subr_vmem.c revision 1.54 1 1.54 yamt /* $NetBSD: subr_vmem.c,v 1.54 2009/01/25 13:08:56 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.18 yamt *
35 1.18 yamt * todo:
36 1.18 yamt * - decide how to import segments for vmem_xalloc.
37 1.18 yamt * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.54 yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.54 2009/01/25 13:08:56 yamt Exp $");
42 1.1 yamt
43 1.5 yamt #if defined(_KERNEL)
44 1.37 yamt #include "opt_ddb.h"
45 1.5 yamt #define QCACHE
46 1.5 yamt #endif /* defined(_KERNEL) */
47 1.1 yamt
48 1.1 yamt #include <sys/param.h>
49 1.1 yamt #include <sys/hash.h>
50 1.1 yamt #include <sys/queue.h>
51 1.1 yamt
52 1.1 yamt #if defined(_KERNEL)
53 1.1 yamt #include <sys/systm.h>
54 1.30 yamt #include <sys/kernel.h> /* hz */
55 1.30 yamt #include <sys/callout.h>
56 1.1 yamt #include <sys/malloc.h>
57 1.1 yamt #include <sys/once.h>
58 1.1 yamt #include <sys/pool.h>
59 1.1 yamt #include <sys/vmem.h>
60 1.30 yamt #include <sys/workqueue.h>
61 1.1 yamt #else /* defined(_KERNEL) */
62 1.1 yamt #include "../sys/vmem.h"
63 1.1 yamt #endif /* defined(_KERNEL) */
64 1.1 yamt
65 1.1 yamt #if defined(_KERNEL)
66 1.52 ad #define LOCK_DECL(name) \
67 1.52 ad kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
68 1.1 yamt #else /* defined(_KERNEL) */
69 1.1 yamt #include <errno.h>
70 1.1 yamt #include <assert.h>
71 1.1 yamt #include <stdlib.h>
72 1.1 yamt
73 1.1 yamt #define KASSERT(a) assert(a)
74 1.31 ad #define LOCK_DECL(name) /* nothing */
75 1.31 ad #define mutex_init(a, b, c) /* nothing */
76 1.31 ad #define mutex_destroy(a) /* nothing */
77 1.31 ad #define mutex_enter(a) /* nothing */
78 1.31 ad #define mutex_exit(a) /* nothing */
79 1.31 ad #define mutex_owned(a) /* nothing */
80 1.42 yamt #define ASSERT_SLEEPABLE() /* nothing */
81 1.31 ad #define IPL_VM 0
82 1.1 yamt #endif /* defined(_KERNEL) */
83 1.1 yamt
84 1.1 yamt struct vmem;
85 1.1 yamt struct vmem_btag;
86 1.1 yamt
87 1.1 yamt #if defined(VMEM_DEBUG)
88 1.1 yamt void vmem_dump(const vmem_t *);
89 1.1 yamt #endif /* defined(VMEM_DEBUG) */
90 1.1 yamt
91 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
92 1.30 yamt
93 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
94 1.54 yamt #define VMEM_HASHSIZE_MAX 65536 /* XXX */
95 1.53 pooka #define VMEM_HASHSIZE_INIT 128
96 1.1 yamt
97 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
98 1.1 yamt
99 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
100 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
101 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
102 1.1 yamt
103 1.5 yamt #if defined(QCACHE)
104 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
105 1.5 yamt
106 1.5 yamt #define QC_NAME_MAX 16
107 1.5 yamt
108 1.5 yamt struct qcache {
109 1.35 ad pool_cache_t qc_cache;
110 1.5 yamt vmem_t *qc_vmem;
111 1.5 yamt char qc_name[QC_NAME_MAX];
112 1.5 yamt };
113 1.5 yamt typedef struct qcache qcache_t;
114 1.35 ad #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
115 1.5 yamt #endif /* defined(QCACHE) */
116 1.5 yamt
117 1.1 yamt /* vmem arena */
118 1.1 yamt struct vmem {
119 1.31 ad LOCK_DECL(vm_lock);
120 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
121 1.1 yamt vm_flag_t);
122 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
123 1.1 yamt vmem_t *vm_source;
124 1.1 yamt struct vmem_seglist vm_seglist;
125 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
126 1.1 yamt size_t vm_hashsize;
127 1.1 yamt size_t vm_nbusytag;
128 1.1 yamt struct vmem_hashlist *vm_hashlist;
129 1.1 yamt size_t vm_quantum_mask;
130 1.1 yamt int vm_quantum_shift;
131 1.1 yamt const char *vm_name;
132 1.30 yamt LIST_ENTRY(vmem) vm_alllist;
133 1.5 yamt
134 1.5 yamt #if defined(QCACHE)
135 1.5 yamt /* quantum cache */
136 1.5 yamt size_t vm_qcache_max;
137 1.5 yamt struct pool_allocator vm_qcache_allocator;
138 1.22 yamt qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
139 1.22 yamt qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
140 1.5 yamt #endif /* defined(QCACHE) */
141 1.1 yamt };
142 1.1 yamt
143 1.31 ad #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
144 1.31 ad #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
145 1.31 ad #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
146 1.36 ad #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
147 1.31 ad #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
148 1.31 ad #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
149 1.1 yamt
150 1.1 yamt /* boundary tag */
151 1.1 yamt struct vmem_btag {
152 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
153 1.1 yamt union {
154 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
155 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
156 1.1 yamt } bt_u;
157 1.1 yamt #define bt_hashlist bt_u.u_hashlist
158 1.1 yamt #define bt_freelist bt_u.u_freelist
159 1.1 yamt vmem_addr_t bt_start;
160 1.1 yamt vmem_size_t bt_size;
161 1.1 yamt int bt_type;
162 1.1 yamt };
163 1.1 yamt
164 1.1 yamt #define BT_TYPE_SPAN 1
165 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
166 1.1 yamt #define BT_TYPE_FREE 3
167 1.1 yamt #define BT_TYPE_BUSY 4
168 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
169 1.1 yamt
170 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
171 1.1 yamt
172 1.1 yamt typedef struct vmem_btag bt_t;
173 1.1 yamt
174 1.1 yamt /* ---- misc */
175 1.1 yamt
176 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
177 1.19 yamt (-(-(addr) & -(align)))
178 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
179 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
180 1.19 yamt
181 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
182 1.4 yamt
183 1.1 yamt static int
184 1.1 yamt calc_order(vmem_size_t size)
185 1.1 yamt {
186 1.4 yamt vmem_size_t target;
187 1.1 yamt int i;
188 1.1 yamt
189 1.1 yamt KASSERT(size != 0);
190 1.1 yamt
191 1.1 yamt i = 0;
192 1.4 yamt target = size >> 1;
193 1.4 yamt while (ORDER2SIZE(i) <= target) {
194 1.1 yamt i++;
195 1.1 yamt }
196 1.1 yamt
197 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
198 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
199 1.1 yamt
200 1.1 yamt return i;
201 1.1 yamt }
202 1.1 yamt
203 1.1 yamt #if defined(_KERNEL)
204 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
205 1.1 yamt #endif /* defined(_KERNEL) */
206 1.1 yamt
207 1.1 yamt static void *
208 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
209 1.1 yamt {
210 1.1 yamt
211 1.1 yamt #if defined(_KERNEL)
212 1.1 yamt return malloc(sz, M_VMEM,
213 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
214 1.1 yamt #else /* defined(_KERNEL) */
215 1.1 yamt return malloc(sz);
216 1.1 yamt #endif /* defined(_KERNEL) */
217 1.1 yamt }
218 1.1 yamt
219 1.1 yamt static void
220 1.1 yamt xfree(void *p)
221 1.1 yamt {
222 1.1 yamt
223 1.1 yamt #if defined(_KERNEL)
224 1.1 yamt return free(p, M_VMEM);
225 1.1 yamt #else /* defined(_KERNEL) */
226 1.1 yamt return free(p);
227 1.1 yamt #endif /* defined(_KERNEL) */
228 1.1 yamt }
229 1.1 yamt
230 1.1 yamt /* ---- boundary tag */
231 1.1 yamt
232 1.1 yamt #if defined(_KERNEL)
233 1.35 ad static struct pool_cache bt_cache;
234 1.1 yamt #endif /* defined(_KERNEL) */
235 1.1 yamt
236 1.1 yamt static bt_t *
237 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
238 1.1 yamt {
239 1.1 yamt bt_t *bt;
240 1.1 yamt
241 1.1 yamt #if defined(_KERNEL)
242 1.35 ad bt = pool_cache_get(&bt_cache,
243 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
244 1.1 yamt #else /* defined(_KERNEL) */
245 1.1 yamt bt = malloc(sizeof *bt);
246 1.1 yamt #endif /* defined(_KERNEL) */
247 1.1 yamt
248 1.1 yamt return bt;
249 1.1 yamt }
250 1.1 yamt
251 1.1 yamt static void
252 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
253 1.1 yamt {
254 1.1 yamt
255 1.1 yamt #if defined(_KERNEL)
256 1.35 ad pool_cache_put(&bt_cache, bt);
257 1.1 yamt #else /* defined(_KERNEL) */
258 1.1 yamt free(bt);
259 1.1 yamt #endif /* defined(_KERNEL) */
260 1.1 yamt }
261 1.1 yamt
262 1.1 yamt /*
263 1.1 yamt * freelist[0] ... [1, 1]
264 1.1 yamt * freelist[1] ... [2, 3]
265 1.1 yamt * freelist[2] ... [4, 7]
266 1.1 yamt * freelist[3] ... [8, 15]
267 1.1 yamt * :
268 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
269 1.1 yamt * :
270 1.1 yamt */
271 1.1 yamt
272 1.1 yamt static struct vmem_freelist *
273 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
274 1.1 yamt {
275 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
276 1.1 yamt int idx;
277 1.1 yamt
278 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
279 1.1 yamt KASSERT(size != 0);
280 1.1 yamt
281 1.1 yamt idx = calc_order(qsize);
282 1.1 yamt KASSERT(idx >= 0);
283 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
284 1.1 yamt
285 1.1 yamt return &vm->vm_freelist[idx];
286 1.1 yamt }
287 1.1 yamt
288 1.1 yamt static struct vmem_freelist *
289 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
290 1.1 yamt {
291 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
292 1.1 yamt int idx;
293 1.1 yamt
294 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
295 1.1 yamt KASSERT(size != 0);
296 1.1 yamt
297 1.1 yamt idx = calc_order(qsize);
298 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
299 1.1 yamt idx++;
300 1.1 yamt /* check too large request? */
301 1.1 yamt }
302 1.1 yamt KASSERT(idx >= 0);
303 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
304 1.1 yamt
305 1.1 yamt return &vm->vm_freelist[idx];
306 1.1 yamt }
307 1.1 yamt
308 1.1 yamt /* ---- boundary tag hash */
309 1.1 yamt
310 1.1 yamt static struct vmem_hashlist *
311 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
312 1.1 yamt {
313 1.1 yamt struct vmem_hashlist *list;
314 1.1 yamt unsigned int hash;
315 1.1 yamt
316 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
317 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
318 1.1 yamt
319 1.1 yamt return list;
320 1.1 yamt }
321 1.1 yamt
322 1.1 yamt static bt_t *
323 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
324 1.1 yamt {
325 1.1 yamt struct vmem_hashlist *list;
326 1.1 yamt bt_t *bt;
327 1.1 yamt
328 1.1 yamt list = bt_hashhead(vm, addr);
329 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
330 1.1 yamt if (bt->bt_start == addr) {
331 1.1 yamt break;
332 1.1 yamt }
333 1.1 yamt }
334 1.1 yamt
335 1.1 yamt return bt;
336 1.1 yamt }
337 1.1 yamt
338 1.1 yamt static void
339 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
340 1.1 yamt {
341 1.1 yamt
342 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
343 1.1 yamt vm->vm_nbusytag--;
344 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
345 1.1 yamt }
346 1.1 yamt
347 1.1 yamt static void
348 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
349 1.1 yamt {
350 1.1 yamt struct vmem_hashlist *list;
351 1.1 yamt
352 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
353 1.1 yamt
354 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
355 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
356 1.1 yamt vm->vm_nbusytag++;
357 1.1 yamt }
358 1.1 yamt
359 1.1 yamt /* ---- boundary tag list */
360 1.1 yamt
361 1.1 yamt static void
362 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
363 1.1 yamt {
364 1.1 yamt
365 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
366 1.1 yamt }
367 1.1 yamt
368 1.1 yamt static void
369 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
370 1.1 yamt {
371 1.1 yamt
372 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
373 1.1 yamt }
374 1.1 yamt
375 1.1 yamt static void
376 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
377 1.1 yamt {
378 1.1 yamt
379 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
380 1.1 yamt }
381 1.1 yamt
382 1.1 yamt static void
383 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
384 1.1 yamt {
385 1.1 yamt
386 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
387 1.1 yamt
388 1.1 yamt LIST_REMOVE(bt, bt_freelist);
389 1.1 yamt }
390 1.1 yamt
391 1.1 yamt static void
392 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
393 1.1 yamt {
394 1.1 yamt struct vmem_freelist *list;
395 1.1 yamt
396 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
397 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
398 1.1 yamt }
399 1.1 yamt
400 1.1 yamt /* ---- vmem internal functions */
401 1.1 yamt
402 1.30 yamt #if defined(_KERNEL)
403 1.30 yamt static kmutex_t vmem_list_lock;
404 1.30 yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
405 1.30 yamt #endif /* defined(_KERNEL) */
406 1.30 yamt
407 1.5 yamt #if defined(QCACHE)
408 1.5 yamt static inline vm_flag_t
409 1.5 yamt prf_to_vmf(int prflags)
410 1.5 yamt {
411 1.5 yamt vm_flag_t vmflags;
412 1.5 yamt
413 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
414 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
415 1.5 yamt vmflags = VM_SLEEP;
416 1.5 yamt } else {
417 1.5 yamt vmflags = VM_NOSLEEP;
418 1.5 yamt }
419 1.5 yamt return vmflags;
420 1.5 yamt }
421 1.5 yamt
422 1.5 yamt static inline int
423 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
424 1.5 yamt {
425 1.5 yamt int prflags;
426 1.5 yamt
427 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
428 1.5 yamt prflags = PR_WAITOK;
429 1.7 yamt } else {
430 1.5 yamt prflags = PR_NOWAIT;
431 1.5 yamt }
432 1.5 yamt return prflags;
433 1.5 yamt }
434 1.5 yamt
435 1.5 yamt static size_t
436 1.5 yamt qc_poolpage_size(size_t qcache_max)
437 1.5 yamt {
438 1.5 yamt int i;
439 1.5 yamt
440 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
441 1.5 yamt /* nothing */
442 1.5 yamt }
443 1.5 yamt return ORDER2SIZE(i);
444 1.5 yamt }
445 1.5 yamt
446 1.5 yamt static void *
447 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
448 1.5 yamt {
449 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
450 1.5 yamt vmem_t *vm = qc->qc_vmem;
451 1.5 yamt
452 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
453 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
454 1.5 yamt }
455 1.5 yamt
456 1.5 yamt static void
457 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
458 1.5 yamt {
459 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
460 1.5 yamt vmem_t *vm = qc->qc_vmem;
461 1.5 yamt
462 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
463 1.5 yamt }
464 1.5 yamt
465 1.5 yamt static void
466 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
467 1.5 yamt {
468 1.22 yamt qcache_t *prevqc;
469 1.5 yamt struct pool_allocator *pa;
470 1.5 yamt int qcache_idx_max;
471 1.5 yamt int i;
472 1.5 yamt
473 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
474 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
475 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
476 1.5 yamt }
477 1.5 yamt vm->vm_qcache_max = qcache_max;
478 1.5 yamt pa = &vm->vm_qcache_allocator;
479 1.5 yamt memset(pa, 0, sizeof(*pa));
480 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
481 1.5 yamt pa->pa_free = qc_poolpage_free;
482 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
483 1.5 yamt
484 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
485 1.22 yamt prevqc = NULL;
486 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
487 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
488 1.5 yamt size_t size = i << vm->vm_quantum_shift;
489 1.5 yamt
490 1.5 yamt qc->qc_vmem = vm;
491 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
492 1.5 yamt vm->vm_name, size);
493 1.35 ad qc->qc_cache = pool_cache_init(size,
494 1.35 ad ORDER2SIZE(vm->vm_quantum_shift), 0,
495 1.35 ad PR_NOALIGN | PR_NOTOUCH /* XXX */,
496 1.35 ad qc->qc_name, pa, ipl, NULL, NULL, NULL);
497 1.35 ad KASSERT(qc->qc_cache != NULL); /* XXX */
498 1.22 yamt if (prevqc != NULL &&
499 1.35 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
500 1.35 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
501 1.35 ad pool_cache_destroy(qc->qc_cache);
502 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
503 1.27 ad continue;
504 1.22 yamt }
505 1.35 ad qc->qc_cache->pc_pool.pr_qcache = qc;
506 1.22 yamt vm->vm_qcache[i - 1] = qc;
507 1.22 yamt prevqc = qc;
508 1.5 yamt }
509 1.5 yamt }
510 1.6 yamt
511 1.23 yamt static void
512 1.23 yamt qc_destroy(vmem_t *vm)
513 1.23 yamt {
514 1.23 yamt const qcache_t *prevqc;
515 1.23 yamt int i;
516 1.23 yamt int qcache_idx_max;
517 1.23 yamt
518 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
519 1.23 yamt prevqc = NULL;
520 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
521 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
522 1.23 yamt
523 1.23 yamt if (prevqc == qc) {
524 1.23 yamt continue;
525 1.23 yamt }
526 1.35 ad pool_cache_destroy(qc->qc_cache);
527 1.23 yamt prevqc = qc;
528 1.23 yamt }
529 1.23 yamt }
530 1.23 yamt
531 1.25 thorpej static bool
532 1.6 yamt qc_reap(vmem_t *vm)
533 1.6 yamt {
534 1.22 yamt const qcache_t *prevqc;
535 1.6 yamt int i;
536 1.6 yamt int qcache_idx_max;
537 1.26 thorpej bool didsomething = false;
538 1.6 yamt
539 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
540 1.22 yamt prevqc = NULL;
541 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
542 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
543 1.6 yamt
544 1.22 yamt if (prevqc == qc) {
545 1.22 yamt continue;
546 1.22 yamt }
547 1.35 ad if (pool_cache_reclaim(qc->qc_cache) != 0) {
548 1.26 thorpej didsomething = true;
549 1.6 yamt }
550 1.22 yamt prevqc = qc;
551 1.6 yamt }
552 1.6 yamt
553 1.6 yamt return didsomething;
554 1.6 yamt }
555 1.5 yamt #endif /* defined(QCACHE) */
556 1.5 yamt
557 1.1 yamt #if defined(_KERNEL)
558 1.1 yamt static int
559 1.1 yamt vmem_init(void)
560 1.1 yamt {
561 1.1 yamt
562 1.30 yamt mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
563 1.35 ad pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
564 1.35 ad NULL, IPL_VM, NULL, NULL, NULL);
565 1.1 yamt return 0;
566 1.1 yamt }
567 1.1 yamt #endif /* defined(_KERNEL) */
568 1.1 yamt
569 1.1 yamt static vmem_addr_t
570 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
571 1.1 yamt int spanbttype)
572 1.1 yamt {
573 1.1 yamt bt_t *btspan;
574 1.1 yamt bt_t *btfree;
575 1.1 yamt
576 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
577 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
578 1.47 cegger KASSERT(spanbttype == BT_TYPE_SPAN || spanbttype == BT_TYPE_SPAN_STATIC);
579 1.1 yamt
580 1.1 yamt btspan = bt_alloc(vm, flags);
581 1.1 yamt if (btspan == NULL) {
582 1.1 yamt return VMEM_ADDR_NULL;
583 1.1 yamt }
584 1.1 yamt btfree = bt_alloc(vm, flags);
585 1.1 yamt if (btfree == NULL) {
586 1.1 yamt bt_free(vm, btspan);
587 1.1 yamt return VMEM_ADDR_NULL;
588 1.1 yamt }
589 1.1 yamt
590 1.1 yamt btspan->bt_type = spanbttype;
591 1.1 yamt btspan->bt_start = addr;
592 1.1 yamt btspan->bt_size = size;
593 1.1 yamt
594 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
595 1.1 yamt btfree->bt_start = addr;
596 1.1 yamt btfree->bt_size = size;
597 1.1 yamt
598 1.1 yamt VMEM_LOCK(vm);
599 1.1 yamt bt_insseg_tail(vm, btspan);
600 1.1 yamt bt_insseg(vm, btfree, btspan);
601 1.1 yamt bt_insfree(vm, btfree);
602 1.1 yamt VMEM_UNLOCK(vm);
603 1.1 yamt
604 1.1 yamt return addr;
605 1.1 yamt }
606 1.1 yamt
607 1.30 yamt static void
608 1.30 yamt vmem_destroy1(vmem_t *vm)
609 1.30 yamt {
610 1.30 yamt
611 1.30 yamt #if defined(QCACHE)
612 1.30 yamt qc_destroy(vm);
613 1.30 yamt #endif /* defined(QCACHE) */
614 1.30 yamt if (vm->vm_hashlist != NULL) {
615 1.30 yamt int i;
616 1.30 yamt
617 1.30 yamt for (i = 0; i < vm->vm_hashsize; i++) {
618 1.30 yamt bt_t *bt;
619 1.30 yamt
620 1.30 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
621 1.30 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
622 1.30 yamt bt_free(vm, bt);
623 1.30 yamt }
624 1.30 yamt }
625 1.30 yamt xfree(vm->vm_hashlist);
626 1.30 yamt }
627 1.31 ad VMEM_LOCK_DESTROY(vm);
628 1.30 yamt xfree(vm);
629 1.30 yamt }
630 1.30 yamt
631 1.1 yamt static int
632 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
633 1.1 yamt {
634 1.1 yamt vmem_addr_t addr;
635 1.1 yamt
636 1.1 yamt if (vm->vm_allocfn == NULL) {
637 1.1 yamt return EINVAL;
638 1.1 yamt }
639 1.1 yamt
640 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
641 1.1 yamt if (addr == VMEM_ADDR_NULL) {
642 1.1 yamt return ENOMEM;
643 1.1 yamt }
644 1.1 yamt
645 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
646 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
647 1.1 yamt return ENOMEM;
648 1.1 yamt }
649 1.1 yamt
650 1.1 yamt return 0;
651 1.1 yamt }
652 1.1 yamt
653 1.1 yamt static int
654 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
655 1.1 yamt {
656 1.1 yamt bt_t *bt;
657 1.1 yamt int i;
658 1.1 yamt struct vmem_hashlist *newhashlist;
659 1.1 yamt struct vmem_hashlist *oldhashlist;
660 1.1 yamt size_t oldhashsize;
661 1.1 yamt
662 1.1 yamt KASSERT(newhashsize > 0);
663 1.1 yamt
664 1.1 yamt newhashlist =
665 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
666 1.1 yamt if (newhashlist == NULL) {
667 1.1 yamt return ENOMEM;
668 1.1 yamt }
669 1.1 yamt for (i = 0; i < newhashsize; i++) {
670 1.1 yamt LIST_INIT(&newhashlist[i]);
671 1.1 yamt }
672 1.1 yamt
673 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
674 1.30 yamt xfree(newhashlist);
675 1.30 yamt return EBUSY;
676 1.30 yamt }
677 1.1 yamt oldhashlist = vm->vm_hashlist;
678 1.1 yamt oldhashsize = vm->vm_hashsize;
679 1.1 yamt vm->vm_hashlist = newhashlist;
680 1.1 yamt vm->vm_hashsize = newhashsize;
681 1.1 yamt if (oldhashlist == NULL) {
682 1.1 yamt VMEM_UNLOCK(vm);
683 1.1 yamt return 0;
684 1.1 yamt }
685 1.1 yamt for (i = 0; i < oldhashsize; i++) {
686 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
687 1.1 yamt bt_rembusy(vm, bt); /* XXX */
688 1.1 yamt bt_insbusy(vm, bt);
689 1.1 yamt }
690 1.1 yamt }
691 1.1 yamt VMEM_UNLOCK(vm);
692 1.1 yamt
693 1.1 yamt xfree(oldhashlist);
694 1.1 yamt
695 1.1 yamt return 0;
696 1.1 yamt }
697 1.1 yamt
698 1.10 yamt /*
699 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
700 1.10 yamt */
701 1.10 yamt
702 1.10 yamt static vmem_addr_t
703 1.10 yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
704 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
705 1.10 yamt {
706 1.10 yamt vmem_addr_t start;
707 1.10 yamt vmem_addr_t end;
708 1.10 yamt
709 1.10 yamt KASSERT(bt->bt_size >= size);
710 1.10 yamt
711 1.10 yamt /*
712 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
713 1.10 yamt * unsigned integer of the same size.
714 1.10 yamt */
715 1.10 yamt
716 1.10 yamt start = bt->bt_start;
717 1.10 yamt if (start < minaddr) {
718 1.10 yamt start = minaddr;
719 1.10 yamt }
720 1.10 yamt end = BT_END(bt);
721 1.10 yamt if (end > maxaddr - 1) {
722 1.10 yamt end = maxaddr - 1;
723 1.10 yamt }
724 1.10 yamt if (start >= end) {
725 1.10 yamt return VMEM_ADDR_NULL;
726 1.10 yamt }
727 1.19 yamt
728 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
729 1.10 yamt if (start < bt->bt_start) {
730 1.10 yamt start += align;
731 1.10 yamt }
732 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
733 1.10 yamt KASSERT(align < nocross);
734 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
735 1.10 yamt }
736 1.10 yamt if (start < end && end - start >= size) {
737 1.10 yamt KASSERT((start & (align - 1)) == phase);
738 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
739 1.10 yamt KASSERT(minaddr <= start);
740 1.10 yamt KASSERT(maxaddr == 0 || start + size <= maxaddr);
741 1.10 yamt KASSERT(bt->bt_start <= start);
742 1.10 yamt KASSERT(start + size <= BT_END(bt));
743 1.10 yamt return start;
744 1.10 yamt }
745 1.10 yamt return VMEM_ADDR_NULL;
746 1.10 yamt }
747 1.10 yamt
748 1.49 christos #if !defined(VMEM_DEBUG)
749 1.44 cegger #define vmem_check_sanity(vm) true
750 1.44 cegger #else
751 1.44 cegger
752 1.44 cegger static bool
753 1.48 cegger vmem_check_spanoverlap(const char *func, const vmem_t *vm,
754 1.48 cegger const bt_t *bt, const bt_t *bt2)
755 1.48 cegger {
756 1.48 cegger switch (bt->bt_type) {
757 1.48 cegger case BT_TYPE_BUSY:
758 1.48 cegger case BT_TYPE_FREE:
759 1.48 cegger if (BT_ISSPAN_P(bt2))
760 1.48 cegger return true;
761 1.48 cegger break;
762 1.48 cegger case BT_TYPE_SPAN:
763 1.48 cegger case BT_TYPE_SPAN_STATIC:
764 1.48 cegger if (bt2->bt_type == BT_TYPE_BUSY
765 1.48 cegger || bt2->bt_type == BT_TYPE_FREE)
766 1.48 cegger return true;
767 1.48 cegger break;
768 1.48 cegger }
769 1.48 cegger
770 1.48 cegger if (bt->bt_start > bt2->bt_start) {
771 1.48 cegger if (bt->bt_start >= BT_END(bt2))
772 1.48 cegger return true;
773 1.48 cegger
774 1.48 cegger printf("%s: overlapping VMEM '%s' span 0x%"
775 1.48 cegger PRIx64" - 0x%"PRIx64" %s\n",
776 1.48 cegger func, vm->vm_name,
777 1.48 cegger (uint64_t)bt->bt_start,
778 1.48 cegger (uint64_t)BT_END(bt),
779 1.48 cegger (bt->bt_type == BT_TYPE_BUSY) ?
780 1.48 cegger "allocated" :
781 1.48 cegger (bt->bt_type == BT_TYPE_FREE) ?
782 1.48 cegger "free" :
783 1.48 cegger (bt->bt_type == BT_TYPE_SPAN) ?
784 1.48 cegger "span" : "static span");
785 1.48 cegger printf("%s: overlapping VMEM '%s' span 0x%"
786 1.48 cegger PRIx64" - 0x%"PRIx64" %s\n",
787 1.48 cegger func, vm->vm_name,
788 1.48 cegger (uint64_t)bt2->bt_start,
789 1.48 cegger (uint64_t)BT_END(bt2),
790 1.48 cegger (bt2->bt_type == BT_TYPE_BUSY) ?
791 1.48 cegger "allocated" :
792 1.48 cegger (bt2->bt_type == BT_TYPE_FREE) ?
793 1.48 cegger "free" :
794 1.48 cegger (bt2->bt_type == BT_TYPE_SPAN) ?
795 1.48 cegger "span" : "static span");
796 1.48 cegger return false;
797 1.48 cegger }
798 1.48 cegger if (BT_END(bt) > bt2->bt_start) {
799 1.48 cegger printf("%s: overlapping VMEM '%s' span 0x%"
800 1.48 cegger PRIx64" - 0x%"PRIx64" %s\n",
801 1.48 cegger func, vm->vm_name,
802 1.48 cegger (uint64_t)bt->bt_start,
803 1.48 cegger (uint64_t)BT_END(bt),
804 1.48 cegger (bt->bt_type == BT_TYPE_BUSY) ?
805 1.48 cegger "allocated" :
806 1.48 cegger (bt->bt_type == BT_TYPE_FREE) ?
807 1.48 cegger "free" :
808 1.48 cegger (bt->bt_type == BT_TYPE_SPAN) ?
809 1.48 cegger "span" : "static span");
810 1.48 cegger printf("%s: overlapping VMEM '%s' span 0x%"
811 1.48 cegger PRIx64" - 0x%"PRIx64" %s\n",
812 1.48 cegger func, vm->vm_name,
813 1.48 cegger (uint64_t)bt2->bt_start,
814 1.48 cegger (uint64_t)BT_END(bt2),
815 1.48 cegger (bt2->bt_type == BT_TYPE_BUSY) ?
816 1.48 cegger "allocated" :
817 1.48 cegger (bt2->bt_type == BT_TYPE_FREE) ?
818 1.48 cegger "free" :
819 1.48 cegger (bt2->bt_type == BT_TYPE_SPAN) ?
820 1.48 cegger "span" : "static span");
821 1.48 cegger return false;
822 1.48 cegger }
823 1.48 cegger
824 1.48 cegger return true;
825 1.48 cegger }
826 1.48 cegger
827 1.48 cegger static bool
828 1.44 cegger vmem_check_sanity(vmem_t *vm)
829 1.44 cegger {
830 1.44 cegger const bt_t *bt, *bt2;
831 1.44 cegger
832 1.44 cegger KASSERT(vm != NULL);
833 1.44 cegger
834 1.44 cegger CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
835 1.44 cegger if (bt->bt_start >= BT_END(bt)) {
836 1.44 cegger printf("%s: bogus VMEM '%s' span 0x%"PRIx64
837 1.44 cegger " - 0x%"PRIx64" %s\n",
838 1.44 cegger __func__, vm->vm_name,
839 1.45 cegger (uint64_t)bt->bt_start, (uint64_t)BT_END(bt),
840 1.44 cegger (bt->bt_type == BT_TYPE_BUSY) ?
841 1.47 cegger "allocated" :
842 1.47 cegger (bt->bt_type == BT_TYPE_FREE) ?
843 1.47 cegger "free" :
844 1.47 cegger (bt->bt_type == BT_TYPE_SPAN) ?
845 1.47 cegger "span" : "static span");
846 1.44 cegger return false;
847 1.44 cegger }
848 1.44 cegger
849 1.44 cegger CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
850 1.44 cegger if (bt2->bt_start >= BT_END(bt2)) {
851 1.44 cegger printf("%s: bogus VMEM '%s' span 0x%"PRIx64
852 1.44 cegger " - 0x%"PRIx64" %s\n",
853 1.44 cegger __func__, vm->vm_name,
854 1.45 cegger (uint64_t)bt2->bt_start,
855 1.45 cegger (uint64_t)BT_END(bt2),
856 1.44 cegger (bt2->bt_type == BT_TYPE_BUSY) ?
857 1.47 cegger "allocated" :
858 1.47 cegger (bt2->bt_type == BT_TYPE_FREE) ?
859 1.47 cegger "free" :
860 1.47 cegger (bt2->bt_type == BT_TYPE_SPAN) ?
861 1.47 cegger "span" : "static span");
862 1.44 cegger return false;
863 1.44 cegger }
864 1.44 cegger if (bt == bt2)
865 1.44 cegger continue;
866 1.44 cegger
867 1.48 cegger if (vmem_check_spanoverlap(__func__, vm, bt, bt2)
868 1.48 cegger == false)
869 1.44 cegger return false;
870 1.44 cegger }
871 1.44 cegger }
872 1.44 cegger
873 1.44 cegger return true;
874 1.44 cegger }
875 1.51 christos #endif /* VMEM_DEBUG */
876 1.44 cegger
877 1.1 yamt /* ---- vmem API */
878 1.1 yamt
879 1.1 yamt /*
880 1.1 yamt * vmem_create: create an arena.
881 1.1 yamt *
882 1.1 yamt * => must not be called from interrupt context.
883 1.1 yamt */
884 1.1 yamt
885 1.1 yamt vmem_t *
886 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
887 1.1 yamt vmem_size_t quantum,
888 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
889 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
890 1.31 ad vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
891 1.31 ad int ipl)
892 1.1 yamt {
893 1.1 yamt vmem_t *vm;
894 1.1 yamt int i;
895 1.1 yamt #if defined(_KERNEL)
896 1.1 yamt static ONCE_DECL(control);
897 1.1 yamt #endif /* defined(_KERNEL) */
898 1.1 yamt
899 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
900 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
901 1.1 yamt
902 1.1 yamt #if defined(_KERNEL)
903 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
904 1.1 yamt return NULL;
905 1.1 yamt }
906 1.1 yamt #endif /* defined(_KERNEL) */
907 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
908 1.1 yamt if (vm == NULL) {
909 1.1 yamt return NULL;
910 1.1 yamt }
911 1.1 yamt
912 1.31 ad VMEM_LOCK_INIT(vm, ipl);
913 1.1 yamt vm->vm_name = name;
914 1.1 yamt vm->vm_quantum_mask = quantum - 1;
915 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
916 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
917 1.1 yamt vm->vm_allocfn = allocfn;
918 1.1 yamt vm->vm_freefn = freefn;
919 1.1 yamt vm->vm_source = source;
920 1.1 yamt vm->vm_nbusytag = 0;
921 1.5 yamt #if defined(QCACHE)
922 1.31 ad qc_init(vm, qcache_max, ipl);
923 1.5 yamt #endif /* defined(QCACHE) */
924 1.1 yamt
925 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
926 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
927 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
928 1.1 yamt }
929 1.1 yamt vm->vm_hashlist = NULL;
930 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
931 1.30 yamt vmem_destroy1(vm);
932 1.1 yamt return NULL;
933 1.1 yamt }
934 1.1 yamt
935 1.1 yamt if (size != 0) {
936 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
937 1.30 yamt vmem_destroy1(vm);
938 1.1 yamt return NULL;
939 1.1 yamt }
940 1.1 yamt }
941 1.1 yamt
942 1.30 yamt #if defined(_KERNEL)
943 1.30 yamt mutex_enter(&vmem_list_lock);
944 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
945 1.30 yamt mutex_exit(&vmem_list_lock);
946 1.30 yamt #endif /* defined(_KERNEL) */
947 1.30 yamt
948 1.1 yamt return vm;
949 1.1 yamt }
950 1.1 yamt
951 1.1 yamt void
952 1.1 yamt vmem_destroy(vmem_t *vm)
953 1.1 yamt {
954 1.1 yamt
955 1.30 yamt #if defined(_KERNEL)
956 1.30 yamt mutex_enter(&vmem_list_lock);
957 1.30 yamt LIST_REMOVE(vm, vm_alllist);
958 1.30 yamt mutex_exit(&vmem_list_lock);
959 1.30 yamt #endif /* defined(_KERNEL) */
960 1.1 yamt
961 1.30 yamt vmem_destroy1(vm);
962 1.1 yamt }
963 1.1 yamt
964 1.1 yamt vmem_size_t
965 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
966 1.1 yamt {
967 1.1 yamt
968 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
969 1.1 yamt }
970 1.1 yamt
971 1.1 yamt /*
972 1.1 yamt * vmem_alloc:
973 1.1 yamt *
974 1.1 yamt * => caller must ensure appropriate spl,
975 1.1 yamt * if the arena can be accessed from interrupt context.
976 1.1 yamt */
977 1.1 yamt
978 1.1 yamt vmem_addr_t
979 1.38 yamt vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
980 1.1 yamt {
981 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
982 1.1 yamt
983 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
984 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
985 1.1 yamt
986 1.1 yamt KASSERT(size > 0);
987 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
988 1.3 yamt if ((flags & VM_SLEEP) != 0) {
989 1.42 yamt ASSERT_SLEEPABLE();
990 1.3 yamt }
991 1.1 yamt
992 1.5 yamt #if defined(QCACHE)
993 1.5 yamt if (size <= vm->vm_qcache_max) {
994 1.38 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
995 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
996 1.5 yamt
997 1.35 ad return (vmem_addr_t)pool_cache_get(qc->qc_cache,
998 1.5 yamt vmf_to_prf(flags));
999 1.5 yamt }
1000 1.5 yamt #endif /* defined(QCACHE) */
1001 1.5 yamt
1002 1.38 yamt return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
1003 1.10 yamt }
1004 1.10 yamt
1005 1.10 yamt vmem_addr_t
1006 1.10 yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
1007 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
1008 1.10 yamt vm_flag_t flags)
1009 1.10 yamt {
1010 1.10 yamt struct vmem_freelist *list;
1011 1.10 yamt struct vmem_freelist *first;
1012 1.10 yamt struct vmem_freelist *end;
1013 1.10 yamt bt_t *bt;
1014 1.10 yamt bt_t *btnew;
1015 1.10 yamt bt_t *btnew2;
1016 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
1017 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
1018 1.10 yamt vmem_addr_t start;
1019 1.10 yamt
1020 1.10 yamt KASSERT(size0 > 0);
1021 1.10 yamt KASSERT(size > 0);
1022 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1023 1.10 yamt if ((flags & VM_SLEEP) != 0) {
1024 1.42 yamt ASSERT_SLEEPABLE();
1025 1.10 yamt }
1026 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
1027 1.10 yamt KASSERT((align & (align - 1)) == 0);
1028 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
1029 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
1030 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
1031 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
1032 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
1033 1.10 yamt KASSERT(maxaddr == 0 || minaddr < maxaddr);
1034 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1035 1.10 yamt
1036 1.10 yamt if (align == 0) {
1037 1.10 yamt align = vm->vm_quantum_mask + 1;
1038 1.10 yamt }
1039 1.1 yamt btnew = bt_alloc(vm, flags);
1040 1.1 yamt if (btnew == NULL) {
1041 1.1 yamt return VMEM_ADDR_NULL;
1042 1.1 yamt }
1043 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1044 1.10 yamt if (btnew2 == NULL) {
1045 1.10 yamt bt_free(vm, btnew);
1046 1.10 yamt return VMEM_ADDR_NULL;
1047 1.10 yamt }
1048 1.1 yamt
1049 1.1 yamt retry_strat:
1050 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
1051 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
1052 1.1 yamt retry:
1053 1.1 yamt bt = NULL;
1054 1.1 yamt VMEM_LOCK(vm);
1055 1.48 cegger KASSERT(vmem_check_sanity(vm));
1056 1.2 yamt if (strat == VM_INSTANTFIT) {
1057 1.2 yamt for (list = first; list < end; list++) {
1058 1.2 yamt bt = LIST_FIRST(list);
1059 1.2 yamt if (bt != NULL) {
1060 1.10 yamt start = vmem_fit(bt, size, align, phase,
1061 1.10 yamt nocross, minaddr, maxaddr);
1062 1.10 yamt if (start != VMEM_ADDR_NULL) {
1063 1.10 yamt goto gotit;
1064 1.10 yamt }
1065 1.2 yamt }
1066 1.2 yamt }
1067 1.2 yamt } else { /* VM_BESTFIT */
1068 1.2 yamt for (list = first; list < end; list++) {
1069 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
1070 1.2 yamt if (bt->bt_size >= size) {
1071 1.10 yamt start = vmem_fit(bt, size, align, phase,
1072 1.10 yamt nocross, minaddr, maxaddr);
1073 1.10 yamt if (start != VMEM_ADDR_NULL) {
1074 1.10 yamt goto gotit;
1075 1.10 yamt }
1076 1.2 yamt }
1077 1.1 yamt }
1078 1.1 yamt }
1079 1.1 yamt }
1080 1.2 yamt VMEM_UNLOCK(vm);
1081 1.1 yamt #if 1
1082 1.2 yamt if (strat == VM_INSTANTFIT) {
1083 1.2 yamt strat = VM_BESTFIT;
1084 1.2 yamt goto retry_strat;
1085 1.2 yamt }
1086 1.1 yamt #endif
1087 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
1088 1.10 yamt nocross != 0 || minaddr != 0 || maxaddr != 0) {
1089 1.10 yamt
1090 1.10 yamt /*
1091 1.10 yamt * XXX should try to import a region large enough to
1092 1.10 yamt * satisfy restrictions?
1093 1.10 yamt */
1094 1.10 yamt
1095 1.20 yamt goto fail;
1096 1.10 yamt }
1097 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
1098 1.2 yamt goto retry;
1099 1.1 yamt }
1100 1.2 yamt /* XXX */
1101 1.20 yamt fail:
1102 1.20 yamt bt_free(vm, btnew);
1103 1.20 yamt bt_free(vm, btnew2);
1104 1.2 yamt return VMEM_ADDR_NULL;
1105 1.2 yamt
1106 1.2 yamt gotit:
1107 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
1108 1.1 yamt KASSERT(bt->bt_size >= size);
1109 1.1 yamt bt_remfree(vm, bt);
1110 1.44 cegger KASSERT(vmem_check_sanity(vm));
1111 1.10 yamt if (bt->bt_start != start) {
1112 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
1113 1.10 yamt btnew2->bt_start = bt->bt_start;
1114 1.10 yamt btnew2->bt_size = start - bt->bt_start;
1115 1.10 yamt bt->bt_start = start;
1116 1.10 yamt bt->bt_size -= btnew2->bt_size;
1117 1.10 yamt bt_insfree(vm, btnew2);
1118 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1119 1.10 yamt btnew2 = NULL;
1120 1.44 cegger KASSERT(vmem_check_sanity(vm));
1121 1.10 yamt }
1122 1.10 yamt KASSERT(bt->bt_start == start);
1123 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1124 1.1 yamt /* split */
1125 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1126 1.1 yamt btnew->bt_start = bt->bt_start;
1127 1.1 yamt btnew->bt_size = size;
1128 1.1 yamt bt->bt_start = bt->bt_start + size;
1129 1.1 yamt bt->bt_size -= size;
1130 1.1 yamt bt_insfree(vm, bt);
1131 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1132 1.1 yamt bt_insbusy(vm, btnew);
1133 1.48 cegger KASSERT(vmem_check_sanity(vm));
1134 1.1 yamt VMEM_UNLOCK(vm);
1135 1.1 yamt } else {
1136 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1137 1.1 yamt bt_insbusy(vm, bt);
1138 1.48 cegger KASSERT(vmem_check_sanity(vm));
1139 1.1 yamt VMEM_UNLOCK(vm);
1140 1.1 yamt bt_free(vm, btnew);
1141 1.1 yamt btnew = bt;
1142 1.1 yamt }
1143 1.10 yamt if (btnew2 != NULL) {
1144 1.10 yamt bt_free(vm, btnew2);
1145 1.10 yamt }
1146 1.1 yamt KASSERT(btnew->bt_size >= size);
1147 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1148 1.1 yamt
1149 1.44 cegger KASSERT(vmem_check_sanity(vm));
1150 1.1 yamt return btnew->bt_start;
1151 1.1 yamt }
1152 1.1 yamt
1153 1.1 yamt /*
1154 1.1 yamt * vmem_free:
1155 1.1 yamt *
1156 1.1 yamt * => caller must ensure appropriate spl,
1157 1.1 yamt * if the arena can be accessed from interrupt context.
1158 1.1 yamt */
1159 1.1 yamt
1160 1.1 yamt void
1161 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1162 1.1 yamt {
1163 1.1 yamt
1164 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
1165 1.1 yamt KASSERT(size > 0);
1166 1.1 yamt
1167 1.5 yamt #if defined(QCACHE)
1168 1.5 yamt if (size <= vm->vm_qcache_max) {
1169 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1170 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1171 1.5 yamt
1172 1.35 ad return pool_cache_put(qc->qc_cache, (void *)addr);
1173 1.5 yamt }
1174 1.5 yamt #endif /* defined(QCACHE) */
1175 1.5 yamt
1176 1.10 yamt vmem_xfree(vm, addr, size);
1177 1.10 yamt }
1178 1.10 yamt
1179 1.10 yamt void
1180 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1181 1.10 yamt {
1182 1.10 yamt bt_t *bt;
1183 1.10 yamt bt_t *t;
1184 1.10 yamt
1185 1.10 yamt KASSERT(addr != VMEM_ADDR_NULL);
1186 1.10 yamt KASSERT(size > 0);
1187 1.10 yamt
1188 1.1 yamt VMEM_LOCK(vm);
1189 1.1 yamt
1190 1.1 yamt bt = bt_lookupbusy(vm, addr);
1191 1.1 yamt KASSERT(bt != NULL);
1192 1.1 yamt KASSERT(bt->bt_start == addr);
1193 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1194 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1195 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1196 1.1 yamt bt_rembusy(vm, bt);
1197 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1198 1.1 yamt
1199 1.1 yamt /* coalesce */
1200 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1201 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1202 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
1203 1.1 yamt bt_remfree(vm, t);
1204 1.1 yamt bt_remseg(vm, t);
1205 1.1 yamt bt->bt_size += t->bt_size;
1206 1.1 yamt bt_free(vm, t);
1207 1.1 yamt }
1208 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1209 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1210 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
1211 1.1 yamt bt_remfree(vm, t);
1212 1.1 yamt bt_remseg(vm, t);
1213 1.1 yamt bt->bt_size += t->bt_size;
1214 1.1 yamt bt->bt_start = t->bt_start;
1215 1.1 yamt bt_free(vm, t);
1216 1.1 yamt }
1217 1.1 yamt
1218 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1219 1.1 yamt KASSERT(t != NULL);
1220 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1221 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1222 1.1 yamt t->bt_size == bt->bt_size) {
1223 1.1 yamt vmem_addr_t spanaddr;
1224 1.1 yamt vmem_size_t spansize;
1225 1.1 yamt
1226 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1227 1.1 yamt spanaddr = bt->bt_start;
1228 1.1 yamt spansize = bt->bt_size;
1229 1.1 yamt bt_remseg(vm, bt);
1230 1.1 yamt bt_free(vm, bt);
1231 1.1 yamt bt_remseg(vm, t);
1232 1.1 yamt bt_free(vm, t);
1233 1.1 yamt VMEM_UNLOCK(vm);
1234 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1235 1.1 yamt } else {
1236 1.1 yamt bt_insfree(vm, bt);
1237 1.1 yamt VMEM_UNLOCK(vm);
1238 1.1 yamt }
1239 1.1 yamt }
1240 1.1 yamt
1241 1.1 yamt /*
1242 1.1 yamt * vmem_add:
1243 1.1 yamt *
1244 1.1 yamt * => caller must ensure appropriate spl,
1245 1.1 yamt * if the arena can be accessed from interrupt context.
1246 1.1 yamt */
1247 1.1 yamt
1248 1.1 yamt vmem_addr_t
1249 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1250 1.1 yamt {
1251 1.1 yamt
1252 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1253 1.1 yamt }
1254 1.1 yamt
1255 1.6 yamt /*
1256 1.6 yamt * vmem_reap: reap unused resources.
1257 1.6 yamt *
1258 1.26 thorpej * => return true if we successfully reaped something.
1259 1.6 yamt */
1260 1.6 yamt
1261 1.25 thorpej bool
1262 1.6 yamt vmem_reap(vmem_t *vm)
1263 1.6 yamt {
1264 1.26 thorpej bool didsomething = false;
1265 1.6 yamt
1266 1.6 yamt #if defined(QCACHE)
1267 1.6 yamt didsomething = qc_reap(vm);
1268 1.6 yamt #endif /* defined(QCACHE) */
1269 1.6 yamt return didsomething;
1270 1.6 yamt }
1271 1.6 yamt
1272 1.30 yamt /* ---- rehash */
1273 1.30 yamt
1274 1.30 yamt #if defined(_KERNEL)
1275 1.30 yamt static struct callout vmem_rehash_ch;
1276 1.30 yamt static int vmem_rehash_interval;
1277 1.30 yamt static struct workqueue *vmem_rehash_wq;
1278 1.30 yamt static struct work vmem_rehash_wk;
1279 1.30 yamt
1280 1.30 yamt static void
1281 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1282 1.30 yamt {
1283 1.30 yamt vmem_t *vm;
1284 1.30 yamt
1285 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1286 1.30 yamt mutex_enter(&vmem_list_lock);
1287 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1288 1.30 yamt size_t desired;
1289 1.30 yamt size_t current;
1290 1.30 yamt
1291 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
1292 1.30 yamt continue;
1293 1.30 yamt }
1294 1.30 yamt desired = vm->vm_nbusytag;
1295 1.30 yamt current = vm->vm_hashsize;
1296 1.30 yamt VMEM_UNLOCK(vm);
1297 1.30 yamt
1298 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1299 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1300 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1301 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1302 1.30 yamt }
1303 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1304 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1305 1.30 yamt }
1306 1.30 yamt }
1307 1.30 yamt mutex_exit(&vmem_list_lock);
1308 1.30 yamt
1309 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1310 1.30 yamt }
1311 1.30 yamt
1312 1.30 yamt static void
1313 1.30 yamt vmem_rehash_all_kick(void *dummy)
1314 1.30 yamt {
1315 1.30 yamt
1316 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1317 1.30 yamt }
1318 1.30 yamt
1319 1.30 yamt void
1320 1.30 yamt vmem_rehash_start(void)
1321 1.30 yamt {
1322 1.30 yamt int error;
1323 1.30 yamt
1324 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1325 1.41 ad vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1326 1.30 yamt if (error) {
1327 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1328 1.30 yamt }
1329 1.41 ad callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1330 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1331 1.30 yamt
1332 1.30 yamt vmem_rehash_interval = hz * 10;
1333 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1334 1.30 yamt }
1335 1.30 yamt #endif /* defined(_KERNEL) */
1336 1.30 yamt
1337 1.1 yamt /* ---- debug */
1338 1.1 yamt
1339 1.37 yamt #if defined(DDB)
1340 1.37 yamt static bt_t *
1341 1.37 yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1342 1.37 yamt {
1343 1.39 yamt bt_t *bt;
1344 1.37 yamt
1345 1.39 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1346 1.39 yamt if (BT_ISSPAN_P(bt)) {
1347 1.39 yamt continue;
1348 1.39 yamt }
1349 1.39 yamt if (bt->bt_start <= addr && addr < BT_END(bt)) {
1350 1.39 yamt return bt;
1351 1.37 yamt }
1352 1.37 yamt }
1353 1.37 yamt
1354 1.37 yamt return NULL;
1355 1.37 yamt }
1356 1.37 yamt
1357 1.37 yamt void
1358 1.37 yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1359 1.37 yamt {
1360 1.37 yamt vmem_t *vm;
1361 1.37 yamt
1362 1.37 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1363 1.37 yamt bt_t *bt;
1364 1.37 yamt
1365 1.37 yamt bt = vmem_whatis_lookup(vm, addr);
1366 1.37 yamt if (bt == NULL) {
1367 1.37 yamt continue;
1368 1.37 yamt }
1369 1.39 yamt (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1370 1.37 yamt (void *)addr, (void *)bt->bt_start,
1371 1.39 yamt (size_t)(addr - bt->bt_start), vm->vm_name,
1372 1.39 yamt (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1373 1.37 yamt }
1374 1.37 yamt }
1375 1.43 cegger
1376 1.43 cegger static void
1377 1.43 cegger vmem_showall(void (*pr)(const char *, ...))
1378 1.43 cegger {
1379 1.43 cegger vmem_t *vm;
1380 1.43 cegger
1381 1.43 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1382 1.43 cegger (*pr)("VMEM '%s' at %p\n", vm->vm_name, vm);
1383 1.43 cegger if (vm->vm_source)
1384 1.43 cegger (*pr)(" VMEM backend '%s' at %p\n",
1385 1.43 cegger vm->vm_source->vm_name, vm->vm_source);
1386 1.43 cegger }
1387 1.43 cegger }
1388 1.43 cegger
1389 1.43 cegger static void
1390 1.43 cegger vmem_show(uintptr_t addr, void (*pr)(const char *, ...))
1391 1.43 cegger {
1392 1.43 cegger vmem_t *vm;
1393 1.43 cegger bt_t *bt = NULL;
1394 1.43 cegger
1395 1.43 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1396 1.43 cegger if ((uintptr_t)vm == addr)
1397 1.43 cegger goto found;
1398 1.47 cegger }
1399 1.43 cegger
1400 1.47 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1401 1.43 cegger bt = vmem_whatis_lookup(vm, addr);
1402 1.43 cegger if (bt != NULL)
1403 1.43 cegger goto found;
1404 1.43 cegger }
1405 1.43 cegger
1406 1.47 cegger return;
1407 1.43 cegger found:
1408 1.43 cegger
1409 1.43 cegger (*pr)("VMEM '%s' spans\n", vm->vm_name);
1410 1.43 cegger CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1411 1.47 cegger (*pr)(" 0x%"PRIx64" - 0x%"PRIx64" %s\n",
1412 1.43 cegger bt->bt_start, BT_END(bt),
1413 1.47 cegger (bt->bt_type == BT_TYPE_BUSY) ?
1414 1.47 cegger "allocated" :
1415 1.47 cegger (bt->bt_type == BT_TYPE_FREE) ?
1416 1.47 cegger "free" :
1417 1.47 cegger (bt->bt_type == BT_TYPE_SPAN) ?
1418 1.47 cegger "span" : "static span");
1419 1.43 cegger }
1420 1.43 cegger }
1421 1.43 cegger
1422 1.43 cegger void
1423 1.43 cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1424 1.43 cegger {
1425 1.43 cegger if (modif[0] == 'a') {
1426 1.43 cegger vmem_showall(pr);
1427 1.43 cegger return;
1428 1.43 cegger }
1429 1.43 cegger
1430 1.43 cegger vmem_show(addr, pr);
1431 1.43 cegger }
1432 1.37 yamt #endif /* defined(DDB) */
1433 1.37 yamt
1434 1.1 yamt #if defined(VMEM_DEBUG)
1435 1.1 yamt
1436 1.1 yamt #if !defined(_KERNEL)
1437 1.1 yamt #include <stdio.h>
1438 1.1 yamt #endif /* !defined(_KERNEL) */
1439 1.1 yamt
1440 1.1 yamt void bt_dump(const bt_t *);
1441 1.1 yamt
1442 1.1 yamt void
1443 1.1 yamt bt_dump(const bt_t *bt)
1444 1.1 yamt {
1445 1.1 yamt
1446 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1447 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1448 1.1 yamt bt->bt_type);
1449 1.1 yamt }
1450 1.1 yamt
1451 1.1 yamt void
1452 1.1 yamt vmem_dump(const vmem_t *vm)
1453 1.1 yamt {
1454 1.1 yamt const bt_t *bt;
1455 1.1 yamt int i;
1456 1.1 yamt
1457 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
1458 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1459 1.1 yamt bt_dump(bt);
1460 1.1 yamt }
1461 1.1 yamt
1462 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1463 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1464 1.1 yamt
1465 1.1 yamt if (LIST_EMPTY(fl)) {
1466 1.1 yamt continue;
1467 1.1 yamt }
1468 1.1 yamt
1469 1.1 yamt printf("freelist[%d]\n", i);
1470 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1471 1.1 yamt bt_dump(bt);
1472 1.1 yamt if (bt->bt_size) {
1473 1.1 yamt }
1474 1.1 yamt }
1475 1.1 yamt }
1476 1.1 yamt }
1477 1.1 yamt
1478 1.1 yamt #if !defined(_KERNEL)
1479 1.1 yamt
1480 1.1 yamt int
1481 1.1 yamt main()
1482 1.1 yamt {
1483 1.1 yamt vmem_t *vm;
1484 1.1 yamt vmem_addr_t p;
1485 1.1 yamt struct reg {
1486 1.1 yamt vmem_addr_t p;
1487 1.1 yamt vmem_size_t sz;
1488 1.25 thorpej bool x;
1489 1.1 yamt } *reg = NULL;
1490 1.1 yamt int nreg = 0;
1491 1.1 yamt int nalloc = 0;
1492 1.1 yamt int nfree = 0;
1493 1.1 yamt vmem_size_t total = 0;
1494 1.1 yamt #if 1
1495 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1496 1.1 yamt #else
1497 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1498 1.1 yamt #endif
1499 1.1 yamt
1500 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1501 1.30 yamt NULL, NULL, NULL, 0, VM_SLEEP);
1502 1.1 yamt if (vm == NULL) {
1503 1.1 yamt printf("vmem_create\n");
1504 1.1 yamt exit(EXIT_FAILURE);
1505 1.1 yamt }
1506 1.1 yamt vmem_dump(vm);
1507 1.1 yamt
1508 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1509 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1510 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1511 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1512 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1513 1.1 yamt vmem_dump(vm);
1514 1.1 yamt for (;;) {
1515 1.1 yamt struct reg *r;
1516 1.10 yamt int t = rand() % 100;
1517 1.1 yamt
1518 1.10 yamt if (t > 45) {
1519 1.10 yamt /* alloc */
1520 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1521 1.25 thorpej bool x;
1522 1.10 yamt vmem_size_t align, phase, nocross;
1523 1.10 yamt vmem_addr_t minaddr, maxaddr;
1524 1.10 yamt
1525 1.10 yamt if (t > 70) {
1526 1.26 thorpej x = true;
1527 1.10 yamt /* XXX */
1528 1.10 yamt align = 1 << (rand() % 15);
1529 1.10 yamt phase = rand() % 65536;
1530 1.10 yamt nocross = 1 << (rand() % 15);
1531 1.10 yamt if (align <= phase) {
1532 1.10 yamt phase = 0;
1533 1.10 yamt }
1534 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1535 1.19 yamt nocross)) {
1536 1.10 yamt nocross = 0;
1537 1.10 yamt }
1538 1.10 yamt minaddr = rand() % 50000;
1539 1.10 yamt maxaddr = rand() % 70000;
1540 1.10 yamt if (minaddr > maxaddr) {
1541 1.10 yamt minaddr = 0;
1542 1.10 yamt maxaddr = 0;
1543 1.10 yamt }
1544 1.10 yamt printf("=== xalloc %" PRIu64
1545 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1546 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1547 1.10 yamt ", max=%" PRIu64 "\n",
1548 1.10 yamt (uint64_t)sz,
1549 1.10 yamt (uint64_t)align,
1550 1.10 yamt (uint64_t)phase,
1551 1.10 yamt (uint64_t)nocross,
1552 1.10 yamt (uint64_t)minaddr,
1553 1.10 yamt (uint64_t)maxaddr);
1554 1.10 yamt p = vmem_xalloc(vm, sz, align, phase, nocross,
1555 1.10 yamt minaddr, maxaddr, strat|VM_SLEEP);
1556 1.10 yamt } else {
1557 1.26 thorpej x = false;
1558 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1559 1.10 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1560 1.10 yamt }
1561 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1562 1.1 yamt vmem_dump(vm);
1563 1.1 yamt if (p == VMEM_ADDR_NULL) {
1564 1.10 yamt if (x) {
1565 1.10 yamt continue;
1566 1.10 yamt }
1567 1.1 yamt break;
1568 1.1 yamt }
1569 1.1 yamt nreg++;
1570 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1571 1.1 yamt r = ®[nreg - 1];
1572 1.1 yamt r->p = p;
1573 1.1 yamt r->sz = sz;
1574 1.10 yamt r->x = x;
1575 1.1 yamt total += sz;
1576 1.1 yamt nalloc++;
1577 1.1 yamt } else if (nreg != 0) {
1578 1.10 yamt /* free */
1579 1.1 yamt r = ®[rand() % nreg];
1580 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1581 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1582 1.10 yamt if (r->x) {
1583 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1584 1.10 yamt } else {
1585 1.10 yamt vmem_free(vm, r->p, r->sz);
1586 1.10 yamt }
1587 1.1 yamt total -= r->sz;
1588 1.1 yamt vmem_dump(vm);
1589 1.1 yamt *r = reg[nreg - 1];
1590 1.1 yamt nreg--;
1591 1.1 yamt nfree++;
1592 1.1 yamt }
1593 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1594 1.1 yamt }
1595 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1596 1.1 yamt (uint64_t)total, nalloc, nfree);
1597 1.1 yamt exit(EXIT_SUCCESS);
1598 1.1 yamt }
1599 1.1 yamt #endif /* !defined(_KERNEL) */
1600 1.1 yamt #endif /* defined(VMEM_DEBUG) */
1601