    124   1.1      yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    125   1.1      yamt 	size_t vm_hashsize;
    126   1.1      yamt 	size_t vm_nbusytag;
    127   1.1      yamt 	struct vmem_hashlist *vm_hashlist;
    128   1.1      yamt 	size_t vm_quantum_mask;
    129   1.1      yamt 	int vm_quantum_shift;
    130   1.1      yamt 	const char *vm_name;
    131  1.30      yamt 	LIST_ENTRY(vmem) vm_alllist;
    132   1.5      yamt 
    133   1.5      yamt #if defined(QCACHE)
    134   1.5      yamt 	/* quantum cache */
    135   1.5      yamt 	size_t vm_qcache_max;
    136   1.5      yamt 	struct pool_allocator vm_qcache_allocator;
    137  1.22      yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    138  1.22      yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    139   1.5      yamt #endif /* defined(QCACHE) */
    140   1.1      yamt };
    141   1.1      yamt 
    142  1.31        ad #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
    143  1.31        ad #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
    144  1.31        ad #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
    145  1.36        ad #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
    146  1.31        ad #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
    147  1.31        ad #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
    148   1.1      yamt 
    149   1.1      yamt /* boundary tag */
    150   1.1      yamt struct vmem_btag {
    151   1.1      yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    152   1.1      yamt 	union {
    153   1.1      yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    154   1.1      yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    155   1.1      yamt 	} bt_u;
    156   1.1      yamt #define	bt_hashlist	bt_u.u_hashlist
    157   1.1      yamt #define	bt_freelist	bt_u.u_freelist
    158   1.1      yamt 	vmem_addr_t bt_start;
    159   1.1      yamt 	vmem_size_t bt_size;
    160   1.1      yamt 	int bt_type;
    161   1.1      yamt };
    162   1.1      yamt 
    163   1.1      yamt #define	BT_TYPE_SPAN		1
    164   1.1      yamt #define	BT_TYPE_SPAN_STATIC	2
    165   1.1      yamt #define	BT_TYPE_FREE		3
    166   1.1      yamt #define	BT_TYPE_BUSY		4
    167   1.1      yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    168   1.1      yamt 
    169   1.1      yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    170   1.1      yamt 
    171   1.1      yamt typedef struct vmem_btag bt_t;
    172   1.1      yamt 
    173   1.1      yamt /* ---- misc */
    174   1.1      yamt 
    175  1.19      yamt #define	VMEM_ALIGNUP(addr, align) \
    176  1.19      yamt 	(-(-(addr) & -(align)))
    177  1.19      yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    178  1.19      yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    179  1.19      yamt 
    180   1.4      yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    181   1.4      yamt 
    182   1.1      yamt static int
    183   1.1      yamt calc_order(vmem_size_t size)
    184   1.1      yamt {
    185   1.4      yamt 	vmem_size_t target;
    186   1.1      yamt 	int i;
    187   1.1      yamt 
    188   1.1      yamt 	KASSERT(size != 0);
    189   1.1      yamt 
    190   1.1      yamt 	i = 0;
    191   1.4      yamt 	target = size >> 1;
    192   1.4      yamt 	while (ORDER2SIZE(i) <= target) {
    193   1.1      yamt 		i++;
    194   1.1      yamt 	}
    195   1.1      yamt 
    196   1.4      yamt 	KASSERT(ORDER2SIZE(i) <= size);
    197   1.4      yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    198   1.1      yamt 
    199   1.1      yamt 	return i;
    200   1.1      yamt }
    201   1.1      yamt 
    202   1.1      yamt #if defined(_KERNEL)
    203   1.1      yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    204   1.1      yamt #endif /* defined(_KERNEL) */
    205   1.1      yamt 
    206   1.1      yamt static void *
    207   1.1      yamt xmalloc(size_t sz, vm_flag_t flags)
    208   1.1      yamt {
    209   1.1      yamt 
    210   1.1      yamt #if defined(_KERNEL)
    211   1.1      yamt 	return malloc(sz, M_VMEM,
    212   1.1      yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    213   1.1      yamt #else /* defined(_KERNEL) */
    214   1.1      yamt 	return malloc(sz);
    215   1.1      yamt #endif /* defined(_KERNEL) */
    216   1.1      yamt }
    217   1.1      yamt 
    218   1.1      yamt static void
    219   1.1      yamt xfree(void *p)
    220   1.1      yamt {
    221   1.1      yamt 
    222   1.1      yamt #if defined(_KERNEL)
    223   1.1      yamt 	return free(p, M_VMEM);
    224   1.1      yamt #else /* defined(_KERNEL) */
    225   1.1      yamt 	return free(p);
    226   1.1      yamt #endif /* defined(_KERNEL) */
    227   1.1      yamt }
    228   1.1      yamt 
    229   1.1      yamt /* ---- boundary tag */
    230   1.1      yamt 
    231   1.1      yamt #if defined(_KERNEL)
    232  1.35        ad static struct pool_cache bt_cache;
    233   1.1      yamt #endif /* defined(_KERNEL) */
    234   1.1      yamt 
    235   1.1      yamt static bt_t *
    236  1.17      yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    237   1.1      yamt {
    238   1.1      yamt 	bt_t *bt;
    239   1.1      yamt 
    240   1.1      yamt #if defined(_KERNEL)
    241  1.35        ad 	bt = pool_cache_get(&bt_cache,
    242   1.1      yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    243   1.1      yamt #else /* defined(_KERNEL) */
    244   1.1      yamt 	bt = malloc(sizeof *bt);
    245   1.1      yamt #endif /* defined(_KERNEL) */
    246   1.1      yamt 
    247   1.1      yamt 	return bt;
    248   1.1      yamt }
    249   1.1      yamt 
    250   1.1      yamt static void
    251  1.17      yamt bt_free(vmem_t *vm, bt_t *bt)
    252   1.1      yamt {
    253   1.1      yamt 
    254   1.1      yamt #if defined(_KERNEL)
    255  1.35        ad 	pool_cache_put(&bt_cache, bt);
    256   1.1      yamt #else /* defined(_KERNEL) */
    257   1.1      yamt 	free(bt);
    258   1.1      yamt #endif /* defined(_KERNEL) */
    259   1.1      yamt }
    260   1.1      yamt 
    261   1.1      yamt /*
    262   1.1      yamt  * freelist[0] ... [1, 1]
    263   1.1      yamt  * freelist[1] ... [2, 3]
    264   1.1      yamt  * freelist[2] ... [4, 7]
    265   1.1      yamt  * freelist[3] ... [8, 15]
    266   1.1      yamt  *  :
    267   1.1      yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    268   1.1      yamt  *  :
    269   1.1      yamt  */
    270   1.1      yamt 
    271   1.1      yamt static struct vmem_freelist *
    272   1.1      yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    273   1.1      yamt {
    274   1.1      yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    275   1.1      yamt 	int idx;
    276   1.1      yamt 
    277   1.1      yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    278   1.1      yamt 	KASSERT(size != 0);
    279   1.1      yamt 
    280   1.1      yamt 	idx = calc_order(qsize);
    281   1.1      yamt 	KASSERT(idx >= 0);
    282   1.1      yamt 	KASSERT(idx < VMEM_MAXORDER);
    283   1.1      yamt 
    284   1.1      yamt 	return &vm->vm_freelist[idx];
    285   1.1      yamt }
    286   1.1      yamt 
    287   1.1      yamt static struct vmem_freelist *
    288   1.1      yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    289   1.1      yamt {
    290   1.1      yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    291   1.1      yamt 	int idx;
    292   1.1      yamt 
    293   1.1      yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    294   1.1      yamt 	KASSERT(size != 0);
    295   1.1      yamt 
    296   1.1      yamt 	idx = calc_order(qsize);
    297   1.4      yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    298   1.1      yamt 		idx++;
    299   1.1      yamt 		/* check too large request? */
    300   1.1      yamt 	}
    301   1.1      yamt 	KASSERT(idx >= 0);
    302   1.1      yamt 	KASSERT(idx < VMEM_MAXORDER);
    303   1.1      yamt 
    304   1.1      yamt 	return &vm->vm_freelist[idx];
    305   1.1      yamt }
    306   1.1      yamt 
    307   1.1      yamt /* ---- boundary tag hash */
    308   1.1      yamt 
    309   1.1      yamt static struct vmem_hashlist *
    310   1.1      yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    311   1.1      yamt {
    312   1.1      yamt 	struct vmem_hashlist *list;
    313   1.1      yamt 	unsigned int hash;
    314   1.1      yamt 
    315   1.1      yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    316   1.1      yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    317   1.1      yamt 
    318   1.1      yamt 	return list;
    319   1.1      yamt }
    320   1.1      yamt 
    321   1.1      yamt static bt_t *
    322   1.1      yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    323   1.1      yamt {
    324   1.1      yamt 	struct vmem_hashlist *list;
    325   1.1      yamt 	bt_t *bt;
    326   1.1      yamt 
    327   1.1      yamt 	list = bt_hashhead(vm, addr);
    328   1.1      yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    329   1.1      yamt 		if (bt->bt_start == addr) {
    330   1.1      yamt 			break;
    331   1.1      yamt 		}
    332   1.1      yamt 	}
    333   1.1      yamt 
    334   1.1      yamt 	return bt;
    335   1.1      yamt }
    336   1.1      yamt 
    337   1.1      yamt static void
    338   1.1      yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    339   1.1      yamt {
    340   1.1      yamt 
    341   1.1      yamt 	KASSERT(vm->vm_nbusytag > 0);
    342   1.1      yamt 	vm->vm_nbusytag--;
    343   1.1      yamt 	LIST_REMOVE(bt, bt_hashlist);
    344   1.1      yamt }
    345   1.1      yamt 
    346   1.1      yamt static void
    347   1.1      yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    348   1.1      yamt {
    349   1.1      yamt 	struct vmem_hashlist *list;
    350   1.1      yamt 
    351   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    352   1.1      yamt 
    353   1.1      yamt 	list = bt_hashhead(vm, bt->bt_start);
    354   1.1      yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    355   1.1      yamt 	vm->vm_nbusytag++;
    356   1.1      yamt }
    357   1.1      yamt 
    358   1.1      yamt /* ---- boundary tag list */
    359   1.1      yamt 
    360   1.1      yamt static void
    361   1.1      yamt bt_remseg(vmem_t *vm, bt_t *bt)
    362   1.1      yamt {
    363   1.1      yamt 
    364   1.1      yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    365   1.1      yamt }
    366   1.1      yamt 
    367   1.1      yamt static void
    368   1.1      yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    369   1.1      yamt {
    370   1.1      yamt 
    371   1.1      yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    372   1.1      yamt }
    373   1.1      yamt 
    374   1.1      yamt static void
    375   1.1      yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    376   1.1      yamt {
    377   1.1      yamt 
    378   1.1      yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    379   1.1      yamt }
    380   1.1      yamt 
    381   1.1      yamt static void
    382  1.17      yamt bt_remfree(vmem_t *vm, bt_t *bt)
    383   1.1      yamt {
    384   1.1      yamt 
    385   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    386   1.1      yamt 
    387   1.1      yamt 	LIST_REMOVE(bt, bt_freelist);
    388   1.1      yamt }
    389   1.1      yamt 
    390   1.1      yamt static void
    391   1.1      yamt bt_insfree(vmem_t *vm, bt_t *bt)
    392   1.1      yamt {
    393   1.1      yamt 	struct vmem_freelist *list;
    394   1.1      yamt 
    395   1.1      yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    396   1.1      yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    397   1.1      yamt }
    398   1.1      yamt 
    399   1.1      yamt /* ---- vmem internal functions */
    400   1.1      yamt 
    401  1.30      yamt #if defined(_KERNEL)
    402  1.30      yamt static kmutex_t vmem_list_lock;
    403  1.30      yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
    404  1.30      yamt #endif /* defined(_KERNEL) */
    405  1.30      yamt 
    406   1.5      yamt #if defined(QCACHE)
    407   1.5      yamt static inline vm_flag_t
    408   1.5      yamt prf_to_vmf(int prflags)
    409   1.5      yamt {
    410   1.5      yamt 	vm_flag_t vmflags;
    411   1.5      yamt 
    412   1.5      yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    413   1.5      yamt 	if ((prflags & PR_WAITOK) != 0) {
    414   1.5      yamt 		vmflags = VM_SLEEP;
    415   1.5      yamt 	} else {
    416   1.5      yamt 		vmflags = VM_NOSLEEP;
    417   1.5      yamt 	}
    418   1.5      yamt 	return vmflags;
    419   1.5      yamt }
    420   1.5      yamt 
    421   1.5      yamt static inline int
    422   1.5      yamt vmf_to_prf(vm_flag_t vmflags)
    423   1.5      yamt {
    424   1.5      yamt 	int prflags;
    425   1.5      yamt 
    426   1.7      yamt 	if ((vmflags & VM_SLEEP) != 0) {
    427   1.5      yamt 		prflags = PR_WAITOK;
    428   1.7      yamt 	} else {
    429   1.5      yamt 		prflags = PR_NOWAIT;
    430   1.5      yamt 	}
    431   1.5      yamt 	return prflags;
    432   1.5      yamt }
    433   1.5      yamt 
    434   1.5      yamt static size_t
    435   1.5      yamt qc_poolpage_size(size_t qcache_max)
    436   1.5      yamt {
    437   1.5      yamt 	int i;
    438   1.5      yamt 
    439   1.5      yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    440   1.5      yamt 		/* nothing */
    441   1.5      yamt 	}
    442   1.5      yamt 	return ORDER2SIZE(i);
    443   1.5      yamt }
    444   1.5      yamt 
    445   1.5      yamt static void *
    446   1.5      yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    447   1.5      yamt {
    448   1.5      yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    449   1.5      yamt 	vmem_t *vm = qc->qc_vmem;
    450   1.5      yamt 
    451   1.5      yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    452   1.5      yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    453   1.5      yamt }
    454   1.5      yamt 
    455   1.5      yamt static void
    456   1.5      yamt qc_poolpage_free(struct pool *pool, void *addr)
    457   1.5      yamt {
    458   1.5      yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    459   1.5      yamt 	vmem_t *vm = qc->qc_vmem;
    460   1.5      yamt 
    461   1.5      yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    462   1.5      yamt }
    463   1.5      yamt 
    464   1.5      yamt static void
    465  1.31        ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
    466   1.5      yamt {
    467  1.22      yamt 	qcache_t *prevqc;
    468   1.5      yamt 	struct pool_allocator *pa;
    469   1.5      yamt 	int qcache_idx_max;
    470   1.5      yamt 	int i;
    471   1.5      yamt 
    472   1.5      yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    473   1.5      yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    474   1.5      yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    475   1.5      yamt 	}
    476   1.5      yamt 	vm->vm_qcache_max = qcache_max;
    477   1.5      yamt 	pa = &vm->vm_qcache_allocator;
    478   1.5      yamt 	memset(pa, 0, sizeof(*pa));
    479   1.5      yamt 	pa->pa_alloc = qc_poolpage_alloc;
    480   1.5      yamt 	pa->pa_free = qc_poolpage_free;
    481   1.5      yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    482   1.5      yamt 
    483   1.5      yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    484  1.22      yamt 	prevqc = NULL;
    485  1.22      yamt 	for (i = qcache_idx_max; i > 0; i--) {
    486  1.22      yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    487   1.5      yamt 		size_t size = i << vm->vm_quantum_shift;
    488   1.5      yamt 
    489   1.5      yamt 		qc->qc_vmem = vm;
    490   1.8    martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    491   1.5      yamt 		    vm->vm_name, size);
    492  1.35        ad 		qc->qc_cache = pool_cache_init(size,
    493  1.35        ad 		    ORDER2SIZE(vm->vm_quantum_shift), 0,
    494  1.35        ad 		    PR_NOALIGN | PR_NOTOUCH /* XXX */,
    495  1.35        ad 		    qc->qc_name, pa, ipl, NULL, NULL, NULL);
    496  1.35        ad 		KASSERT(qc->qc_cache != NULL);	/* XXX */
    497  1.22      yamt 		if (prevqc != NULL &&
    498  1.35        ad 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
    499  1.35        ad 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
    500  1.35        ad 			pool_cache_destroy(qc->qc_cache);
    501  1.22      yamt 			vm->vm_qcache[i - 1] = prevqc;
    502  1.27        ad 			continue;
    503  1.22      yamt 		}
    504  1.35        ad 		qc->qc_cache->pc_pool.pr_qcache = qc;
    505  1.22      yamt 		vm->vm_qcache[i - 1] = qc;
    506  1.22      yamt 		prevqc = qc;
    507   1.5      yamt 	}
    508   1.5      yamt }
    509   1.6      yamt 
    510  1.23      yamt static void
    511  1.23      yamt qc_destroy(vmem_t *vm)
    512  1.23      yamt {
    513  1.23      yamt 	const qcache_t *prevqc;
    514  1.23      yamt 	int i;
    515  1.23      yamt 	int qcache_idx_max;
    516  1.23      yamt 
    517  1.23      yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    518  1.23      yamt 	prevqc = NULL;
    519  1.24      yamt 	for (i = 0; i < qcache_idx_max; i++) {
    520  1.24      yamt 		qcache_t *qc = vm->vm_qcache[i];
    521  1.23      yamt 
    522  1.23      yamt 		if (prevqc == qc) {
    523  1.23      yamt 			continue;
    524  1.23      yamt 		}
    525  1.35        ad 		pool_cache_destroy(qc->qc_cache);
    526  1.23      yamt 		prevqc = qc;
    527  1.23      yamt 	}
    528  1.23      yamt }
    529  1.23      yamt 
    530  1.25   thorpej static bool
    531   1.6      yamt qc_reap(vmem_t *vm)
    532   1.6      yamt {
    533  1.22      yamt 	const qcache_t *prevqc;
    534   1.6      yamt 	int i;
    535   1.6      yamt 	int qcache_idx_max;
    536  1.26   thorpej 	bool didsomething = false;
    537   1.6      yamt 
    538   1.6      yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    539  1.22      yamt 	prevqc = NULL;
    540  1.24      yamt 	for (i = 0; i < qcache_idx_max; i++) {
    541  1.24      yamt 		qcache_t *qc = vm->vm_qcache[i];
    542   1.6      yamt 
    543  1.22      yamt 		if (prevqc == qc) {
    544  1.22      yamt 			continue;
    545  1.22      yamt 		}
    546  1.35        ad 		if (pool_cache_reclaim(qc->qc_cache) != 0) {
    547  1.26   thorpej 			didsomething = true;
    548   1.6      yamt 		}
    549  1.22      yamt 		prevqc = qc;
    550   1.6      yamt 	}
    551   1.6      yamt 
    552   1.6      yamt 	return didsomething;
    553   1.6      yamt }
    554   1.5      yamt #endif /* defined(QCACHE) */
    555   1.5      yamt 
    556   1.1      yamt #if defined(_KERNEL)
    557   1.1      yamt static int
    558   1.1      yamt vmem_init(void)
    559   1.1      yamt {
    560   1.1      yamt 
    561  1.30      yamt 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
    562  1.35        ad 	pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
    563  1.35        ad 	    NULL, IPL_VM, NULL, NULL, NULL);
    564   1.1      yamt 	return 0;
    565   1.1      yamt }
    566   1.1      yamt #endif /* defined(_KERNEL) */
    567   1.1      yamt 
    568   1.1      yamt static vmem_addr_t
    569   1.1      yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    570   1.1      yamt     int spanbttype)
    571   1.1      yamt {
    572   1.1      yamt 	bt_t *btspan;
    573   1.1      yamt 	bt_t *btfree;
    574   1.1      yamt 
    575   1.1      yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    576   1.1      yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    577  1.47    cegger 	KASSERT(spanbttype == BT_TYPE_SPAN || spanbttype == BT_TYPE_SPAN_STATIC);
    578   1.1      yamt 
    579   1.1      yamt 	btspan = bt_alloc(vm, flags);
    580   1.1      yamt 	if (btspan == NULL) {
    581   1.1      yamt 		return VMEM_ADDR_NULL;
    582   1.1      yamt 	}
    583   1.1      yamt 	btfree = bt_alloc(vm, flags);
    584   1.1      yamt 	if (btfree == NULL) {
    585   1.1      yamt 		bt_free(vm, btspan);
    586   1.1      yamt 		return VMEM_ADDR_NULL;
    587   1.1      yamt 	}
    588   1.1      yamt 
    589   1.1      yamt 	btspan->bt_type = spanbttype;
    590   1.1      yamt 	btspan->bt_start = addr;
    591   1.1      yamt 	btspan->bt_size = size;
    592   1.1      yamt 
    593   1.1      yamt 	btfree->bt_type = BT_TYPE_FREE;
    594   1.1      yamt 	btfree->bt_start = addr;
    595   1.1      yamt 	btfree->bt_size = size;
    596   1.1      yamt 
    597   1.1      yamt 	VMEM_LOCK(vm);
    598   1.1      yamt 	bt_insseg_tail(vm, btspan);
    599   1.1      yamt 	bt_insseg(vm, btfree, btspan);
    600   1.1      yamt 	bt_insfree(vm, btfree);
    601   1.1      yamt 	VMEM_UNLOCK(vm);
    602   1.1      yamt 
    603   1.1      yamt 	return addr;
    604   1.1      yamt }
    605   1.1      yamt 
    606  1.30      yamt static void
    607  1.30      yamt vmem_destroy1(vmem_t *vm)
    608  1.30      yamt {
    609  1.30      yamt 
    610  1.30      yamt #if defined(QCACHE)
    611  1.30      yamt 	qc_destroy(vm);
    612  1.30      yamt #endif /* defined(QCACHE) */
    613  1.30      yamt 	if (vm->vm_hashlist != NULL) {
    614  1.30      yamt 		int i;
    615  1.30      yamt 
    616  1.30      yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    617  1.30      yamt 			bt_t *bt;
    618  1.30      yamt 
    619  1.30      yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    620  1.30      yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    621  1.30      yamt 				bt_free(vm, bt);
    622  1.30      yamt 			}
    623  1.30      yamt 		}
    624  1.30      yamt 		xfree(vm->vm_hashlist);
    625  1.30      yamt 	}
    626  1.31        ad 	VMEM_LOCK_DESTROY(vm);
    627  1.30      yamt 	xfree(vm);
    628  1.30      yamt }
    629  1.30      yamt 
    630   1.1      yamt static int
    631   1.1      yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    632   1.1      yamt {
    633   1.1      yamt 	vmem_addr_t addr;
    634   1.1      yamt 
    635   1.1      yamt 	if (vm->vm_allocfn == NULL) {
    636   1.1      yamt 		return EINVAL;
    637   1.1      yamt 	}
    638   1.1      yamt 
    639   1.1      yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    640   1.1      yamt 	if (addr == VMEM_ADDR_NULL) {
    641   1.1      yamt 		return ENOMEM;
    642   1.1      yamt 	}
    643   1.1      yamt 
    644   1.1      yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    645   1.1      yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    646   1.1      yamt 		return ENOMEM;
    647   1.1      yamt 	}
    648   1.1      yamt 
    649   1.1      yamt 	return 0;
    650   1.1      yamt }
    651   1.1      yamt 
    652   1.1      yamt static int
    653   1.1      yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    654   1.1      yamt {
    655   1.1      yamt 	bt_t *bt;
    656   1.1      yamt 	int i;
    657   1.1      yamt 	struct vmem_hashlist *newhashlist;
    658   1.1      yamt 	struct vmem_hashlist *oldhashlist;
    659   1.1      yamt 	size_t oldhashsize;
    660   1.1      yamt 
    661   1.1      yamt 	KASSERT(newhashsize > 0);
    662   1.1      yamt 
    663   1.1      yamt 	newhashlist =
    664   1.1      yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    665   1.1      yamt 	if (newhashlist == NULL) {
    666   1.1      yamt 		return ENOMEM;
    667   1.1      yamt 	}
    668   1.1      yamt 	for (i = 0; i < newhashsize; i++) {
    669   1.1      yamt 		LIST_INIT(&newhashlist[i]);
    670   1.1      yamt 	}
    671   1.1      yamt 
    672  1.30      yamt 	if (!VMEM_TRYLOCK(vm)) {
    673  1.30      yamt 		xfree(newhashlist);
    674  1.30      yamt 		return EBUSY;
    675  1.30      yamt 	}
    676   1.1      yamt 	oldhashlist = vm->vm_hashlist;
    677   1.1      yamt 	oldhashsize = vm->vm_hashsize;
    678   1.1      yamt 	vm->vm_hashlist = newhashlist;
    679   1.1      yamt 	vm->vm_hashsize = newhashsize;
    680   1.1      yamt 	if (oldhashlist == NULL) {
    681   1.1      yamt 		VMEM_UNLOCK(vm);
    682   1.1      yamt 		return 0;
    683   1.1      yamt 	}
    684   1.1      yamt 	for (i = 0; i < oldhashsize; i++) {
    685   1.1      yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    686   1.1      yamt 			bt_rembusy(vm, bt); /* XXX */
    687   1.1      yamt 			bt_insbusy(vm, bt);
    688   1.1      yamt 		}
    689   1.1      yamt 	}
    690   1.1      yamt 	VMEM_UNLOCK(vm);
    691   1.1      yamt 
    692   1.1      yamt 	xfree(oldhashlist);
    693   1.1      yamt 
    694   1.1      yamt 	return 0;
    695   1.1      yamt }
    696   1.1      yamt 
    697  1.10      yamt /*
    698  1.10      yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    699  1.10      yamt  */
    700  1.10      yamt 
    701  1.10      yamt static vmem_addr_t
    702  1.10      yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    703  1.10      yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    704  1.10      yamt {
    705  1.10      yamt 	vmem_addr_t start;
    706  1.10      yamt 	vmem_addr_t end;
    707  1.10      yamt 
    708  1.10      yamt 	KASSERT(bt->bt_size >= size);
    709  1.10      yamt 
    710  1.10      yamt 	/*
    711  1.10      yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    712  1.10      yamt 	 * unsigned integer of the same size.
    713  1.10      yamt 	 */
    714  1.10      yamt 
    715  1.10      yamt 	start = bt->bt_start;
    716  1.10      yamt 	if (start < minaddr) {
    717  1.10      yamt 		start = minaddr;
    718  1.10      yamt 	}
    719  1.10      yamt 	end = BT_END(bt);
    720  1.10      yamt 	if (end > maxaddr - 1) {
    721  1.10      yamt 		end = maxaddr - 1;
    722  1.10      yamt 	}
    723  1.10      yamt 	if (start >= end) {
    724  1.10      yamt 		return VMEM_ADDR_NULL;
    725  1.10      yamt 	}
    726  1.19      yamt 
    727  1.19      yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    728  1.10      yamt 	if (start < bt->bt_start) {
    729  1.10      yamt 		start += align;
    730  1.10      yamt 	}
    731  1.19      yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    732  1.10      yamt 		KASSERT(align < nocross);
    733  1.19      yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    734  1.10      yamt 	}
    735  1.10      yamt 	if (start < end && end - start >= size) {
    736  1.10      yamt 		KASSERT((start & (align - 1)) == phase);
    737  1.19      yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    738  1.10      yamt 		KASSERT(minaddr <= start);
    739  1.10      yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    740  1.10      yamt 		KASSERT(bt->bt_start <= start);
    741  1.10      yamt 		KASSERT(start + size <= BT_END(bt));
    742  1.10      yamt 		return start;
    743  1.10      yamt 	}
    744  1.10      yamt 	return VMEM_ADDR_NULL;
    745  1.10      yamt }
    746  1.10      yamt 
    747  1.49  christos #if !defined(VMEM_DEBUG)
    748  1.44    cegger #define vmem_check_sanity(vm)	true
    749  1.44    cegger #else
    750  1.44    cegger 
    751  1.44    cegger static bool
    752  1.48    cegger vmem_check_spanoverlap(const char *func, const vmem_t *vm,
    753  1.48    cegger 			const bt_t *bt, const bt_t *bt2)
    754  1.48    cegger {
    755  1.48    cegger 	switch (bt->bt_type) {
    756  1.48    cegger 	case BT_TYPE_BUSY:
    757  1.48    cegger 	case BT_TYPE_FREE:
    758  1.48    cegger 		if (BT_ISSPAN_P(bt2))
    759  1.48    cegger 			return true;
    760  1.48    cegger 		break;
    761  1.48    cegger 	case BT_TYPE_SPAN:
    762  1.48    cegger 	case BT_TYPE_SPAN_STATIC:
    763  1.48    cegger 		if (bt2->bt_type == BT_TYPE_BUSY
    764  1.48    cegger 		   || bt2->bt_type == BT_TYPE_FREE)
    765  1.48    cegger 			return true;
    766  1.48    cegger 		break;
    767  1.48    cegger 	}
    768  1.48    cegger 
    769  1.48    cegger 	if (bt->bt_start > bt2->bt_start) {
    770  1.48    cegger 		if (bt->bt_start >= BT_END(bt2))
    771  1.48    cegger 			return true;
    772  1.48    cegger 
    773  1.48    cegger 		printf("%s: overlapping VMEM '%s' span 0x%"
    774  1.48    cegger 			PRIx64" - 0x%"PRIx64" %s\n",
    775  1.48    cegger 			func, vm->vm_name,
    776  1.48    cegger 			(uint64_t)bt->bt_start,
    777  1.48    cegger 			(uint64_t)BT_END(bt),
    778  1.48    cegger 			(bt->bt_type == BT_TYPE_BUSY) ?
    779  1.48    cegger 			"allocated" :
    780  1.48    cegger 			(bt->bt_type == BT_TYPE_FREE) ?
    781  1.48    cegger 			"free" :
    782  1.48    cegger 			(bt->bt_type == BT_TYPE_SPAN) ?
    783  1.48    cegger 			"span" : "static span");
    784  1.48    cegger 		printf("%s: overlapping VMEM '%s' span 0x%"
    785  1.48    cegger 			PRIx64" - 0x%"PRIx64" %s\n",
    786  1.48    cegger 			func, vm->vm_name,
    787  1.48    cegger 			(uint64_t)bt2->bt_start,
    788  1.48    cegger 			(uint64_t)BT_END(bt2),
    789  1.48    cegger 			(bt2->bt_type == BT_TYPE_BUSY) ?
    790  1.48    cegger 			"allocated" :
    791  1.48    cegger 			(bt2->bt_type == BT_TYPE_FREE) ?
    792  1.48    cegger 			"free" :
    793  1.48    cegger 			(bt2->bt_type == BT_TYPE_SPAN) ?
    794  1.48    cegger 			"span" : "static span");
    795  1.48    cegger 		return false;
    796  1.48    cegger 	}
    797  1.48    cegger 	if (BT_END(bt) > bt2->bt_start) {
    798  1.48    cegger 		printf("%s: overlapping VMEM '%s' span 0x%"
    799  1.48    cegger 			PRIx64" - 0x%"PRIx64" %s\n",
    800  1.48    cegger 			func, vm->vm_name,
    801  1.48    cegger 			(uint64_t)bt->bt_start,
    802  1.48    cegger 			(uint64_t)BT_END(bt),
    803  1.48    cegger 			(bt->bt_type == BT_TYPE_BUSY) ?
    804  1.48    cegger 			"allocated" :
    805  1.48    cegger 			(bt->bt_type == BT_TYPE_FREE) ?
    806  1.48    cegger 			"free" :
    807  1.48    cegger 			(bt->bt_type == BT_TYPE_SPAN) ?
    808  1.48    cegger 			"span" : "static span");
    809  1.48    cegger 		printf("%s: overlapping VMEM '%s' span 0x%"
    810  1.48    cegger 			PRIx64" - 0x%"PRIx64" %s\n",
    811  1.48    cegger 			func, vm->vm_name,
    812  1.48    cegger 			(uint64_t)bt2->bt_start,
    813  1.48    cegger 			(uint64_t)BT_END(bt2),
    814  1.48    cegger 			(bt2->bt_type == BT_TYPE_BUSY) ?
    815  1.48    cegger 			"allocated" :
    816  1.48    cegger 			(bt2->bt_type == BT_TYPE_FREE) ?
    817  1.48    cegger 			"free" :
    818  1.48    cegger 			(bt2->bt_type == BT_TYPE_SPAN) ?
    819  1.48    cegger 			"span" : "static span");
    820  1.48    cegger 		return false;
    821  1.48    cegger 	}
    822  1.48    cegger 
    823  1.48    cegger 	return true;
    824  1.48    cegger }
    825  1.48    cegger 
    826  1.48    cegger static bool
    827  1.44    cegger vmem_check_sanity(vmem_t *vm)
    828  1.44    cegger {
    829  1.44    cegger 	const bt_t *bt, *bt2;
    830  1.44    cegger 
    831  1.44    cegger 	KASSERT(vm != NULL);
    832  1.44    cegger 
    833  1.44    cegger 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
    834  1.44    cegger 		if (bt->bt_start >= BT_END(bt)) {
    835  1.44    cegger 			printf("%s: bogus VMEM '%s' span 0x%"PRIx64
    836  1.44    cegger 				" - 0x%"PRIx64" %s\n",
    837  1.44    cegger 				__func__, vm->vm_name,
    838  1.45    cegger 				(uint64_t)bt->bt_start, (uint64_t)BT_END(bt),
    839  1.44    cegger 				(bt->bt_type == BT_TYPE_BUSY) ?
    840  1.47    cegger 				"allocated" :
    841  1.47    cegger 				(bt->bt_type == BT_TYPE_FREE) ?
    842  1.47    cegger 				"free" :
    843  1.47    cegger 				(bt->bt_type == BT_TYPE_SPAN) ?
    844  1.47    cegger 				"span" : "static span");
    845  1.44    cegger 			return false;
    846  1.44    cegger 		}
    847  1.44    cegger 
    848  1.44    cegger 		CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
    849  1.44    cegger 			if (bt2->bt_start >= BT_END(bt2)) {
    850  1.44    cegger 				printf("%s: bogus VMEM '%s' span 0x%"PRIx64
    851  1.44    cegger 					" - 0x%"PRIx64" %s\n",
    852  1.44    cegger 					__func__, vm->vm_name,
    853  1.45    cegger 					(uint64_t)bt2->bt_start,
    854  1.45    cegger 					(uint64_t)BT_END(bt2),
    855  1.44    cegger 					(bt2->bt_type == BT_TYPE_BUSY) ?
    856  1.47    cegger 					"allocated" :
    857  1.47    cegger 					(bt2->bt_type == BT_TYPE_FREE) ?
    858  1.47    cegger 					"free" :
    859  1.47    cegger 					(bt2->bt_type == BT_TYPE_SPAN) ?
    860  1.47    cegger 					"span" : "static span");
    861  1.44    cegger 				return false;
    862  1.44    cegger 			}
    863  1.44    cegger 			if (bt == bt2)
    864  1.44    cegger 				continue;
    865  1.44    cegger 
    866  1.48    cegger 			if (vmem_check_spanoverlap(__func__, vm, bt, bt2)
    867  1.48    cegger 				== false)
    868  1.44    cegger 				return false;
    869  1.44    cegger 		}
    870  1.44    cegger 	}
    871  1.44    cegger 
    872  1.44    cegger 	return true;
    873  1.44    cegger }
    874  1.51  christos #endif	/* VMEM_DEBUG */
    875  1.44    cegger 
    876   1.1      yamt /* ---- vmem API */
    877   1.1      yamt 
    878   1.1      yamt /*
    879   1.1      yamt  * vmem_create: create an arena.
    880   1.1      yamt  *
    881   1.1      yamt  * => must not be called from interrupt context.
    882   1.1      yamt  */
    883   1.1      yamt 
    884   1.1      yamt vmem_t *
    885   1.1      yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    886   1.1      yamt     vmem_size_t quantum,
    887   1.1      yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    888   1.1      yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    889  1.31        ad     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
    890  1.31        ad     int ipl)
    891   1.1      yamt {
    892   1.1      yamt 	vmem_t *vm;
    893   1.1      yamt 	int i;
    894   1.1      yamt #if defined(_KERNEL)
    895   1.1      yamt 	static ONCE_DECL(control);
    896   1.1      yamt #endif /* defined(_KERNEL) */
    897   1.1      yamt 
    898   1.1      yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    899   1.1      yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    900   1.1      yamt 
    901   1.1      yamt #if defined(_KERNEL)
    902   1.1      yamt 	if (RUN_ONCE(&control, vmem_init)) {
    903   1.1      yamt 		return NULL;
    904   1.1      yamt 	}
    905   1.1      yamt #endif /* defined(_KERNEL) */
    906   1.1      yamt 	vm = xmalloc(sizeof(*vm), flags);
    907   1.1      yamt 	if (vm == NULL) {
    908   1.1      yamt 		return NULL;
    909   1.1      yamt 	}
    910   1.1      yamt 
    911  1.31        ad 	VMEM_LOCK_INIT(vm, ipl);
    912   1.1      yamt 	vm->vm_name = name;
    913   1.1      yamt 	vm->vm_quantum_mask = quantum - 1;
    914   1.1      yamt 	vm->vm_quantum_shift = calc_order(quantum);
    915   1.4      yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    916   1.1      yamt 	vm->vm_allocfn = allocfn;
    917   1.1      yamt 	vm->vm_freefn = freefn;
    918   1.1      yamt 	vm->vm_source = source;
    919   1.1      yamt 	vm->vm_nbusytag = 0;
    920   1.5      yamt #if defined(QCACHE)
    921  1.31        ad 	qc_init(vm, qcache_max, ipl);
    922   1.5      yamt #endif /* defined(QCACHE) */
    923   1.1      yamt 
    924   1.1      yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    925   1.1      yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    926   1.1      yamt 		LIST_INIT(&vm->vm_freelist[i]);
    927   1.1      yamt 	}
    928   1.1      yamt 	vm->vm_hashlist = NULL;
    929   1.1      yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    930  1.30      yamt 		vmem_destroy1(vm);
    931   1.1      yamt 		return NULL;
    932   1.1      yamt 	}
    933   1.1      yamt 
    934   1.1      yamt 	if (size != 0) {
    935   1.1      yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    936  1.30      yamt 			vmem_destroy1(vm);
    937   1.1      yamt 			return NULL;
    938   1.1      yamt 		}
    939   1.1      yamt 	}
    940   1.1      yamt 
    941  1.30      yamt #if defined(_KERNEL)
    942  1.30      yamt 	mutex_enter(&vmem_list_lock);
    943  1.30      yamt 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
    944  1.30      yamt 	mutex_exit(&vmem_list_lock);
    945  1.30      yamt #endif /* defined(_KERNEL) */
    946  1.30      yamt 
    947   1.1      yamt 	return vm;
    948   1.1      yamt }
    949   1.1      yamt 
    950   1.1      yamt void
    951   1.1      yamt vmem_destroy(vmem_t *vm)
    952   1.1      yamt {
    953   1.1      yamt 
    954  1.30      yamt #if defined(_KERNEL)
    955  1.30      yamt 	mutex_enter(&vmem_list_lock);
    956  1.30      yamt 	LIST_REMOVE(vm, vm_alllist);
    957  1.30      yamt 	mutex_exit(&vmem_list_lock);
    958  1.30      yamt #endif /* defined(_KERNEL) */
    959   1.1      yamt 
    960  1.30      yamt 	vmem_destroy1(vm);
    961   1.1      yamt }
    962   1.1      yamt 
    963   1.1      yamt vmem_size_t
    964   1.1      yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    965   1.1      yamt {
    966   1.1      yamt 
    967   1.1      yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    968   1.1      yamt }
    969   1.1      yamt 
    970   1.1      yamt /*
    971   1.1      yamt  * vmem_alloc:
    972   1.1      yamt  *
    973   1.1      yamt  * => caller must ensure appropriate spl,
    974   1.1      yamt  *    if the arena can be accessed from interrupt context.
    975   1.1      yamt  */
    976   1.1      yamt 
    977   1.1      yamt vmem_addr_t
    978  1.38      yamt vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    979   1.1      yamt {
    980  1.12      yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    981   1.1      yamt 
    982   1.1      yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    983   1.1      yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    984   1.1      yamt 
    985   1.1      yamt 	KASSERT(size > 0);
    986   1.1      yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    987   1.3      yamt 	if ((flags & VM_SLEEP) != 0) {
    988  1.42      yamt 		ASSERT_SLEEPABLE();
    989   1.3      yamt 	}
    990   1.1      yamt 
    991   1.5      yamt #if defined(QCACHE)
    992   1.5      yamt 	if (size <= vm->vm_qcache_max) {
    993  1.38      yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
    994  1.22      yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    995   1.5      yamt 
    996  1.35        ad 		return (vmem_addr_t)pool_cache_get(qc->qc_cache,
    997   1.5      yamt 		    vmf_to_prf(flags));
    998   1.5      yamt 	}
    999   1.5      yamt #endif /* defined(QCACHE) */
   1000   1.5      yamt 
   1001  1.38      yamt 	return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
   1002  1.10      yamt }
   1003  1.10      yamt 
   1004  1.10      yamt vmem_addr_t
   1005  1.10      yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
   1006  1.10      yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
   1007  1.10      yamt     vm_flag_t flags)
   1008  1.10      yamt {
   1009  1.10      yamt 	struct vmem_freelist *list;
   1010  1.10      yamt 	struct vmem_freelist *first;
   1011  1.10      yamt 	struct vmem_freelist *end;
   1012  1.10      yamt 	bt_t *bt;
   1013  1.10      yamt 	bt_t *btnew;
   1014  1.10      yamt 	bt_t *btnew2;
   1015  1.10      yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
   1016  1.10      yamt 	vm_flag_t strat = flags & VM_FITMASK;
   1017  1.10      yamt 	vmem_addr_t start;
   1018  1.10      yamt 
   1019  1.10      yamt 	KASSERT(size0 > 0);
   1020  1.10      yamt 	KASSERT(size > 0);
   1021  1.10      yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
   1022  1.10      yamt 	if ((flags & VM_SLEEP) != 0) {
   1023  1.42      yamt 		ASSERT_SLEEPABLE();
   1024  1.10      yamt 	}
   1025  1.10      yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
   1026  1.10      yamt 	KASSERT((align & (align - 1)) == 0);
   1027  1.10      yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
   1028  1.10      yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
   1029  1.10      yamt 	KASSERT((nocross & (nocross - 1)) == 0);
   1030  1.10      yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
   1031  1.10      yamt 	KASSERT(nocross == 0 || nocross >= size);
   1032  1.10      yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
   1033  1.19      yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
   1034  1.10      yamt 
   1035  1.10      yamt 	if (align == 0) {
   1036  1.10      yamt 		align = vm->vm_quantum_mask + 1;
   1037  1.10      yamt 	}
   1038   1.1      yamt 	btnew = bt_alloc(vm, flags);
   1039   1.1      yamt 	if (btnew == NULL) {
   1040   1.1      yamt 		return VMEM_ADDR_NULL;
   1041   1.1      yamt 	}
   1042  1.10      yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
   1043  1.10      yamt 	if (btnew2 == NULL) {
   1044  1.10      yamt 		bt_free(vm, btnew);
   1045  1.10      yamt 		return VMEM_ADDR_NULL;
   1046  1.10      yamt 	}
   1047   1.1      yamt 
   1048   1.1      yamt retry_strat:
   1049   1.1      yamt 	first = bt_freehead_toalloc(vm, size, strat);
   1050   1.1      yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
   1051   1.1      yamt retry:
   1052   1.1      yamt 	bt = NULL;
   1053   1.1      yamt 	VMEM_LOCK(vm);
   1054  1.48    cegger 	KASSERT(vmem_check_sanity(vm));
   1055   1.2      yamt 	if (strat == VM_INSTANTFIT) {
   1056   1.2      yamt 		for (list = first; list < end; list++) {
   1057   1.2      yamt 			bt = LIST_FIRST(list);
   1058   1.2      yamt 			if (bt != NULL) {
   1059  1.10      yamt 				start = vmem_fit(bt, size, align, phase,
   1060  1.10      yamt 				    nocross, minaddr, maxaddr);
   1061  1.10      yamt 				if (start != VMEM_ADDR_NULL) {
   1062  1.10      yamt 					goto gotit;
   1063  1.10      yamt 				}
   1064   1.2      yamt 			}
   1065   1.2      yamt 		}
   1066   1.2      yamt 	} else { /* VM_BESTFIT */
   1067   1.2      yamt 		for (list = first; list < end; list++) {
   1068   1.2      yamt 			LIST_FOREACH(bt, list, bt_freelist) {
   1069   1.2      yamt 				if (bt->bt_size >= size) {
   1070  1.10      yamt 					start = vmem_fit(bt, size, align, phase,
   1071  1.10      yamt 					    nocross, minaddr, maxaddr);
   1072  1.10      yamt 					if (start != VMEM_ADDR_NULL) {
   1073  1.10      yamt 						goto gotit;
   1074  1.10      yamt 					}
   1075   1.2      yamt 				}
   1076   1.1      yamt 			}
   1077   1.1      yamt 		}
   1078   1.1      yamt 	}
   1079   1.2      yamt 	VMEM_UNLOCK(vm);
   1080   1.1      yamt #if 1
   1081   1.2      yamt 	if (strat == VM_INSTANTFIT) {
   1082   1.2      yamt 		strat = VM_BESTFIT;
   1083   1.2      yamt 		goto retry_strat;
   1084   1.2      yamt 	}
   1085   1.1      yamt #endif
   1086  1.10      yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
   1087  1.10      yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
   1088  1.10      yamt 
   1089  1.10      yamt 		/*
   1090  1.10      yamt 		 * XXX should try to import a region large enough to
   1091  1.10      yamt 		 * satisfy restrictions?
   1092  1.10      yamt 		 */
   1093  1.10      yamt 
   1094  1.20      yamt 		goto fail;
   1095  1.10      yamt 	}
   1096   1.2      yamt 	if (vmem_import(vm, size, flags) == 0) {
   1097   1.2      yamt 		goto retry;
   1098   1.1      yamt 	}
   1099   1.2      yamt 	/* XXX */
   1100  1.20      yamt fail:
   1101  1.20      yamt 	bt_free(vm, btnew);
   1102  1.20      yamt 	bt_free(vm, btnew2);
   1103   1.2      yamt 	return VMEM_ADDR_NULL;
   1104   1.2      yamt 
   1105   1.2      yamt gotit:
   1106   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
   1107   1.1      yamt 	KASSERT(bt->bt_size >= size);
   1108   1.1      yamt 	bt_remfree(vm, bt);
   1109  1.44    cegger 	KASSERT(vmem_check_sanity(vm));
   1110  1.10      yamt 	if (bt->bt_start != start) {
   1111  1.10      yamt 		btnew2->bt_type = BT_TYPE_FREE;
   1112  1.10      yamt 		btnew2->bt_start = bt->bt_start;
   1113  1.10      yamt 		btnew2->bt_size = start - bt->bt_start;
   1114  1.10      yamt 		bt->bt_start = start;
   1115  1.10      yamt 		bt->bt_size -= btnew2->bt_size;
   1116  1.10      yamt 		bt_insfree(vm, btnew2);
   1117  1.10      yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
   1118  1.10      yamt 		btnew2 = NULL;
   1119  1.44    cegger 		KASSERT(vmem_check_sanity(vm));
   1120  1.10      yamt 	}
   1121  1.10      yamt 	KASSERT(bt->bt_start == start);
   1122   1.1      yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
   1123   1.1      yamt 		/* split */
   1124   1.1      yamt 		btnew->bt_type = BT_TYPE_BUSY;
   1125   1.1      yamt 		btnew->bt_start = bt->bt_start;
   1126   1.1      yamt 		btnew->bt_size = size;
   1127   1.1      yamt 		bt->bt_start = bt->bt_start + size;
   1128   1.1      yamt 		bt->bt_size -= size;
   1129   1.1      yamt 		bt_insfree(vm, bt);
   1130   1.1      yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
   1131   1.1      yamt 		bt_insbusy(vm, btnew);
   1132  1.48    cegger 		KASSERT(vmem_check_sanity(vm));
   1133   1.1      yamt 		VMEM_UNLOCK(vm);
   1134   1.1      yamt 	} else {
   1135   1.1      yamt 		bt->bt_type = BT_TYPE_BUSY;
   1136   1.1      yamt 		bt_insbusy(vm, bt);
   1137  1.48    cegger 		KASSERT(vmem_check_sanity(vm));
   1138   1.1      yamt 		VMEM_UNLOCK(vm);
   1139   1.1      yamt 		bt_free(vm, btnew);
   1140   1.1      yamt 		btnew = bt;
   1141   1.1      yamt 	}
   1142  1.10      yamt 	if (btnew2 != NULL) {
   1143  1.10      yamt 		bt_free(vm, btnew2);
   1144  1.10      yamt 	}
   1145   1.1      yamt 	KASSERT(btnew->bt_size >= size);
   1146   1.1      yamt 	btnew->bt_type = BT_TYPE_BUSY;
   1147   1.1      yamt 
   1148  1.44    cegger 	KASSERT(vmem_check_sanity(vm));
   1149   1.1      yamt 	return btnew->bt_start;
   1150   1.1      yamt }
   1151   1.1      yamt 
   1152   1.1      yamt /*
   1153   1.1      yamt  * vmem_free:
   1154   1.1      yamt  *
   1155   1.1      yamt  * => caller must ensure appropriate spl,
   1156   1.1      yamt  *    if the arena can be accessed from interrupt context.
   1157   1.1      yamt  */
   1158   1.1      yamt 
   1159   1.1      yamt void
   1160   1.1      yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1161   1.1      yamt {
   1162   1.1      yamt 
   1163   1.1      yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1164   1.1      yamt 	KASSERT(size > 0);
   1165   1.1      yamt 
   1166   1.5      yamt #if defined(QCACHE)
   1167   1.5      yamt 	if (size <= vm->vm_qcache_max) {
   1168   1.5      yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1169  1.22      yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1170   1.5      yamt 
   1171  1.35        ad 		return pool_cache_put(qc->qc_cache, (void *)addr);
   1172   1.5      yamt 	}
   1173   1.5      yamt #endif /* defined(QCACHE) */
   1174   1.5      yamt 
   1175  1.10      yamt 	vmem_xfree(vm, addr, size);
   1176  1.10      yamt }
   1177  1.10      yamt 
   1178  1.10      yamt void
   1179  1.17      yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1180  1.10      yamt {
   1181  1.10      yamt 	bt_t *bt;
   1182  1.10      yamt 	bt_t *t;
   1183  1.10      yamt 
   1184  1.10      yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1185  1.10      yamt 	KASSERT(size > 0);
   1186  1.10      yamt 
   1187   1.1      yamt 	VMEM_LOCK(vm);
   1188   1.1      yamt 
   1189   1.1      yamt 	bt = bt_lookupbusy(vm, addr);
   1190   1.1      yamt 	KASSERT(bt != NULL);
   1191   1.1      yamt 	KASSERT(bt->bt_start == addr);
   1192   1.1      yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1193   1.1      yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1194   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1195   1.1      yamt 	bt_rembusy(vm, bt);
   1196   1.1      yamt 	bt->bt_type = BT_TYPE_FREE;
   1197   1.1      yamt 
   1198   1.1      yamt 	/* coalesce */
   1199   1.1      yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1200   1.1      yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1201   1.1      yamt 		KASSERT(BT_END(bt) == t->bt_start);
   1202   1.1      yamt 		bt_remfree(vm, t);
   1203   1.1      yamt 		bt_remseg(vm, t);
   1204   1.1      yamt 		bt->bt_size += t->bt_size;
   1205   1.1      yamt 		bt_free(vm, t);
   1206   1.1      yamt 	}
   1207   1.1      yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1208   1.1      yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1209   1.1      yamt 		KASSERT(BT_END(t) == bt->bt_start);
   1210   1.1      yamt 		bt_remfree(vm, t);
   1211   1.1      yamt 		bt_remseg(vm, t);
   1212   1.1      yamt 		bt->bt_size += t->bt_size;
   1213   1.1      yamt 		bt->bt_start = t->bt_start;
   1214   1.1      yamt 		bt_free(vm, t);
   1215   1.1      yamt 	}
   1216   1.1      yamt 
   1217   1.1      yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1218   1.1      yamt 	KASSERT(t != NULL);
   1219   1.1      yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1220   1.1      yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1221   1.1      yamt 	    t->bt_size == bt->bt_size) {
   1222   1.1      yamt 		vmem_addr_t spanaddr;
   1223   1.1      yamt 		vmem_size_t spansize;
   1224   1.1      yamt 
   1225   1.1      yamt 		KASSERT(t->bt_start == bt->bt_start);
   1226   1.1      yamt 		spanaddr = bt->bt_start;
   1227   1.1      yamt 		spansize = bt->bt_size;
   1228   1.1      yamt 		bt_remseg(vm, bt);
   1229   1.1      yamt 		bt_free(vm, bt);
   1230   1.1      yamt 		bt_remseg(vm, t);
   1231   1.1      yamt 		bt_free(vm, t);
   1232   1.1      yamt 		VMEM_UNLOCK(vm);
   1233   1.1      yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1234   1.1      yamt 	} else {
   1235   1.1      yamt 		bt_insfree(vm, bt);
   1236   1.1      yamt 		VMEM_UNLOCK(vm);
   1237   1.1      yamt 	}
   1238   1.1      yamt }
   1239   1.1      yamt 
   1240   1.1      yamt /*
   1241   1.1      yamt  * vmem_add:
   1242   1.1      yamt  *
   1243   1.1      yamt  * => caller must ensure appropriate spl,
   1244   1.1      yamt  *    if the arena can be accessed from interrupt context.
   1245   1.1      yamt  */
   1246   1.1      yamt 
   1247   1.1      yamt vmem_addr_t
   1248   1.1      yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1249   1.1      yamt {
   1250   1.1      yamt 
   1251   1.1      yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1252   1.1      yamt }
   1253   1.1      yamt 
   1254   1.6      yamt /*
   1255   1.6      yamt  * vmem_reap: reap unused resources.
   1256   1.6      yamt  *
   1257  1.26   thorpej  * => return true if we successfully reaped something.
   1258   1.6      yamt  */
   1259   1.6      yamt 
   1260  1.25   thorpej bool
   1261   1.6      yamt vmem_reap(vmem_t *vm)
   1262   1.6      yamt {
   1263  1.26   thorpej 	bool didsomething = false;
   1264   1.6      yamt 
   1265   1.6      yamt #if defined(QCACHE)
   1266   1.6      yamt 	didsomething = qc_reap(vm);
   1267   1.6      yamt #endif /* defined(QCACHE) */
   1268   1.6      yamt 	return didsomething;
   1269   1.6      yamt }
   1270   1.6      yamt 
   1271  1.30      yamt /* ---- rehash */
   1272  1.30      yamt 
   1273  1.30      yamt #if defined(_KERNEL)
   1274  1.30      yamt static struct callout vmem_rehash_ch;
   1275  1.30      yamt static int vmem_rehash_interval;
   1276  1.30      yamt static struct workqueue *vmem_rehash_wq;
   1277  1.30      yamt static struct work vmem_rehash_wk;
   1278  1.30      yamt 
   1279  1.30      yamt static void
   1280  1.30      yamt vmem_rehash_all(struct work *wk, void *dummy)
   1281  1.30      yamt {
   1282  1.30      yamt 	vmem_t *vm;
   1283  1.30      yamt 
   1284  1.30      yamt 	KASSERT(wk == &vmem_rehash_wk);
   1285  1.30      yamt 	mutex_enter(&vmem_list_lock);
   1286  1.30      yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1287  1.30      yamt 		size_t desired;
   1288  1.30      yamt 		size_t current;
   1289  1.30      yamt 
   1290  1.30      yamt 		if (!VMEM_TRYLOCK(vm)) {
   1291  1.30      yamt 			continue;
   1292  1.30      yamt 		}
   1293  1.30      yamt 		desired = vm->vm_nbusytag;
   1294  1.30      yamt 		current = vm->vm_hashsize;
   1295  1.30      yamt 		VMEM_UNLOCK(vm);
   1296  1.30      yamt 
   1297  1.30      yamt 		if (desired > VMEM_HASHSIZE_MAX) {
   1298  1.30      yamt 			desired = VMEM_HASHSIZE_MAX;
   1299  1.30      yamt 		} else if (desired < VMEM_HASHSIZE_MIN) {
   1300  1.30      yamt 			desired = VMEM_HASHSIZE_MIN;
   1301  1.30      yamt 		}
   1302  1.30      yamt 		if (desired > current * 2 || desired * 2 < current) {
   1303  1.30      yamt 			vmem_rehash(vm, desired, VM_NOSLEEP);
   1304  1.30      yamt 		}
   1305  1.30      yamt 	}
   1306  1.30      yamt 	mutex_exit(&vmem_list_lock);
   1307  1.30      yamt 
   1308  1.30      yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1309  1.30      yamt }
   1310  1.30      yamt 
   1311  1.30      yamt static void
   1312  1.30      yamt vmem_rehash_all_kick(void *dummy)
   1313  1.30      yamt {
   1314  1.30      yamt 
   1315  1.32     rmind 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
   1316  1.30      yamt }
   1317  1.30      yamt 
   1318  1.30      yamt void
   1319  1.30      yamt vmem_rehash_start(void)
   1320  1.30      yamt {
   1321  1.30      yamt 	int error;
   1322  1.30      yamt 
   1323  1.30      yamt 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
   1324  1.41        ad 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
   1325  1.30      yamt 	if (error) {
   1326  1.30      yamt 		panic("%s: workqueue_create %d\n", __func__, error);
   1327  1.30      yamt 	}
   1328  1.41        ad 	callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
   1329  1.30      yamt 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
   1330  1.30      yamt 
   1331  1.30      yamt 	vmem_rehash_interval = hz * 10;
   1332  1.30      yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1333  1.30      yamt }
   1334  1.30      yamt #endif /* defined(_KERNEL) */
   1335  1.30      yamt 
   1336   1.1      yamt /* ---- debug */
   1337   1.1      yamt 
   1338  1.37      yamt #if defined(DDB)
   1339  1.37      yamt static bt_t *
   1340  1.37      yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
   1341  1.37      yamt {
   1342  1.39      yamt 	bt_t *bt;
   1343  1.37      yamt 
   1344  1.39      yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1345  1.39      yamt 		if (BT_ISSPAN_P(bt)) {
   1346  1.39      yamt 			continue;
   1347  1.39      yamt 		}
   1348  1.39      yamt 		if (bt->bt_start <= addr && addr < BT_END(bt)) {
   1349  1.39      yamt 			return bt;
   1350  1.37      yamt 		}
   1351  1.37      yamt 	}
   1352  1.37      yamt 
   1353  1.37      yamt 	return NULL;
   1354  1.37      yamt }
   1355  1.37      yamt 
   1356  1.37      yamt void
   1357  1.37      yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1358  1.37      yamt {
   1359  1.37      yamt 	vmem_t *vm;
   1360  1.37      yamt 
   1361  1.37      yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1362  1.37      yamt 		bt_t *bt;
   1363  1.37      yamt 
   1364  1.37      yamt 		bt = vmem_whatis_lookup(vm, addr);
   1365  1.37      yamt 		if (bt == NULL) {
   1366  1.37      yamt 			continue;
   1367  1.37      yamt 		}
   1368  1.39      yamt 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
   1369  1.37      yamt 		    (void *)addr, (void *)bt->bt_start,
   1370  1.39      yamt 		    (size_t)(addr - bt->bt_start), vm->vm_name,
   1371  1.39      yamt 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
   1372  1.37      yamt 	}
   1373  1.37      yamt }
   1374  1.43    cegger 
   1375  1.43    cegger static void
   1376  1.43    cegger vmem_showall(void (*pr)(const char *, ...))
   1377  1.43    cegger {
   1378  1.43    cegger 	vmem_t *vm;
   1379  1.43    cegger 
   1380  1.43    cegger 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1381  1.43    cegger 		(*pr)("VMEM '%s' at %p\n", vm->vm_name, vm);
   1382  1.43    cegger 		if (vm->vm_source)
   1383  1.43    cegger 			(*pr)("  VMEM backend '%s' at %p\n",
   1384  1.43    cegger 				vm->vm_source->vm_name, vm->vm_source);
   1385  1.43    cegger 	}
   1386  1.43    cegger }
   1387  1.43    cegger 
   1388  1.43    cegger static void
   1389  1.43    cegger vmem_show(uintptr_t addr, void (*pr)(const char *, ...))
   1390  1.43    cegger {
   1391  1.43    cegger 	vmem_t *vm;
   1392  1.43    cegger 	bt_t *bt = NULL;
   1393  1.43    cegger 
   1394  1.43    cegger 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1395  1.43    cegger 		if ((uintptr_t)vm == addr)
   1396  1.43    cegger 			goto found;
   1397  1.47    cegger 	}
   1398  1.43    cegger 
   1399  1.47    cegger 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1400  1.43    cegger 		bt = vmem_whatis_lookup(vm, addr);
   1401  1.43    cegger 		if (bt != NULL)
   1402  1.43    cegger 			goto found;
   1403  1.43    cegger 	}
   1404  1.43    cegger 
   1405  1.47    cegger 	return;
   1406  1.43    cegger found:
   1407  1.43    cegger 
   1408  1.43    cegger 	(*pr)("VMEM '%s' spans\n", vm->vm_name);
   1409  1.43    cegger 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1410  1.47    cegger 		(*pr)(" 0x%"PRIx64" - 0x%"PRIx64" %s\n",
   1411  1.43    cegger 			bt->bt_start, BT_END(bt),
   1412  1.47    cegger 			(bt->bt_type == BT_TYPE_BUSY) ?
   1413  1.47    cegger 			"allocated" :
   1414  1.47    cegger 			(bt->bt_type == BT_TYPE_FREE) ?
   1415  1.47    cegger 			"free" :
   1416  1.47    cegger 			(bt->bt_type == BT_TYPE_SPAN) ?
   1417  1.47    cegger 			"span" : "static span");
   1418  1.43    cegger 	}
   1419  1.43    cegger }
   1420  1.43    cegger 
   1421  1.43    cegger void
   1422  1.43    cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
   1423  1.43    cegger {
   1424  1.43    cegger 	if (modif[0] == 'a') {
   1425  1.43    cegger 		vmem_showall(pr);
   1426  1.43    cegger 		return;
   1427  1.43    cegger 	}
   1428  1.43    cegger 
   1429  1.43    cegger 	vmem_show(addr, pr);
   1430  1.43    cegger }
   1431  1.37      yamt #endif /* defined(DDB) */
   1432  1.37      yamt 
   1433   1.1      yamt #if defined(VMEM_DEBUG)
   1434   1.1      yamt 
   1435   1.1      yamt #if !defined(_KERNEL)
   1436   1.1      yamt #include <stdio.h>
   1437   1.1      yamt #endif /* !defined(_KERNEL) */
   1438   1.1      yamt 
   1439   1.1      yamt void bt_dump(const bt_t *);
   1440   1.1      yamt 
   1441   1.1      yamt void
   1442   1.1      yamt bt_dump(const bt_t *bt)
   1443   1.1      yamt {
   1444   1.1      yamt 
   1445   1.1      yamt 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
   1446   1.1      yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1447   1.1      yamt 	    bt->bt_type);
   1448   1.1      yamt }
   1449   1.1      yamt 
   1450   1.1      yamt void
   1451   1.1      yamt vmem_dump(const vmem_t *vm)
   1452   1.1      yamt {
   1453   1.1      yamt 	const bt_t *bt;
   1454   1.1      yamt 	int i;
   1455   1.1      yamt 
   1456   1.1      yamt 	printf("vmem %p '%s'\n", vm, vm->vm_name);
   1457   1.1      yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1458   1.1      yamt 		bt_dump(bt);
   1459   1.1      yamt 	}
   1460   1.1      yamt 
   1461   1.1      yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1462   1.1      yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1463   1.1      yamt 
   1464   1.1      yamt 		if (LIST_EMPTY(fl)) {
   1465   1.1      yamt 			continue;
   1466   1.1      yamt 		}
   1467   1.1      yamt 
   1468   1.1      yamt 		printf("freelist[%d]\n", i);
   1469   1.1      yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1470   1.1      yamt 			bt_dump(bt);
   1471   1.1      yamt 			if (bt->bt_size) {
   1472   1.1      yamt 			}
   1473   1.1      yamt 		}
   1474   1.1      yamt 	}
   1475   1.1      yamt }
   1476   1.1      yamt 
   1477   1.1      yamt #if !defined(_KERNEL)
   1478   1.1      yamt 
   1479   1.1      yamt int
   1480   1.1      yamt main()
   1481   1.1      yamt {
   1482   1.1      yamt 	vmem_t *vm;
   1483   1.1      yamt 	vmem_addr_t p;
   1484   1.1      yamt 	struct reg {
   1485   1.1      yamt 		vmem_addr_t p;
   1486   1.1      yamt 		vmem_size_t sz;
   1487  1.25   thorpej 		bool x;
   1488   1.1      yamt 	} *reg = NULL;
   1489   1.1      yamt 	int nreg = 0;
   1490   1.1      yamt 	int nalloc = 0;
   1491   1.1      yamt 	int nfree = 0;
   1492   1.1      yamt 	vmem_size_t total = 0;
   1493   1.1      yamt #if 1
   1494   1.1      yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1495   1.1      yamt #else
   1496   1.1      yamt 	vm_flag_t strat = VM_BESTFIT;
   1497   1.1      yamt #endif
   1498   1.1      yamt 
   1499   1.1      yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1500  1.30      yamt 	    NULL, NULL, NULL, 0, VM_SLEEP);
   1501   1.1      yamt 	if (vm == NULL) {
   1502   1.1      yamt 		printf("vmem_create\n");
   1503   1.1      yamt 		exit(EXIT_FAILURE);
   1504   1.1      yamt 	}
   1505   1.1      yamt 	vmem_dump(vm);
   1506   1.1      yamt 
   1507   1.1      yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1508   1.1      yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1509   1.1      yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1510   1.1      yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1511   1.1      yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1512   1.1      yamt 	vmem_dump(vm);
   1513   1.1      yamt 	for (;;) {
   1514   1.1      yamt 		struct reg *r;
   1515  1.10      yamt 		int t = rand() % 100;
   1516   1.1      yamt 
   1517  1.10      yamt 		if (t > 45) {
   1518  1.10      yamt 			/* alloc */
   1519   1.1      yamt 			vmem_size_t sz = rand() % 500 + 1;
   1520  1.25   thorpej 			bool x;
   1521  1.10      yamt 			vmem_size_t align, phase, nocross;
   1522  1.10      yamt 			vmem_addr_t minaddr, maxaddr;
   1523  1.10      yamt 
   1524  1.10      yamt 			if (t > 70) {
   1525  1.26   thorpej 				x = true;
   1526  1.10      yamt 				/* XXX */
   1527  1.10      yamt 				align = 1 << (rand() % 15);
   1528  1.10      yamt 				phase = rand() % 65536;
   1529  1.10      yamt 				nocross = 1 << (rand() % 15);
   1530  1.10      yamt 				if (align <= phase) {
   1531  1.10      yamt 					phase = 0;
   1532  1.10      yamt 				}
   1533  1.19      yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1534  1.19      yamt 				    nocross)) {
   1535  1.10      yamt 					nocross = 0;
   1536  1.10      yamt 				}
   1537  1.10      yamt 				minaddr = rand() % 50000;
   1538  1.10      yamt 				maxaddr = rand() % 70000;
   1539  1.10      yamt 				if (minaddr > maxaddr) {
   1540  1.10      yamt 					minaddr = 0;
   1541  1.10      yamt 					maxaddr = 0;
   1542  1.10      yamt 				}
   1543  1.10      yamt 				printf("=== xalloc %" PRIu64
   1544  1.10      yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1545  1.10      yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1546  1.10      yamt 				    ", max=%" PRIu64 "\n",
   1547  1.10      yamt 				    (uint64_t)sz,
   1548  1.10      yamt 				    (uint64_t)align,
   1549  1.10      yamt 				    (uint64_t)phase,
   1550  1.10      yamt 				    (uint64_t)nocross,
   1551  1.10      yamt 				    (uint64_t)minaddr,
   1552  1.10      yamt 				    (uint64_t)maxaddr);
   1553  1.10      yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1554  1.10      yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1555  1.10      yamt 			} else {
   1556  1.26   thorpej 				x = false;
   1557  1.10      yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1558  1.10      yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1559  1.10      yamt 			}
   1560   1.1      yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1561   1.1      yamt 			vmem_dump(vm);
   1562   1.1      yamt 			if (p == VMEM_ADDR_NULL) {
   1563  1.10      yamt 				if (x) {
   1564  1.10      yamt 					continue;
   1565  1.10      yamt 				}
   1566   1.1      yamt 				break;
   1567   1.1      yamt 			}
   1568   1.1      yamt 			nreg++;
   1569   1.1      yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1570   1.1      yamt 			r = &reg[nreg - 1];
   1571   1.1      yamt 			r->p = p;
   1572   1.1      yamt 			r->sz = sz;
   1573  1.10      yamt 			r->x = x;
   1574   1.1      yamt 			total += sz;
   1575   1.1      yamt 			nalloc++;
   1576   1.1      yamt 		} else if (nreg != 0) {
   1577  1.10      yamt 			/* free */
   1578   1.1      yamt 			r = &reg[rand() % nreg];
   1579   1.1      yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1580   1.1      yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1581  1.10      yamt 			if (r->x) {
   1582  1.10      yamt 				vmem_xfree(vm, r->p, r->sz);
   1583  1.10      yamt 			} else {
   1584  1.10      yamt 				vmem_free(vm, r->p, r->sz);
   1585  1.10      yamt 			}
   1586   1.1      yamt 			total -= r->sz;
   1587   1.1      yamt 			vmem_dump(vm);
   1588   1.1      yamt 			*r = reg[nreg - 1];
   1589   1.1      yamt 			nreg--;
   1590   1.1      yamt 			nfree++;
   1591   1.1      yamt 		}
   1592   1.1      yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1593   1.1      yamt 	}
   1594   1.1      yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1595   1.1      yamt 	    (uint64_t)total, nalloc, nfree);
   1596   1.1      yamt 	exit(EXIT_SUCCESS);
   1597   1.1      yamt }
   1598   1.1      yamt #endif /* !defined(_KERNEL) */
   1599   1.1      yamt #endif /* defined(VMEM_DEBUG) */
   1600