subr_vmem.c revision 1.55 1 1.55 yamt /* $NetBSD: subr_vmem.c,v 1.55 2009/02/18 13:31:59 yamt Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.55 yamt * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.18 yamt *
35 1.18 yamt * todo:
36 1.18 yamt * - decide how to import segments for vmem_xalloc.
37 1.18 yamt * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.55 yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.55 2009/02/18 13:31:59 yamt Exp $");
42 1.1 yamt
43 1.5 yamt #if defined(_KERNEL)
44 1.37 yamt #include "opt_ddb.h"
45 1.5 yamt #define QCACHE
46 1.5 yamt #endif /* defined(_KERNEL) */
47 1.1 yamt
48 1.1 yamt #include <sys/param.h>
49 1.1 yamt #include <sys/hash.h>
50 1.1 yamt #include <sys/queue.h>
51 1.1 yamt
52 1.1 yamt #if defined(_KERNEL)
53 1.1 yamt #include <sys/systm.h>
54 1.30 yamt #include <sys/kernel.h> /* hz */
55 1.30 yamt #include <sys/callout.h>
56 1.1 yamt #include <sys/malloc.h>
57 1.1 yamt #include <sys/once.h>
58 1.1 yamt #include <sys/pool.h>
59 1.1 yamt #include <sys/vmem.h>
60 1.30 yamt #include <sys/workqueue.h>
61 1.1 yamt #else /* defined(_KERNEL) */
62 1.1 yamt #include "../sys/vmem.h"
63 1.1 yamt #endif /* defined(_KERNEL) */
64 1.1 yamt
65 1.1 yamt #if defined(_KERNEL)
66 1.52 ad #define LOCK_DECL(name) \
67 1.52 ad kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
68 1.1 yamt #else /* defined(_KERNEL) */
69 1.1 yamt #include <errno.h>
70 1.1 yamt #include <assert.h>
71 1.1 yamt #include <stdlib.h>
72 1.1 yamt
73 1.55 yamt #define UNITTEST
74 1.1 yamt #define KASSERT(a) assert(a)
75 1.31 ad #define LOCK_DECL(name) /* nothing */
76 1.31 ad #define mutex_init(a, b, c) /* nothing */
77 1.31 ad #define mutex_destroy(a) /* nothing */
78 1.31 ad #define mutex_enter(a) /* nothing */
79 1.55 yamt #define mutex_tryenter(a) true
80 1.31 ad #define mutex_exit(a) /* nothing */
81 1.31 ad #define mutex_owned(a) /* nothing */
82 1.55 yamt #define ASSERT_SLEEPABLE() /* nothing */
83 1.55 yamt #define panic(...) printf(__VA_ARGS__); abort()
84 1.1 yamt #endif /* defined(_KERNEL) */
85 1.1 yamt
86 1.1 yamt struct vmem;
87 1.1 yamt struct vmem_btag;
88 1.1 yamt
89 1.55 yamt #if defined(VMEM_SANITY)
90 1.55 yamt static void vmem_check(vmem_t *);
91 1.55 yamt #else /* defined(VMEM_SANITY) */
92 1.55 yamt #define vmem_check(vm) /* nothing */
93 1.55 yamt #endif /* defined(VMEM_SANITY) */
94 1.1 yamt
95 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
96 1.30 yamt
97 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
98 1.54 yamt #define VMEM_HASHSIZE_MAX 65536 /* XXX */
99 1.53 pooka #define VMEM_HASHSIZE_INIT 128
100 1.1 yamt
101 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
102 1.1 yamt
103 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
104 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
105 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
106 1.1 yamt
107 1.5 yamt #if defined(QCACHE)
108 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
109 1.5 yamt
110 1.5 yamt #define QC_NAME_MAX 16
111 1.5 yamt
112 1.5 yamt struct qcache {
113 1.35 ad pool_cache_t qc_cache;
114 1.5 yamt vmem_t *qc_vmem;
115 1.5 yamt char qc_name[QC_NAME_MAX];
116 1.5 yamt };
117 1.5 yamt typedef struct qcache qcache_t;
118 1.35 ad #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
119 1.5 yamt #endif /* defined(QCACHE) */
120 1.5 yamt
121 1.1 yamt /* vmem arena */
122 1.1 yamt struct vmem {
123 1.31 ad LOCK_DECL(vm_lock);
124 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
125 1.1 yamt vm_flag_t);
126 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
127 1.1 yamt vmem_t *vm_source;
128 1.1 yamt struct vmem_seglist vm_seglist;
129 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
130 1.1 yamt size_t vm_hashsize;
131 1.1 yamt size_t vm_nbusytag;
132 1.1 yamt struct vmem_hashlist *vm_hashlist;
133 1.1 yamt size_t vm_quantum_mask;
134 1.1 yamt int vm_quantum_shift;
135 1.1 yamt const char *vm_name;
136 1.30 yamt LIST_ENTRY(vmem) vm_alllist;
137 1.5 yamt
138 1.5 yamt #if defined(QCACHE)
139 1.5 yamt /* quantum cache */
140 1.5 yamt size_t vm_qcache_max;
141 1.5 yamt struct pool_allocator vm_qcache_allocator;
142 1.22 yamt qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
143 1.22 yamt qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
144 1.5 yamt #endif /* defined(QCACHE) */
145 1.1 yamt };
146 1.1 yamt
147 1.31 ad #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
148 1.31 ad #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
149 1.31 ad #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
150 1.36 ad #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
151 1.31 ad #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
152 1.31 ad #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
153 1.1 yamt
154 1.1 yamt /* boundary tag */
155 1.1 yamt struct vmem_btag {
156 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
157 1.1 yamt union {
158 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
159 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
160 1.1 yamt } bt_u;
161 1.1 yamt #define bt_hashlist bt_u.u_hashlist
162 1.1 yamt #define bt_freelist bt_u.u_freelist
163 1.1 yamt vmem_addr_t bt_start;
164 1.1 yamt vmem_size_t bt_size;
165 1.1 yamt int bt_type;
166 1.1 yamt };
167 1.1 yamt
168 1.1 yamt #define BT_TYPE_SPAN 1
169 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
170 1.1 yamt #define BT_TYPE_FREE 3
171 1.1 yamt #define BT_TYPE_BUSY 4
172 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
173 1.1 yamt
174 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
175 1.1 yamt
176 1.1 yamt typedef struct vmem_btag bt_t;
177 1.1 yamt
178 1.1 yamt /* ---- misc */
179 1.1 yamt
180 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
181 1.19 yamt (-(-(addr) & -(align)))
182 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
183 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
184 1.19 yamt
185 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
186 1.4 yamt
187 1.1 yamt static int
188 1.1 yamt calc_order(vmem_size_t size)
189 1.1 yamt {
190 1.4 yamt vmem_size_t target;
191 1.1 yamt int i;
192 1.1 yamt
193 1.1 yamt KASSERT(size != 0);
194 1.1 yamt
195 1.1 yamt i = 0;
196 1.4 yamt target = size >> 1;
197 1.4 yamt while (ORDER2SIZE(i) <= target) {
198 1.1 yamt i++;
199 1.1 yamt }
200 1.1 yamt
201 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
202 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
203 1.1 yamt
204 1.1 yamt return i;
205 1.1 yamt }
206 1.1 yamt
207 1.1 yamt #if defined(_KERNEL)
208 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
209 1.1 yamt #endif /* defined(_KERNEL) */
210 1.1 yamt
211 1.1 yamt static void *
212 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
213 1.1 yamt {
214 1.1 yamt
215 1.1 yamt #if defined(_KERNEL)
216 1.1 yamt return malloc(sz, M_VMEM,
217 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
218 1.1 yamt #else /* defined(_KERNEL) */
219 1.1 yamt return malloc(sz);
220 1.1 yamt #endif /* defined(_KERNEL) */
221 1.1 yamt }
222 1.1 yamt
223 1.1 yamt static void
224 1.1 yamt xfree(void *p)
225 1.1 yamt {
226 1.1 yamt
227 1.1 yamt #if defined(_KERNEL)
228 1.1 yamt return free(p, M_VMEM);
229 1.1 yamt #else /* defined(_KERNEL) */
230 1.1 yamt return free(p);
231 1.1 yamt #endif /* defined(_KERNEL) */
232 1.1 yamt }
233 1.1 yamt
234 1.1 yamt /* ---- boundary tag */
235 1.1 yamt
236 1.1 yamt #if defined(_KERNEL)
237 1.35 ad static struct pool_cache bt_cache;
238 1.1 yamt #endif /* defined(_KERNEL) */
239 1.1 yamt
240 1.1 yamt static bt_t *
241 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
242 1.1 yamt {
243 1.1 yamt bt_t *bt;
244 1.1 yamt
245 1.1 yamt #if defined(_KERNEL)
246 1.35 ad bt = pool_cache_get(&bt_cache,
247 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
248 1.1 yamt #else /* defined(_KERNEL) */
249 1.1 yamt bt = malloc(sizeof *bt);
250 1.1 yamt #endif /* defined(_KERNEL) */
251 1.1 yamt
252 1.1 yamt return bt;
253 1.1 yamt }
254 1.1 yamt
255 1.1 yamt static void
256 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
257 1.1 yamt {
258 1.1 yamt
259 1.1 yamt #if defined(_KERNEL)
260 1.35 ad pool_cache_put(&bt_cache, bt);
261 1.1 yamt #else /* defined(_KERNEL) */
262 1.1 yamt free(bt);
263 1.1 yamt #endif /* defined(_KERNEL) */
264 1.1 yamt }
265 1.1 yamt
266 1.1 yamt /*
267 1.1 yamt * freelist[0] ... [1, 1]
268 1.1 yamt * freelist[1] ... [2, 3]
269 1.1 yamt * freelist[2] ... [4, 7]
270 1.1 yamt * freelist[3] ... [8, 15]
271 1.1 yamt * :
272 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
273 1.1 yamt * :
274 1.1 yamt */
275 1.1 yamt
276 1.1 yamt static struct vmem_freelist *
277 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
278 1.1 yamt {
279 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
280 1.1 yamt int idx;
281 1.1 yamt
282 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
283 1.1 yamt KASSERT(size != 0);
284 1.1 yamt
285 1.1 yamt idx = calc_order(qsize);
286 1.1 yamt KASSERT(idx >= 0);
287 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
288 1.1 yamt
289 1.1 yamt return &vm->vm_freelist[idx];
290 1.1 yamt }
291 1.1 yamt
292 1.1 yamt static struct vmem_freelist *
293 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
294 1.1 yamt {
295 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
296 1.1 yamt int idx;
297 1.1 yamt
298 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
299 1.1 yamt KASSERT(size != 0);
300 1.1 yamt
301 1.1 yamt idx = calc_order(qsize);
302 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
303 1.1 yamt idx++;
304 1.1 yamt /* check too large request? */
305 1.1 yamt }
306 1.1 yamt KASSERT(idx >= 0);
307 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
308 1.1 yamt
309 1.1 yamt return &vm->vm_freelist[idx];
310 1.1 yamt }
311 1.1 yamt
312 1.1 yamt /* ---- boundary tag hash */
313 1.1 yamt
314 1.1 yamt static struct vmem_hashlist *
315 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
316 1.1 yamt {
317 1.1 yamt struct vmem_hashlist *list;
318 1.1 yamt unsigned int hash;
319 1.1 yamt
320 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
321 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
322 1.1 yamt
323 1.1 yamt return list;
324 1.1 yamt }
325 1.1 yamt
326 1.1 yamt static bt_t *
327 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
328 1.1 yamt {
329 1.1 yamt struct vmem_hashlist *list;
330 1.1 yamt bt_t *bt;
331 1.1 yamt
332 1.1 yamt list = bt_hashhead(vm, addr);
333 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
334 1.1 yamt if (bt->bt_start == addr) {
335 1.1 yamt break;
336 1.1 yamt }
337 1.1 yamt }
338 1.1 yamt
339 1.1 yamt return bt;
340 1.1 yamt }
341 1.1 yamt
342 1.1 yamt static void
343 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
344 1.1 yamt {
345 1.1 yamt
346 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
347 1.1 yamt vm->vm_nbusytag--;
348 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
349 1.1 yamt }
350 1.1 yamt
351 1.1 yamt static void
352 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
353 1.1 yamt {
354 1.1 yamt struct vmem_hashlist *list;
355 1.1 yamt
356 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
357 1.1 yamt
358 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
359 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
360 1.1 yamt vm->vm_nbusytag++;
361 1.1 yamt }
362 1.1 yamt
363 1.1 yamt /* ---- boundary tag list */
364 1.1 yamt
365 1.1 yamt static void
366 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
367 1.1 yamt {
368 1.1 yamt
369 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
370 1.1 yamt }
371 1.1 yamt
372 1.1 yamt static void
373 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
374 1.1 yamt {
375 1.1 yamt
376 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
377 1.1 yamt }
378 1.1 yamt
379 1.1 yamt static void
380 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
381 1.1 yamt {
382 1.1 yamt
383 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
384 1.1 yamt }
385 1.1 yamt
386 1.1 yamt static void
387 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
388 1.1 yamt {
389 1.1 yamt
390 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
391 1.1 yamt
392 1.1 yamt LIST_REMOVE(bt, bt_freelist);
393 1.1 yamt }
394 1.1 yamt
395 1.1 yamt static void
396 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
397 1.1 yamt {
398 1.1 yamt struct vmem_freelist *list;
399 1.1 yamt
400 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
401 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
402 1.1 yamt }
403 1.1 yamt
404 1.1 yamt /* ---- vmem internal functions */
405 1.1 yamt
406 1.30 yamt #if defined(_KERNEL)
407 1.30 yamt static kmutex_t vmem_list_lock;
408 1.30 yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
409 1.30 yamt #endif /* defined(_KERNEL) */
410 1.30 yamt
411 1.5 yamt #if defined(QCACHE)
412 1.5 yamt static inline vm_flag_t
413 1.5 yamt prf_to_vmf(int prflags)
414 1.5 yamt {
415 1.5 yamt vm_flag_t vmflags;
416 1.5 yamt
417 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
418 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
419 1.5 yamt vmflags = VM_SLEEP;
420 1.5 yamt } else {
421 1.5 yamt vmflags = VM_NOSLEEP;
422 1.5 yamt }
423 1.5 yamt return vmflags;
424 1.5 yamt }
425 1.5 yamt
426 1.5 yamt static inline int
427 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
428 1.5 yamt {
429 1.5 yamt int prflags;
430 1.5 yamt
431 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
432 1.5 yamt prflags = PR_WAITOK;
433 1.7 yamt } else {
434 1.5 yamt prflags = PR_NOWAIT;
435 1.5 yamt }
436 1.5 yamt return prflags;
437 1.5 yamt }
438 1.5 yamt
439 1.5 yamt static size_t
440 1.5 yamt qc_poolpage_size(size_t qcache_max)
441 1.5 yamt {
442 1.5 yamt int i;
443 1.5 yamt
444 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
445 1.5 yamt /* nothing */
446 1.5 yamt }
447 1.5 yamt return ORDER2SIZE(i);
448 1.5 yamt }
449 1.5 yamt
450 1.5 yamt static void *
451 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
452 1.5 yamt {
453 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
454 1.5 yamt vmem_t *vm = qc->qc_vmem;
455 1.5 yamt
456 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
457 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
458 1.5 yamt }
459 1.5 yamt
460 1.5 yamt static void
461 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
462 1.5 yamt {
463 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
464 1.5 yamt vmem_t *vm = qc->qc_vmem;
465 1.5 yamt
466 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
467 1.5 yamt }
468 1.5 yamt
469 1.5 yamt static void
470 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
471 1.5 yamt {
472 1.22 yamt qcache_t *prevqc;
473 1.5 yamt struct pool_allocator *pa;
474 1.5 yamt int qcache_idx_max;
475 1.5 yamt int i;
476 1.5 yamt
477 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
478 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
479 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
480 1.5 yamt }
481 1.5 yamt vm->vm_qcache_max = qcache_max;
482 1.5 yamt pa = &vm->vm_qcache_allocator;
483 1.5 yamt memset(pa, 0, sizeof(*pa));
484 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
485 1.5 yamt pa->pa_free = qc_poolpage_free;
486 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
487 1.5 yamt
488 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
489 1.22 yamt prevqc = NULL;
490 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
491 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
492 1.5 yamt size_t size = i << vm->vm_quantum_shift;
493 1.5 yamt
494 1.5 yamt qc->qc_vmem = vm;
495 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
496 1.5 yamt vm->vm_name, size);
497 1.35 ad qc->qc_cache = pool_cache_init(size,
498 1.35 ad ORDER2SIZE(vm->vm_quantum_shift), 0,
499 1.35 ad PR_NOALIGN | PR_NOTOUCH /* XXX */,
500 1.35 ad qc->qc_name, pa, ipl, NULL, NULL, NULL);
501 1.35 ad KASSERT(qc->qc_cache != NULL); /* XXX */
502 1.22 yamt if (prevqc != NULL &&
503 1.35 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
504 1.35 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
505 1.35 ad pool_cache_destroy(qc->qc_cache);
506 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
507 1.27 ad continue;
508 1.22 yamt }
509 1.35 ad qc->qc_cache->pc_pool.pr_qcache = qc;
510 1.22 yamt vm->vm_qcache[i - 1] = qc;
511 1.22 yamt prevqc = qc;
512 1.5 yamt }
513 1.5 yamt }
514 1.6 yamt
515 1.23 yamt static void
516 1.23 yamt qc_destroy(vmem_t *vm)
517 1.23 yamt {
518 1.23 yamt const qcache_t *prevqc;
519 1.23 yamt int i;
520 1.23 yamt int qcache_idx_max;
521 1.23 yamt
522 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
523 1.23 yamt prevqc = NULL;
524 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
525 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
526 1.23 yamt
527 1.23 yamt if (prevqc == qc) {
528 1.23 yamt continue;
529 1.23 yamt }
530 1.35 ad pool_cache_destroy(qc->qc_cache);
531 1.23 yamt prevqc = qc;
532 1.23 yamt }
533 1.23 yamt }
534 1.23 yamt
535 1.25 thorpej static bool
536 1.6 yamt qc_reap(vmem_t *vm)
537 1.6 yamt {
538 1.22 yamt const qcache_t *prevqc;
539 1.6 yamt int i;
540 1.6 yamt int qcache_idx_max;
541 1.26 thorpej bool didsomething = false;
542 1.6 yamt
543 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
544 1.22 yamt prevqc = NULL;
545 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
546 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
547 1.6 yamt
548 1.22 yamt if (prevqc == qc) {
549 1.22 yamt continue;
550 1.22 yamt }
551 1.35 ad if (pool_cache_reclaim(qc->qc_cache) != 0) {
552 1.26 thorpej didsomething = true;
553 1.6 yamt }
554 1.22 yamt prevqc = qc;
555 1.6 yamt }
556 1.6 yamt
557 1.6 yamt return didsomething;
558 1.6 yamt }
559 1.5 yamt #endif /* defined(QCACHE) */
560 1.5 yamt
561 1.1 yamt #if defined(_KERNEL)
562 1.1 yamt static int
563 1.1 yamt vmem_init(void)
564 1.1 yamt {
565 1.1 yamt
566 1.30 yamt mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
567 1.35 ad pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
568 1.35 ad NULL, IPL_VM, NULL, NULL, NULL);
569 1.1 yamt return 0;
570 1.1 yamt }
571 1.1 yamt #endif /* defined(_KERNEL) */
572 1.1 yamt
573 1.1 yamt static vmem_addr_t
574 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
575 1.1 yamt int spanbttype)
576 1.1 yamt {
577 1.1 yamt bt_t *btspan;
578 1.1 yamt bt_t *btfree;
579 1.1 yamt
580 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
581 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
582 1.47 cegger KASSERT(spanbttype == BT_TYPE_SPAN || spanbttype == BT_TYPE_SPAN_STATIC);
583 1.1 yamt
584 1.1 yamt btspan = bt_alloc(vm, flags);
585 1.1 yamt if (btspan == NULL) {
586 1.1 yamt return VMEM_ADDR_NULL;
587 1.1 yamt }
588 1.1 yamt btfree = bt_alloc(vm, flags);
589 1.1 yamt if (btfree == NULL) {
590 1.1 yamt bt_free(vm, btspan);
591 1.1 yamt return VMEM_ADDR_NULL;
592 1.1 yamt }
593 1.1 yamt
594 1.1 yamt btspan->bt_type = spanbttype;
595 1.1 yamt btspan->bt_start = addr;
596 1.1 yamt btspan->bt_size = size;
597 1.1 yamt
598 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
599 1.1 yamt btfree->bt_start = addr;
600 1.1 yamt btfree->bt_size = size;
601 1.1 yamt
602 1.1 yamt VMEM_LOCK(vm);
603 1.1 yamt bt_insseg_tail(vm, btspan);
604 1.1 yamt bt_insseg(vm, btfree, btspan);
605 1.1 yamt bt_insfree(vm, btfree);
606 1.1 yamt VMEM_UNLOCK(vm);
607 1.1 yamt
608 1.1 yamt return addr;
609 1.1 yamt }
610 1.1 yamt
611 1.30 yamt static void
612 1.30 yamt vmem_destroy1(vmem_t *vm)
613 1.30 yamt {
614 1.30 yamt
615 1.30 yamt #if defined(QCACHE)
616 1.30 yamt qc_destroy(vm);
617 1.30 yamt #endif /* defined(QCACHE) */
618 1.30 yamt if (vm->vm_hashlist != NULL) {
619 1.30 yamt int i;
620 1.30 yamt
621 1.30 yamt for (i = 0; i < vm->vm_hashsize; i++) {
622 1.30 yamt bt_t *bt;
623 1.30 yamt
624 1.30 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
625 1.30 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
626 1.30 yamt bt_free(vm, bt);
627 1.30 yamt }
628 1.30 yamt }
629 1.30 yamt xfree(vm->vm_hashlist);
630 1.30 yamt }
631 1.31 ad VMEM_LOCK_DESTROY(vm);
632 1.30 yamt xfree(vm);
633 1.30 yamt }
634 1.30 yamt
635 1.1 yamt static int
636 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
637 1.1 yamt {
638 1.1 yamt vmem_addr_t addr;
639 1.1 yamt
640 1.1 yamt if (vm->vm_allocfn == NULL) {
641 1.1 yamt return EINVAL;
642 1.1 yamt }
643 1.1 yamt
644 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
645 1.1 yamt if (addr == VMEM_ADDR_NULL) {
646 1.1 yamt return ENOMEM;
647 1.1 yamt }
648 1.1 yamt
649 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
650 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
651 1.1 yamt return ENOMEM;
652 1.1 yamt }
653 1.1 yamt
654 1.1 yamt return 0;
655 1.1 yamt }
656 1.1 yamt
657 1.1 yamt static int
658 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
659 1.1 yamt {
660 1.1 yamt bt_t *bt;
661 1.1 yamt int i;
662 1.1 yamt struct vmem_hashlist *newhashlist;
663 1.1 yamt struct vmem_hashlist *oldhashlist;
664 1.1 yamt size_t oldhashsize;
665 1.1 yamt
666 1.1 yamt KASSERT(newhashsize > 0);
667 1.1 yamt
668 1.1 yamt newhashlist =
669 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
670 1.1 yamt if (newhashlist == NULL) {
671 1.1 yamt return ENOMEM;
672 1.1 yamt }
673 1.1 yamt for (i = 0; i < newhashsize; i++) {
674 1.1 yamt LIST_INIT(&newhashlist[i]);
675 1.1 yamt }
676 1.1 yamt
677 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
678 1.30 yamt xfree(newhashlist);
679 1.30 yamt return EBUSY;
680 1.30 yamt }
681 1.1 yamt oldhashlist = vm->vm_hashlist;
682 1.1 yamt oldhashsize = vm->vm_hashsize;
683 1.1 yamt vm->vm_hashlist = newhashlist;
684 1.1 yamt vm->vm_hashsize = newhashsize;
685 1.1 yamt if (oldhashlist == NULL) {
686 1.1 yamt VMEM_UNLOCK(vm);
687 1.1 yamt return 0;
688 1.1 yamt }
689 1.1 yamt for (i = 0; i < oldhashsize; i++) {
690 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
691 1.1 yamt bt_rembusy(vm, bt); /* XXX */
692 1.1 yamt bt_insbusy(vm, bt);
693 1.1 yamt }
694 1.1 yamt }
695 1.1 yamt VMEM_UNLOCK(vm);
696 1.1 yamt
697 1.1 yamt xfree(oldhashlist);
698 1.1 yamt
699 1.1 yamt return 0;
700 1.1 yamt }
701 1.1 yamt
702 1.10 yamt /*
703 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
704 1.10 yamt */
705 1.10 yamt
706 1.10 yamt static vmem_addr_t
707 1.10 yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
708 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
709 1.10 yamt {
710 1.10 yamt vmem_addr_t start;
711 1.10 yamt vmem_addr_t end;
712 1.10 yamt
713 1.10 yamt KASSERT(bt->bt_size >= size);
714 1.10 yamt
715 1.10 yamt /*
716 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
717 1.10 yamt * unsigned integer of the same size.
718 1.10 yamt */
719 1.10 yamt
720 1.10 yamt start = bt->bt_start;
721 1.10 yamt if (start < minaddr) {
722 1.10 yamt start = minaddr;
723 1.10 yamt }
724 1.10 yamt end = BT_END(bt);
725 1.10 yamt if (end > maxaddr - 1) {
726 1.10 yamt end = maxaddr - 1;
727 1.10 yamt }
728 1.10 yamt if (start >= end) {
729 1.10 yamt return VMEM_ADDR_NULL;
730 1.10 yamt }
731 1.19 yamt
732 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
733 1.10 yamt if (start < bt->bt_start) {
734 1.10 yamt start += align;
735 1.10 yamt }
736 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
737 1.10 yamt KASSERT(align < nocross);
738 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
739 1.10 yamt }
740 1.10 yamt if (start < end && end - start >= size) {
741 1.10 yamt KASSERT((start & (align - 1)) == phase);
742 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
743 1.10 yamt KASSERT(minaddr <= start);
744 1.10 yamt KASSERT(maxaddr == 0 || start + size <= maxaddr);
745 1.10 yamt KASSERT(bt->bt_start <= start);
746 1.10 yamt KASSERT(start + size <= BT_END(bt));
747 1.10 yamt return start;
748 1.10 yamt }
749 1.10 yamt return VMEM_ADDR_NULL;
750 1.10 yamt }
751 1.10 yamt
752 1.1 yamt /* ---- vmem API */
753 1.1 yamt
754 1.1 yamt /*
755 1.1 yamt * vmem_create: create an arena.
756 1.1 yamt *
757 1.1 yamt * => must not be called from interrupt context.
758 1.1 yamt */
759 1.1 yamt
760 1.1 yamt vmem_t *
761 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
762 1.1 yamt vmem_size_t quantum,
763 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
764 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
765 1.31 ad vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
766 1.31 ad int ipl)
767 1.1 yamt {
768 1.1 yamt vmem_t *vm;
769 1.1 yamt int i;
770 1.1 yamt #if defined(_KERNEL)
771 1.1 yamt static ONCE_DECL(control);
772 1.1 yamt #endif /* defined(_KERNEL) */
773 1.1 yamt
774 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
775 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
776 1.1 yamt
777 1.1 yamt #if defined(_KERNEL)
778 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
779 1.1 yamt return NULL;
780 1.1 yamt }
781 1.1 yamt #endif /* defined(_KERNEL) */
782 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
783 1.1 yamt if (vm == NULL) {
784 1.1 yamt return NULL;
785 1.1 yamt }
786 1.1 yamt
787 1.31 ad VMEM_LOCK_INIT(vm, ipl);
788 1.1 yamt vm->vm_name = name;
789 1.1 yamt vm->vm_quantum_mask = quantum - 1;
790 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
791 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
792 1.1 yamt vm->vm_allocfn = allocfn;
793 1.1 yamt vm->vm_freefn = freefn;
794 1.1 yamt vm->vm_source = source;
795 1.1 yamt vm->vm_nbusytag = 0;
796 1.5 yamt #if defined(QCACHE)
797 1.31 ad qc_init(vm, qcache_max, ipl);
798 1.5 yamt #endif /* defined(QCACHE) */
799 1.1 yamt
800 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
801 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
802 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
803 1.1 yamt }
804 1.1 yamt vm->vm_hashlist = NULL;
805 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
806 1.30 yamt vmem_destroy1(vm);
807 1.1 yamt return NULL;
808 1.1 yamt }
809 1.1 yamt
810 1.1 yamt if (size != 0) {
811 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
812 1.30 yamt vmem_destroy1(vm);
813 1.1 yamt return NULL;
814 1.1 yamt }
815 1.1 yamt }
816 1.1 yamt
817 1.30 yamt #if defined(_KERNEL)
818 1.30 yamt mutex_enter(&vmem_list_lock);
819 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
820 1.30 yamt mutex_exit(&vmem_list_lock);
821 1.30 yamt #endif /* defined(_KERNEL) */
822 1.30 yamt
823 1.1 yamt return vm;
824 1.1 yamt }
825 1.1 yamt
826 1.1 yamt void
827 1.1 yamt vmem_destroy(vmem_t *vm)
828 1.1 yamt {
829 1.1 yamt
830 1.30 yamt #if defined(_KERNEL)
831 1.30 yamt mutex_enter(&vmem_list_lock);
832 1.30 yamt LIST_REMOVE(vm, vm_alllist);
833 1.30 yamt mutex_exit(&vmem_list_lock);
834 1.30 yamt #endif /* defined(_KERNEL) */
835 1.1 yamt
836 1.30 yamt vmem_destroy1(vm);
837 1.1 yamt }
838 1.1 yamt
839 1.1 yamt vmem_size_t
840 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
841 1.1 yamt {
842 1.1 yamt
843 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
844 1.1 yamt }
845 1.1 yamt
846 1.1 yamt /*
847 1.1 yamt * vmem_alloc:
848 1.1 yamt *
849 1.1 yamt * => caller must ensure appropriate spl,
850 1.1 yamt * if the arena can be accessed from interrupt context.
851 1.1 yamt */
852 1.1 yamt
853 1.1 yamt vmem_addr_t
854 1.38 yamt vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
855 1.1 yamt {
856 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
857 1.1 yamt
858 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
859 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
860 1.1 yamt
861 1.1 yamt KASSERT(size > 0);
862 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
863 1.3 yamt if ((flags & VM_SLEEP) != 0) {
864 1.42 yamt ASSERT_SLEEPABLE();
865 1.3 yamt }
866 1.1 yamt
867 1.5 yamt #if defined(QCACHE)
868 1.5 yamt if (size <= vm->vm_qcache_max) {
869 1.38 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
870 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
871 1.5 yamt
872 1.35 ad return (vmem_addr_t)pool_cache_get(qc->qc_cache,
873 1.5 yamt vmf_to_prf(flags));
874 1.5 yamt }
875 1.5 yamt #endif /* defined(QCACHE) */
876 1.5 yamt
877 1.38 yamt return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
878 1.10 yamt }
879 1.10 yamt
880 1.10 yamt vmem_addr_t
881 1.10 yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
882 1.10 yamt vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
883 1.10 yamt vm_flag_t flags)
884 1.10 yamt {
885 1.10 yamt struct vmem_freelist *list;
886 1.10 yamt struct vmem_freelist *first;
887 1.10 yamt struct vmem_freelist *end;
888 1.10 yamt bt_t *bt;
889 1.10 yamt bt_t *btnew;
890 1.10 yamt bt_t *btnew2;
891 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
892 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
893 1.10 yamt vmem_addr_t start;
894 1.10 yamt
895 1.10 yamt KASSERT(size0 > 0);
896 1.10 yamt KASSERT(size > 0);
897 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
898 1.10 yamt if ((flags & VM_SLEEP) != 0) {
899 1.42 yamt ASSERT_SLEEPABLE();
900 1.10 yamt }
901 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
902 1.10 yamt KASSERT((align & (align - 1)) == 0);
903 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
904 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
905 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
906 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
907 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
908 1.10 yamt KASSERT(maxaddr == 0 || minaddr < maxaddr);
909 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
910 1.10 yamt
911 1.10 yamt if (align == 0) {
912 1.10 yamt align = vm->vm_quantum_mask + 1;
913 1.10 yamt }
914 1.1 yamt btnew = bt_alloc(vm, flags);
915 1.1 yamt if (btnew == NULL) {
916 1.1 yamt return VMEM_ADDR_NULL;
917 1.1 yamt }
918 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
919 1.10 yamt if (btnew2 == NULL) {
920 1.10 yamt bt_free(vm, btnew);
921 1.10 yamt return VMEM_ADDR_NULL;
922 1.10 yamt }
923 1.1 yamt
924 1.1 yamt retry_strat:
925 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
926 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
927 1.1 yamt retry:
928 1.1 yamt bt = NULL;
929 1.1 yamt VMEM_LOCK(vm);
930 1.55 yamt vmem_check(vm);
931 1.2 yamt if (strat == VM_INSTANTFIT) {
932 1.2 yamt for (list = first; list < end; list++) {
933 1.2 yamt bt = LIST_FIRST(list);
934 1.2 yamt if (bt != NULL) {
935 1.10 yamt start = vmem_fit(bt, size, align, phase,
936 1.10 yamt nocross, minaddr, maxaddr);
937 1.10 yamt if (start != VMEM_ADDR_NULL) {
938 1.10 yamt goto gotit;
939 1.10 yamt }
940 1.2 yamt }
941 1.2 yamt }
942 1.2 yamt } else { /* VM_BESTFIT */
943 1.2 yamt for (list = first; list < end; list++) {
944 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
945 1.2 yamt if (bt->bt_size >= size) {
946 1.10 yamt start = vmem_fit(bt, size, align, phase,
947 1.10 yamt nocross, minaddr, maxaddr);
948 1.10 yamt if (start != VMEM_ADDR_NULL) {
949 1.10 yamt goto gotit;
950 1.10 yamt }
951 1.2 yamt }
952 1.1 yamt }
953 1.1 yamt }
954 1.1 yamt }
955 1.2 yamt VMEM_UNLOCK(vm);
956 1.1 yamt #if 1
957 1.2 yamt if (strat == VM_INSTANTFIT) {
958 1.2 yamt strat = VM_BESTFIT;
959 1.2 yamt goto retry_strat;
960 1.2 yamt }
961 1.1 yamt #endif
962 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
963 1.10 yamt nocross != 0 || minaddr != 0 || maxaddr != 0) {
964 1.10 yamt
965 1.10 yamt /*
966 1.10 yamt * XXX should try to import a region large enough to
967 1.10 yamt * satisfy restrictions?
968 1.10 yamt */
969 1.10 yamt
970 1.20 yamt goto fail;
971 1.10 yamt }
972 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
973 1.2 yamt goto retry;
974 1.1 yamt }
975 1.2 yamt /* XXX */
976 1.20 yamt fail:
977 1.20 yamt bt_free(vm, btnew);
978 1.20 yamt bt_free(vm, btnew2);
979 1.2 yamt return VMEM_ADDR_NULL;
980 1.2 yamt
981 1.2 yamt gotit:
982 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
983 1.1 yamt KASSERT(bt->bt_size >= size);
984 1.1 yamt bt_remfree(vm, bt);
985 1.55 yamt vmem_check(vm);
986 1.10 yamt if (bt->bt_start != start) {
987 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
988 1.10 yamt btnew2->bt_start = bt->bt_start;
989 1.10 yamt btnew2->bt_size = start - bt->bt_start;
990 1.10 yamt bt->bt_start = start;
991 1.10 yamt bt->bt_size -= btnew2->bt_size;
992 1.10 yamt bt_insfree(vm, btnew2);
993 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
994 1.10 yamt btnew2 = NULL;
995 1.55 yamt vmem_check(vm);
996 1.10 yamt }
997 1.10 yamt KASSERT(bt->bt_start == start);
998 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
999 1.1 yamt /* split */
1000 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1001 1.1 yamt btnew->bt_start = bt->bt_start;
1002 1.1 yamt btnew->bt_size = size;
1003 1.1 yamt bt->bt_start = bt->bt_start + size;
1004 1.1 yamt bt->bt_size -= size;
1005 1.1 yamt bt_insfree(vm, bt);
1006 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1007 1.1 yamt bt_insbusy(vm, btnew);
1008 1.55 yamt vmem_check(vm);
1009 1.1 yamt VMEM_UNLOCK(vm);
1010 1.1 yamt } else {
1011 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1012 1.1 yamt bt_insbusy(vm, bt);
1013 1.55 yamt vmem_check(vm);
1014 1.1 yamt VMEM_UNLOCK(vm);
1015 1.1 yamt bt_free(vm, btnew);
1016 1.1 yamt btnew = bt;
1017 1.1 yamt }
1018 1.10 yamt if (btnew2 != NULL) {
1019 1.10 yamt bt_free(vm, btnew2);
1020 1.10 yamt }
1021 1.1 yamt KASSERT(btnew->bt_size >= size);
1022 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1023 1.1 yamt
1024 1.1 yamt return btnew->bt_start;
1025 1.1 yamt }
1026 1.1 yamt
1027 1.1 yamt /*
1028 1.1 yamt * vmem_free:
1029 1.1 yamt *
1030 1.1 yamt * => caller must ensure appropriate spl,
1031 1.1 yamt * if the arena can be accessed from interrupt context.
1032 1.1 yamt */
1033 1.1 yamt
1034 1.1 yamt void
1035 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1036 1.1 yamt {
1037 1.1 yamt
1038 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
1039 1.1 yamt KASSERT(size > 0);
1040 1.1 yamt
1041 1.5 yamt #if defined(QCACHE)
1042 1.5 yamt if (size <= vm->vm_qcache_max) {
1043 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1044 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1045 1.5 yamt
1046 1.35 ad return pool_cache_put(qc->qc_cache, (void *)addr);
1047 1.5 yamt }
1048 1.5 yamt #endif /* defined(QCACHE) */
1049 1.5 yamt
1050 1.10 yamt vmem_xfree(vm, addr, size);
1051 1.10 yamt }
1052 1.10 yamt
1053 1.10 yamt void
1054 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1055 1.10 yamt {
1056 1.10 yamt bt_t *bt;
1057 1.10 yamt bt_t *t;
1058 1.10 yamt
1059 1.10 yamt KASSERT(addr != VMEM_ADDR_NULL);
1060 1.10 yamt KASSERT(size > 0);
1061 1.10 yamt
1062 1.1 yamt VMEM_LOCK(vm);
1063 1.1 yamt
1064 1.1 yamt bt = bt_lookupbusy(vm, addr);
1065 1.1 yamt KASSERT(bt != NULL);
1066 1.1 yamt KASSERT(bt->bt_start == addr);
1067 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1068 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1069 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1070 1.1 yamt bt_rembusy(vm, bt);
1071 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1072 1.1 yamt
1073 1.1 yamt /* coalesce */
1074 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1075 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1076 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
1077 1.1 yamt bt_remfree(vm, t);
1078 1.1 yamt bt_remseg(vm, t);
1079 1.1 yamt bt->bt_size += t->bt_size;
1080 1.1 yamt bt_free(vm, t);
1081 1.1 yamt }
1082 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1083 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1084 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
1085 1.1 yamt bt_remfree(vm, t);
1086 1.1 yamt bt_remseg(vm, t);
1087 1.1 yamt bt->bt_size += t->bt_size;
1088 1.1 yamt bt->bt_start = t->bt_start;
1089 1.1 yamt bt_free(vm, t);
1090 1.1 yamt }
1091 1.1 yamt
1092 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1093 1.1 yamt KASSERT(t != NULL);
1094 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1095 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1096 1.1 yamt t->bt_size == bt->bt_size) {
1097 1.1 yamt vmem_addr_t spanaddr;
1098 1.1 yamt vmem_size_t spansize;
1099 1.1 yamt
1100 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1101 1.1 yamt spanaddr = bt->bt_start;
1102 1.1 yamt spansize = bt->bt_size;
1103 1.1 yamt bt_remseg(vm, bt);
1104 1.1 yamt bt_free(vm, bt);
1105 1.1 yamt bt_remseg(vm, t);
1106 1.1 yamt bt_free(vm, t);
1107 1.1 yamt VMEM_UNLOCK(vm);
1108 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1109 1.1 yamt } else {
1110 1.1 yamt bt_insfree(vm, bt);
1111 1.1 yamt VMEM_UNLOCK(vm);
1112 1.1 yamt }
1113 1.1 yamt }
1114 1.1 yamt
1115 1.1 yamt /*
1116 1.1 yamt * vmem_add:
1117 1.1 yamt *
1118 1.1 yamt * => caller must ensure appropriate spl,
1119 1.1 yamt * if the arena can be accessed from interrupt context.
1120 1.1 yamt */
1121 1.1 yamt
1122 1.1 yamt vmem_addr_t
1123 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1124 1.1 yamt {
1125 1.1 yamt
1126 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1127 1.1 yamt }
1128 1.1 yamt
1129 1.6 yamt /*
1130 1.6 yamt * vmem_reap: reap unused resources.
1131 1.6 yamt *
1132 1.26 thorpej * => return true if we successfully reaped something.
1133 1.6 yamt */
1134 1.6 yamt
1135 1.25 thorpej bool
1136 1.6 yamt vmem_reap(vmem_t *vm)
1137 1.6 yamt {
1138 1.26 thorpej bool didsomething = false;
1139 1.6 yamt
1140 1.6 yamt #if defined(QCACHE)
1141 1.6 yamt didsomething = qc_reap(vm);
1142 1.6 yamt #endif /* defined(QCACHE) */
1143 1.6 yamt return didsomething;
1144 1.6 yamt }
1145 1.6 yamt
1146 1.30 yamt /* ---- rehash */
1147 1.30 yamt
1148 1.30 yamt #if defined(_KERNEL)
1149 1.30 yamt static struct callout vmem_rehash_ch;
1150 1.30 yamt static int vmem_rehash_interval;
1151 1.30 yamt static struct workqueue *vmem_rehash_wq;
1152 1.30 yamt static struct work vmem_rehash_wk;
1153 1.30 yamt
1154 1.30 yamt static void
1155 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1156 1.30 yamt {
1157 1.30 yamt vmem_t *vm;
1158 1.30 yamt
1159 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1160 1.30 yamt mutex_enter(&vmem_list_lock);
1161 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1162 1.30 yamt size_t desired;
1163 1.30 yamt size_t current;
1164 1.30 yamt
1165 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
1166 1.30 yamt continue;
1167 1.30 yamt }
1168 1.30 yamt desired = vm->vm_nbusytag;
1169 1.30 yamt current = vm->vm_hashsize;
1170 1.30 yamt VMEM_UNLOCK(vm);
1171 1.30 yamt
1172 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1173 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1174 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1175 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1176 1.30 yamt }
1177 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1178 1.55 yamt printf("vmem %s rehash %zu -> %zu\n",
1179 1.55 yamt vm->vm_name, current, desired);
1180 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1181 1.30 yamt }
1182 1.30 yamt }
1183 1.30 yamt mutex_exit(&vmem_list_lock);
1184 1.30 yamt
1185 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1186 1.30 yamt }
1187 1.30 yamt
1188 1.30 yamt static void
1189 1.30 yamt vmem_rehash_all_kick(void *dummy)
1190 1.30 yamt {
1191 1.30 yamt
1192 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1193 1.30 yamt }
1194 1.30 yamt
1195 1.30 yamt void
1196 1.30 yamt vmem_rehash_start(void)
1197 1.30 yamt {
1198 1.30 yamt int error;
1199 1.30 yamt
1200 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1201 1.41 ad vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1202 1.30 yamt if (error) {
1203 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1204 1.30 yamt }
1205 1.41 ad callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1206 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1207 1.30 yamt
1208 1.30 yamt vmem_rehash_interval = hz * 10;
1209 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1210 1.30 yamt }
1211 1.30 yamt #endif /* defined(_KERNEL) */
1212 1.30 yamt
1213 1.1 yamt /* ---- debug */
1214 1.1 yamt
1215 1.55 yamt #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1216 1.55 yamt
1217 1.55 yamt static void bt_dump(const bt_t *, void (*)(const char *, ...));
1218 1.55 yamt
1219 1.55 yamt static const char *
1220 1.55 yamt bt_type_string(int type)
1221 1.55 yamt {
1222 1.55 yamt static const char * const table[] = {
1223 1.55 yamt [BT_TYPE_BUSY] = "busy",
1224 1.55 yamt [BT_TYPE_FREE] = "free",
1225 1.55 yamt [BT_TYPE_SPAN] = "span",
1226 1.55 yamt [BT_TYPE_SPAN_STATIC] = "static span",
1227 1.55 yamt };
1228 1.55 yamt
1229 1.55 yamt if (type >= __arraycount(table)) {
1230 1.55 yamt return "BOGUS";
1231 1.55 yamt }
1232 1.55 yamt return table[type];
1233 1.55 yamt }
1234 1.55 yamt
1235 1.55 yamt static void
1236 1.55 yamt bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1237 1.55 yamt {
1238 1.55 yamt
1239 1.55 yamt (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1240 1.55 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1241 1.55 yamt bt->bt_type, bt_type_string(bt->bt_type));
1242 1.55 yamt }
1243 1.55 yamt
1244 1.55 yamt static void
1245 1.55 yamt vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1246 1.55 yamt {
1247 1.55 yamt const bt_t *bt;
1248 1.55 yamt int i;
1249 1.55 yamt
1250 1.55 yamt (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1251 1.55 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1252 1.55 yamt bt_dump(bt, pr);
1253 1.55 yamt }
1254 1.55 yamt
1255 1.55 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1256 1.55 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1257 1.55 yamt
1258 1.55 yamt if (LIST_EMPTY(fl)) {
1259 1.55 yamt continue;
1260 1.55 yamt }
1261 1.55 yamt
1262 1.55 yamt (*pr)("freelist[%d]\n", i);
1263 1.55 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1264 1.55 yamt bt_dump(bt, pr);
1265 1.55 yamt }
1266 1.55 yamt }
1267 1.55 yamt }
1268 1.55 yamt
1269 1.55 yamt #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1270 1.55 yamt
1271 1.37 yamt #if defined(DDB)
1272 1.37 yamt static bt_t *
1273 1.37 yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1274 1.37 yamt {
1275 1.39 yamt bt_t *bt;
1276 1.37 yamt
1277 1.39 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1278 1.39 yamt if (BT_ISSPAN_P(bt)) {
1279 1.39 yamt continue;
1280 1.39 yamt }
1281 1.39 yamt if (bt->bt_start <= addr && addr < BT_END(bt)) {
1282 1.39 yamt return bt;
1283 1.37 yamt }
1284 1.37 yamt }
1285 1.37 yamt
1286 1.37 yamt return NULL;
1287 1.37 yamt }
1288 1.37 yamt
1289 1.37 yamt void
1290 1.37 yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1291 1.37 yamt {
1292 1.37 yamt vmem_t *vm;
1293 1.37 yamt
1294 1.37 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1295 1.37 yamt bt_t *bt;
1296 1.37 yamt
1297 1.37 yamt bt = vmem_whatis_lookup(vm, addr);
1298 1.37 yamt if (bt == NULL) {
1299 1.37 yamt continue;
1300 1.37 yamt }
1301 1.39 yamt (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1302 1.37 yamt (void *)addr, (void *)bt->bt_start,
1303 1.39 yamt (size_t)(addr - bt->bt_start), vm->vm_name,
1304 1.39 yamt (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1305 1.37 yamt }
1306 1.37 yamt }
1307 1.43 cegger
1308 1.55 yamt void
1309 1.55 yamt vmem_printall(const char *modif, void (*pr)(const char *, ...))
1310 1.43 cegger {
1311 1.55 yamt const vmem_t *vm;
1312 1.43 cegger
1313 1.47 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1314 1.55 yamt vmem_dump(vm, pr);
1315 1.43 cegger }
1316 1.43 cegger }
1317 1.43 cegger
1318 1.43 cegger void
1319 1.43 cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1320 1.43 cegger {
1321 1.55 yamt const vmem_t *vm = (const void *)addr;
1322 1.43 cegger
1323 1.55 yamt vmem_dump(vm, pr);
1324 1.43 cegger }
1325 1.37 yamt #endif /* defined(DDB) */
1326 1.37 yamt
1327 1.1 yamt #if !defined(_KERNEL)
1328 1.1 yamt #include <stdio.h>
1329 1.1 yamt #endif /* !defined(_KERNEL) */
1330 1.1 yamt
1331 1.55 yamt #if defined(VMEM_SANITY)
1332 1.1 yamt
1333 1.55 yamt static bool
1334 1.55 yamt vmem_check_sanity(vmem_t *vm)
1335 1.1 yamt {
1336 1.55 yamt const bt_t *bt, *bt2;
1337 1.1 yamt
1338 1.55 yamt KASSERT(vm != NULL);
1339 1.1 yamt
1340 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1341 1.55 yamt if (bt->bt_start >= BT_END(bt)) {
1342 1.55 yamt printf("corrupted tag\n");
1343 1.55 yamt bt_dump(bt, (void *)printf);
1344 1.55 yamt return false;
1345 1.55 yamt }
1346 1.55 yamt }
1347 1.55 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1348 1.55 yamt CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1349 1.55 yamt if (bt == bt2) {
1350 1.55 yamt continue;
1351 1.55 yamt }
1352 1.55 yamt if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1353 1.55 yamt continue;
1354 1.55 yamt }
1355 1.55 yamt if (bt->bt_start < BT_END(bt2) &&
1356 1.55 yamt bt2->bt_start < BT_END(bt)) {
1357 1.55 yamt printf("overwrapped tags\n");
1358 1.55 yamt bt_dump(bt, (void *)printf);
1359 1.55 yamt bt_dump(bt2, (void *)printf);
1360 1.55 yamt return false;
1361 1.55 yamt }
1362 1.55 yamt }
1363 1.1 yamt }
1364 1.1 yamt
1365 1.55 yamt return true;
1366 1.55 yamt }
1367 1.1 yamt
1368 1.55 yamt static void
1369 1.55 yamt vmem_check(vmem_t *vm)
1370 1.55 yamt {
1371 1.1 yamt
1372 1.55 yamt if (!vmem_check_sanity(vm)) {
1373 1.55 yamt panic("insanity vmem %p", vm);
1374 1.1 yamt }
1375 1.1 yamt }
1376 1.1 yamt
1377 1.55 yamt #endif /* defined(VMEM_SANITY) */
1378 1.1 yamt
1379 1.55 yamt #if defined(UNITTEST)
1380 1.1 yamt int
1381 1.1 yamt main()
1382 1.1 yamt {
1383 1.1 yamt vmem_t *vm;
1384 1.1 yamt vmem_addr_t p;
1385 1.1 yamt struct reg {
1386 1.1 yamt vmem_addr_t p;
1387 1.1 yamt vmem_size_t sz;
1388 1.25 thorpej bool x;
1389 1.1 yamt } *reg = NULL;
1390 1.1 yamt int nreg = 0;
1391 1.1 yamt int nalloc = 0;
1392 1.1 yamt int nfree = 0;
1393 1.1 yamt vmem_size_t total = 0;
1394 1.1 yamt #if 1
1395 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1396 1.1 yamt #else
1397 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1398 1.1 yamt #endif
1399 1.1 yamt
1400 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1401 1.55 yamt NULL, NULL, NULL, 0, VM_SLEEP, 0/*XXX*/);
1402 1.1 yamt if (vm == NULL) {
1403 1.1 yamt printf("vmem_create\n");
1404 1.1 yamt exit(EXIT_FAILURE);
1405 1.1 yamt }
1406 1.55 yamt vmem_dump(vm, (void *)printf);
1407 1.1 yamt
1408 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1409 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1410 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1411 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1412 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1413 1.55 yamt vmem_dump(vm, (void *)printf);
1414 1.1 yamt for (;;) {
1415 1.1 yamt struct reg *r;
1416 1.10 yamt int t = rand() % 100;
1417 1.1 yamt
1418 1.10 yamt if (t > 45) {
1419 1.10 yamt /* alloc */
1420 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1421 1.25 thorpej bool x;
1422 1.10 yamt vmem_size_t align, phase, nocross;
1423 1.10 yamt vmem_addr_t minaddr, maxaddr;
1424 1.10 yamt
1425 1.10 yamt if (t > 70) {
1426 1.26 thorpej x = true;
1427 1.10 yamt /* XXX */
1428 1.10 yamt align = 1 << (rand() % 15);
1429 1.10 yamt phase = rand() % 65536;
1430 1.10 yamt nocross = 1 << (rand() % 15);
1431 1.10 yamt if (align <= phase) {
1432 1.10 yamt phase = 0;
1433 1.10 yamt }
1434 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1435 1.19 yamt nocross)) {
1436 1.10 yamt nocross = 0;
1437 1.10 yamt }
1438 1.10 yamt minaddr = rand() % 50000;
1439 1.10 yamt maxaddr = rand() % 70000;
1440 1.10 yamt if (minaddr > maxaddr) {
1441 1.10 yamt minaddr = 0;
1442 1.10 yamt maxaddr = 0;
1443 1.10 yamt }
1444 1.10 yamt printf("=== xalloc %" PRIu64
1445 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1446 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1447 1.10 yamt ", max=%" PRIu64 "\n",
1448 1.10 yamt (uint64_t)sz,
1449 1.10 yamt (uint64_t)align,
1450 1.10 yamt (uint64_t)phase,
1451 1.10 yamt (uint64_t)nocross,
1452 1.10 yamt (uint64_t)minaddr,
1453 1.10 yamt (uint64_t)maxaddr);
1454 1.10 yamt p = vmem_xalloc(vm, sz, align, phase, nocross,
1455 1.10 yamt minaddr, maxaddr, strat|VM_SLEEP);
1456 1.10 yamt } else {
1457 1.26 thorpej x = false;
1458 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1459 1.10 yamt p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1460 1.10 yamt }
1461 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1462 1.55 yamt vmem_dump(vm, (void *)printf);
1463 1.1 yamt if (p == VMEM_ADDR_NULL) {
1464 1.10 yamt if (x) {
1465 1.10 yamt continue;
1466 1.10 yamt }
1467 1.1 yamt break;
1468 1.1 yamt }
1469 1.1 yamt nreg++;
1470 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1471 1.1 yamt r = ®[nreg - 1];
1472 1.1 yamt r->p = p;
1473 1.1 yamt r->sz = sz;
1474 1.10 yamt r->x = x;
1475 1.1 yamt total += sz;
1476 1.1 yamt nalloc++;
1477 1.1 yamt } else if (nreg != 0) {
1478 1.10 yamt /* free */
1479 1.1 yamt r = ®[rand() % nreg];
1480 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1481 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1482 1.10 yamt if (r->x) {
1483 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1484 1.10 yamt } else {
1485 1.10 yamt vmem_free(vm, r->p, r->sz);
1486 1.10 yamt }
1487 1.1 yamt total -= r->sz;
1488 1.55 yamt vmem_dump(vm, (void *)printf);
1489 1.1 yamt *r = reg[nreg - 1];
1490 1.1 yamt nreg--;
1491 1.1 yamt nfree++;
1492 1.1 yamt }
1493 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1494 1.1 yamt }
1495 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1496 1.1 yamt (uint64_t)total, nalloc, nfree);
1497 1.1 yamt exit(EXIT_SUCCESS);
1498 1.1 yamt }
1499 1.55 yamt #endif /* defined(UNITTEST) */
1500