subr_vmem.c revision 1.51 1 1.51 christos /* $NetBSD: subr_vmem.c,v 1.51 2008/12/10 18:07:30 christos Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.18 yamt *
35 1.18 yamt * todo:
36 1.18 yamt * - decide how to import segments for vmem_xalloc.
37 1.18 yamt * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.51 christos __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.51 2008/12/10 18:07:30 christos Exp $");
42 1.1 yamt
43 1.5 yamt #if defined(_KERNEL)
44 1.37 yamt #include "opt_ddb.h"
45 1.5 yamt #define QCACHE
46 1.5 yamt #endif /* defined(_KERNEL) */
47 1.1 yamt
48 1.1 yamt #include <sys/param.h>
49 1.1 yamt #include <sys/hash.h>
50 1.1 yamt #include <sys/queue.h>
51 1.1 yamt
52 1.1 yamt #if defined(_KERNEL)
53 1.1 yamt #include <sys/systm.h>
54 1.30 yamt #include <sys/kernel.h> /* hz */
55 1.30 yamt #include <sys/callout.h>
56 1.1 yamt #include <sys/malloc.h>
57 1.1 yamt #include <sys/once.h>
58 1.1 yamt #include <sys/pool.h>
59 1.1 yamt #include <sys/vmem.h>
60 1.30 yamt #include <sys/workqueue.h>
61 1.1 yamt #else /* defined(_KERNEL) */
62 1.1 yamt #include "../sys/vmem.h"
63 1.1 yamt #endif /* defined(_KERNEL) */
64 1.1 yamt
65 1.1 yamt #if defined(_KERNEL)
66 1.31 ad #define LOCK_DECL(name) kmutex_t name
67 1.1 yamt #else /* defined(_KERNEL) */
68 1.1 yamt #include <errno.h>
69 1.1 yamt #include <assert.h>
70 1.1 yamt #include <stdlib.h>
71 1.1 yamt
72 1.1 yamt #define KASSERT(a) assert(a)
73 1.31 ad #define LOCK_DECL(name) /* nothing */
74 1.31 ad #define mutex_init(a, b, c) /* nothing */
75 1.31 ad #define mutex_destroy(a) /* nothing */
76 1.31 ad #define mutex_enter(a) /* nothing */
77 1.31 ad #define mutex_exit(a) /* nothing */
78 1.31 ad #define mutex_owned(a) /* nothing */
79 1.42 yamt #define ASSERT_SLEEPABLE() /* nothing */
80 1.31 ad #define IPL_VM 0
81 1.1 yamt #endif /* defined(_KERNEL) */
82 1.1 yamt
83 1.1 yamt struct vmem;
84 1.1 yamt struct vmem_btag;
85 1.1 yamt
86 1.1 yamt #if defined(VMEM_DEBUG)
87 1.1 yamt void vmem_dump(const vmem_t *);
88 1.1 yamt #endif /* defined(VMEM_DEBUG) */
89 1.1 yamt
90 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
91 1.30 yamt
92 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
93 1.30 yamt #define VMEM_HASHSIZE_MAX 8192 /* XXX */
94 1.30 yamt #define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
95 1.1 yamt
96 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
97 1.1 yamt
98 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
99 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
100 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
101 1.1 yamt
102 1.5 yamt #if defined(QCACHE)
103 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
104 1.5 yamt
105 1.5 yamt #define QC_NAME_MAX 16
106 1.5 yamt
107 1.5 yamt struct qcache {
108 1.35 ad pool_cache_t qc_cache;
109 1.5 yamt vmem_t *qc_vmem;
110 1.5 yamt char qc_name[QC_NAME_MAX];
111 1.5 yamt };
112 1.5 yamt typedef struct qcache qcache_t;
113 1.35 ad #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
114 1.5 yamt #endif /* defined(QCACHE) */
115 1.5 yamt
116 1.1 yamt /* vmem arena */
117 1.1 yamt struct vmem {
118 1.31 ad LOCK_DECL(vm_lock);
119 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
120 1.1 yamt vm_flag_t);
121 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
122 1.1 yamt vmem_t *vm_source;
123 1.1 yamt struct vmem_seglist vm_seglist;
124 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
125 1.1 yamt size_t vm_hashsize;
126 1.1 yamt size_t vm_nbusytag;
127 1.1 yamt struct vmem_hashlist *vm_hashlist;
128 1.1 yamt size_t vm_quantum_mask;
129 1.1 yamt int vm_quantum_shift;
130 1.1 yamt const char *vm_name;
131 1.30 yamt LIST_ENTRY(vmem) vm_alllist;
132 1.5 yamt
133 1.5 yamt #if defined(QCACHE)
134 1.5 yamt /* quantum cache */
135 1.5 yamt size_t vm_qcache_max;
136 1.5 yamt struct pool_allocator vm_qcache_allocator;
137 1.22 yamt qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
138 1.22 yamt qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
139 1.5 yamt #endif /* defined(QCACHE) */
140 1.1 yamt };
141 1.1 yamt
142 1.31 ad #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
143 1.31 ad #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
144 1.31 ad #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
145 1.36 ad #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
146 1.31 ad #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
147 1.31 ad #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
148 1.1 yamt
149 1.1 yamt /* boundary tag */
150 1.1 yamt struct vmem_btag {
151 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
152 1.1 yamt union {
153 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
154 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
155 1.1 yamt } bt_u;
156 1.1 yamt #define bt_hashlist bt_u.u_hashlist
157 1.1 yamt #define bt_freelist bt_u.u_freelist
158 1.1 yamt vmem_addr_t bt_start;
159 1.1 yamt vmem_size_t bt_size;
160 1.1 yamt int bt_type;
161 1.1 yamt };
162 1.1 yamt
163 1.1 yamt #define BT_TYPE_SPAN 1
164 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
165 1.1 yamt #define BT_TYPE_FREE 3
166 1.1 yamt #define BT_TYPE_BUSY 4
167 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
168 1.1 yamt
169 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
170 1.1 yamt
171 1.1 yamt typedef struct vmem_btag bt_t;
172 1.1 yamt
173 1.1 yamt /* ---- misc */
174 1.1 yamt
175 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
176 1.19 yamt (-(-(addr) & -(align)))
177 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
178 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
179 1.19 yamt
180 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
181 1.4 yamt
182 1.1 yamt static int
183 1.1 yamt calc_order(vmem_size_t size)
184 1.1 yamt {
185 1.4 yamt vmem_size_t target;
186 1.1 yamt int i;
187 1.1 yamt
188 1.1 yamt KASSERT(size != 0);
189 1.1 yamt
190 1.1 yamt i = 0;
191 1.4 yamt target = size >> 1;
192 1.4 yamt while (ORDER2SIZE(i) <= target) {
193 1.1 yamt i++;
194 1.1 yamt }
195 1.1 yamt
196 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
197 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
198 1.1 yamt
199 1.1 yamt return i;
200 1.1 yamt }
201 1.1 yamt
202 1.1 yamt #if defined(_KERNEL)
203 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
204 1.1 yamt #endif /* defined(_KERNEL) */
205 1.1 yamt
206 1.1 yamt static void *
207 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
208 1.1 yamt {
209 1.1 yamt
210 1.1 yamt #if defined(_KERNEL)
211 1.1 yamt return malloc(sz, M_VMEM,
212 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
213 1.1 yamt #else /* defined(_KERNEL) */
214 1.1 yamt return malloc(sz);
215 1.1 yamt #endif /* defined(_KERNEL) */
216 1.1 yamt }
217 1.1 yamt
218 1.1 yamt static void
219 1.1 yamt xfree(void *p)
220 1.1 yamt {
221 1.1 yamt
222 1.1 yamt #if defined(_KERNEL)
223 1.1 yamt return free(p, M_VMEM);
224 1.1 yamt #else /* defined(_KERNEL) */
225 1.1 yamt return free(p);
226 1.1 yamt #endif /* defined(_KERNEL) */
227 1.1 yamt }
228 1.1 yamt
229 1.1 yamt /* ---- boundary tag */
230 1.1 yamt
231 1.1 yamt #if defined(_KERNEL)
232 1.35 ad static struct pool_cache bt_cache;
233 1.1 yamt #endif /* defined(_KERNEL) */
234 1.1 yamt
235 1.1 yamt static bt_t *
236 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
237 1.1 yamt {
238 1.1 yamt bt_t *bt;
239 1.1 yamt
240 1.1 yamt #if defined(_KERNEL)
241 1.35 ad bt = pool_cache_get(&bt_cache,
242 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
243 1.1 yamt #else /* defined(_KERNEL) */
244 1.1 yamt bt = malloc(sizeof *bt);
245 1.1 yamt #endif /* defined(_KERNEL) */
246 1.1 yamt
247 1.1 yamt return bt;
248 1.1 yamt }
249 1.1 yamt
250 1.1 yamt static void
251 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
252 1.1 yamt {
253 1.1 yamt
254 1.1 yamt #if defined(_KERNEL)
255 1.35 ad pool_cache_put(&bt_cache, bt);
256 1.1 yamt #else /* defined(_KERNEL) */
257 1.1 yamt free(bt);
258 1.1 yamt #endif /* defined(_KERNEL) */
259 1.1 yamt }
260 1.1 yamt
261 1.1 yamt /*
262 1.1 yamt * freelist[0] ... [1, 1]
263 1.1 yamt * freelist[1] ... [2, 3]
264 1.1 yamt * freelist[2] ... [4, 7]
265 1.1 yamt * freelist[3] ... [8, 15]
266 1.1 yamt * :
267 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
268 1.1 yamt * :
269 1.1 yamt */
270 1.1 yamt
271 1.1 yamt static struct vmem_freelist *
272 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
273 1.1 yamt {
274 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
275 1.1 yamt int idx;
276 1.1 yamt
277 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
278 1.1 yamt KASSERT(size != 0);
279 1.1 yamt
280 1.1 yamt idx = calc_order(qsize);
281 1.1 yamt KASSERT(idx >= 0);
282 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
283 1.1 yamt
284 1.1 yamt return &vm->vm_freelist[idx];
285 1.1 yamt }
286 1.1 yamt
287 1.1 yamt static struct vmem_freelist *
288 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
289 1.1 yamt {
290 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
291 1.1 yamt int idx;
292 1.1 yamt
293 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
294 1.1 yamt KASSERT(size != 0);
295 1.1 yamt
296 1.1 yamt idx = calc_order(qsize);
297 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
298 1.1 yamt idx++;
299 1.1 yamt /* check too large request? */
300 1.1 yamt }
301 1.1 yamt KASSERT(idx >= 0);
302 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
303 1.1 yamt
304 1.1 yamt return &vm->vm_freelist[idx];
305 1.1 yamt }
306 1.1 yamt
307 1.1 yamt /* ---- boundary tag hash */
308 1.1 yamt
309 1.1 yamt static struct vmem_hashlist *
310 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
311 1.1 yamt {
312 1.1 yamt struct vmem_hashlist *list;
313 1.1 yamt unsigned int hash;
314 1.1 yamt
315 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
316 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
317 1.1 yamt
318 1.1 yamt return list;
319 1.1 yamt }
320 1.1 yamt
321 1.1 yamt static bt_t *
322 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
323 1.1 yamt {
324 1.1 yamt struct vmem_hashlist *list;
325 1.1 yamt bt_t *bt;
326 1.1 yamt
327 1.1 yamt list = bt_hashhead(vm, addr);
328 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
329 1.1 yamt if (bt->bt_start == addr) {
330 1.1 yamt break;
331 1.1 yamt }
332 1.1 yamt }
333 1.1 yamt
334 1.1 yamt return bt;
335 1.1 yamt }
336 1.1 yamt
337 1.1 yamt static void
338 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
339 1.1 yamt {
340 1.1 yamt
341 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
342 1.1 yamt vm->vm_nbusytag--;
343 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
344 1.1 yamt }
345 1.1 yamt
346 1.1 yamt static void
347 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
348 1.1 yamt {
349 1.1 yamt struct vmem_hashlist *list;
350 1.1 yamt
351 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
352 1.1 yamt
353 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
354 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
355 1.1 yamt vm->vm_nbusytag++;
356 1.1 yamt }
357 1.1 yamt
358 1.1 yamt /* ---- boundary tag list */
359 1.1 yamt
360 1.1 yamt static void
361 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
362 1.1 yamt {
363 1.1 yamt
364 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
365 1.1 yamt }
366 1.1 yamt
367 1.1 yamt static void
368 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
369 1.1 yamt {
370 1.1 yamt
371 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
372 1.1 yamt }
373 1.1 yamt
374 1.1 yamt static void
375 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
376 1.1 yamt {
377 1.1 yamt
378 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
379 1.1 yamt }
380 1.1 yamt
381 1.1 yamt static void
382 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
383 1.1 yamt {
384 1.1 yamt
385 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
386 1.1 yamt
387 1.1 yamt LIST_REMOVE(bt, bt_freelist);
388 1.1 yamt }
389 1.1 yamt
390 1.1 yamt static void
391 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
392 1.1 yamt {
393 1.1 yamt struct vmem_freelist *list;
394 1.1 yamt
395 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
396 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
397 1.1 yamt }
398 1.1 yamt
399 1.1 yamt /* ---- vmem internal functions */
400 1.1 yamt
401 1.30 yamt #if defined(_KERNEL)
402 1.30 yamt static kmutex_t vmem_list_lock;
403 1.30 yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
404 1.30 yamt #endif /* defined(_KERNEL) */
405 1.30 yamt
406 1.5 yamt #if defined(QCACHE)
407 1.5 yamt static inline vm_flag_t
408 1.5 yamt prf_to_vmf(int prflags)
409 1.5 yamt {
410 1.5 yamt vm_flag_t vmflags;
411 1.5 yamt
412 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
413 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
414 1.5 yamt vmflags = VM_SLEEP;
415 1.5 yamt } else {
416 1.5 yamt vmflags = VM_NOSLEEP;
417 1.5 yamt }
418 1.5 yamt return vmflags;
419 1.5 yamt }
420 1.5 yamt
421 1.5 yamt static inline int
422 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
423 1.5 yamt {
424 1.5 yamt int prflags;
425 1.5 yamt
426 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
427 1.5 yamt prflags = PR_WAITOK;
428 1.7 yamt } else {
429 1.5 yamt prflags = PR_NOWAIT;
430 1.5 yamt }
431 1.5 yamt return prflags;
432 1.5 yamt }
433 1.5 yamt
434 1.5 yamt static size_t
435 1.5 yamt qc_poolpage_size(size_t qcache_max)
436 1.5 yamt {
437 1.5 yamt int i;
438 1.5 yamt
439 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
440 1.5 yamt /* nothing */
441 1.5 yamt }
442 1.5 yamt return ORDER2SIZE(i);
443 1.5 yamt }
444 1.5 yamt
445 1.5 yamt static void *
446 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
447 1.5 yamt {
448 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
449 1.5 yamt vmem_t *vm = qc->qc_vmem;
450 1.5 yamt
451 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
452 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
453 1.5 yamt }
454 1.5 yamt
455 1.5 yamt static void
456 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
457 1.5 yamt {
458 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
459 1.5 yamt vmem_t *vm = qc->qc_vmem;
460 1.5 yamt
461 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
462 1.5 yamt }
463 1.5 yamt
464 1.5 yamt static void
465 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
466 1.5 yamt {
467 1.22 yamt qcache_t *prevqc;
468 1.5 yamt struct pool_allocator *pa;
469 1.5 yamt int qcache_idx_max;
470 1.5 yamt int i;
471 1.5 yamt
472 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
473 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
474 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
475 1.5 yamt }
476 1.5 yamt vm->vm_qcache_max = qcache_max;
477 1.5 yamt pa = &vm->vm_qcache_allocator;
478 1.5 yamt memset(pa, 0, sizeof(*pa));
479 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
480 1.5 yamt pa->pa_free = qc_poolpage_free;
481 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
482 1.5 yamt
483 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
484 1.22 yamt prevqc = NULL;
485 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
486 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
487 1.5 yamt size_t size = i << vm->vm_quantum_shift;
488 1.5 yamt
489 1.5 yamt qc->qc_vmem = vm;
490 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
491 1.5 yamt vm->vm_name, size);
492 1.35 ad qc->qc_cache = pool_cache_init(size,
493 1.35 ad ORDER2SIZE(vm->vm_quantum_shift), 0,
494 1.35 ad PR_NOALIGN | PR_NOTOUCH /* XXX */,
495 1.35 ad qc->qc_name, pa, ipl, NULL, NULL, NULL);
496 1.35 ad KASSERT(qc->qc_cache != NULL); /* XXX */
497 1.22 yamt if (prevqc != NULL &&
498 1.35 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
499 1.35 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
500 1.35 ad pool_cache_destroy(qc->qc_cache);
501 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
502 1.27 ad continue;
503 1.22 yamt }
504 1.35 ad qc->qc_cache->pc_pool.pr_qcache = qc;
505 1.22 yamt vm->vm_qcache[i - 1] = qc;
506 1.22 yamt prevqc = qc;
507 1.5 yamt }
508 1.5 yamt }
509 1.6 yamt
510 1.23 yamt static void
511 1.23 yamt qc_destroy(vmem_t *vm)
512 1.23 yamt {
513 1.23 yamt const qcache_t *prevqc;
514 1.23 yamt int i;
515 1.23 yamt int qcache_idx_max;
516 1.23 yamt
517 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
518 1.23 yamt prevqc = NULL;
519 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
520 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
521 1.23 yamt
522 1.23 yamt if (prevqc == qc) {
523 1.23 yamt continue;
524 1.23 yamt }
525 1.35 ad pool_cache_destroy(qc->qc_cache);
526 1.23 yamt prevqc = qc;
527 1.23 yamt }
528 1.23 yamt }
529 1.23 yamt
530 1.25 thorpej static bool
531 1.6 yamt qc_reap(vmem_t *vm)
532 1.6 yamt {
533 1.22 yamt const qcache_t *prevqc;
534 1.6 yamt int i;
535 1.6 yamt int qcache_idx_max;
536 1.26 thorpej bool didsomething = false;
537 1.6 yamt
538 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
539 1.22 yamt prevqc = NULL;
540 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
541 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
542 1.6 yamt
543 1.22 yamt if (prevqc == qc) {
544 1.22 yamt continue;
545 1.22 yamt }
546 1.35 ad if (pool_cache_reclaim(qc->qc_cache) != 0) {
547 1.26 thorpej didsomething = true;
548 1.6 yamt }
549 1.22 yamt prevqc = qc;
550 1.6 yamt }
551 1.6 yamt
552 1.6 yamt return didsomething;
553 1.6 yamt }
554 1.5 yamt #endif /* defined(QCACHE) */
555 1.5 yamt
556 1.1 yamt #if defined(_KERNEL)
557 1.1 yamt static int
558 1.1 yamt vmem_init(void)
559 1.1 yamt {
560 1.1 yamt
561 1.30 yamt mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
562 1.35 ad pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
563 1.35 ad NULL, IPL_VM, NULL, NULL, NULL);
564 1.1 yamt return 0;
565 1.1 yamt }
566 1.1 yamt #endif /* defined(_KERNEL) */
567 1.1 yamt
568 1.1 yamt static vmem_addr_t
569 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
570 1.1 yamt int spanbttype)
571 1.1 yamt {
572 1.1 yamt bt_t *btspan;
573 1.1 yamt bt_t *btfree;
574 1.1 yamt
575 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
576 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
577 1.47 cegger KASSERT(spanbttype == BT_TYPE_SPAN || spanbttype == BT_TYPE_SPAN_STATIC);
578 1.1 yamt
579 1.1 yamt btspan = bt_alloc(vm, flags);
580 1.1 yamt if (btspan == NULL) {
581 1.1 yamt return VMEM_ADDR_NULL;
582 1.1 yamt }
583 1.1 yamt btfree = bt_alloc(vm, flags);
584 1.1 yamt if (btfree == NULL) {
585 1.1 yamt bt_free(vm, btspan);
586 1.1 yamt return VMEM_ADDR_NULL;
587 1.1 yamt }
588 1.1 yamt
589 1.1 yamt btspan->bt_type = spanbttype;
590 1.1 yamt btspan->bt_start = addr;
591 1.1 yamt btspan->bt_size = size;
592 1.1 yamt
593 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
594 1.1 yamt btfree->bt_start = addr;
595 1.1 yamt btfree->bt_size = size;
596 1.1 yamt
597 1.1 yamt VMEM_LOCK(vm);
598 1.1 yamt bt_insseg_tail(vm, btspan);
599 1.1 yamt bt_insseg(vm, btfree, btspan);
600 1.1 yamt bt_insfree(vm, btfree);
601 1.1 yamt VMEM_UNLOCK(vm);
602 1.1 yamt
603 1.1 yamt return addr;
604 1.1 yamt }
605 1.1 yamt
606 1.30 yamt static void
607 1.30 yamt vmem_destroy1(vmem_t *vm)
608 1.30 yamt {
609 1.30 yamt
610 1.30 yamt #if defined(QCACHE)
611 1.30 yamt qc_destroy(vm);
612 1.30 yamt #endif /* defined(QCACHE) */
613 1.30 yamt if (vm->vm_hashlist != NULL) {
614 1.30 yamt int i;
615 1.30 yamt
616 1.30 yamt for (i = 0; i < vm->vm_hashsize; i++) {
617 1.30 yamt bt_t *bt;
618 1.30 yamt
619 1.30 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
620 1.30 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
621 1.30 yamt bt_free(vm, bt);
622 1.30 yamt }
623 1.30 yamt }
624 1.30 yamt xfree(vm->vm_hashlist);
625 1.30 yamt }
626 1.31 ad VMEM_LOCK_DESTROY(vm);
627 1.30 yamt xfree(vm);
628 1.30 yamt }
629 1.30 yamt
630 1.1 yamt static int
631 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
632 1.1 yamt {
633 1.1 yamt vmem_addr_t addr;
634 1.1 yamt
635 1.1 yamt if (vm->vm_allocfn == NULL) {
636 1.1 yamt return EINVAL;
637 1.1 yamt }
638 1.1 yamt
639 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
640 1.1 yamt if (addr == VMEM_ADDR_NULL) {
641 1.1 yamt return ENOMEM;
642 1.1 yamt }
643 1.1 yamt
644 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
645 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
646 1.1 yamt return ENOMEM;
647 1.1 yamt }
648 1.1 yamt
649 1.1 yamt return 0;
650 1.1 yamt }
651 1.1 yamt
652 1.1 yamt static int
653 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
654 1.1 yamt {
655 1.1 yamt bt_t *bt;
656 1.1 yamt int i;
657 1.1 yamt struct vmem_hashlist *newhashlist;
658 1.1 yamt struct vmem_hashlist *oldhashlist;
659 1.1 yamt size_t oldhashsize;
660 1.1 yamt
661 1.1 yamt KASSERT(newhashsize > 0);
662 1.1 yamt
663 1.1 yamt newhashlist =
664 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
665 1.1 yamt if (newhashlist == NULL) {
666 1.1 yamt return ENOMEM;
667 1.1 yamt }
668 1.1 yamt for (i = 0; i < newhashsize; i++) {
669 1.1 yamt LIST_INIT(&newhashlist[i]);
670 1.1 yamt }
671 1.1 yamt
672 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
673 1.30 yamt xfree(newhashlist);
674 1.30 yamt return EBUSY;
675 1.30 yamt }
676 1.1 yamt oldhashlist = vm->vm_hashlist;
677 1.1 yamt oldhashsize = vm->vm_hashsize;
678 1.1 yamt vm->vm_hashlist = newhashlist;
679 1.1 yamt vm->vm_hashsize = newhashsize;
680 1.1 yamt if (oldhashlist == NULL) {
681 1.1 yamt VMEM_UNLOCK(vm);
682 1.1 yamt return 0;
683 1.1 yamt }
684 1.1 yamt for (i = 0; i < oldhashsize; i++) {
685 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
686 1.1 yamt bt_rembusy(vm, bt); /* XXX */
687 1.1 yamt bt_insbusy(vm, bt);
688 1.1 yamt }
689 1.1 yamt }
690 1.1 yamt VMEM_UNLOCK(vm);
691 1.1 yamt
692 1.1 yamt xfree(oldhashlist);
693 1.1 yamt
694 1.1 yamt return 0;
695 1.1 yamt }
696 1.1 yamt
697 1.10 yamt /*
698 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
699 1.10 yamt */
700 1.10 yamt
701 1.10 yamt static vmem_addr_t
702 1.10 yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
703 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
704 1.10 yamt {
705 1.10 yamt vmem_addr_t start;
706 1.10 yamt vmem_addr_t end;
707 1.10 yamt
708 1.10 yamt KASSERT(bt->bt_size >= size);
709 1.10 yamt
710 1.10 yamt /*
711 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
712 1.10 yamt * unsigned integer of the same size.
713 1.10 yamt */
714 1.10 yamt
715 1.10 yamt start = bt->bt_start;
716 1.10 yamt if (start < minaddr) {
717 1.10 yamt start = minaddr;
718 1.10 yamt }
719 1.10 yamt end = BT_END(bt);
720 1.10 yamt if (end > maxaddr - 1) {
721 1.10 yamt end = maxaddr - 1;
722 1.10 yamt }
723 1.10 yamt if (start >= end) {
724 1.10 yamt return VMEM_ADDR_NULL;
725 1.10 yamt }
726 1.19 yamt
727 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
728 1.10 yamt if (start < bt->bt_start) {
729 1.10 yamt start += align;
730 1.10 yamt }
731 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
732 1.10 yamt KASSERT(align < nocross);
733 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
734 1.10 yamt }
735 1.10 yamt if (start < end && end - start >= size) {
736 1.10 yamt KASSERT((start & (align - 1)) == phase);
737 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
738 1.10 yamt KASSERT(minaddr <= start);
739 1.10 yamt KASSERT(maxaddr == 0 || start + size <= maxaddr);
740 1.10 yamt KASSERT(bt->bt_start <= start);
741 1.10 yamt KASSERT(start + size <= BT_END(bt));
742 1.10 yamt return start;
743 1.10 yamt }
744 1.10 yamt return VMEM_ADDR_NULL;
745 1.10 yamt }
746 1.10 yamt
747 1.49 christos #if !defined(VMEM_DEBUG)
748 1.44 cegger #define vmem_check_sanity(vm) true
749 1.44 cegger #else
750 1.44 cegger
751 1.44 cegger static bool
752 1.48 cegger vmem_check_spanoverlap(const char *func, const vmem_t *vm,
753 1.48 cegger const bt_t *bt, const bt_t *bt2)
754 1.48 cegger {
755 1.48 cegger switch (bt->bt_type) {
756 1.48 cegger case BT_TYPE_BUSY:
757 1.48 cegger case BT_TYPE_FREE:
758 1.48 cegger if (BT_ISSPAN_P(bt2))
759 1.48 cegger return true;
760 1.48 cegger break;
761 1.48 cegger case BT_TYPE_SPAN:
762 1.48 cegger case BT_TYPE_SPAN_STATIC:
763 1.48 cegger if (bt2->bt_type == BT_TYPE_BUSY
764 1.48 cegger || bt2->bt_type == BT_TYPE_FREE)
765 1.48 cegger return true;
766 1.48 cegger break;
767 1.48 cegger }
768 1.48 cegger
769 1.48 cegger if (bt->bt_start > bt2->bt_start) {
770 1.48 cegger if (bt->bt_start >= BT_END(bt2))
771 1.48 cegger return true;
772 1.48 cegger
773 1.48 cegger printf("%s: overlapping VMEM '%s' span 0x%"
774 1.48 cegger PRIx64" - 0x%"PRIx64" %s\n",
775 1.48 cegger func, vm->vm_name,
776 1.48 cegger (uint64_t)bt->bt_start,
777 1.48 cegger (uint64_t)BT_END(bt),
778 1.48 cegger (bt->bt_type == BT_TYPE_BUSY) ?
779 1.48 cegger "allocated" :
780 1.48 cegger (bt->bt_type == BT_TYPE_FREE) ?
781 1.48 cegger "free" :
782 1.48 cegger (bt->bt_type == BT_TYPE_SPAN) ?
783 1.48 cegger "span" : "static span");
784 1.48 cegger printf("%s: overlapping VMEM '%s' span 0x%"
785 1.48 cegger PRIx64" - 0x%"PRIx64" %s\n",
786 1.48 cegger func, vm->vm_name,
787 1.48 cegger (uint64_t)bt2->bt_start,
788 1.48 cegger (uint64_t)BT_END(bt2),
789 1.48 cegger (bt2->bt_type == BT_TYPE_BUSY) ?
790 1.48 cegger "allocated" :
791 1.48 cegger (bt2->bt_type == BT_TYPE_FREE) ?
792 1.48 cegger "free" :
793 1.48 cegger (bt2->bt_type == BT_TYPE_SPAN) ?
794 1.48 cegger "span" : "static span");
795 1.48 cegger return false;
796 1.48 cegger }
797 1.48 cegger if (BT_END(bt) > bt2->bt_start) {
798 1.48 cegger printf("%s: overlapping VMEM '%s' span 0x%"
799 1.48 cegger PRIx64" - 0x%"PRIx64" %s\n",
800 1.48 cegger func, vm->vm_name,
801 1.48 cegger (uint64_t)bt->bt_start,
802 1.48 cegger (uint64_t)BT_END(bt),
803 1.48 cegger (bt->bt_type == BT_TYPE_BUSY) ?
804 1.48 cegger "allocated" :
805 1.48 cegger (bt->bt_type == BT_TYPE_FREE) ?
806 1.48 cegger "free" :
807 1.48 cegger (bt->bt_type == BT_TYPE_SPAN) ?
808 1.48 cegger "span" : "static span");
809 1.48 cegger printf("%s: overlapping VMEM '%s' span 0x%"
810 1.48 cegger PRIx64" - 0x%"PRIx64" %s\n",
811 1.48 cegger func, vm->vm_name,
812 1.48 cegger (uint64_t)bt2->bt_start,
813 1.48 cegger (uint64_t)BT_END(bt2),
814 1.48 cegger (bt2->bt_type == BT_TYPE_BUSY) ?
815 1.48 cegger "allocated" :
816 1.48 cegger (bt2->bt_type == BT_TYPE_FREE) ?
817 1.48 cegger "free" :
818 1.48 cegger (bt2->bt_type == BT_TYPE_SPAN) ?
819 1.48 cegger "span" : "static span");
820 1.48 cegger return false;
821 1.48 cegger }
822 1.48 cegger
823 1.48 cegger return true;
824 1.48 cegger }
825 1.48 cegger
826 1.48 cegger static bool
827 1.44 cegger vmem_check_sanity(vmem_t *vm)
828 1.44 cegger {
829 1.44 cegger const bt_t *bt, *bt2;
830 1.44 cegger
831 1.44 cegger KASSERT(vm != NULL);
832 1.44 cegger
833 1.44 cegger CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
834 1.44 cegger if (bt->bt_start >= BT_END(bt)) {
835 1.44 cegger printf("%s: bogus VMEM '%s' span 0x%"PRIx64
836 1.44 cegger " - 0x%"PRIx64" %s\n",
837 1.44 cegger __func__, vm->vm_name,
838 1.45 cegger (uint64_t)bt->bt_start, (uint64_t)BT_END(bt),
839 1.44 cegger (bt->bt_type == BT_TYPE_BUSY) ?
840 1.47 cegger "allocated" :
841 1.47 cegger (bt->bt_type == BT_TYPE_FREE) ?
842 1.47 cegger "free" :
843 1.47 cegger (bt->bt_type == BT_TYPE_SPAN) ?
844 1.47 cegger "span" : "static span");
845 1.44 cegger return false;
846 1.44 cegger }
847 1.44 cegger
848 1.44 cegger CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
849 1.44 cegger if (bt2->bt_start >= BT_END(bt2)) {
850 1.44 cegger printf("%s: bogus VMEM '%s' span 0x%"PRIx64
851 1.44 cegger " - 0x%"PRIx64" %s\n",
852 1.44 cegger __func__, vm->vm_name,
853 1.45 cegger (uint64_t)bt2->bt_start,
854 1.45 cegger (uint64_t)BT_END(bt2),
855 1.44 cegger (bt2->bt_type == BT_TYPE_BUSY) ?
856 1.47 cegger "allocated" :
857 1.47 cegger (bt2->bt_type == BT_TYPE_FREE) ?
858 1.47 cegger "free" :
859 1.47 cegger (bt2->bt_type == BT_TYPE_SPAN) ?
860 1.47 cegger "span" : "static span");
861 1.44 cegger return false;
862 1.44 cegger }
863 1.44 cegger if (bt == bt2)
864 1.44 cegger continue;
865 1.44 cegger
866 1.48 cegger if (vmem_check_spanoverlap(__func__, vm, bt, bt2)
867 1.48 cegger == false)
868 1.44 cegger return false;
869 1.44 cegger }
870 1.44 cegger }
871 1.44 cegger
872 1.44 cegger return true;
873 1.44 cegger }
874 1.51 christos #endif /* VMEM_DEBUG */
875 1.44 cegger
876 1.1 yamt /* ---- vmem API */
877 1.1 yamt
878 1.1 yamt /*
879 1.1 yamt * vmem_create: create an arena.
880 1.1 yamt *
881 1.1 yamt * => must not be called from interrupt context.
882 1.1 yamt */
883 1.1 yamt
884 1.1 yamt vmem_t *
885 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
886 1.1 yamt vmem_size_t quantum,
887 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
888 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
889 1.31 ad vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
890 1.31 ad int ipl)
891 1.1 yamt {
892 1.1 yamt vmem_t *vm;
893 1.1 yamt int i;
894 1.1 yamt #if defined(_KERNEL)
895 1.1 yamt static ONCE_DECL(control);
896 1.1 yamt #endif /* defined(_KERNEL) */
897 1.1 yamt
898 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
899 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
900 1.1 yamt
901 1.1 yamt #if defined(_KERNEL)
902 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
903 1.1 yamt return NULL;
904 1.1 yamt }
905 1.1 yamt #endif /* defined(_KERNEL) */
906 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
907 1.1 yamt if (vm == NULL) {
908 1.1 yamt return NULL;
909 1.1 yamt }
910 1.1 yamt
911 1.31 ad VMEM_LOCK_INIT(vm, ipl);
912 1.1 yamt vm->vm_name = name;
913 1.1 yamt vm->vm_quantum_mask = quantum - 1;
914 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
915 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
916 1.1 yamt vm->vm_allocfn = allocfn;
917 1.1 yamt vm->vm_freefn = freefn;
918 1.1 yamt vm->vm_source = source;
919 1.1 yamt vm->vm_nbusytag = 0;
920 1.5 yamt #if defined(QCACHE)
921 1.31 ad qc_init(vm, qcache_max, ipl);
922 1.5 yamt #endif /* defined(QCACHE) */
923 1.1 yamt
924 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
925 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
926 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
927 1.1 yamt }
928 1.1 yamt vm->vm_hashlist = NULL;
929 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
930 1.30 yamt vmem_destroy1(vm);
931 1.1 yamt return NULL;
932 1.1 yamt }
933 1.1 yamt
934 1.1 yamt if (size != 0) {
935 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
936 1.30 yamt vmem_destroy1(vm);
937 1.1 yamt return NULL;
938 1.1 yamt }
939 1.1 yamt }
940 1.1 yamt
941 1.30 yamt #if defined(_KERNEL)
942 1.30 yamt mutex_enter(&vmem_list_lock);
943 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
944 1.30 yamt mutex_exit(&vmem_list_lock);
945 1.30 yamt #endif /* defined(_KERNEL) */
946 1.30 yamt
947 1.1 yamt return vm;
948 1.1 yamt }
949 1.1 yamt
950 1.1 yamt void
951 1.1 yamt vmem_destroy(vmem_t *vm)
952 1.1 yamt {
953 1.1 yamt
954 1.30 yamt #if defined(_KERNEL)
955 1.30 yamt mutex_enter(&vmem_list_lock);
956 1.30 yamt LIST_REMOVE(vm, vm_alllist);
957 1.30 yamt mutex_exit(&vmem_list_lock);
958 1.30 yamt #endif /* defined(_KERNEL) */
959 1.1 yamt
960 1.30 yamt vmem_destroy1(vm);
961 1.1 yamt }
962 1.1 yamt
963 1.1 yamt vmem_size_t
964 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
965 1.1 yamt {
966 1.1 yamt
967 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
968 1.1 yamt }
969 1.1 yamt
970 1.1 yamt /*
971 1.1 yamt * vmem_alloc:
972 1.1 yamt *
973 1.1 yamt * => caller must ensure appropriate spl,
974 1.1 yamt * if the arena can be accessed from interrupt context.
975 1.1 yamt */
976 1.1 yamt
977 1.1 yamt vmem_addr_t
978 1.38 yamt vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
979 1.1 yamt {
980 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
981 1.1 yamt
982 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
983 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
984 1.1 yamt
985 1.1 yamt KASSERT(size > 0);
986 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
987 1.3 yamt if ((flags & VM_SLEEP) != 0) {
988 1.42 yamt ASSERT_SLEEPABLE();
989 1.3 yamt }
990 1.1 yamt
991 1.5 yamt #if defined(QCACHE)
992 1.5 yamt if (size <= vm->vm_qcache_max) {
993 1.38 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
994 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
995 1.5 yamt
996 1.35 ad return (vmem_addr_t)pool_cache_get(qc->qc_cache,
997 1.5 yamt vmf_to_prf(flags));
998 1.5 yamt }
999 1.5 yamt #endif /* defined(QCACHE) */
1000 1.5 yamt
1001 1.38 yamt return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
1002 1.10 yamt }
1003 1.10 yamt
1004 1.10 yamt vmem_addr_t
1005 1.10 yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
1006 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
1007 1.10 yamt vm_flag_t flags)
1008 1.10 yamt {
1009 1.10 yamt struct vmem_freelist *list;
1010 1.10 yamt struct vmem_freelist *first;
1011 1.10 yamt struct vmem_freelist *end;
1012 1.10 yamt bt_t *bt;
1013 1.10 yamt bt_t *btnew;
1014 1.10 yamt bt_t *btnew2;
1015 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
1016 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
1017 1.10 yamt vmem_addr_t start;
1018 1.10 yamt
1019 1.10 yamt KASSERT(size0 > 0);
1020 1.10 yamt KASSERT(size > 0);
1021 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1022 1.10 yamt if ((flags & VM_SLEEP) != 0) {
1023 1.42 yamt ASSERT_SLEEPABLE();
1024 1.10 yamt }
1025 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
1026 1.10 yamt KASSERT((align & (align - 1)) == 0);
1027 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
1028 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
1029 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
1030 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
1031 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
1032 1.10 yamt KASSERT(maxaddr == 0 || minaddr < maxaddr);
1033 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1034 1.10 yamt
1035 1.10 yamt if (align == 0) {
1036 1.10 yamt align = vm->vm_quantum_mask + 1;
1037 1.10 yamt }
1038 1.1 yamt btnew = bt_alloc(vm, flags);
1039 1.1 yamt if (btnew == NULL) {
1040 1.1 yamt return VMEM_ADDR_NULL;
1041 1.1 yamt }
1042 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1043 1.10 yamt if (btnew2 == NULL) {
1044 1.10 yamt bt_free(vm, btnew);
1045 1.10 yamt return VMEM_ADDR_NULL;
1046 1.10 yamt }
1047 1.1 yamt
1048 1.1 yamt retry_strat:
1049 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
1050 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
1051 1.1 yamt retry:
1052 1.1 yamt bt = NULL;
1053 1.1 yamt VMEM_LOCK(vm);
1054 1.48 cegger KASSERT(vmem_check_sanity(vm));
1055 1.2 yamt if (strat == VM_INSTANTFIT) {
1056 1.2 yamt for (list = first; list < end; list++) {
1057 1.2 yamt bt = LIST_FIRST(list);
1058 1.2 yamt if (bt != NULL) {
1059 1.10 yamt start = vmem_fit(bt, size, align, phase,
1060 1.10 yamt nocross, minaddr, maxaddr);
1061 1.10 yamt if (start != VMEM_ADDR_NULL) {
1062 1.10 yamt goto gotit;
1063 1.10 yamt }
1064 1.2 yamt }
1065 1.2 yamt }
1066 1.2 yamt } else { /* VM_BESTFIT */
1067 1.2 yamt for (list = first; list < end; list++) {
1068 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
1069 1.2 yamt if (bt->bt_size >= size) {
1070 1.10 yamt start = vmem_fit(bt, size, align, phase,
1071 1.10 yamt nocross, minaddr, maxaddr);
1072 1.10 yamt if (start != VMEM_ADDR_NULL) {
1073 1.10 yamt goto gotit;
1074 1.10 yamt }
1075 1.2 yamt }
1076 1.1 yamt }
1077 1.1 yamt }
1078 1.1 yamt }
1079 1.2 yamt VMEM_UNLOCK(vm);
1080 1.1 yamt #if 1
1081 1.2 yamt if (strat == VM_INSTANTFIT) {
1082 1.2 yamt strat = VM_BESTFIT;
1083 1.2 yamt goto retry_strat;
1084 1.2 yamt }
1085 1.1 yamt #endif
1086 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
1087 1.10 yamt nocross != 0 || minaddr != 0 || maxaddr != 0) {
1088 1.10 yamt
1089 1.10 yamt /*
1090 1.10 yamt * XXX should try to import a region large enough to
1091 1.10 yamt * satisfy restrictions?
1092 1.10 yamt */
1093 1.10 yamt
1094 1.20 yamt goto fail;
1095 1.10 yamt }
1096 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
1097 1.2 yamt goto retry;
1098 1.1 yamt }
1099 1.2 yamt /* XXX */
1100 1.20 yamt fail:
1101 1.20 yamt bt_free(vm, btnew);
1102 1.20 yamt bt_free(vm, btnew2);
1103 1.2 yamt return VMEM_ADDR_NULL;
1104 1.2 yamt
1105 1.2 yamt gotit:
1106 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
1107 1.1 yamt KASSERT(bt->bt_size >= size);
1108 1.1 yamt bt_remfree(vm, bt);
1109 1.44 cegger KASSERT(vmem_check_sanity(vm));
1110 1.10 yamt if (bt->bt_start != start) {
1111 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
1112 1.10 yamt btnew2->bt_start = bt->bt_start;
1113 1.10 yamt btnew2->bt_size = start - bt->bt_start;
1114 1.10 yamt bt->bt_start = start;
1115 1.10 yamt bt->bt_size -= btnew2->bt_size;
1116 1.10 yamt bt_insfree(vm, btnew2);
1117 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1118 1.10 yamt btnew2 = NULL;
1119 1.44 cegger KASSERT(vmem_check_sanity(vm));
1120 1.10 yamt }
1121 1.10 yamt KASSERT(bt->bt_start == start);
1122 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1123 1.1 yamt /* split */
1124 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1125 1.1 yamt btnew->bt_start = bt->bt_start;
1126 1.1 yamt btnew->bt_size = size;
1127 1.1 yamt bt->bt_start = bt->bt_start + size;
1128 1.1 yamt bt->bt_size -= size;
1129 1.1 yamt bt_insfree(vm, bt);
1130 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1131 1.1 yamt bt_insbusy(vm, btnew);
1132 1.48 cegger KASSERT(vmem_check_sanity(vm));
1133 1.1 yamt VMEM_UNLOCK(vm);
1134 1.1 yamt } else {
1135 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1136 1.1 yamt bt_insbusy(vm, bt);
1137 1.48 cegger KASSERT(vmem_check_sanity(vm));
1138 1.1 yamt VMEM_UNLOCK(vm);
1139 1.1 yamt bt_free(vm, btnew);
1140 1.1 yamt btnew = bt;
1141 1.1 yamt }
1142 1.10 yamt if (btnew2 != NULL) {
1143 1.10 yamt bt_free(vm, btnew2);
1144 1.10 yamt }
1145 1.1 yamt KASSERT(btnew->bt_size >= size);
1146 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1147 1.1 yamt
1148 1.44 cegger KASSERT(vmem_check_sanity(vm));
1149 1.1 yamt return btnew->bt_start;
1150 1.1 yamt }
1151 1.1 yamt
1152 1.1 yamt /*
1153 1.1 yamt * vmem_free:
1154 1.1 yamt *
1155 1.1 yamt * => caller must ensure appropriate spl,
1156 1.1 yamt * if the arena can be accessed from interrupt context.
1157 1.1 yamt */
1158 1.1 yamt
1159 1.1 yamt void
1160 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1161 1.1 yamt {
1162 1.1 yamt
1163 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
1164 1.1 yamt KASSERT(size > 0);
1165 1.1 yamt
1166 1.5 yamt #if defined(QCACHE)
1167 1.5 yamt if (size <= vm->vm_qcache_max) {
1168 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1169 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1170 1.5 yamt
1171 1.35 ad return pool_cache_put(qc->qc_cache, (void *)addr);
1172 1.5 yamt }
1173 1.5 yamt #endif /* defined(QCACHE) */
1174 1.5 yamt
1175 1.10 yamt vmem_xfree(vm, addr, size);
1176 1.10 yamt }
1177 1.10 yamt
1178 1.10 yamt void
1179 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1180 1.10 yamt {
1181 1.10 yamt bt_t *bt;
1182 1.10 yamt bt_t *t;
1183 1.10 yamt
1184 1.10 yamt KASSERT(addr != VMEM_ADDR_NULL);
1185 1.10 yamt KASSERT(size > 0);
1186 1.10 yamt
1187 1.1 yamt VMEM_LOCK(vm);
1188 1.1 yamt
1189 1.1 yamt bt = bt_lookupbusy(vm, addr);
1190 1.1 yamt KASSERT(bt != NULL);
1191 1.1 yamt KASSERT(bt->bt_start == addr);
1192 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1193 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1194 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1195 1.1 yamt bt_rembusy(vm, bt);
1196 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1197 1.1 yamt
1198 1.1 yamt /* coalesce */
1199 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1200 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1201 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
1202 1.1 yamt bt_remfree(vm, t);
1203 1.1 yamt bt_remseg(vm, t);
1204 1.1 yamt bt->bt_size += t->bt_size;
1205 1.1 yamt bt_free(vm, t);
1206 1.1 yamt }
1207 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1208 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1209 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
1210 1.1 yamt bt_remfree(vm, t);
1211 1.1 yamt bt_remseg(vm, t);
1212 1.1 yamt bt->bt_size += t->bt_size;
1213 1.1 yamt bt->bt_start = t->bt_start;
1214 1.1 yamt bt_free(vm, t);
1215 1.1 yamt }
1216 1.1 yamt
1217 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1218 1.1 yamt KASSERT(t != NULL);
1219 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1220 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1221 1.1 yamt t->bt_size == bt->bt_size) {
1222 1.1 yamt vmem_addr_t spanaddr;
1223 1.1 yamt vmem_size_t spansize;
1224 1.1 yamt
1225 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1226 1.1 yamt spanaddr = bt->bt_start;
1227 1.1 yamt spansize = bt->bt_size;
1228 1.1 yamt bt_remseg(vm, bt);
1229 1.1 yamt bt_free(vm, bt);
1230 1.1 yamt bt_remseg(vm, t);
1231 1.1 yamt bt_free(vm, t);
1232 1.1 yamt VMEM_UNLOCK(vm);
1233 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1234 1.1 yamt } else {
1235 1.1 yamt bt_insfree(vm, bt);
1236 1.1 yamt VMEM_UNLOCK(vm);
1237 1.1 yamt }
1238 1.1 yamt }
1239 1.1 yamt
1240 1.1 yamt /*
1241 1.1 yamt * vmem_add:
1242 1.1 yamt *
1243 1.1 yamt * => caller must ensure appropriate spl,
1244 1.1 yamt * if the arena can be accessed from interrupt context.
1245 1.1 yamt */
1246 1.1 yamt
1247 1.1 yamt vmem_addr_t
1248 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1249 1.1 yamt {
1250 1.1 yamt
1251 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1252 1.1 yamt }
1253 1.1 yamt
1254 1.6 yamt /*
1255 1.6 yamt * vmem_reap: reap unused resources.
1256 1.6 yamt *
1257 1.26 thorpej * => return true if we successfully reaped something.
1258 1.6 yamt */
1259 1.6 yamt
1260 1.25 thorpej bool
1261 1.6 yamt vmem_reap(vmem_t *vm)
1262 1.6 yamt {
1263 1.26 thorpej bool didsomething = false;
1264 1.6 yamt
1265 1.6 yamt #if defined(QCACHE)
1266 1.6 yamt didsomething = qc_reap(vm);
1267 1.6 yamt #endif /* defined(QCACHE) */
1268 1.6 yamt return didsomething;
1269 1.6 yamt }
1270 1.6 yamt
1271 1.30 yamt /* ---- rehash */
1272 1.30 yamt
1273 1.30 yamt #if defined(_KERNEL)
1274 1.30 yamt static struct callout vmem_rehash_ch;
1275 1.30 yamt static int vmem_rehash_interval;
1276 1.30 yamt static struct workqueue *vmem_rehash_wq;
1277 1.30 yamt static struct work vmem_rehash_wk;
1278 1.30 yamt
1279 1.30 yamt static void
1280 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1281 1.30 yamt {
1282 1.30 yamt vmem_t *vm;
1283 1.30 yamt
1284 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1285 1.30 yamt mutex_enter(&vmem_list_lock);
1286 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1287 1.30 yamt size_t desired;
1288 1.30 yamt size_t current;
1289 1.30 yamt
1290 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
1291 1.30 yamt continue;
1292 1.30 yamt }
1293 1.30 yamt desired = vm->vm_nbusytag;
1294 1.30 yamt current = vm->vm_hashsize;
1295 1.30 yamt VMEM_UNLOCK(vm);
1296 1.30 yamt
1297 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1298 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1299 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1300 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1301 1.30 yamt }
1302 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1303 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1304 1.30 yamt }
1305 1.30 yamt }
1306 1.30 yamt mutex_exit(&vmem_list_lock);
1307 1.30 yamt
1308 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1309 1.30 yamt }
1310 1.30 yamt
1311 1.30 yamt static void
1312 1.30 yamt vmem_rehash_all_kick(void *dummy)
1313 1.30 yamt {
1314 1.30 yamt
1315 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1316 1.30 yamt }
1317 1.30 yamt
1318 1.30 yamt void
1319 1.30 yamt vmem_rehash_start(void)
1320 1.30 yamt {
1321 1.30 yamt int error;
1322 1.30 yamt
1323 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1324 1.41 ad vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1325 1.30 yamt if (error) {
1326 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1327 1.30 yamt }
1328 1.41 ad callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1329 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1330 1.30 yamt
1331 1.30 yamt vmem_rehash_interval = hz * 10;
1332 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1333 1.30 yamt }
1334 1.30 yamt #endif /* defined(_KERNEL) */
1335 1.30 yamt
1336 1.1 yamt /* ---- debug */
1337 1.1 yamt
1338 1.37 yamt #if defined(DDB)
1339 1.37 yamt static bt_t *
1340 1.37 yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1341 1.37 yamt {
1342 1.39 yamt bt_t *bt;
1343 1.37 yamt
1344 1.39 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1345 1.39 yamt if (BT_ISSPAN_P(bt)) {
1346 1.39 yamt continue;
1347 1.39 yamt }
1348 1.39 yamt if (bt->bt_start <= addr && addr < BT_END(bt)) {
1349 1.39 yamt return bt;
1350 1.37 yamt }
1351 1.37 yamt }
1352 1.37 yamt
1353 1.37 yamt return NULL;
1354 1.37 yamt }
1355 1.37 yamt
1356 1.37 yamt void
1357 1.37 yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1358 1.37 yamt {
1359 1.37 yamt vmem_t *vm;
1360 1.37 yamt
1361 1.37 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1362 1.37 yamt bt_t *bt;
1363 1.37 yamt
1364 1.37 yamt bt = vmem_whatis_lookup(vm, addr);
1365 1.37 yamt if (bt == NULL) {
1366 1.37 yamt continue;
1367 1.37 yamt }
1368 1.39 yamt (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1369 1.37 yamt (void *)addr, (void *)bt->bt_start,
1370 1.39 yamt (size_t)(addr - bt->bt_start), vm->vm_name,
1371 1.39 yamt (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1372 1.37 yamt }
1373 1.37 yamt }
1374 1.43 cegger
1375 1.43 cegger static void
1376 1.43 cegger vmem_showall(void (*pr)(const char *, ...))
1377 1.43 cegger {
1378 1.43 cegger vmem_t *vm;
1379 1.43 cegger
1380 1.43 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1381 1.43 cegger (*pr)("VMEM '%s' at %p\n", vm->vm_name, vm);
1382 1.43 cegger if (vm->vm_source)
1383 1.43 cegger (*pr)(" VMEM backend '%s' at %p\n",
1384 1.43 cegger vm->vm_source->vm_name, vm->vm_source);
1385 1.43 cegger }
1386 1.43 cegger }
1387 1.43 cegger
1388 1.43 cegger static void
1389 1.43 cegger vmem_show(uintptr_t addr, void (*pr)(const char *, ...))
1390 1.43 cegger {
1391 1.43 cegger vmem_t *vm;
1392 1.43 cegger bt_t *bt = NULL;
1393 1.43 cegger
1394 1.43 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1395 1.43 cegger if ((uintptr_t)vm == addr)
1396 1.43 cegger goto found;
1397 1.47 cegger }
1398 1.43 cegger
1399 1.47 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1400 1.43 cegger bt = vmem_whatis_lookup(vm, addr);
1401 1.43 cegger if (bt != NULL)
1402 1.43 cegger goto found;
1403 1.43 cegger }
1404 1.43 cegger
1405 1.47 cegger return;
1406 1.43 cegger found:
1407 1.43 cegger
1408 1.43 cegger (*pr)("VMEM '%s' spans\n", vm->vm_name);
1409 1.43 cegger CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1410 1.47 cegger (*pr)(" 0x%"PRIx64" - 0x%"PRIx64" %s\n",
1411 1.43 cegger bt->bt_start, BT_END(bt),
1412 1.47 cegger (bt->bt_type == BT_TYPE_BUSY) ?
1413 1.47 cegger "allocated" :
1414 1.47 cegger (bt->bt_type == BT_TYPE_FREE) ?
1415 1.47 cegger "free" :
1416 1.47 cegger (bt->bt_type == BT_TYPE_SPAN) ?
1417 1.47 cegger "span" : "static span");
1418 1.43 cegger }
1419 1.43 cegger }
1420 1.43 cegger
1421 1.43 cegger void
1422 1.43 cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1423 1.43 cegger {
1424 1.43 cegger if (modif[0] == 'a') {
1425 1.43 cegger vmem_showall(pr);
1426 1.43 cegger return;
1427 1.43 cegger }
1428 1.43 cegger
1429 1.43 cegger vmem_show(addr, pr);
1430 1.43 cegger }
1431 1.37 yamt #endif /* defined(DDB) */
1432 1.37 yamt
1433 1.1 yamt #if defined(VMEM_DEBUG)
1434 1.1 yamt
1435 1.1 yamt #if !defined(_KERNEL)
1436 1.1 yamt #include <stdio.h>
1437 1.1 yamt #endif /* !defined(_KERNEL) */
1438 1.1 yamt
1439 1.1 yamt void bt_dump(const bt_t *);
1440 1.1 yamt
1441 1.1 yamt void
1442 1.1 yamt bt_dump(const bt_t *bt)
1443 1.1 yamt {
1444 1.1 yamt
1445 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1446 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1447 1.1 yamt bt->bt_type);
1448 1.1 yamt }
1449 1.1 yamt
1450 1.1 yamt void
1451 1.1 yamt vmem_dump(const vmem_t *vm)
1452 1.1 yamt {
1453 1.1 yamt const bt_t *bt;
1454 1.1 yamt int i;
1455 1.1 yamt
1456 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
1457 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1458 1.1 yamt bt_dump(bt);
1459 1.1 yamt }
1460 1.1 yamt
1461 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1462 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1463 1.1 yamt
1464 1.1 yamt if (LIST_EMPTY(fl)) {
1465 1.1 yamt continue;
1466 1.1 yamt }
1467 1.1 yamt
1468 1.1 yamt printf("freelist[%d]\n", i);
1469 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1470 1.1 yamt bt_dump(bt);
1471 1.1 yamt if (bt->bt_size) {
1472 1.1 yamt }
1473 1.1 yamt }
1474 1.1 yamt }
1475 1.1 yamt }
1476 1.1 yamt
1477 1.1 yamt #if !defined(_KERNEL)
1478 1.1 yamt
1479 1.1 yamt int
1480 1.1 yamt main()
1481 1.1 yamt {
1482 1.1 yamt vmem_t *vm;
1483 1.1 yamt vmem_addr_t p;
1484 1.1 yamt struct reg {
1485 1.1 yamt vmem_addr_t p;
1486 1.1 yamt vmem_size_t sz;
1487 1.25 thorpej bool x;
1488 1.1 yamt } *reg = NULL;
1489 1.1 yamt int nreg = 0;
1490 1.1 yamt int nalloc = 0;
1491 1.1 yamt int nfree = 0;
1492 1.1 yamt vmem_size_t total = 0;
1493 1.1 yamt #if 1
1494 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1495 1.1 yamt #else
1496 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1497 1.1 yamt #endif
1498 1.1 yamt
1499 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1500 1.30 yamt NULL, NULL, NULL, 0, VM_SLEEP);
1501 1.1 yamt if (vm == NULL) {
1502 1.1 yamt printf("vmem_create\n");
1503 1.1 yamt exit(EXIT_FAILURE);
1504 1.1 yamt }
1505 1.1 yamt vmem_dump(vm);
1506 1.1 yamt
1507 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1508 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1509 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1510 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1511 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1512 1.1 yamt vmem_dump(vm);
1513 1.1 yamt for (;;) {
1514 1.1 yamt struct reg *r;
1515 1.10 yamt int t = rand() % 100;
1516 1.1 yamt
1517 1.10 yamt if (t > 45) {
1518 1.10 yamt /* alloc */
1519 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1520 1.25 thorpej bool x;
1521 1.10 yamt vmem_size_t align, phase, nocross;
1522 1.10 yamt vmem_addr_t minaddr, maxaddr;
1523 1.10 yamt
1524 1.10 yamt if (t > 70) {
1525 1.26 thorpej x = true;
1526 1.10 yamt /* XXX */
1527 1.10 yamt align = 1 << (rand() % 15);
1528 1.10 yamt phase = rand() % 65536;
1529 1.10 yamt nocross = 1 << (rand() % 15);
1530 1.10 yamt if (align <= phase) {
1531 1.10 yamt phase = 0;
1532 1.10 yamt }
1533 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1534 1.19 yamt nocross)) {
1535 1.10 yamt nocross = 0;
1536 1.10 yamt }
1537 1.10 yamt minaddr = rand() % 50000;
1538 1.10 yamt maxaddr = rand() % 70000;
1539 1.10 yamt if (minaddr > maxaddr) {
1540 1.10 yamt minaddr = 0;
1541 1.10 yamt maxaddr = 0;
1542 1.10 yamt }
1543 1.10 yamt printf("=== xalloc %" PRIu64
1544 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1545 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1546 1.10 yamt ", max=%" PRIu64 "\n",
1547 1.10 yamt (uint64_t)sz,
1548 1.10 yamt (uint64_t)align,
1549 1.10 yamt (uint64_t)phase,
1550 1.10 yamt (uint64_t)nocross,
1551 1.10 yamt (uint64_t)minaddr,
1552 1.10 yamt (uint64_t)maxaddr);
1553 1.10 yamt p = vmem_xalloc(vm, sz, align, phase, nocross,
1554 1.10 yamt minaddr, maxaddr, strat|VM_SLEEP);
1555 1.10 yamt } else {
1556 1.26 thorpej x = false;
1557 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1558 1.10 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1559 1.10 yamt }
1560 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1561 1.1 yamt vmem_dump(vm);
1562 1.1 yamt if (p == VMEM_ADDR_NULL) {
1563 1.10 yamt if (x) {
1564 1.10 yamt continue;
1565 1.10 yamt }
1566 1.1 yamt break;
1567 1.1 yamt }
1568 1.1 yamt nreg++;
1569 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1570 1.1 yamt r = ®[nreg - 1];
1571 1.1 yamt r->p = p;
1572 1.1 yamt r->sz = sz;
1573 1.10 yamt r->x = x;
1574 1.1 yamt total += sz;
1575 1.1 yamt nalloc++;
1576 1.1 yamt } else if (nreg != 0) {
1577 1.10 yamt /* free */
1578 1.1 yamt r = ®[rand() % nreg];
1579 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1580 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1581 1.10 yamt if (r->x) {
1582 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1583 1.10 yamt } else {
1584 1.10 yamt vmem_free(vm, r->p, r->sz);
1585 1.10 yamt }
1586 1.1 yamt total -= r->sz;
1587 1.1 yamt vmem_dump(vm);
1588 1.1 yamt *r = reg[nreg - 1];
1589 1.1 yamt nreg--;
1590 1.1 yamt nfree++;
1591 1.1 yamt }
1592 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1593 1.1 yamt }
1594 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1595 1.1 yamt (uint64_t)total, nalloc, nfree);
1596 1.1 yamt exit(EXIT_SUCCESS);
1597 1.1 yamt }
1598 1.1 yamt #endif /* !defined(_KERNEL) */
1599 1.1 yamt #endif /* defined(VMEM_DEBUG) */
1600