Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.54
      1  1.54      yamt /*	$NetBSD: subr_vmem.c,v 1.54 2009/01/25 13:08:56 yamt Exp $	*/
      2   1.1      yamt 
      3   1.1      yamt /*-
      4   1.1      yamt  * Copyright (c)2006 YAMAMOTO Takashi,
      5   1.1      yamt  * All rights reserved.
      6   1.1      yamt  *
      7   1.1      yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1      yamt  * modification, are permitted provided that the following conditions
      9   1.1      yamt  * are met:
     10   1.1      yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1      yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1      yamt  *
     16   1.1      yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1      yamt  * SUCH DAMAGE.
     27   1.1      yamt  */
     28   1.1      yamt 
     29   1.1      yamt /*
     30   1.1      yamt  * reference:
     31   1.1      yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32   1.1      yamt  *	to Many CPUs and Arbitrary Resources
     33   1.1      yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34  1.18      yamt  *
     35  1.18      yamt  * todo:
     36  1.18      yamt  * -	decide how to import segments for vmem_xalloc.
     37  1.18      yamt  * -	don't rely on malloc(9).
     38   1.1      yamt  */
     39   1.1      yamt 
     40   1.1      yamt #include <sys/cdefs.h>
     41  1.54      yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.54 2009/01/25 13:08:56 yamt Exp $");
     42   1.1      yamt 
     43   1.5      yamt #if defined(_KERNEL)
     44  1.37      yamt #include "opt_ddb.h"
     45   1.5      yamt #define	QCACHE
     46   1.5      yamt #endif /* defined(_KERNEL) */
     47   1.1      yamt 
     48   1.1      yamt #include <sys/param.h>
     49   1.1      yamt #include <sys/hash.h>
     50   1.1      yamt #include <sys/queue.h>
     51   1.1      yamt 
     52   1.1      yamt #if defined(_KERNEL)
     53   1.1      yamt #include <sys/systm.h>
     54  1.30      yamt #include <sys/kernel.h>	/* hz */
     55  1.30      yamt #include <sys/callout.h>
     56   1.1      yamt #include <sys/malloc.h>
     57   1.1      yamt #include <sys/once.h>
     58   1.1      yamt #include <sys/pool.h>
     59   1.1      yamt #include <sys/vmem.h>
     60  1.30      yamt #include <sys/workqueue.h>
     61   1.1      yamt #else /* defined(_KERNEL) */
     62   1.1      yamt #include "../sys/vmem.h"
     63   1.1      yamt #endif /* defined(_KERNEL) */
     64   1.1      yamt 
     65   1.1      yamt #if defined(_KERNEL)
     66  1.52        ad #define	LOCK_DECL(name)		\
     67  1.52        ad     kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
     68   1.1      yamt #else /* defined(_KERNEL) */
     69   1.1      yamt #include <errno.h>
     70   1.1      yamt #include <assert.h>
     71   1.1      yamt #include <stdlib.h>
     72   1.1      yamt 
     73   1.1      yamt #define	KASSERT(a)		assert(a)
     74  1.31        ad #define	LOCK_DECL(name)		/* nothing */
     75  1.31        ad #define	mutex_init(a, b, c)	/* nothing */
     76  1.31        ad #define	mutex_destroy(a)	/* nothing */
     77  1.31        ad #define	mutex_enter(a)		/* nothing */
     78  1.31        ad #define	mutex_exit(a)		/* nothing */
     79  1.31        ad #define	mutex_owned(a)		/* nothing */
     80  1.42      yamt #define	ASSERT_SLEEPABLE()	 /* nothing */
     81  1.31        ad #define	IPL_VM			0
     82   1.1      yamt #endif /* defined(_KERNEL) */
     83   1.1      yamt 
     84   1.1      yamt struct vmem;
     85   1.1      yamt struct vmem_btag;
     86   1.1      yamt 
     87   1.1      yamt #if defined(VMEM_DEBUG)
     88   1.1      yamt void vmem_dump(const vmem_t *);
     89   1.1      yamt #endif /* defined(VMEM_DEBUG) */
     90   1.1      yamt 
     91   1.4      yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     92  1.30      yamt 
     93  1.30      yamt #define	VMEM_HASHSIZE_MIN	1	/* XXX */
     94  1.54      yamt #define	VMEM_HASHSIZE_MAX	65536	/* XXX */
     95  1.53     pooka #define	VMEM_HASHSIZE_INIT	128
     96   1.1      yamt 
     97   1.1      yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
     98   1.1      yamt 
     99   1.1      yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
    100   1.1      yamt LIST_HEAD(vmem_freelist, vmem_btag);
    101   1.1      yamt LIST_HEAD(vmem_hashlist, vmem_btag);
    102   1.1      yamt 
    103   1.5      yamt #if defined(QCACHE)
    104   1.5      yamt #define	VMEM_QCACHE_IDX_MAX	32
    105   1.5      yamt 
    106   1.5      yamt #define	QC_NAME_MAX	16
    107   1.5      yamt 
    108   1.5      yamt struct qcache {
    109  1.35        ad 	pool_cache_t qc_cache;
    110   1.5      yamt 	vmem_t *qc_vmem;
    111   1.5      yamt 	char qc_name[QC_NAME_MAX];
    112   1.5      yamt };
    113   1.5      yamt typedef struct qcache qcache_t;
    114  1.35        ad #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
    115   1.5      yamt #endif /* defined(QCACHE) */
    116   1.5      yamt 
    117   1.1      yamt /* vmem arena */
    118   1.1      yamt struct vmem {
    119  1.31        ad 	LOCK_DECL(vm_lock);
    120   1.1      yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    121   1.1      yamt 	    vm_flag_t);
    122   1.1      yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    123   1.1      yamt 	vmem_t *vm_source;
    124   1.1      yamt 	struct vmem_seglist vm_seglist;
    125   1.1      yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    126   1.1      yamt 	size_t vm_hashsize;
    127   1.1      yamt 	size_t vm_nbusytag;
    128   1.1      yamt 	struct vmem_hashlist *vm_hashlist;
    129   1.1      yamt 	size_t vm_quantum_mask;
    130   1.1      yamt 	int vm_quantum_shift;
    131   1.1      yamt 	const char *vm_name;
    132  1.30      yamt 	LIST_ENTRY(vmem) vm_alllist;
    133   1.5      yamt 
    134   1.5      yamt #if defined(QCACHE)
    135   1.5      yamt 	/* quantum cache */
    136   1.5      yamt 	size_t vm_qcache_max;
    137   1.5      yamt 	struct pool_allocator vm_qcache_allocator;
    138  1.22      yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    139  1.22      yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    140   1.5      yamt #endif /* defined(QCACHE) */
    141   1.1      yamt };
    142   1.1      yamt 
    143  1.31        ad #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
    144  1.31        ad #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
    145  1.31        ad #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
    146  1.36        ad #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
    147  1.31        ad #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
    148  1.31        ad #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
    149   1.1      yamt 
    150   1.1      yamt /* boundary tag */
    151   1.1      yamt struct vmem_btag {
    152   1.1      yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    153   1.1      yamt 	union {
    154   1.1      yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    155   1.1      yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    156   1.1      yamt 	} bt_u;
    157   1.1      yamt #define	bt_hashlist	bt_u.u_hashlist
    158   1.1      yamt #define	bt_freelist	bt_u.u_freelist
    159   1.1      yamt 	vmem_addr_t bt_start;
    160   1.1      yamt 	vmem_size_t bt_size;
    161   1.1      yamt 	int bt_type;
    162   1.1      yamt };
    163   1.1      yamt 
    164   1.1      yamt #define	BT_TYPE_SPAN		1
    165   1.1      yamt #define	BT_TYPE_SPAN_STATIC	2
    166   1.1      yamt #define	BT_TYPE_FREE		3
    167   1.1      yamt #define	BT_TYPE_BUSY		4
    168   1.1      yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    169   1.1      yamt 
    170   1.1      yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    171   1.1      yamt 
    172   1.1      yamt typedef struct vmem_btag bt_t;
    173   1.1      yamt 
    174   1.1      yamt /* ---- misc */
    175   1.1      yamt 
    176  1.19      yamt #define	VMEM_ALIGNUP(addr, align) \
    177  1.19      yamt 	(-(-(addr) & -(align)))
    178  1.19      yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    179  1.19      yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    180  1.19      yamt 
    181   1.4      yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    182   1.4      yamt 
    183   1.1      yamt static int
    184   1.1      yamt calc_order(vmem_size_t size)
    185   1.1      yamt {
    186   1.4      yamt 	vmem_size_t target;
    187   1.1      yamt 	int i;
    188   1.1      yamt 
    189   1.1      yamt 	KASSERT(size != 0);
    190   1.1      yamt 
    191   1.1      yamt 	i = 0;
    192   1.4      yamt 	target = size >> 1;
    193   1.4      yamt 	while (ORDER2SIZE(i) <= target) {
    194   1.1      yamt 		i++;
    195   1.1      yamt 	}
    196   1.1      yamt 
    197   1.4      yamt 	KASSERT(ORDER2SIZE(i) <= size);
    198   1.4      yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    199   1.1      yamt 
    200   1.1      yamt 	return i;
    201   1.1      yamt }
    202   1.1      yamt 
    203   1.1      yamt #if defined(_KERNEL)
    204   1.1      yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    205   1.1      yamt #endif /* defined(_KERNEL) */
    206   1.1      yamt 
    207   1.1      yamt static void *
    208   1.1      yamt xmalloc(size_t sz, vm_flag_t flags)
    209   1.1      yamt {
    210   1.1      yamt 
    211   1.1      yamt #if defined(_KERNEL)
    212   1.1      yamt 	return malloc(sz, M_VMEM,
    213   1.1      yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    214   1.1      yamt #else /* defined(_KERNEL) */
    215   1.1      yamt 	return malloc(sz);
    216   1.1      yamt #endif /* defined(_KERNEL) */
    217   1.1      yamt }
    218   1.1      yamt 
    219   1.1      yamt static void
    220   1.1      yamt xfree(void *p)
    221   1.1      yamt {
    222   1.1      yamt 
    223   1.1      yamt #if defined(_KERNEL)
    224   1.1      yamt 	return free(p, M_VMEM);
    225   1.1      yamt #else /* defined(_KERNEL) */
    226   1.1      yamt 	return free(p);
    227   1.1      yamt #endif /* defined(_KERNEL) */
    228   1.1      yamt }
    229   1.1      yamt 
    230   1.1      yamt /* ---- boundary tag */
    231   1.1      yamt 
    232   1.1      yamt #if defined(_KERNEL)
    233  1.35        ad static struct pool_cache bt_cache;
    234   1.1      yamt #endif /* defined(_KERNEL) */
    235   1.1      yamt 
    236   1.1      yamt static bt_t *
    237  1.17      yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    238   1.1      yamt {
    239   1.1      yamt 	bt_t *bt;
    240   1.1      yamt 
    241   1.1      yamt #if defined(_KERNEL)
    242  1.35        ad 	bt = pool_cache_get(&bt_cache,
    243   1.1      yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    244   1.1      yamt #else /* defined(_KERNEL) */
    245   1.1      yamt 	bt = malloc(sizeof *bt);
    246   1.1      yamt #endif /* defined(_KERNEL) */
    247   1.1      yamt 
    248   1.1      yamt 	return bt;
    249   1.1      yamt }
    250   1.1      yamt 
    251   1.1      yamt static void
    252  1.17      yamt bt_free(vmem_t *vm, bt_t *bt)
    253   1.1      yamt {
    254   1.1      yamt 
    255   1.1      yamt #if defined(_KERNEL)
    256  1.35        ad 	pool_cache_put(&bt_cache, bt);
    257   1.1      yamt #else /* defined(_KERNEL) */
    258   1.1      yamt 	free(bt);
    259   1.1      yamt #endif /* defined(_KERNEL) */
    260   1.1      yamt }
    261   1.1      yamt 
    262   1.1      yamt /*
    263   1.1      yamt  * freelist[0] ... [1, 1]
    264   1.1      yamt  * freelist[1] ... [2, 3]
    265   1.1      yamt  * freelist[2] ... [4, 7]
    266   1.1      yamt  * freelist[3] ... [8, 15]
    267   1.1      yamt  *  :
    268   1.1      yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    269   1.1      yamt  *  :
    270   1.1      yamt  */
    271   1.1      yamt 
    272   1.1      yamt static struct vmem_freelist *
    273   1.1      yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    274   1.1      yamt {
    275   1.1      yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    276   1.1      yamt 	int idx;
    277   1.1      yamt 
    278   1.1      yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    279   1.1      yamt 	KASSERT(size != 0);
    280   1.1      yamt 
    281   1.1      yamt 	idx = calc_order(qsize);
    282   1.1      yamt 	KASSERT(idx >= 0);
    283   1.1      yamt 	KASSERT(idx < VMEM_MAXORDER);
    284   1.1      yamt 
    285   1.1      yamt 	return &vm->vm_freelist[idx];
    286   1.1      yamt }
    287   1.1      yamt 
    288   1.1      yamt static struct vmem_freelist *
    289   1.1      yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    290   1.1      yamt {
    291   1.1      yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    292   1.1      yamt 	int idx;
    293   1.1      yamt 
    294   1.1      yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    295   1.1      yamt 	KASSERT(size != 0);
    296   1.1      yamt 
    297   1.1      yamt 	idx = calc_order(qsize);
    298   1.4      yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    299   1.1      yamt 		idx++;
    300   1.1      yamt 		/* check too large request? */
    301   1.1      yamt 	}
    302   1.1      yamt 	KASSERT(idx >= 0);
    303   1.1      yamt 	KASSERT(idx < VMEM_MAXORDER);
    304   1.1      yamt 
    305   1.1      yamt 	return &vm->vm_freelist[idx];
    306   1.1      yamt }
    307   1.1      yamt 
    308   1.1      yamt /* ---- boundary tag hash */
    309   1.1      yamt 
    310   1.1      yamt static struct vmem_hashlist *
    311   1.1      yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    312   1.1      yamt {
    313   1.1      yamt 	struct vmem_hashlist *list;
    314   1.1      yamt 	unsigned int hash;
    315   1.1      yamt 
    316   1.1      yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    317   1.1      yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    318   1.1      yamt 
    319   1.1      yamt 	return list;
    320   1.1      yamt }
    321   1.1      yamt 
    322   1.1      yamt static bt_t *
    323   1.1      yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    324   1.1      yamt {
    325   1.1      yamt 	struct vmem_hashlist *list;
    326   1.1      yamt 	bt_t *bt;
    327   1.1      yamt 
    328   1.1      yamt 	list = bt_hashhead(vm, addr);
    329   1.1      yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    330   1.1      yamt 		if (bt->bt_start == addr) {
    331   1.1      yamt 			break;
    332   1.1      yamt 		}
    333   1.1      yamt 	}
    334   1.1      yamt 
    335   1.1      yamt 	return bt;
    336   1.1      yamt }
    337   1.1      yamt 
    338   1.1      yamt static void
    339   1.1      yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    340   1.1      yamt {
    341   1.1      yamt 
    342   1.1      yamt 	KASSERT(vm->vm_nbusytag > 0);
    343   1.1      yamt 	vm->vm_nbusytag--;
    344   1.1      yamt 	LIST_REMOVE(bt, bt_hashlist);
    345   1.1      yamt }
    346   1.1      yamt 
    347   1.1      yamt static void
    348   1.1      yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    349   1.1      yamt {
    350   1.1      yamt 	struct vmem_hashlist *list;
    351   1.1      yamt 
    352   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    353   1.1      yamt 
    354   1.1      yamt 	list = bt_hashhead(vm, bt->bt_start);
    355   1.1      yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    356   1.1      yamt 	vm->vm_nbusytag++;
    357   1.1      yamt }
    358   1.1      yamt 
    359   1.1      yamt /* ---- boundary tag list */
    360   1.1      yamt 
    361   1.1      yamt static void
    362   1.1      yamt bt_remseg(vmem_t *vm, bt_t *bt)
    363   1.1      yamt {
    364   1.1      yamt 
    365   1.1      yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    366   1.1      yamt }
    367   1.1      yamt 
    368   1.1      yamt static void
    369   1.1      yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    370   1.1      yamt {
    371   1.1      yamt 
    372   1.1      yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    373   1.1      yamt }
    374   1.1      yamt 
    375   1.1      yamt static void
    376   1.1      yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    377   1.1      yamt {
    378   1.1      yamt 
    379   1.1      yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    380   1.1      yamt }
    381   1.1      yamt 
    382   1.1      yamt static void
    383  1.17      yamt bt_remfree(vmem_t *vm, bt_t *bt)
    384   1.1      yamt {
    385   1.1      yamt 
    386   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    387   1.1      yamt 
    388   1.1      yamt 	LIST_REMOVE(bt, bt_freelist);
    389   1.1      yamt }
    390   1.1      yamt 
    391   1.1      yamt static void
    392   1.1      yamt bt_insfree(vmem_t *vm, bt_t *bt)
    393   1.1      yamt {
    394   1.1      yamt 	struct vmem_freelist *list;
    395   1.1      yamt 
    396   1.1      yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    397   1.1      yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    398   1.1      yamt }
    399   1.1      yamt 
    400   1.1      yamt /* ---- vmem internal functions */
    401   1.1      yamt 
    402  1.30      yamt #if defined(_KERNEL)
    403  1.30      yamt static kmutex_t vmem_list_lock;
    404  1.30      yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
    405  1.30      yamt #endif /* defined(_KERNEL) */
    406  1.30      yamt 
    407   1.5      yamt #if defined(QCACHE)
    408   1.5      yamt static inline vm_flag_t
    409   1.5      yamt prf_to_vmf(int prflags)
    410   1.5      yamt {
    411   1.5      yamt 	vm_flag_t vmflags;
    412   1.5      yamt 
    413   1.5      yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    414   1.5      yamt 	if ((prflags & PR_WAITOK) != 0) {
    415   1.5      yamt 		vmflags = VM_SLEEP;
    416   1.5      yamt 	} else {
    417   1.5      yamt 		vmflags = VM_NOSLEEP;
    418   1.5      yamt 	}
    419   1.5      yamt 	return vmflags;
    420   1.5      yamt }
    421   1.5      yamt 
    422   1.5      yamt static inline int
    423   1.5      yamt vmf_to_prf(vm_flag_t vmflags)
    424   1.5      yamt {
    425   1.5      yamt 	int prflags;
    426   1.5      yamt 
    427   1.7      yamt 	if ((vmflags & VM_SLEEP) != 0) {
    428   1.5      yamt 		prflags = PR_WAITOK;
    429   1.7      yamt 	} else {
    430   1.5      yamt 		prflags = PR_NOWAIT;
    431   1.5      yamt 	}
    432   1.5      yamt 	return prflags;
    433   1.5      yamt }
    434   1.5      yamt 
    435   1.5      yamt static size_t
    436   1.5      yamt qc_poolpage_size(size_t qcache_max)
    437   1.5      yamt {
    438   1.5      yamt 	int i;
    439   1.5      yamt 
    440   1.5      yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    441   1.5      yamt 		/* nothing */
    442   1.5      yamt 	}
    443   1.5      yamt 	return ORDER2SIZE(i);
    444   1.5      yamt }
    445   1.5      yamt 
    446   1.5      yamt static void *
    447   1.5      yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    448   1.5      yamt {
    449   1.5      yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    450   1.5      yamt 	vmem_t *vm = qc->qc_vmem;
    451   1.5      yamt 
    452   1.5      yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    453   1.5      yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    454   1.5      yamt }
    455   1.5      yamt 
    456   1.5      yamt static void
    457   1.5      yamt qc_poolpage_free(struct pool *pool, void *addr)
    458   1.5      yamt {
    459   1.5      yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    460   1.5      yamt 	vmem_t *vm = qc->qc_vmem;
    461   1.5      yamt 
    462   1.5      yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    463   1.5      yamt }
    464   1.5      yamt 
    465   1.5      yamt static void
    466  1.31        ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
    467   1.5      yamt {
    468  1.22      yamt 	qcache_t *prevqc;
    469   1.5      yamt 	struct pool_allocator *pa;
    470   1.5      yamt 	int qcache_idx_max;
    471   1.5      yamt 	int i;
    472   1.5      yamt 
    473   1.5      yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    474   1.5      yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    475   1.5      yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    476   1.5      yamt 	}
    477   1.5      yamt 	vm->vm_qcache_max = qcache_max;
    478   1.5      yamt 	pa = &vm->vm_qcache_allocator;
    479   1.5      yamt 	memset(pa, 0, sizeof(*pa));
    480   1.5      yamt 	pa->pa_alloc = qc_poolpage_alloc;
    481   1.5      yamt 	pa->pa_free = qc_poolpage_free;
    482   1.5      yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    483   1.5      yamt 
    484   1.5      yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    485  1.22      yamt 	prevqc = NULL;
    486  1.22      yamt 	for (i = qcache_idx_max; i > 0; i--) {
    487  1.22      yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    488   1.5      yamt 		size_t size = i << vm->vm_quantum_shift;
    489   1.5      yamt 
    490   1.5      yamt 		qc->qc_vmem = vm;
    491   1.8    martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    492   1.5      yamt 		    vm->vm_name, size);
    493  1.35        ad 		qc->qc_cache = pool_cache_init(size,
    494  1.35        ad 		    ORDER2SIZE(vm->vm_quantum_shift), 0,
    495  1.35        ad 		    PR_NOALIGN | PR_NOTOUCH /* XXX */,
    496  1.35        ad 		    qc->qc_name, pa, ipl, NULL, NULL, NULL);
    497  1.35        ad 		KASSERT(qc->qc_cache != NULL);	/* XXX */
    498  1.22      yamt 		if (prevqc != NULL &&
    499  1.35        ad 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
    500  1.35        ad 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
    501  1.35        ad 			pool_cache_destroy(qc->qc_cache);
    502  1.22      yamt 			vm->vm_qcache[i - 1] = prevqc;
    503  1.27        ad 			continue;
    504  1.22      yamt 		}
    505  1.35        ad 		qc->qc_cache->pc_pool.pr_qcache = qc;
    506  1.22      yamt 		vm->vm_qcache[i - 1] = qc;
    507  1.22      yamt 		prevqc = qc;
    508   1.5      yamt 	}
    509   1.5      yamt }
    510   1.6      yamt 
    511  1.23      yamt static void
    512  1.23      yamt qc_destroy(vmem_t *vm)
    513  1.23      yamt {
    514  1.23      yamt 	const qcache_t *prevqc;
    515  1.23      yamt 	int i;
    516  1.23      yamt 	int qcache_idx_max;
    517  1.23      yamt 
    518  1.23      yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    519  1.23      yamt 	prevqc = NULL;
    520  1.24      yamt 	for (i = 0; i < qcache_idx_max; i++) {
    521  1.24      yamt 		qcache_t *qc = vm->vm_qcache[i];
    522  1.23      yamt 
    523  1.23      yamt 		if (prevqc == qc) {
    524  1.23      yamt 			continue;
    525  1.23      yamt 		}
    526  1.35        ad 		pool_cache_destroy(qc->qc_cache);
    527  1.23      yamt 		prevqc = qc;
    528  1.23      yamt 	}
    529  1.23      yamt }
    530  1.23      yamt 
    531  1.25   thorpej static bool
    532   1.6      yamt qc_reap(vmem_t *vm)
    533   1.6      yamt {
    534  1.22      yamt 	const qcache_t *prevqc;
    535   1.6      yamt 	int i;
    536   1.6      yamt 	int qcache_idx_max;
    537  1.26   thorpej 	bool didsomething = false;
    538   1.6      yamt 
    539   1.6      yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    540  1.22      yamt 	prevqc = NULL;
    541  1.24      yamt 	for (i = 0; i < qcache_idx_max; i++) {
    542  1.24      yamt 		qcache_t *qc = vm->vm_qcache[i];
    543   1.6      yamt 
    544  1.22      yamt 		if (prevqc == qc) {
    545  1.22      yamt 			continue;
    546  1.22      yamt 		}
    547  1.35        ad 		if (pool_cache_reclaim(qc->qc_cache) != 0) {
    548  1.26   thorpej 			didsomething = true;
    549   1.6      yamt 		}
    550  1.22      yamt 		prevqc = qc;
    551   1.6      yamt 	}
    552   1.6      yamt 
    553   1.6      yamt 	return didsomething;
    554   1.6      yamt }
    555   1.5      yamt #endif /* defined(QCACHE) */
    556   1.5      yamt 
    557   1.1      yamt #if defined(_KERNEL)
    558   1.1      yamt static int
    559   1.1      yamt vmem_init(void)
    560   1.1      yamt {
    561   1.1      yamt 
    562  1.30      yamt 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
    563  1.35        ad 	pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
    564  1.35        ad 	    NULL, IPL_VM, NULL, NULL, NULL);
    565   1.1      yamt 	return 0;
    566   1.1      yamt }
    567   1.1      yamt #endif /* defined(_KERNEL) */
    568   1.1      yamt 
    569   1.1      yamt static vmem_addr_t
    570   1.1      yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    571   1.1      yamt     int spanbttype)
    572   1.1      yamt {
    573   1.1      yamt 	bt_t *btspan;
    574   1.1      yamt 	bt_t *btfree;
    575   1.1      yamt 
    576   1.1      yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    577   1.1      yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    578  1.47    cegger 	KASSERT(spanbttype == BT_TYPE_SPAN || spanbttype == BT_TYPE_SPAN_STATIC);
    579   1.1      yamt 
    580   1.1      yamt 	btspan = bt_alloc(vm, flags);
    581   1.1      yamt 	if (btspan == NULL) {
    582   1.1      yamt 		return VMEM_ADDR_NULL;
    583   1.1      yamt 	}
    584   1.1      yamt 	btfree = bt_alloc(vm, flags);
    585   1.1      yamt 	if (btfree == NULL) {
    586   1.1      yamt 		bt_free(vm, btspan);
    587   1.1      yamt 		return VMEM_ADDR_NULL;
    588   1.1      yamt 	}
    589   1.1      yamt 
    590   1.1      yamt 	btspan->bt_type = spanbttype;
    591   1.1      yamt 	btspan->bt_start = addr;
    592   1.1      yamt 	btspan->bt_size = size;
    593   1.1      yamt 
    594   1.1      yamt 	btfree->bt_type = BT_TYPE_FREE;
    595   1.1      yamt 	btfree->bt_start = addr;
    596   1.1      yamt 	btfree->bt_size = size;
    597   1.1      yamt 
    598   1.1      yamt 	VMEM_LOCK(vm);
    599   1.1      yamt 	bt_insseg_tail(vm, btspan);
    600   1.1      yamt 	bt_insseg(vm, btfree, btspan);
    601   1.1      yamt 	bt_insfree(vm, btfree);
    602   1.1      yamt 	VMEM_UNLOCK(vm);
    603   1.1      yamt 
    604   1.1      yamt 	return addr;
    605   1.1      yamt }
    606   1.1      yamt 
    607  1.30      yamt static void
    608  1.30      yamt vmem_destroy1(vmem_t *vm)
    609  1.30      yamt {
    610  1.30      yamt 
    611  1.30      yamt #if defined(QCACHE)
    612  1.30      yamt 	qc_destroy(vm);
    613  1.30      yamt #endif /* defined(QCACHE) */
    614  1.30      yamt 	if (vm->vm_hashlist != NULL) {
    615  1.30      yamt 		int i;
    616  1.30      yamt 
    617  1.30      yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    618  1.30      yamt 			bt_t *bt;
    619  1.30      yamt 
    620  1.30      yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    621  1.30      yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    622  1.30      yamt 				bt_free(vm, bt);
    623  1.30      yamt 			}
    624  1.30      yamt 		}
    625  1.30      yamt 		xfree(vm->vm_hashlist);
    626  1.30      yamt 	}
    627  1.31        ad 	VMEM_LOCK_DESTROY(vm);
    628  1.30      yamt 	xfree(vm);
    629  1.30      yamt }
    630  1.30      yamt 
    631   1.1      yamt static int
    632   1.1      yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    633   1.1      yamt {
    634   1.1      yamt 	vmem_addr_t addr;
    635   1.1      yamt 
    636   1.1      yamt 	if (vm->vm_allocfn == NULL) {
    637   1.1      yamt 		return EINVAL;
    638   1.1      yamt 	}
    639   1.1      yamt 
    640   1.1      yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    641   1.1      yamt 	if (addr == VMEM_ADDR_NULL) {
    642   1.1      yamt 		return ENOMEM;
    643   1.1      yamt 	}
    644   1.1      yamt 
    645   1.1      yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    646   1.1      yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    647   1.1      yamt 		return ENOMEM;
    648   1.1      yamt 	}
    649   1.1      yamt 
    650   1.1      yamt 	return 0;
    651   1.1      yamt }
    652   1.1      yamt 
    653   1.1      yamt static int
    654   1.1      yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    655   1.1      yamt {
    656   1.1      yamt 	bt_t *bt;
    657   1.1      yamt 	int i;
    658   1.1      yamt 	struct vmem_hashlist *newhashlist;
    659   1.1      yamt 	struct vmem_hashlist *oldhashlist;
    660   1.1      yamt 	size_t oldhashsize;
    661   1.1      yamt 
    662   1.1      yamt 	KASSERT(newhashsize > 0);
    663   1.1      yamt 
    664   1.1      yamt 	newhashlist =
    665   1.1      yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    666   1.1      yamt 	if (newhashlist == NULL) {
    667   1.1      yamt 		return ENOMEM;
    668   1.1      yamt 	}
    669   1.1      yamt 	for (i = 0; i < newhashsize; i++) {
    670   1.1      yamt 		LIST_INIT(&newhashlist[i]);
    671   1.1      yamt 	}
    672   1.1      yamt 
    673  1.30      yamt 	if (!VMEM_TRYLOCK(vm)) {
    674  1.30      yamt 		xfree(newhashlist);
    675  1.30      yamt 		return EBUSY;
    676  1.30      yamt 	}
    677   1.1      yamt 	oldhashlist = vm->vm_hashlist;
    678   1.1      yamt 	oldhashsize = vm->vm_hashsize;
    679   1.1      yamt 	vm->vm_hashlist = newhashlist;
    680   1.1      yamt 	vm->vm_hashsize = newhashsize;
    681   1.1      yamt 	if (oldhashlist == NULL) {
    682   1.1      yamt 		VMEM_UNLOCK(vm);
    683   1.1      yamt 		return 0;
    684   1.1      yamt 	}
    685   1.1      yamt 	for (i = 0; i < oldhashsize; i++) {
    686   1.1      yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    687   1.1      yamt 			bt_rembusy(vm, bt); /* XXX */
    688   1.1      yamt 			bt_insbusy(vm, bt);
    689   1.1      yamt 		}
    690   1.1      yamt 	}
    691   1.1      yamt 	VMEM_UNLOCK(vm);
    692   1.1      yamt 
    693   1.1      yamt 	xfree(oldhashlist);
    694   1.1      yamt 
    695   1.1      yamt 	return 0;
    696   1.1      yamt }
    697   1.1      yamt 
    698  1.10      yamt /*
    699  1.10      yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    700  1.10      yamt  */
    701  1.10      yamt 
    702  1.10      yamt static vmem_addr_t
    703  1.10      yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    704  1.10      yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    705  1.10      yamt {
    706  1.10      yamt 	vmem_addr_t start;
    707  1.10      yamt 	vmem_addr_t end;
    708  1.10      yamt 
    709  1.10      yamt 	KASSERT(bt->bt_size >= size);
    710  1.10      yamt 
    711  1.10      yamt 	/*
    712  1.10      yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    713  1.10      yamt 	 * unsigned integer of the same size.
    714  1.10      yamt 	 */
    715  1.10      yamt 
    716  1.10      yamt 	start = bt->bt_start;
    717  1.10      yamt 	if (start < minaddr) {
    718  1.10      yamt 		start = minaddr;
    719  1.10      yamt 	}
    720  1.10      yamt 	end = BT_END(bt);
    721  1.10      yamt 	if (end > maxaddr - 1) {
    722  1.10      yamt 		end = maxaddr - 1;
    723  1.10      yamt 	}
    724  1.10      yamt 	if (start >= end) {
    725  1.10      yamt 		return VMEM_ADDR_NULL;
    726  1.10      yamt 	}
    727  1.19      yamt 
    728  1.19      yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    729  1.10      yamt 	if (start < bt->bt_start) {
    730  1.10      yamt 		start += align;
    731  1.10      yamt 	}
    732  1.19      yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    733  1.10      yamt 		KASSERT(align < nocross);
    734  1.19      yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    735  1.10      yamt 	}
    736  1.10      yamt 	if (start < end && end - start >= size) {
    737  1.10      yamt 		KASSERT((start & (align - 1)) == phase);
    738  1.19      yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    739  1.10      yamt 		KASSERT(minaddr <= start);
    740  1.10      yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    741  1.10      yamt 		KASSERT(bt->bt_start <= start);
    742  1.10      yamt 		KASSERT(start + size <= BT_END(bt));
    743  1.10      yamt 		return start;
    744  1.10      yamt 	}
    745  1.10      yamt 	return VMEM_ADDR_NULL;
    746  1.10      yamt }
    747  1.10      yamt 
    748  1.49  christos #if !defined(VMEM_DEBUG)
    749  1.44    cegger #define vmem_check_sanity(vm)	true
    750  1.44    cegger #else
    751  1.44    cegger 
    752  1.44    cegger static bool
    753  1.48    cegger vmem_check_spanoverlap(const char *func, const vmem_t *vm,
    754  1.48    cegger 			const bt_t *bt, const bt_t *bt2)
    755  1.48    cegger {
    756  1.48    cegger 	switch (bt->bt_type) {
    757  1.48    cegger 	case BT_TYPE_BUSY:
    758  1.48    cegger 	case BT_TYPE_FREE:
    759  1.48    cegger 		if (BT_ISSPAN_P(bt2))
    760  1.48    cegger 			return true;
    761  1.48    cegger 		break;
    762  1.48    cegger 	case BT_TYPE_SPAN:
    763  1.48    cegger 	case BT_TYPE_SPAN_STATIC:
    764  1.48    cegger 		if (bt2->bt_type == BT_TYPE_BUSY
    765  1.48    cegger 		   || bt2->bt_type == BT_TYPE_FREE)
    766  1.48    cegger 			return true;
    767  1.48    cegger 		break;
    768  1.48    cegger 	}
    769  1.48    cegger 
    770  1.48    cegger 	if (bt->bt_start > bt2->bt_start) {
    771  1.48    cegger 		if (bt->bt_start >= BT_END(bt2))
    772  1.48    cegger 			return true;
    773  1.48    cegger 
    774  1.48    cegger 		printf("%s: overlapping VMEM '%s' span 0x%"
    775  1.48    cegger 			PRIx64" - 0x%"PRIx64" %s\n",
    776  1.48    cegger 			func, vm->vm_name,
    777  1.48    cegger 			(uint64_t)bt->bt_start,
    778  1.48    cegger 			(uint64_t)BT_END(bt),
    779  1.48    cegger 			(bt->bt_type == BT_TYPE_BUSY) ?
    780  1.48    cegger 			"allocated" :
    781  1.48    cegger 			(bt->bt_type == BT_TYPE_FREE) ?
    782  1.48    cegger 			"free" :
    783  1.48    cegger 			(bt->bt_type == BT_TYPE_SPAN) ?
    784  1.48    cegger 			"span" : "static span");
    785  1.48    cegger 		printf("%s: overlapping VMEM '%s' span 0x%"
    786  1.48    cegger 			PRIx64" - 0x%"PRIx64" %s\n",
    787  1.48    cegger 			func, vm->vm_name,
    788  1.48    cegger 			(uint64_t)bt2->bt_start,
    789  1.48    cegger 			(uint64_t)BT_END(bt2),
    790  1.48    cegger 			(bt2->bt_type == BT_TYPE_BUSY) ?
    791  1.48    cegger 			"allocated" :
    792  1.48    cegger 			(bt2->bt_type == BT_TYPE_FREE) ?
    793  1.48    cegger 			"free" :
    794  1.48    cegger 			(bt2->bt_type == BT_TYPE_SPAN) ?
    795  1.48    cegger 			"span" : "static span");
    796  1.48    cegger 		return false;
    797  1.48    cegger 	}
    798  1.48    cegger 	if (BT_END(bt) > bt2->bt_start) {
    799  1.48    cegger 		printf("%s: overlapping VMEM '%s' span 0x%"
    800  1.48    cegger 			PRIx64" - 0x%"PRIx64" %s\n",
    801  1.48    cegger 			func, vm->vm_name,
    802  1.48    cegger 			(uint64_t)bt->bt_start,
    803  1.48    cegger 			(uint64_t)BT_END(bt),
    804  1.48    cegger 			(bt->bt_type == BT_TYPE_BUSY) ?
    805  1.48    cegger 			"allocated" :
    806  1.48    cegger 			(bt->bt_type == BT_TYPE_FREE) ?
    807  1.48    cegger 			"free" :
    808  1.48    cegger 			(bt->bt_type == BT_TYPE_SPAN) ?
    809  1.48    cegger 			"span" : "static span");
    810  1.48    cegger 		printf("%s: overlapping VMEM '%s' span 0x%"
    811  1.48    cegger 			PRIx64" - 0x%"PRIx64" %s\n",
    812  1.48    cegger 			func, vm->vm_name,
    813  1.48    cegger 			(uint64_t)bt2->bt_start,
    814  1.48    cegger 			(uint64_t)BT_END(bt2),
    815  1.48    cegger 			(bt2->bt_type == BT_TYPE_BUSY) ?
    816  1.48    cegger 			"allocated" :
    817  1.48    cegger 			(bt2->bt_type == BT_TYPE_FREE) ?
    818  1.48    cegger 			"free" :
    819  1.48    cegger 			(bt2->bt_type == BT_TYPE_SPAN) ?
    820  1.48    cegger 			"span" : "static span");
    821  1.48    cegger 		return false;
    822  1.48    cegger 	}
    823  1.48    cegger 
    824  1.48    cegger 	return true;
    825  1.48    cegger }
    826  1.48    cegger 
    827  1.48    cegger static bool
    828  1.44    cegger vmem_check_sanity(vmem_t *vm)
    829  1.44    cegger {
    830  1.44    cegger 	const bt_t *bt, *bt2;
    831  1.44    cegger 
    832  1.44    cegger 	KASSERT(vm != NULL);
    833  1.44    cegger 
    834  1.44    cegger 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
    835  1.44    cegger 		if (bt->bt_start >= BT_END(bt)) {
    836  1.44    cegger 			printf("%s: bogus VMEM '%s' span 0x%"PRIx64
    837  1.44    cegger 				" - 0x%"PRIx64" %s\n",
    838  1.44    cegger 				__func__, vm->vm_name,
    839  1.45    cegger 				(uint64_t)bt->bt_start, (uint64_t)BT_END(bt),
    840  1.44    cegger 				(bt->bt_type == BT_TYPE_BUSY) ?
    841  1.47    cegger 				"allocated" :
    842  1.47    cegger 				(bt->bt_type == BT_TYPE_FREE) ?
    843  1.47    cegger 				"free" :
    844  1.47    cegger 				(bt->bt_type == BT_TYPE_SPAN) ?
    845  1.47    cegger 				"span" : "static span");
    846  1.44    cegger 			return false;
    847  1.44    cegger 		}
    848  1.44    cegger 
    849  1.44    cegger 		CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
    850  1.44    cegger 			if (bt2->bt_start >= BT_END(bt2)) {
    851  1.44    cegger 				printf("%s: bogus VMEM '%s' span 0x%"PRIx64
    852  1.44    cegger 					" - 0x%"PRIx64" %s\n",
    853  1.44    cegger 					__func__, vm->vm_name,
    854  1.45    cegger 					(uint64_t)bt2->bt_start,
    855  1.45    cegger 					(uint64_t)BT_END(bt2),
    856  1.44    cegger 					(bt2->bt_type == BT_TYPE_BUSY) ?
    857  1.47    cegger 					"allocated" :
    858  1.47    cegger 					(bt2->bt_type == BT_TYPE_FREE) ?
    859  1.47    cegger 					"free" :
    860  1.47    cegger 					(bt2->bt_type == BT_TYPE_SPAN) ?
    861  1.47    cegger 					"span" : "static span");
    862  1.44    cegger 				return false;
    863  1.44    cegger 			}
    864  1.44    cegger 			if (bt == bt2)
    865  1.44    cegger 				continue;
    866  1.44    cegger 
    867  1.48    cegger 			if (vmem_check_spanoverlap(__func__, vm, bt, bt2)
    868  1.48    cegger 				== false)
    869  1.44    cegger 				return false;
    870  1.44    cegger 		}
    871  1.44    cegger 	}
    872  1.44    cegger 
    873  1.44    cegger 	return true;
    874  1.44    cegger }
    875  1.51  christos #endif	/* VMEM_DEBUG */
    876  1.44    cegger 
    877   1.1      yamt /* ---- vmem API */
    878   1.1      yamt 
    879   1.1      yamt /*
    880   1.1      yamt  * vmem_create: create an arena.
    881   1.1      yamt  *
    882   1.1      yamt  * => must not be called from interrupt context.
    883   1.1      yamt  */
    884   1.1      yamt 
    885   1.1      yamt vmem_t *
    886   1.1      yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    887   1.1      yamt     vmem_size_t quantum,
    888   1.1      yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    889   1.1      yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    890  1.31        ad     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
    891  1.31        ad     int ipl)
    892   1.1      yamt {
    893   1.1      yamt 	vmem_t *vm;
    894   1.1      yamt 	int i;
    895   1.1      yamt #if defined(_KERNEL)
    896   1.1      yamt 	static ONCE_DECL(control);
    897   1.1      yamt #endif /* defined(_KERNEL) */
    898   1.1      yamt 
    899   1.1      yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    900   1.1      yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    901   1.1      yamt 
    902   1.1      yamt #if defined(_KERNEL)
    903   1.1      yamt 	if (RUN_ONCE(&control, vmem_init)) {
    904   1.1      yamt 		return NULL;
    905   1.1      yamt 	}
    906   1.1      yamt #endif /* defined(_KERNEL) */
    907   1.1      yamt 	vm = xmalloc(sizeof(*vm), flags);
    908   1.1      yamt 	if (vm == NULL) {
    909   1.1      yamt 		return NULL;
    910   1.1      yamt 	}
    911   1.1      yamt 
    912  1.31        ad 	VMEM_LOCK_INIT(vm, ipl);
    913   1.1      yamt 	vm->vm_name = name;
    914   1.1      yamt 	vm->vm_quantum_mask = quantum - 1;
    915   1.1      yamt 	vm->vm_quantum_shift = calc_order(quantum);
    916   1.4      yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    917   1.1      yamt 	vm->vm_allocfn = allocfn;
    918   1.1      yamt 	vm->vm_freefn = freefn;
    919   1.1      yamt 	vm->vm_source = source;
    920   1.1      yamt 	vm->vm_nbusytag = 0;
    921   1.5      yamt #if defined(QCACHE)
    922  1.31        ad 	qc_init(vm, qcache_max, ipl);
    923   1.5      yamt #endif /* defined(QCACHE) */
    924   1.1      yamt 
    925   1.1      yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    926   1.1      yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    927   1.1      yamt 		LIST_INIT(&vm->vm_freelist[i]);
    928   1.1      yamt 	}
    929   1.1      yamt 	vm->vm_hashlist = NULL;
    930   1.1      yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    931  1.30      yamt 		vmem_destroy1(vm);
    932   1.1      yamt 		return NULL;
    933   1.1      yamt 	}
    934   1.1      yamt 
    935   1.1      yamt 	if (size != 0) {
    936   1.1      yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    937  1.30      yamt 			vmem_destroy1(vm);
    938   1.1      yamt 			return NULL;
    939   1.1      yamt 		}
    940   1.1      yamt 	}
    941   1.1      yamt 
    942  1.30      yamt #if defined(_KERNEL)
    943  1.30      yamt 	mutex_enter(&vmem_list_lock);
    944  1.30      yamt 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
    945  1.30      yamt 	mutex_exit(&vmem_list_lock);
    946  1.30      yamt #endif /* defined(_KERNEL) */
    947  1.30      yamt 
    948   1.1      yamt 	return vm;
    949   1.1      yamt }
    950   1.1      yamt 
    951   1.1      yamt void
    952   1.1      yamt vmem_destroy(vmem_t *vm)
    953   1.1      yamt {
    954   1.1      yamt 
    955  1.30      yamt #if defined(_KERNEL)
    956  1.30      yamt 	mutex_enter(&vmem_list_lock);
    957  1.30      yamt 	LIST_REMOVE(vm, vm_alllist);
    958  1.30      yamt 	mutex_exit(&vmem_list_lock);
    959  1.30      yamt #endif /* defined(_KERNEL) */
    960   1.1      yamt 
    961  1.30      yamt 	vmem_destroy1(vm);
    962   1.1      yamt }
    963   1.1      yamt 
    964   1.1      yamt vmem_size_t
    965   1.1      yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    966   1.1      yamt {
    967   1.1      yamt 
    968   1.1      yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    969   1.1      yamt }
    970   1.1      yamt 
    971   1.1      yamt /*
    972   1.1      yamt  * vmem_alloc:
    973   1.1      yamt  *
    974   1.1      yamt  * => caller must ensure appropriate spl,
    975   1.1      yamt  *    if the arena can be accessed from interrupt context.
    976   1.1      yamt  */
    977   1.1      yamt 
    978   1.1      yamt vmem_addr_t
    979  1.38      yamt vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    980   1.1      yamt {
    981  1.12      yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    982   1.1      yamt 
    983   1.1      yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    984   1.1      yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    985   1.1      yamt 
    986   1.1      yamt 	KASSERT(size > 0);
    987   1.1      yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    988   1.3      yamt 	if ((flags & VM_SLEEP) != 0) {
    989  1.42      yamt 		ASSERT_SLEEPABLE();
    990   1.3      yamt 	}
    991   1.1      yamt 
    992   1.5      yamt #if defined(QCACHE)
    993   1.5      yamt 	if (size <= vm->vm_qcache_max) {
    994  1.38      yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
    995  1.22      yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    996   1.5      yamt 
    997  1.35        ad 		return (vmem_addr_t)pool_cache_get(qc->qc_cache,
    998   1.5      yamt 		    vmf_to_prf(flags));
    999   1.5      yamt 	}
   1000   1.5      yamt #endif /* defined(QCACHE) */
   1001   1.5      yamt 
   1002  1.38      yamt 	return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
   1003  1.10      yamt }
   1004  1.10      yamt 
   1005  1.10      yamt vmem_addr_t
   1006  1.10      yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
   1007  1.10      yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
   1008  1.10      yamt     vm_flag_t flags)
   1009  1.10      yamt {
   1010  1.10      yamt 	struct vmem_freelist *list;
   1011  1.10      yamt 	struct vmem_freelist *first;
   1012  1.10      yamt 	struct vmem_freelist *end;
   1013  1.10      yamt 	bt_t *bt;
   1014  1.10      yamt 	bt_t *btnew;
   1015  1.10      yamt 	bt_t *btnew2;
   1016  1.10      yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
   1017  1.10      yamt 	vm_flag_t strat = flags & VM_FITMASK;
   1018  1.10      yamt 	vmem_addr_t start;
   1019  1.10      yamt 
   1020  1.10      yamt 	KASSERT(size0 > 0);
   1021  1.10      yamt 	KASSERT(size > 0);
   1022  1.10      yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
   1023  1.10      yamt 	if ((flags & VM_SLEEP) != 0) {
   1024  1.42      yamt 		ASSERT_SLEEPABLE();
   1025  1.10      yamt 	}
   1026  1.10      yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
   1027  1.10      yamt 	KASSERT((align & (align - 1)) == 0);
   1028  1.10      yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
   1029  1.10      yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
   1030  1.10      yamt 	KASSERT((nocross & (nocross - 1)) == 0);
   1031  1.10      yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
   1032  1.10      yamt 	KASSERT(nocross == 0 || nocross >= size);
   1033  1.10      yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
   1034  1.19      yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
   1035  1.10      yamt 
   1036  1.10      yamt 	if (align == 0) {
   1037  1.10      yamt 		align = vm->vm_quantum_mask + 1;
   1038  1.10      yamt 	}
   1039   1.1      yamt 	btnew = bt_alloc(vm, flags);
   1040   1.1      yamt 	if (btnew == NULL) {
   1041   1.1      yamt 		return VMEM_ADDR_NULL;
   1042   1.1      yamt 	}
   1043  1.10      yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
   1044  1.10      yamt 	if (btnew2 == NULL) {
   1045  1.10      yamt 		bt_free(vm, btnew);
   1046  1.10      yamt 		return VMEM_ADDR_NULL;
   1047  1.10      yamt 	}
   1048   1.1      yamt 
   1049   1.1      yamt retry_strat:
   1050   1.1      yamt 	first = bt_freehead_toalloc(vm, size, strat);
   1051   1.1      yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
   1052   1.1      yamt retry:
   1053   1.1      yamt 	bt = NULL;
   1054   1.1      yamt 	VMEM_LOCK(vm);
   1055  1.48    cegger 	KASSERT(vmem_check_sanity(vm));
   1056   1.2      yamt 	if (strat == VM_INSTANTFIT) {
   1057   1.2      yamt 		for (list = first; list < end; list++) {
   1058   1.2      yamt 			bt = LIST_FIRST(list);
   1059   1.2      yamt 			if (bt != NULL) {
   1060  1.10      yamt 				start = vmem_fit(bt, size, align, phase,
   1061  1.10      yamt 				    nocross, minaddr, maxaddr);
   1062  1.10      yamt 				if (start != VMEM_ADDR_NULL) {
   1063  1.10      yamt 					goto gotit;
   1064  1.10      yamt 				}
   1065   1.2      yamt 			}
   1066   1.2      yamt 		}
   1067   1.2      yamt 	} else { /* VM_BESTFIT */
   1068   1.2      yamt 		for (list = first; list < end; list++) {
   1069   1.2      yamt 			LIST_FOREACH(bt, list, bt_freelist) {
   1070   1.2      yamt 				if (bt->bt_size >= size) {
   1071  1.10      yamt 					start = vmem_fit(bt, size, align, phase,
   1072  1.10      yamt 					    nocross, minaddr, maxaddr);
   1073  1.10      yamt 					if (start != VMEM_ADDR_NULL) {
   1074  1.10      yamt 						goto gotit;
   1075  1.10      yamt 					}
   1076   1.2      yamt 				}
   1077   1.1      yamt 			}
   1078   1.1      yamt 		}
   1079   1.1      yamt 	}
   1080   1.2      yamt 	VMEM_UNLOCK(vm);
   1081   1.1      yamt #if 1
   1082   1.2      yamt 	if (strat == VM_INSTANTFIT) {
   1083   1.2      yamt 		strat = VM_BESTFIT;
   1084   1.2      yamt 		goto retry_strat;
   1085   1.2      yamt 	}
   1086   1.1      yamt #endif
   1087  1.10      yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
   1088  1.10      yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
   1089  1.10      yamt 
   1090  1.10      yamt 		/*
   1091  1.10      yamt 		 * XXX should try to import a region large enough to
   1092  1.10      yamt 		 * satisfy restrictions?
   1093  1.10      yamt 		 */
   1094  1.10      yamt 
   1095  1.20      yamt 		goto fail;
   1096  1.10      yamt 	}
   1097   1.2      yamt 	if (vmem_import(vm, size, flags) == 0) {
   1098   1.2      yamt 		goto retry;
   1099   1.1      yamt 	}
   1100   1.2      yamt 	/* XXX */
   1101  1.20      yamt fail:
   1102  1.20      yamt 	bt_free(vm, btnew);
   1103  1.20      yamt 	bt_free(vm, btnew2);
   1104   1.2      yamt 	return VMEM_ADDR_NULL;
   1105   1.2      yamt 
   1106   1.2      yamt gotit:
   1107   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
   1108   1.1      yamt 	KASSERT(bt->bt_size >= size);
   1109   1.1      yamt 	bt_remfree(vm, bt);
   1110  1.44    cegger 	KASSERT(vmem_check_sanity(vm));
   1111  1.10      yamt 	if (bt->bt_start != start) {
   1112  1.10      yamt 		btnew2->bt_type = BT_TYPE_FREE;
   1113  1.10      yamt 		btnew2->bt_start = bt->bt_start;
   1114  1.10      yamt 		btnew2->bt_size = start - bt->bt_start;
   1115  1.10      yamt 		bt->bt_start = start;
   1116  1.10      yamt 		bt->bt_size -= btnew2->bt_size;
   1117  1.10      yamt 		bt_insfree(vm, btnew2);
   1118  1.10      yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
   1119  1.10      yamt 		btnew2 = NULL;
   1120  1.44    cegger 		KASSERT(vmem_check_sanity(vm));
   1121  1.10      yamt 	}
   1122  1.10      yamt 	KASSERT(bt->bt_start == start);
   1123   1.1      yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
   1124   1.1      yamt 		/* split */
   1125   1.1      yamt 		btnew->bt_type = BT_TYPE_BUSY;
   1126   1.1      yamt 		btnew->bt_start = bt->bt_start;
   1127   1.1      yamt 		btnew->bt_size = size;
   1128   1.1      yamt 		bt->bt_start = bt->bt_start + size;
   1129   1.1      yamt 		bt->bt_size -= size;
   1130   1.1      yamt 		bt_insfree(vm, bt);
   1131   1.1      yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
   1132   1.1      yamt 		bt_insbusy(vm, btnew);
   1133  1.48    cegger 		KASSERT(vmem_check_sanity(vm));
   1134   1.1      yamt 		VMEM_UNLOCK(vm);
   1135   1.1      yamt 	} else {
   1136   1.1      yamt 		bt->bt_type = BT_TYPE_BUSY;
   1137   1.1      yamt 		bt_insbusy(vm, bt);
   1138  1.48    cegger 		KASSERT(vmem_check_sanity(vm));
   1139   1.1      yamt 		VMEM_UNLOCK(vm);
   1140   1.1      yamt 		bt_free(vm, btnew);
   1141   1.1      yamt 		btnew = bt;
   1142   1.1      yamt 	}
   1143  1.10      yamt 	if (btnew2 != NULL) {
   1144  1.10      yamt 		bt_free(vm, btnew2);
   1145  1.10      yamt 	}
   1146   1.1      yamt 	KASSERT(btnew->bt_size >= size);
   1147   1.1      yamt 	btnew->bt_type = BT_TYPE_BUSY;
   1148   1.1      yamt 
   1149  1.44    cegger 	KASSERT(vmem_check_sanity(vm));
   1150   1.1      yamt 	return btnew->bt_start;
   1151   1.1      yamt }
   1152   1.1      yamt 
   1153   1.1      yamt /*
   1154   1.1      yamt  * vmem_free:
   1155   1.1      yamt  *
   1156   1.1      yamt  * => caller must ensure appropriate spl,
   1157   1.1      yamt  *    if the arena can be accessed from interrupt context.
   1158   1.1      yamt  */
   1159   1.1      yamt 
   1160   1.1      yamt void
   1161   1.1      yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1162   1.1      yamt {
   1163   1.1      yamt 
   1164   1.1      yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1165   1.1      yamt 	KASSERT(size > 0);
   1166   1.1      yamt 
   1167   1.5      yamt #if defined(QCACHE)
   1168   1.5      yamt 	if (size <= vm->vm_qcache_max) {
   1169   1.5      yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1170  1.22      yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1171   1.5      yamt 
   1172  1.35        ad 		return pool_cache_put(qc->qc_cache, (void *)addr);
   1173   1.5      yamt 	}
   1174   1.5      yamt #endif /* defined(QCACHE) */
   1175   1.5      yamt 
   1176  1.10      yamt 	vmem_xfree(vm, addr, size);
   1177  1.10      yamt }
   1178  1.10      yamt 
   1179  1.10      yamt void
   1180  1.17      yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1181  1.10      yamt {
   1182  1.10      yamt 	bt_t *bt;
   1183  1.10      yamt 	bt_t *t;
   1184  1.10      yamt 
   1185  1.10      yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1186  1.10      yamt 	KASSERT(size > 0);
   1187  1.10      yamt 
   1188   1.1      yamt 	VMEM_LOCK(vm);
   1189   1.1      yamt 
   1190   1.1      yamt 	bt = bt_lookupbusy(vm, addr);
   1191   1.1      yamt 	KASSERT(bt != NULL);
   1192   1.1      yamt 	KASSERT(bt->bt_start == addr);
   1193   1.1      yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1194   1.1      yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1195   1.1      yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1196   1.1      yamt 	bt_rembusy(vm, bt);
   1197   1.1      yamt 	bt->bt_type = BT_TYPE_FREE;
   1198   1.1      yamt 
   1199   1.1      yamt 	/* coalesce */
   1200   1.1      yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1201   1.1      yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1202   1.1      yamt 		KASSERT(BT_END(bt) == t->bt_start);
   1203   1.1      yamt 		bt_remfree(vm, t);
   1204   1.1      yamt 		bt_remseg(vm, t);
   1205   1.1      yamt 		bt->bt_size += t->bt_size;
   1206   1.1      yamt 		bt_free(vm, t);
   1207   1.1      yamt 	}
   1208   1.1      yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1209   1.1      yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1210   1.1      yamt 		KASSERT(BT_END(t) == bt->bt_start);
   1211   1.1      yamt 		bt_remfree(vm, t);
   1212   1.1      yamt 		bt_remseg(vm, t);
   1213   1.1      yamt 		bt->bt_size += t->bt_size;
   1214   1.1      yamt 		bt->bt_start = t->bt_start;
   1215   1.1      yamt 		bt_free(vm, t);
   1216   1.1      yamt 	}
   1217   1.1      yamt 
   1218   1.1      yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1219   1.1      yamt 	KASSERT(t != NULL);
   1220   1.1      yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1221   1.1      yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1222   1.1      yamt 	    t->bt_size == bt->bt_size) {
   1223   1.1      yamt 		vmem_addr_t spanaddr;
   1224   1.1      yamt 		vmem_size_t spansize;
   1225   1.1      yamt 
   1226   1.1      yamt 		KASSERT(t->bt_start == bt->bt_start);
   1227   1.1      yamt 		spanaddr = bt->bt_start;
   1228   1.1      yamt 		spansize = bt->bt_size;
   1229   1.1      yamt 		bt_remseg(vm, bt);
   1230   1.1      yamt 		bt_free(vm, bt);
   1231   1.1      yamt 		bt_remseg(vm, t);
   1232   1.1      yamt 		bt_free(vm, t);
   1233   1.1      yamt 		VMEM_UNLOCK(vm);
   1234   1.1      yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1235   1.1      yamt 	} else {
   1236   1.1      yamt 		bt_insfree(vm, bt);
   1237   1.1      yamt 		VMEM_UNLOCK(vm);
   1238   1.1      yamt 	}
   1239   1.1      yamt }
   1240   1.1      yamt 
   1241   1.1      yamt /*
   1242   1.1      yamt  * vmem_add:
   1243   1.1      yamt  *
   1244   1.1      yamt  * => caller must ensure appropriate spl,
   1245   1.1      yamt  *    if the arena can be accessed from interrupt context.
   1246   1.1      yamt  */
   1247   1.1      yamt 
   1248   1.1      yamt vmem_addr_t
   1249   1.1      yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1250   1.1      yamt {
   1251   1.1      yamt 
   1252   1.1      yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1253   1.1      yamt }
   1254   1.1      yamt 
   1255   1.6      yamt /*
   1256   1.6      yamt  * vmem_reap: reap unused resources.
   1257   1.6      yamt  *
   1258  1.26   thorpej  * => return true if we successfully reaped something.
   1259   1.6      yamt  */
   1260   1.6      yamt 
   1261  1.25   thorpej bool
   1262   1.6      yamt vmem_reap(vmem_t *vm)
   1263   1.6      yamt {
   1264  1.26   thorpej 	bool didsomething = false;
   1265   1.6      yamt 
   1266   1.6      yamt #if defined(QCACHE)
   1267   1.6      yamt 	didsomething = qc_reap(vm);
   1268   1.6      yamt #endif /* defined(QCACHE) */
   1269   1.6      yamt 	return didsomething;
   1270   1.6      yamt }
   1271   1.6      yamt 
   1272  1.30      yamt /* ---- rehash */
   1273  1.30      yamt 
   1274  1.30      yamt #if defined(_KERNEL)
   1275  1.30      yamt static struct callout vmem_rehash_ch;
   1276  1.30      yamt static int vmem_rehash_interval;
   1277  1.30      yamt static struct workqueue *vmem_rehash_wq;
   1278  1.30      yamt static struct work vmem_rehash_wk;
   1279  1.30      yamt 
   1280  1.30      yamt static void
   1281  1.30      yamt vmem_rehash_all(struct work *wk, void *dummy)
   1282  1.30      yamt {
   1283  1.30      yamt 	vmem_t *vm;
   1284  1.30      yamt 
   1285  1.30      yamt 	KASSERT(wk == &vmem_rehash_wk);
   1286  1.30      yamt 	mutex_enter(&vmem_list_lock);
   1287  1.30      yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1288  1.30      yamt 		size_t desired;
   1289  1.30      yamt 		size_t current;
   1290  1.30      yamt 
   1291  1.30      yamt 		if (!VMEM_TRYLOCK(vm)) {
   1292  1.30      yamt 			continue;
   1293  1.30      yamt 		}
   1294  1.30      yamt 		desired = vm->vm_nbusytag;
   1295  1.30      yamt 		current = vm->vm_hashsize;
   1296  1.30      yamt 		VMEM_UNLOCK(vm);
   1297  1.30      yamt 
   1298  1.30      yamt 		if (desired > VMEM_HASHSIZE_MAX) {
   1299  1.30      yamt 			desired = VMEM_HASHSIZE_MAX;
   1300  1.30      yamt 		} else if (desired < VMEM_HASHSIZE_MIN) {
   1301  1.30      yamt 			desired = VMEM_HASHSIZE_MIN;
   1302  1.30      yamt 		}
   1303  1.30      yamt 		if (desired > current * 2 || desired * 2 < current) {
   1304  1.30      yamt 			vmem_rehash(vm, desired, VM_NOSLEEP);
   1305  1.30      yamt 		}
   1306  1.30      yamt 	}
   1307  1.30      yamt 	mutex_exit(&vmem_list_lock);
   1308  1.30      yamt 
   1309  1.30      yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1310  1.30      yamt }
   1311  1.30      yamt 
   1312  1.30      yamt static void
   1313  1.30      yamt vmem_rehash_all_kick(void *dummy)
   1314  1.30      yamt {
   1315  1.30      yamt 
   1316  1.32     rmind 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
   1317  1.30      yamt }
   1318  1.30      yamt 
   1319  1.30      yamt void
   1320  1.30      yamt vmem_rehash_start(void)
   1321  1.30      yamt {
   1322  1.30      yamt 	int error;
   1323  1.30      yamt 
   1324  1.30      yamt 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
   1325  1.41        ad 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
   1326  1.30      yamt 	if (error) {
   1327  1.30      yamt 		panic("%s: workqueue_create %d\n", __func__, error);
   1328  1.30      yamt 	}
   1329  1.41        ad 	callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
   1330  1.30      yamt 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
   1331  1.30      yamt 
   1332  1.30      yamt 	vmem_rehash_interval = hz * 10;
   1333  1.30      yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1334  1.30      yamt }
   1335  1.30      yamt #endif /* defined(_KERNEL) */
   1336  1.30      yamt 
   1337   1.1      yamt /* ---- debug */
   1338   1.1      yamt 
   1339  1.37      yamt #if defined(DDB)
   1340  1.37      yamt static bt_t *
   1341  1.37      yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
   1342  1.37      yamt {
   1343  1.39      yamt 	bt_t *bt;
   1344  1.37      yamt 
   1345  1.39      yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1346  1.39      yamt 		if (BT_ISSPAN_P(bt)) {
   1347  1.39      yamt 			continue;
   1348  1.39      yamt 		}
   1349  1.39      yamt 		if (bt->bt_start <= addr && addr < BT_END(bt)) {
   1350  1.39      yamt 			return bt;
   1351  1.37      yamt 		}
   1352  1.37      yamt 	}
   1353  1.37      yamt 
   1354  1.37      yamt 	return NULL;
   1355  1.37      yamt }
   1356  1.37      yamt 
   1357  1.37      yamt void
   1358  1.37      yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1359  1.37      yamt {
   1360  1.37      yamt 	vmem_t *vm;
   1361  1.37      yamt 
   1362  1.37      yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1363  1.37      yamt 		bt_t *bt;
   1364  1.37      yamt 
   1365  1.37      yamt 		bt = vmem_whatis_lookup(vm, addr);
   1366  1.37      yamt 		if (bt == NULL) {
   1367  1.37      yamt 			continue;
   1368  1.37      yamt 		}
   1369  1.39      yamt 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
   1370  1.37      yamt 		    (void *)addr, (void *)bt->bt_start,
   1371  1.39      yamt 		    (size_t)(addr - bt->bt_start), vm->vm_name,
   1372  1.39      yamt 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
   1373  1.37      yamt 	}
   1374  1.37      yamt }
   1375  1.43    cegger 
   1376  1.43    cegger static void
   1377  1.43    cegger vmem_showall(void (*pr)(const char *, ...))
   1378  1.43    cegger {
   1379  1.43    cegger 	vmem_t *vm;
   1380  1.43    cegger 
   1381  1.43    cegger 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1382  1.43    cegger 		(*pr)("VMEM '%s' at %p\n", vm->vm_name, vm);
   1383  1.43    cegger 		if (vm->vm_source)
   1384  1.43    cegger 			(*pr)("  VMEM backend '%s' at %p\n",
   1385  1.43    cegger 				vm->vm_source->vm_name, vm->vm_source);
   1386  1.43    cegger 	}
   1387  1.43    cegger }
   1388  1.43    cegger 
   1389  1.43    cegger static void
   1390  1.43    cegger vmem_show(uintptr_t addr, void (*pr)(const char *, ...))
   1391  1.43    cegger {
   1392  1.43    cegger 	vmem_t *vm;
   1393  1.43    cegger 	bt_t *bt = NULL;
   1394  1.43    cegger 
   1395  1.43    cegger 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1396  1.43    cegger 		if ((uintptr_t)vm == addr)
   1397  1.43    cegger 			goto found;
   1398  1.47    cegger 	}
   1399  1.43    cegger 
   1400  1.47    cegger 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1401  1.43    cegger 		bt = vmem_whatis_lookup(vm, addr);
   1402  1.43    cegger 		if (bt != NULL)
   1403  1.43    cegger 			goto found;
   1404  1.43    cegger 	}
   1405  1.43    cegger 
   1406  1.47    cegger 	return;
   1407  1.43    cegger found:
   1408  1.43    cegger 
   1409  1.43    cegger 	(*pr)("VMEM '%s' spans\n", vm->vm_name);
   1410  1.43    cegger 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1411  1.47    cegger 		(*pr)(" 0x%"PRIx64" - 0x%"PRIx64" %s\n",
   1412  1.43    cegger 			bt->bt_start, BT_END(bt),
   1413  1.47    cegger 			(bt->bt_type == BT_TYPE_BUSY) ?
   1414  1.47    cegger 			"allocated" :
   1415  1.47    cegger 			(bt->bt_type == BT_TYPE_FREE) ?
   1416  1.47    cegger 			"free" :
   1417  1.47    cegger 			(bt->bt_type == BT_TYPE_SPAN) ?
   1418  1.47    cegger 			"span" : "static span");
   1419  1.43    cegger 	}
   1420  1.43    cegger }
   1421  1.43    cegger 
   1422  1.43    cegger void
   1423  1.43    cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
   1424  1.43    cegger {
   1425  1.43    cegger 	if (modif[0] == 'a') {
   1426  1.43    cegger 		vmem_showall(pr);
   1427  1.43    cegger 		return;
   1428  1.43    cegger 	}
   1429  1.43    cegger 
   1430  1.43    cegger 	vmem_show(addr, pr);
   1431  1.43    cegger }
   1432  1.37      yamt #endif /* defined(DDB) */
   1433  1.37      yamt 
   1434   1.1      yamt #if defined(VMEM_DEBUG)
   1435   1.1      yamt 
   1436   1.1      yamt #if !defined(_KERNEL)
   1437   1.1      yamt #include <stdio.h>
   1438   1.1      yamt #endif /* !defined(_KERNEL) */
   1439   1.1      yamt 
   1440   1.1      yamt void bt_dump(const bt_t *);
   1441   1.1      yamt 
   1442   1.1      yamt void
   1443   1.1      yamt bt_dump(const bt_t *bt)
   1444   1.1      yamt {
   1445   1.1      yamt 
   1446   1.1      yamt 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
   1447   1.1      yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1448   1.1      yamt 	    bt->bt_type);
   1449   1.1      yamt }
   1450   1.1      yamt 
   1451   1.1      yamt void
   1452   1.1      yamt vmem_dump(const vmem_t *vm)
   1453   1.1      yamt {
   1454   1.1      yamt 	const bt_t *bt;
   1455   1.1      yamt 	int i;
   1456   1.1      yamt 
   1457   1.1      yamt 	printf("vmem %p '%s'\n", vm, vm->vm_name);
   1458   1.1      yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1459   1.1      yamt 		bt_dump(bt);
   1460   1.1      yamt 	}
   1461   1.1      yamt 
   1462   1.1      yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1463   1.1      yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1464   1.1      yamt 
   1465   1.1      yamt 		if (LIST_EMPTY(fl)) {
   1466   1.1      yamt 			continue;
   1467   1.1      yamt 		}
   1468   1.1      yamt 
   1469   1.1      yamt 		printf("freelist[%d]\n", i);
   1470   1.1      yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1471   1.1      yamt 			bt_dump(bt);
   1472   1.1      yamt 			if (bt->bt_size) {
   1473   1.1      yamt 			}
   1474   1.1      yamt 		}
   1475   1.1      yamt 	}
   1476   1.1      yamt }
   1477   1.1      yamt 
   1478   1.1      yamt #if !defined(_KERNEL)
   1479   1.1      yamt 
   1480   1.1      yamt int
   1481   1.1      yamt main()
   1482   1.1      yamt {
   1483   1.1      yamt 	vmem_t *vm;
   1484   1.1      yamt 	vmem_addr_t p;
   1485   1.1      yamt 	struct reg {
   1486   1.1      yamt 		vmem_addr_t p;
   1487   1.1      yamt 		vmem_size_t sz;
   1488  1.25   thorpej 		bool x;
   1489   1.1      yamt 	} *reg = NULL;
   1490   1.1      yamt 	int nreg = 0;
   1491   1.1      yamt 	int nalloc = 0;
   1492   1.1      yamt 	int nfree = 0;
   1493   1.1      yamt 	vmem_size_t total = 0;
   1494   1.1      yamt #if 1
   1495   1.1      yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1496   1.1      yamt #else
   1497   1.1      yamt 	vm_flag_t strat = VM_BESTFIT;
   1498   1.1      yamt #endif
   1499   1.1      yamt 
   1500   1.1      yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1501  1.30      yamt 	    NULL, NULL, NULL, 0, VM_SLEEP);
   1502   1.1      yamt 	if (vm == NULL) {
   1503   1.1      yamt 		printf("vmem_create\n");
   1504   1.1      yamt 		exit(EXIT_FAILURE);
   1505   1.1      yamt 	}
   1506   1.1      yamt 	vmem_dump(vm);
   1507   1.1      yamt 
   1508   1.1      yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1509   1.1      yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1510   1.1      yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1511   1.1      yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1512   1.1      yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1513   1.1      yamt 	vmem_dump(vm);
   1514   1.1      yamt 	for (;;) {
   1515   1.1      yamt 		struct reg *r;
   1516  1.10      yamt 		int t = rand() % 100;
   1517   1.1      yamt 
   1518  1.10      yamt 		if (t > 45) {
   1519  1.10      yamt 			/* alloc */
   1520   1.1      yamt 			vmem_size_t sz = rand() % 500 + 1;
   1521  1.25   thorpej 			bool x;
   1522  1.10      yamt 			vmem_size_t align, phase, nocross;
   1523  1.10      yamt 			vmem_addr_t minaddr, maxaddr;
   1524  1.10      yamt 
   1525  1.10      yamt 			if (t > 70) {
   1526  1.26   thorpej 				x = true;
   1527  1.10      yamt 				/* XXX */
   1528  1.10      yamt 				align = 1 << (rand() % 15);
   1529  1.10      yamt 				phase = rand() % 65536;
   1530  1.10      yamt 				nocross = 1 << (rand() % 15);
   1531  1.10      yamt 				if (align <= phase) {
   1532  1.10      yamt 					phase = 0;
   1533  1.10      yamt 				}
   1534  1.19      yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1535  1.19      yamt 				    nocross)) {
   1536  1.10      yamt 					nocross = 0;
   1537  1.10      yamt 				}
   1538  1.10      yamt 				minaddr = rand() % 50000;
   1539  1.10      yamt 				maxaddr = rand() % 70000;
   1540  1.10      yamt 				if (minaddr > maxaddr) {
   1541  1.10      yamt 					minaddr = 0;
   1542  1.10      yamt 					maxaddr = 0;
   1543  1.10      yamt 				}
   1544  1.10      yamt 				printf("=== xalloc %" PRIu64
   1545  1.10      yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1546  1.10      yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1547  1.10      yamt 				    ", max=%" PRIu64 "\n",
   1548  1.10      yamt 				    (uint64_t)sz,
   1549  1.10      yamt 				    (uint64_t)align,
   1550  1.10      yamt 				    (uint64_t)phase,
   1551  1.10      yamt 				    (uint64_t)nocross,
   1552  1.10      yamt 				    (uint64_t)minaddr,
   1553  1.10      yamt 				    (uint64_t)maxaddr);
   1554  1.10      yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1555  1.10      yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1556  1.10      yamt 			} else {
   1557  1.26   thorpej 				x = false;
   1558  1.10      yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1559  1.10      yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1560  1.10      yamt 			}
   1561   1.1      yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1562   1.1      yamt 			vmem_dump(vm);
   1563   1.1      yamt 			if (p == VMEM_ADDR_NULL) {
   1564  1.10      yamt 				if (x) {
   1565  1.10      yamt 					continue;
   1566  1.10      yamt 				}
   1567   1.1      yamt 				break;
   1568   1.1      yamt 			}
   1569   1.1      yamt 			nreg++;
   1570   1.1      yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1571   1.1      yamt 			r = &reg[nreg - 1];
   1572   1.1      yamt 			r->p = p;
   1573   1.1      yamt 			r->sz = sz;
   1574  1.10      yamt 			r->x = x;
   1575   1.1      yamt 			total += sz;
   1576   1.1      yamt 			nalloc++;
   1577   1.1      yamt 		} else if (nreg != 0) {
   1578  1.10      yamt 			/* free */
   1579   1.1      yamt 			r = &reg[rand() % nreg];
   1580   1.1      yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1581   1.1      yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1582  1.10      yamt 			if (r->x) {
   1583  1.10      yamt 				vmem_xfree(vm, r->p, r->sz);
   1584  1.10      yamt 			} else {
   1585  1.10      yamt 				vmem_free(vm, r->p, r->sz);
   1586  1.10      yamt 			}
   1587   1.1      yamt 			total -= r->sz;
   1588   1.1      yamt 			vmem_dump(vm);
   1589   1.1      yamt 			*r = reg[nreg - 1];
   1590   1.1      yamt 			nreg--;
   1591   1.1      yamt 			nfree++;
   1592   1.1      yamt 		}
   1593   1.1      yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1594   1.1      yamt 	}
   1595   1.1      yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1596   1.1      yamt 	    (uint64_t)total, nalloc, nfree);
   1597   1.1      yamt 	exit(EXIT_SUCCESS);
   1598   1.1      yamt }
   1599   1.1      yamt #endif /* !defined(_KERNEL) */
   1600   1.1      yamt #endif /* defined(VMEM_DEBUG) */
   1601