Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.59
      1  1.59     yamt /*	$NetBSD: subr_vmem.c,v 1.59 2011/07/26 13:09:11 yamt Exp $	*/
      2   1.1     yamt 
      3   1.1     yamt /*-
      4  1.55     yamt  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
      5   1.1     yamt  * All rights reserved.
      6   1.1     yamt  *
      7   1.1     yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1     yamt  * modification, are permitted provided that the following conditions
      9   1.1     yamt  * are met:
     10   1.1     yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1     yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1     yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1     yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1     yamt  *
     16   1.1     yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1     yamt  * SUCH DAMAGE.
     27   1.1     yamt  */
     28   1.1     yamt 
     29   1.1     yamt /*
     30   1.1     yamt  * reference:
     31   1.1     yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32   1.1     yamt  *	to Many CPUs and Arbitrary Resources
     33   1.1     yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34  1.18     yamt  *
     35  1.18     yamt  * todo:
     36  1.18     yamt  * -	decide how to import segments for vmem_xalloc.
     37  1.18     yamt  * -	don't rely on malloc(9).
     38   1.1     yamt  */
     39   1.1     yamt 
     40   1.1     yamt #include <sys/cdefs.h>
     41  1.59     yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.59 2011/07/26 13:09:11 yamt Exp $");
     42   1.1     yamt 
     43   1.5     yamt #if defined(_KERNEL)
     44  1.37     yamt #include "opt_ddb.h"
     45   1.5     yamt #define	QCACHE
     46   1.5     yamt #endif /* defined(_KERNEL) */
     47   1.1     yamt 
     48   1.1     yamt #include <sys/param.h>
     49   1.1     yamt #include <sys/hash.h>
     50   1.1     yamt #include <sys/queue.h>
     51   1.1     yamt 
     52   1.1     yamt #if defined(_KERNEL)
     53   1.1     yamt #include <sys/systm.h>
     54  1.30     yamt #include <sys/kernel.h>	/* hz */
     55  1.30     yamt #include <sys/callout.h>
     56   1.1     yamt #include <sys/malloc.h>
     57   1.1     yamt #include <sys/once.h>
     58   1.1     yamt #include <sys/pool.h>
     59   1.1     yamt #include <sys/vmem.h>
     60  1.30     yamt #include <sys/workqueue.h>
     61   1.1     yamt #else /* defined(_KERNEL) */
     62   1.1     yamt #include "../sys/vmem.h"
     63   1.1     yamt #endif /* defined(_KERNEL) */
     64   1.1     yamt 
     65   1.1     yamt #if defined(_KERNEL)
     66  1.52       ad #define	LOCK_DECL(name)		\
     67  1.52       ad     kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
     68   1.1     yamt #else /* defined(_KERNEL) */
     69   1.1     yamt #include <errno.h>
     70   1.1     yamt #include <assert.h>
     71   1.1     yamt #include <stdlib.h>
     72   1.1     yamt 
     73  1.55     yamt #define	UNITTEST
     74   1.1     yamt #define	KASSERT(a)		assert(a)
     75  1.31       ad #define	LOCK_DECL(name)		/* nothing */
     76  1.31       ad #define	mutex_init(a, b, c)	/* nothing */
     77  1.31       ad #define	mutex_destroy(a)	/* nothing */
     78  1.31       ad #define	mutex_enter(a)		/* nothing */
     79  1.55     yamt #define	mutex_tryenter(a)	true
     80  1.31       ad #define	mutex_exit(a)		/* nothing */
     81  1.31       ad #define	mutex_owned(a)		/* nothing */
     82  1.55     yamt #define	ASSERT_SLEEPABLE()	/* nothing */
     83  1.55     yamt #define	panic(...)		printf(__VA_ARGS__); abort()
     84   1.1     yamt #endif /* defined(_KERNEL) */
     85   1.1     yamt 
     86   1.1     yamt struct vmem;
     87   1.1     yamt struct vmem_btag;
     88   1.1     yamt 
     89  1.55     yamt #if defined(VMEM_SANITY)
     90  1.55     yamt static void vmem_check(vmem_t *);
     91  1.55     yamt #else /* defined(VMEM_SANITY) */
     92  1.55     yamt #define vmem_check(vm)	/* nothing */
     93  1.55     yamt #endif /* defined(VMEM_SANITY) */
     94   1.1     yamt 
     95   1.4     yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     96  1.30     yamt 
     97  1.30     yamt #define	VMEM_HASHSIZE_MIN	1	/* XXX */
     98  1.54     yamt #define	VMEM_HASHSIZE_MAX	65536	/* XXX */
     99  1.53    pooka #define	VMEM_HASHSIZE_INIT	128
    100   1.1     yamt 
    101   1.1     yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
    102   1.1     yamt 
    103   1.1     yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
    104   1.1     yamt LIST_HEAD(vmem_freelist, vmem_btag);
    105   1.1     yamt LIST_HEAD(vmem_hashlist, vmem_btag);
    106   1.1     yamt 
    107   1.5     yamt #if defined(QCACHE)
    108   1.5     yamt #define	VMEM_QCACHE_IDX_MAX	32
    109   1.5     yamt 
    110   1.5     yamt #define	QC_NAME_MAX	16
    111   1.5     yamt 
    112   1.5     yamt struct qcache {
    113  1.35       ad 	pool_cache_t qc_cache;
    114   1.5     yamt 	vmem_t *qc_vmem;
    115   1.5     yamt 	char qc_name[QC_NAME_MAX];
    116   1.5     yamt };
    117   1.5     yamt typedef struct qcache qcache_t;
    118  1.35       ad #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
    119   1.5     yamt #endif /* defined(QCACHE) */
    120   1.5     yamt 
    121   1.1     yamt /* vmem arena */
    122   1.1     yamt struct vmem {
    123  1.31       ad 	LOCK_DECL(vm_lock);
    124   1.1     yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    125   1.1     yamt 	    vm_flag_t);
    126   1.1     yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    127   1.1     yamt 	vmem_t *vm_source;
    128   1.1     yamt 	struct vmem_seglist vm_seglist;
    129   1.1     yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    130   1.1     yamt 	size_t vm_hashsize;
    131   1.1     yamt 	size_t vm_nbusytag;
    132   1.1     yamt 	struct vmem_hashlist *vm_hashlist;
    133   1.1     yamt 	size_t vm_quantum_mask;
    134   1.1     yamt 	int vm_quantum_shift;
    135   1.1     yamt 	const char *vm_name;
    136  1.30     yamt 	LIST_ENTRY(vmem) vm_alllist;
    137   1.5     yamt 
    138   1.5     yamt #if defined(QCACHE)
    139   1.5     yamt 	/* quantum cache */
    140   1.5     yamt 	size_t vm_qcache_max;
    141   1.5     yamt 	struct pool_allocator vm_qcache_allocator;
    142  1.22     yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    143  1.22     yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    144   1.5     yamt #endif /* defined(QCACHE) */
    145   1.1     yamt };
    146   1.1     yamt 
    147  1.31       ad #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
    148  1.31       ad #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
    149  1.31       ad #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
    150  1.36       ad #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
    151  1.31       ad #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
    152  1.31       ad #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
    153   1.1     yamt 
    154   1.1     yamt /* boundary tag */
    155   1.1     yamt struct vmem_btag {
    156   1.1     yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    157   1.1     yamt 	union {
    158   1.1     yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    159   1.1     yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    160   1.1     yamt 	} bt_u;
    161   1.1     yamt #define	bt_hashlist	bt_u.u_hashlist
    162   1.1     yamt #define	bt_freelist	bt_u.u_freelist
    163   1.1     yamt 	vmem_addr_t bt_start;
    164   1.1     yamt 	vmem_size_t bt_size;
    165   1.1     yamt 	int bt_type;
    166   1.1     yamt };
    167   1.1     yamt 
    168   1.1     yamt #define	BT_TYPE_SPAN		1
    169   1.1     yamt #define	BT_TYPE_SPAN_STATIC	2
    170   1.1     yamt #define	BT_TYPE_FREE		3
    171   1.1     yamt #define	BT_TYPE_BUSY		4
    172   1.1     yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    173   1.1     yamt 
    174   1.1     yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    175   1.1     yamt 
    176   1.1     yamt typedef struct vmem_btag bt_t;
    177   1.1     yamt 
    178   1.1     yamt /* ---- misc */
    179   1.1     yamt 
    180  1.19     yamt #define	VMEM_ALIGNUP(addr, align) \
    181  1.19     yamt 	(-(-(addr) & -(align)))
    182  1.19     yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    183  1.19     yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    184  1.19     yamt 
    185   1.4     yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    186   1.4     yamt 
    187   1.1     yamt static int
    188   1.1     yamt calc_order(vmem_size_t size)
    189   1.1     yamt {
    190   1.4     yamt 	vmem_size_t target;
    191   1.1     yamt 	int i;
    192   1.1     yamt 
    193   1.1     yamt 	KASSERT(size != 0);
    194   1.1     yamt 
    195   1.1     yamt 	i = 0;
    196   1.4     yamt 	target = size >> 1;
    197   1.4     yamt 	while (ORDER2SIZE(i) <= target) {
    198   1.1     yamt 		i++;
    199   1.1     yamt 	}
    200   1.1     yamt 
    201   1.4     yamt 	KASSERT(ORDER2SIZE(i) <= size);
    202   1.4     yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    203   1.1     yamt 
    204   1.1     yamt 	return i;
    205   1.1     yamt }
    206   1.1     yamt 
    207   1.1     yamt #if defined(_KERNEL)
    208   1.1     yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    209   1.1     yamt #endif /* defined(_KERNEL) */
    210   1.1     yamt 
    211   1.1     yamt static void *
    212   1.1     yamt xmalloc(size_t sz, vm_flag_t flags)
    213   1.1     yamt {
    214   1.1     yamt 
    215   1.1     yamt #if defined(_KERNEL)
    216   1.1     yamt 	return malloc(sz, M_VMEM,
    217   1.1     yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    218   1.1     yamt #else /* defined(_KERNEL) */
    219   1.1     yamt 	return malloc(sz);
    220   1.1     yamt #endif /* defined(_KERNEL) */
    221   1.1     yamt }
    222   1.1     yamt 
    223   1.1     yamt static void
    224   1.1     yamt xfree(void *p)
    225   1.1     yamt {
    226   1.1     yamt 
    227   1.1     yamt #if defined(_KERNEL)
    228   1.1     yamt 	return free(p, M_VMEM);
    229   1.1     yamt #else /* defined(_KERNEL) */
    230   1.1     yamt 	return free(p);
    231   1.1     yamt #endif /* defined(_KERNEL) */
    232   1.1     yamt }
    233   1.1     yamt 
    234   1.1     yamt /* ---- boundary tag */
    235   1.1     yamt 
    236   1.1     yamt #if defined(_KERNEL)
    237  1.35       ad static struct pool_cache bt_cache;
    238   1.1     yamt #endif /* defined(_KERNEL) */
    239   1.1     yamt 
    240   1.1     yamt static bt_t *
    241  1.17     yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    242   1.1     yamt {
    243   1.1     yamt 	bt_t *bt;
    244   1.1     yamt 
    245   1.1     yamt #if defined(_KERNEL)
    246  1.35       ad 	bt = pool_cache_get(&bt_cache,
    247   1.1     yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    248   1.1     yamt #else /* defined(_KERNEL) */
    249   1.1     yamt 	bt = malloc(sizeof *bt);
    250   1.1     yamt #endif /* defined(_KERNEL) */
    251   1.1     yamt 
    252   1.1     yamt 	return bt;
    253   1.1     yamt }
    254   1.1     yamt 
    255   1.1     yamt static void
    256  1.17     yamt bt_free(vmem_t *vm, bt_t *bt)
    257   1.1     yamt {
    258   1.1     yamt 
    259   1.1     yamt #if defined(_KERNEL)
    260  1.35       ad 	pool_cache_put(&bt_cache, bt);
    261   1.1     yamt #else /* defined(_KERNEL) */
    262   1.1     yamt 	free(bt);
    263   1.1     yamt #endif /* defined(_KERNEL) */
    264   1.1     yamt }
    265   1.1     yamt 
    266   1.1     yamt /*
    267   1.1     yamt  * freelist[0] ... [1, 1]
    268   1.1     yamt  * freelist[1] ... [2, 3]
    269   1.1     yamt  * freelist[2] ... [4, 7]
    270   1.1     yamt  * freelist[3] ... [8, 15]
    271   1.1     yamt  *  :
    272   1.1     yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    273   1.1     yamt  *  :
    274   1.1     yamt  */
    275   1.1     yamt 
    276   1.1     yamt static struct vmem_freelist *
    277   1.1     yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    278   1.1     yamt {
    279   1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    280   1.1     yamt 	int idx;
    281   1.1     yamt 
    282   1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    283   1.1     yamt 	KASSERT(size != 0);
    284   1.1     yamt 
    285   1.1     yamt 	idx = calc_order(qsize);
    286   1.1     yamt 	KASSERT(idx >= 0);
    287   1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    288   1.1     yamt 
    289   1.1     yamt 	return &vm->vm_freelist[idx];
    290   1.1     yamt }
    291   1.1     yamt 
    292  1.59     yamt /*
    293  1.59     yamt  * bt_freehead_toalloc: return the freelist for the given size and allocation
    294  1.59     yamt  * strategy.
    295  1.59     yamt  *
    296  1.59     yamt  * for VM_INSTANTFIT, return the list in which any blocks are large enough
    297  1.59     yamt  * for the requested size.  otherwise, return the list which can have blocks
    298  1.59     yamt  * large enough for the requested size.
    299  1.59     yamt  */
    300  1.59     yamt 
    301   1.1     yamt static struct vmem_freelist *
    302   1.1     yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    303   1.1     yamt {
    304   1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    305   1.1     yamt 	int idx;
    306   1.1     yamt 
    307   1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    308   1.1     yamt 	KASSERT(size != 0);
    309   1.1     yamt 
    310   1.1     yamt 	idx = calc_order(qsize);
    311   1.4     yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    312   1.1     yamt 		idx++;
    313   1.1     yamt 		/* check too large request? */
    314   1.1     yamt 	}
    315   1.1     yamt 	KASSERT(idx >= 0);
    316   1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    317   1.1     yamt 
    318   1.1     yamt 	return &vm->vm_freelist[idx];
    319   1.1     yamt }
    320   1.1     yamt 
    321   1.1     yamt /* ---- boundary tag hash */
    322   1.1     yamt 
    323   1.1     yamt static struct vmem_hashlist *
    324   1.1     yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    325   1.1     yamt {
    326   1.1     yamt 	struct vmem_hashlist *list;
    327   1.1     yamt 	unsigned int hash;
    328   1.1     yamt 
    329   1.1     yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    330   1.1     yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    331   1.1     yamt 
    332   1.1     yamt 	return list;
    333   1.1     yamt }
    334   1.1     yamt 
    335   1.1     yamt static bt_t *
    336   1.1     yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    337   1.1     yamt {
    338   1.1     yamt 	struct vmem_hashlist *list;
    339   1.1     yamt 	bt_t *bt;
    340   1.1     yamt 
    341   1.1     yamt 	list = bt_hashhead(vm, addr);
    342   1.1     yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    343   1.1     yamt 		if (bt->bt_start == addr) {
    344   1.1     yamt 			break;
    345   1.1     yamt 		}
    346   1.1     yamt 	}
    347   1.1     yamt 
    348   1.1     yamt 	return bt;
    349   1.1     yamt }
    350   1.1     yamt 
    351   1.1     yamt static void
    352   1.1     yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    353   1.1     yamt {
    354   1.1     yamt 
    355   1.1     yamt 	KASSERT(vm->vm_nbusytag > 0);
    356   1.1     yamt 	vm->vm_nbusytag--;
    357   1.1     yamt 	LIST_REMOVE(bt, bt_hashlist);
    358   1.1     yamt }
    359   1.1     yamt 
    360   1.1     yamt static void
    361   1.1     yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    362   1.1     yamt {
    363   1.1     yamt 	struct vmem_hashlist *list;
    364   1.1     yamt 
    365   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    366   1.1     yamt 
    367   1.1     yamt 	list = bt_hashhead(vm, bt->bt_start);
    368   1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    369   1.1     yamt 	vm->vm_nbusytag++;
    370   1.1     yamt }
    371   1.1     yamt 
    372   1.1     yamt /* ---- boundary tag list */
    373   1.1     yamt 
    374   1.1     yamt static void
    375   1.1     yamt bt_remseg(vmem_t *vm, bt_t *bt)
    376   1.1     yamt {
    377   1.1     yamt 
    378   1.1     yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    379   1.1     yamt }
    380   1.1     yamt 
    381   1.1     yamt static void
    382   1.1     yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    383   1.1     yamt {
    384   1.1     yamt 
    385   1.1     yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    386   1.1     yamt }
    387   1.1     yamt 
    388   1.1     yamt static void
    389   1.1     yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    390   1.1     yamt {
    391   1.1     yamt 
    392   1.1     yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    393   1.1     yamt }
    394   1.1     yamt 
    395   1.1     yamt static void
    396  1.17     yamt bt_remfree(vmem_t *vm, bt_t *bt)
    397   1.1     yamt {
    398   1.1     yamt 
    399   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    400   1.1     yamt 
    401   1.1     yamt 	LIST_REMOVE(bt, bt_freelist);
    402   1.1     yamt }
    403   1.1     yamt 
    404   1.1     yamt static void
    405   1.1     yamt bt_insfree(vmem_t *vm, bt_t *bt)
    406   1.1     yamt {
    407   1.1     yamt 	struct vmem_freelist *list;
    408   1.1     yamt 
    409   1.1     yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    410   1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    411   1.1     yamt }
    412   1.1     yamt 
    413   1.1     yamt /* ---- vmem internal functions */
    414   1.1     yamt 
    415  1.30     yamt #if defined(_KERNEL)
    416  1.30     yamt static kmutex_t vmem_list_lock;
    417  1.30     yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
    418  1.30     yamt #endif /* defined(_KERNEL) */
    419  1.30     yamt 
    420   1.5     yamt #if defined(QCACHE)
    421   1.5     yamt static inline vm_flag_t
    422   1.5     yamt prf_to_vmf(int prflags)
    423   1.5     yamt {
    424   1.5     yamt 	vm_flag_t vmflags;
    425   1.5     yamt 
    426   1.5     yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    427   1.5     yamt 	if ((prflags & PR_WAITOK) != 0) {
    428   1.5     yamt 		vmflags = VM_SLEEP;
    429   1.5     yamt 	} else {
    430   1.5     yamt 		vmflags = VM_NOSLEEP;
    431   1.5     yamt 	}
    432   1.5     yamt 	return vmflags;
    433   1.5     yamt }
    434   1.5     yamt 
    435   1.5     yamt static inline int
    436   1.5     yamt vmf_to_prf(vm_flag_t vmflags)
    437   1.5     yamt {
    438   1.5     yamt 	int prflags;
    439   1.5     yamt 
    440   1.7     yamt 	if ((vmflags & VM_SLEEP) != 0) {
    441   1.5     yamt 		prflags = PR_WAITOK;
    442   1.7     yamt 	} else {
    443   1.5     yamt 		prflags = PR_NOWAIT;
    444   1.5     yamt 	}
    445   1.5     yamt 	return prflags;
    446   1.5     yamt }
    447   1.5     yamt 
    448   1.5     yamt static size_t
    449   1.5     yamt qc_poolpage_size(size_t qcache_max)
    450   1.5     yamt {
    451   1.5     yamt 	int i;
    452   1.5     yamt 
    453   1.5     yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    454   1.5     yamt 		/* nothing */
    455   1.5     yamt 	}
    456   1.5     yamt 	return ORDER2SIZE(i);
    457   1.5     yamt }
    458   1.5     yamt 
    459   1.5     yamt static void *
    460   1.5     yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    461   1.5     yamt {
    462   1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    463   1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    464   1.5     yamt 
    465   1.5     yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    466   1.5     yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    467   1.5     yamt }
    468   1.5     yamt 
    469   1.5     yamt static void
    470   1.5     yamt qc_poolpage_free(struct pool *pool, void *addr)
    471   1.5     yamt {
    472   1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    473   1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    474   1.5     yamt 
    475   1.5     yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    476   1.5     yamt }
    477   1.5     yamt 
    478   1.5     yamt static void
    479  1.31       ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
    480   1.5     yamt {
    481  1.22     yamt 	qcache_t *prevqc;
    482   1.5     yamt 	struct pool_allocator *pa;
    483   1.5     yamt 	int qcache_idx_max;
    484   1.5     yamt 	int i;
    485   1.5     yamt 
    486   1.5     yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    487   1.5     yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    488   1.5     yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    489   1.5     yamt 	}
    490   1.5     yamt 	vm->vm_qcache_max = qcache_max;
    491   1.5     yamt 	pa = &vm->vm_qcache_allocator;
    492   1.5     yamt 	memset(pa, 0, sizeof(*pa));
    493   1.5     yamt 	pa->pa_alloc = qc_poolpage_alloc;
    494   1.5     yamt 	pa->pa_free = qc_poolpage_free;
    495   1.5     yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    496   1.5     yamt 
    497   1.5     yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    498  1.22     yamt 	prevqc = NULL;
    499  1.22     yamt 	for (i = qcache_idx_max; i > 0; i--) {
    500  1.22     yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    501   1.5     yamt 		size_t size = i << vm->vm_quantum_shift;
    502   1.5     yamt 
    503   1.5     yamt 		qc->qc_vmem = vm;
    504   1.8   martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    505   1.5     yamt 		    vm->vm_name, size);
    506  1.35       ad 		qc->qc_cache = pool_cache_init(size,
    507  1.35       ad 		    ORDER2SIZE(vm->vm_quantum_shift), 0,
    508  1.35       ad 		    PR_NOALIGN | PR_NOTOUCH /* XXX */,
    509  1.35       ad 		    qc->qc_name, pa, ipl, NULL, NULL, NULL);
    510  1.35       ad 		KASSERT(qc->qc_cache != NULL);	/* XXX */
    511  1.22     yamt 		if (prevqc != NULL &&
    512  1.35       ad 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
    513  1.35       ad 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
    514  1.35       ad 			pool_cache_destroy(qc->qc_cache);
    515  1.22     yamt 			vm->vm_qcache[i - 1] = prevqc;
    516  1.27       ad 			continue;
    517  1.22     yamt 		}
    518  1.35       ad 		qc->qc_cache->pc_pool.pr_qcache = qc;
    519  1.22     yamt 		vm->vm_qcache[i - 1] = qc;
    520  1.22     yamt 		prevqc = qc;
    521   1.5     yamt 	}
    522   1.5     yamt }
    523   1.6     yamt 
    524  1.23     yamt static void
    525  1.23     yamt qc_destroy(vmem_t *vm)
    526  1.23     yamt {
    527  1.23     yamt 	const qcache_t *prevqc;
    528  1.23     yamt 	int i;
    529  1.23     yamt 	int qcache_idx_max;
    530  1.23     yamt 
    531  1.23     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    532  1.23     yamt 	prevqc = NULL;
    533  1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    534  1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    535  1.23     yamt 
    536  1.23     yamt 		if (prevqc == qc) {
    537  1.23     yamt 			continue;
    538  1.23     yamt 		}
    539  1.35       ad 		pool_cache_destroy(qc->qc_cache);
    540  1.23     yamt 		prevqc = qc;
    541  1.23     yamt 	}
    542  1.23     yamt }
    543  1.23     yamt 
    544  1.25  thorpej static bool
    545   1.6     yamt qc_reap(vmem_t *vm)
    546   1.6     yamt {
    547  1.22     yamt 	const qcache_t *prevqc;
    548   1.6     yamt 	int i;
    549   1.6     yamt 	int qcache_idx_max;
    550  1.26  thorpej 	bool didsomething = false;
    551   1.6     yamt 
    552   1.6     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    553  1.22     yamt 	prevqc = NULL;
    554  1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    555  1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    556   1.6     yamt 
    557  1.22     yamt 		if (prevqc == qc) {
    558  1.22     yamt 			continue;
    559  1.22     yamt 		}
    560  1.35       ad 		if (pool_cache_reclaim(qc->qc_cache) != 0) {
    561  1.26  thorpej 			didsomething = true;
    562   1.6     yamt 		}
    563  1.22     yamt 		prevqc = qc;
    564   1.6     yamt 	}
    565   1.6     yamt 
    566   1.6     yamt 	return didsomething;
    567   1.6     yamt }
    568   1.5     yamt #endif /* defined(QCACHE) */
    569   1.5     yamt 
    570   1.1     yamt #if defined(_KERNEL)
    571   1.1     yamt static int
    572   1.1     yamt vmem_init(void)
    573   1.1     yamt {
    574   1.1     yamt 
    575  1.30     yamt 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
    576  1.35       ad 	pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
    577  1.35       ad 	    NULL, IPL_VM, NULL, NULL, NULL);
    578   1.1     yamt 	return 0;
    579   1.1     yamt }
    580   1.1     yamt #endif /* defined(_KERNEL) */
    581   1.1     yamt 
    582   1.1     yamt static vmem_addr_t
    583   1.1     yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    584   1.1     yamt     int spanbttype)
    585   1.1     yamt {
    586   1.1     yamt 	bt_t *btspan;
    587   1.1     yamt 	bt_t *btfree;
    588   1.1     yamt 
    589   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    590   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    591  1.58     yamt 	KASSERT(spanbttype == BT_TYPE_SPAN ||
    592  1.58     yamt 	    spanbttype == BT_TYPE_SPAN_STATIC);
    593   1.1     yamt 
    594   1.1     yamt 	btspan = bt_alloc(vm, flags);
    595   1.1     yamt 	if (btspan == NULL) {
    596   1.1     yamt 		return VMEM_ADDR_NULL;
    597   1.1     yamt 	}
    598   1.1     yamt 	btfree = bt_alloc(vm, flags);
    599   1.1     yamt 	if (btfree == NULL) {
    600   1.1     yamt 		bt_free(vm, btspan);
    601   1.1     yamt 		return VMEM_ADDR_NULL;
    602   1.1     yamt 	}
    603   1.1     yamt 
    604   1.1     yamt 	btspan->bt_type = spanbttype;
    605   1.1     yamt 	btspan->bt_start = addr;
    606   1.1     yamt 	btspan->bt_size = size;
    607   1.1     yamt 
    608   1.1     yamt 	btfree->bt_type = BT_TYPE_FREE;
    609   1.1     yamt 	btfree->bt_start = addr;
    610   1.1     yamt 	btfree->bt_size = size;
    611   1.1     yamt 
    612   1.1     yamt 	VMEM_LOCK(vm);
    613   1.1     yamt 	bt_insseg_tail(vm, btspan);
    614   1.1     yamt 	bt_insseg(vm, btfree, btspan);
    615   1.1     yamt 	bt_insfree(vm, btfree);
    616   1.1     yamt 	VMEM_UNLOCK(vm);
    617   1.1     yamt 
    618   1.1     yamt 	return addr;
    619   1.1     yamt }
    620   1.1     yamt 
    621  1.30     yamt static void
    622  1.30     yamt vmem_destroy1(vmem_t *vm)
    623  1.30     yamt {
    624  1.30     yamt 
    625  1.30     yamt #if defined(QCACHE)
    626  1.30     yamt 	qc_destroy(vm);
    627  1.30     yamt #endif /* defined(QCACHE) */
    628  1.30     yamt 	if (vm->vm_hashlist != NULL) {
    629  1.30     yamt 		int i;
    630  1.30     yamt 
    631  1.30     yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    632  1.30     yamt 			bt_t *bt;
    633  1.30     yamt 
    634  1.30     yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    635  1.30     yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    636  1.30     yamt 				bt_free(vm, bt);
    637  1.30     yamt 			}
    638  1.30     yamt 		}
    639  1.30     yamt 		xfree(vm->vm_hashlist);
    640  1.30     yamt 	}
    641  1.31       ad 	VMEM_LOCK_DESTROY(vm);
    642  1.30     yamt 	xfree(vm);
    643  1.30     yamt }
    644  1.30     yamt 
    645   1.1     yamt static int
    646   1.1     yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    647   1.1     yamt {
    648   1.1     yamt 	vmem_addr_t addr;
    649   1.1     yamt 
    650   1.1     yamt 	if (vm->vm_allocfn == NULL) {
    651   1.1     yamt 		return EINVAL;
    652   1.1     yamt 	}
    653   1.1     yamt 
    654   1.1     yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    655   1.1     yamt 	if (addr == VMEM_ADDR_NULL) {
    656   1.1     yamt 		return ENOMEM;
    657   1.1     yamt 	}
    658   1.1     yamt 
    659   1.1     yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    660   1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    661   1.1     yamt 		return ENOMEM;
    662   1.1     yamt 	}
    663   1.1     yamt 
    664   1.1     yamt 	return 0;
    665   1.1     yamt }
    666   1.1     yamt 
    667   1.1     yamt static int
    668   1.1     yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    669   1.1     yamt {
    670   1.1     yamt 	bt_t *bt;
    671   1.1     yamt 	int i;
    672   1.1     yamt 	struct vmem_hashlist *newhashlist;
    673   1.1     yamt 	struct vmem_hashlist *oldhashlist;
    674   1.1     yamt 	size_t oldhashsize;
    675   1.1     yamt 
    676   1.1     yamt 	KASSERT(newhashsize > 0);
    677   1.1     yamt 
    678   1.1     yamt 	newhashlist =
    679   1.1     yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    680   1.1     yamt 	if (newhashlist == NULL) {
    681   1.1     yamt 		return ENOMEM;
    682   1.1     yamt 	}
    683   1.1     yamt 	for (i = 0; i < newhashsize; i++) {
    684   1.1     yamt 		LIST_INIT(&newhashlist[i]);
    685   1.1     yamt 	}
    686   1.1     yamt 
    687  1.30     yamt 	if (!VMEM_TRYLOCK(vm)) {
    688  1.30     yamt 		xfree(newhashlist);
    689  1.30     yamt 		return EBUSY;
    690  1.30     yamt 	}
    691   1.1     yamt 	oldhashlist = vm->vm_hashlist;
    692   1.1     yamt 	oldhashsize = vm->vm_hashsize;
    693   1.1     yamt 	vm->vm_hashlist = newhashlist;
    694   1.1     yamt 	vm->vm_hashsize = newhashsize;
    695   1.1     yamt 	if (oldhashlist == NULL) {
    696   1.1     yamt 		VMEM_UNLOCK(vm);
    697   1.1     yamt 		return 0;
    698   1.1     yamt 	}
    699   1.1     yamt 	for (i = 0; i < oldhashsize; i++) {
    700   1.1     yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    701   1.1     yamt 			bt_rembusy(vm, bt); /* XXX */
    702   1.1     yamt 			bt_insbusy(vm, bt);
    703   1.1     yamt 		}
    704   1.1     yamt 	}
    705   1.1     yamt 	VMEM_UNLOCK(vm);
    706   1.1     yamt 
    707   1.1     yamt 	xfree(oldhashlist);
    708   1.1     yamt 
    709   1.1     yamt 	return 0;
    710   1.1     yamt }
    711   1.1     yamt 
    712  1.10     yamt /*
    713  1.10     yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    714  1.59     yamt  *
    715  1.59     yamt  * it's a caller's responsibility to ensure the region is big enough
    716  1.59     yamt  * before calling us.
    717  1.10     yamt  */
    718  1.10     yamt 
    719  1.10     yamt static vmem_addr_t
    720  1.10     yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    721  1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    722  1.10     yamt {
    723  1.10     yamt 	vmem_addr_t start;
    724  1.10     yamt 	vmem_addr_t end;
    725  1.10     yamt 
    726  1.59     yamt 	KASSERT(bt->bt_size >= size); /* caller's responsibility */
    727  1.10     yamt 
    728  1.10     yamt 	/*
    729  1.10     yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    730  1.10     yamt 	 * unsigned integer of the same size.
    731  1.10     yamt 	 */
    732  1.10     yamt 
    733  1.10     yamt 	start = bt->bt_start;
    734  1.10     yamt 	if (start < minaddr) {
    735  1.10     yamt 		start = minaddr;
    736  1.10     yamt 	}
    737  1.10     yamt 	end = BT_END(bt);
    738  1.10     yamt 	if (end > maxaddr - 1) {
    739  1.10     yamt 		end = maxaddr - 1;
    740  1.10     yamt 	}
    741  1.10     yamt 	if (start >= end) {
    742  1.10     yamt 		return VMEM_ADDR_NULL;
    743  1.10     yamt 	}
    744  1.19     yamt 
    745  1.19     yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    746  1.10     yamt 	if (start < bt->bt_start) {
    747  1.10     yamt 		start += align;
    748  1.10     yamt 	}
    749  1.19     yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    750  1.10     yamt 		KASSERT(align < nocross);
    751  1.19     yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    752  1.10     yamt 	}
    753  1.10     yamt 	if (start < end && end - start >= size) {
    754  1.10     yamt 		KASSERT((start & (align - 1)) == phase);
    755  1.19     yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    756  1.10     yamt 		KASSERT(minaddr <= start);
    757  1.10     yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    758  1.10     yamt 		KASSERT(bt->bt_start <= start);
    759  1.10     yamt 		KASSERT(start + size <= BT_END(bt));
    760  1.10     yamt 		return start;
    761  1.10     yamt 	}
    762  1.10     yamt 	return VMEM_ADDR_NULL;
    763  1.10     yamt }
    764  1.10     yamt 
    765   1.1     yamt /* ---- vmem API */
    766   1.1     yamt 
    767   1.1     yamt /*
    768   1.1     yamt  * vmem_create: create an arena.
    769   1.1     yamt  *
    770   1.1     yamt  * => must not be called from interrupt context.
    771   1.1     yamt  */
    772   1.1     yamt 
    773   1.1     yamt vmem_t *
    774   1.1     yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    775   1.1     yamt     vmem_size_t quantum,
    776   1.1     yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    777   1.1     yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    778  1.31       ad     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
    779  1.31       ad     int ipl)
    780   1.1     yamt {
    781   1.1     yamt 	vmem_t *vm;
    782   1.1     yamt 	int i;
    783   1.1     yamt #if defined(_KERNEL)
    784   1.1     yamt 	static ONCE_DECL(control);
    785   1.1     yamt #endif /* defined(_KERNEL) */
    786   1.1     yamt 
    787   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    788   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    789   1.1     yamt 
    790   1.1     yamt #if defined(_KERNEL)
    791   1.1     yamt 	if (RUN_ONCE(&control, vmem_init)) {
    792   1.1     yamt 		return NULL;
    793   1.1     yamt 	}
    794   1.1     yamt #endif /* defined(_KERNEL) */
    795   1.1     yamt 	vm = xmalloc(sizeof(*vm), flags);
    796   1.1     yamt 	if (vm == NULL) {
    797   1.1     yamt 		return NULL;
    798   1.1     yamt 	}
    799   1.1     yamt 
    800  1.31       ad 	VMEM_LOCK_INIT(vm, ipl);
    801   1.1     yamt 	vm->vm_name = name;
    802   1.1     yamt 	vm->vm_quantum_mask = quantum - 1;
    803   1.1     yamt 	vm->vm_quantum_shift = calc_order(quantum);
    804   1.4     yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    805   1.1     yamt 	vm->vm_allocfn = allocfn;
    806   1.1     yamt 	vm->vm_freefn = freefn;
    807   1.1     yamt 	vm->vm_source = source;
    808   1.1     yamt 	vm->vm_nbusytag = 0;
    809   1.5     yamt #if defined(QCACHE)
    810  1.31       ad 	qc_init(vm, qcache_max, ipl);
    811   1.5     yamt #endif /* defined(QCACHE) */
    812   1.1     yamt 
    813   1.1     yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    814   1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    815   1.1     yamt 		LIST_INIT(&vm->vm_freelist[i]);
    816   1.1     yamt 	}
    817   1.1     yamt 	vm->vm_hashlist = NULL;
    818   1.1     yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    819  1.30     yamt 		vmem_destroy1(vm);
    820   1.1     yamt 		return NULL;
    821   1.1     yamt 	}
    822   1.1     yamt 
    823   1.1     yamt 	if (size != 0) {
    824   1.1     yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    825  1.30     yamt 			vmem_destroy1(vm);
    826   1.1     yamt 			return NULL;
    827   1.1     yamt 		}
    828   1.1     yamt 	}
    829   1.1     yamt 
    830  1.30     yamt #if defined(_KERNEL)
    831  1.30     yamt 	mutex_enter(&vmem_list_lock);
    832  1.30     yamt 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
    833  1.30     yamt 	mutex_exit(&vmem_list_lock);
    834  1.30     yamt #endif /* defined(_KERNEL) */
    835  1.30     yamt 
    836   1.1     yamt 	return vm;
    837   1.1     yamt }
    838   1.1     yamt 
    839   1.1     yamt void
    840   1.1     yamt vmem_destroy(vmem_t *vm)
    841   1.1     yamt {
    842   1.1     yamt 
    843  1.30     yamt #if defined(_KERNEL)
    844  1.30     yamt 	mutex_enter(&vmem_list_lock);
    845  1.30     yamt 	LIST_REMOVE(vm, vm_alllist);
    846  1.30     yamt 	mutex_exit(&vmem_list_lock);
    847  1.30     yamt #endif /* defined(_KERNEL) */
    848   1.1     yamt 
    849  1.30     yamt 	vmem_destroy1(vm);
    850   1.1     yamt }
    851   1.1     yamt 
    852   1.1     yamt vmem_size_t
    853   1.1     yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    854   1.1     yamt {
    855   1.1     yamt 
    856   1.1     yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    857   1.1     yamt }
    858   1.1     yamt 
    859   1.1     yamt /*
    860   1.1     yamt  * vmem_alloc:
    861   1.1     yamt  *
    862   1.1     yamt  * => caller must ensure appropriate spl,
    863   1.1     yamt  *    if the arena can be accessed from interrupt context.
    864   1.1     yamt  */
    865   1.1     yamt 
    866   1.1     yamt vmem_addr_t
    867  1.38     yamt vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    868   1.1     yamt {
    869  1.12     yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    870   1.1     yamt 
    871   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    872   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    873   1.1     yamt 
    874   1.1     yamt 	KASSERT(size > 0);
    875   1.1     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    876   1.3     yamt 	if ((flags & VM_SLEEP) != 0) {
    877  1.42     yamt 		ASSERT_SLEEPABLE();
    878   1.3     yamt 	}
    879   1.1     yamt 
    880   1.5     yamt #if defined(QCACHE)
    881   1.5     yamt 	if (size <= vm->vm_qcache_max) {
    882  1.38     yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
    883  1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    884   1.5     yamt 
    885  1.35       ad 		return (vmem_addr_t)pool_cache_get(qc->qc_cache,
    886   1.5     yamt 		    vmf_to_prf(flags));
    887   1.5     yamt 	}
    888   1.5     yamt #endif /* defined(QCACHE) */
    889   1.5     yamt 
    890  1.38     yamt 	return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
    891  1.10     yamt }
    892  1.10     yamt 
    893  1.10     yamt vmem_addr_t
    894  1.10     yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
    895  1.10     yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
    896  1.10     yamt     vm_flag_t flags)
    897  1.10     yamt {
    898  1.10     yamt 	struct vmem_freelist *list;
    899  1.10     yamt 	struct vmem_freelist *first;
    900  1.10     yamt 	struct vmem_freelist *end;
    901  1.10     yamt 	bt_t *bt;
    902  1.10     yamt 	bt_t *btnew;
    903  1.10     yamt 	bt_t *btnew2;
    904  1.10     yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
    905  1.10     yamt 	vm_flag_t strat = flags & VM_FITMASK;
    906  1.10     yamt 	vmem_addr_t start;
    907  1.10     yamt 
    908  1.10     yamt 	KASSERT(size0 > 0);
    909  1.10     yamt 	KASSERT(size > 0);
    910  1.10     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    911  1.10     yamt 	if ((flags & VM_SLEEP) != 0) {
    912  1.42     yamt 		ASSERT_SLEEPABLE();
    913  1.10     yamt 	}
    914  1.10     yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
    915  1.10     yamt 	KASSERT((align & (align - 1)) == 0);
    916  1.10     yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
    917  1.10     yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
    918  1.10     yamt 	KASSERT((nocross & (nocross - 1)) == 0);
    919  1.10     yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
    920  1.10     yamt 	KASSERT(nocross == 0 || nocross >= size);
    921  1.10     yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
    922  1.19     yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
    923  1.10     yamt 
    924  1.10     yamt 	if (align == 0) {
    925  1.10     yamt 		align = vm->vm_quantum_mask + 1;
    926  1.10     yamt 	}
    927  1.59     yamt 
    928  1.59     yamt 	/*
    929  1.59     yamt 	 * allocate boundary tags before acquiring the vmem lock.
    930  1.59     yamt 	 */
    931   1.1     yamt 	btnew = bt_alloc(vm, flags);
    932   1.1     yamt 	if (btnew == NULL) {
    933   1.1     yamt 		return VMEM_ADDR_NULL;
    934   1.1     yamt 	}
    935  1.10     yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
    936  1.10     yamt 	if (btnew2 == NULL) {
    937  1.10     yamt 		bt_free(vm, btnew);
    938  1.10     yamt 		return VMEM_ADDR_NULL;
    939  1.10     yamt 	}
    940   1.1     yamt 
    941  1.59     yamt 	/*
    942  1.59     yamt 	 * choose a free block from which we allocate.
    943  1.59     yamt 	 */
    944   1.1     yamt retry_strat:
    945   1.1     yamt 	first = bt_freehead_toalloc(vm, size, strat);
    946   1.1     yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
    947   1.1     yamt retry:
    948   1.1     yamt 	bt = NULL;
    949   1.1     yamt 	VMEM_LOCK(vm);
    950  1.55     yamt 	vmem_check(vm);
    951   1.2     yamt 	if (strat == VM_INSTANTFIT) {
    952  1.59     yamt 		/*
    953  1.59     yamt 		 * just choose the first block which satisfies our restrictions.
    954  1.59     yamt 		 *
    955  1.59     yamt 		 * note that we don't need to check the size of the blocks
    956  1.59     yamt 		 * because any blocks found on these list should be larger than
    957  1.59     yamt 		 * the given size.
    958  1.59     yamt 		 */
    959   1.2     yamt 		for (list = first; list < end; list++) {
    960   1.2     yamt 			bt = LIST_FIRST(list);
    961   1.2     yamt 			if (bt != NULL) {
    962  1.10     yamt 				start = vmem_fit(bt, size, align, phase,
    963  1.10     yamt 				    nocross, minaddr, maxaddr);
    964  1.10     yamt 				if (start != VMEM_ADDR_NULL) {
    965  1.10     yamt 					goto gotit;
    966  1.10     yamt 				}
    967  1.59     yamt 				/*
    968  1.59     yamt 				 * don't bother to follow the bt_freelist link
    969  1.59     yamt 				 * here.  the list can be very long and we are
    970  1.59     yamt 				 * told to run fast.  blocks from the later free
    971  1.59     yamt 				 * lists are larger and have better chances to
    972  1.59     yamt 				 * satisfy our restrictions.
    973  1.59     yamt 				 */
    974   1.2     yamt 			}
    975   1.2     yamt 		}
    976   1.2     yamt 	} else { /* VM_BESTFIT */
    977  1.59     yamt 		/*
    978  1.59     yamt 		 * we assume that, for space efficiency, it's better to
    979  1.59     yamt 		 * allocate from a smaller block.  thus we will start searching
    980  1.59     yamt 		 * from the lower-order list than VM_INSTANTFIT.
    981  1.59     yamt 		 * however, don't bother to find the smallest block in a free
    982  1.59     yamt 		 * list because the list can be very long.  we can revisit it
    983  1.59     yamt 		 * if/when it turns out to be a problem.
    984  1.59     yamt 		 *
    985  1.59     yamt 		 * note that the 'first' list can contain blocks smaller than
    986  1.59     yamt 		 * the requested size.  thus we need to check bt_size.
    987  1.59     yamt 		 */
    988   1.2     yamt 		for (list = first; list < end; list++) {
    989   1.2     yamt 			LIST_FOREACH(bt, list, bt_freelist) {
    990   1.2     yamt 				if (bt->bt_size >= size) {
    991  1.10     yamt 					start = vmem_fit(bt, size, align, phase,
    992  1.10     yamt 					    nocross, minaddr, maxaddr);
    993  1.10     yamt 					if (start != VMEM_ADDR_NULL) {
    994  1.10     yamt 						goto gotit;
    995  1.10     yamt 					}
    996   1.2     yamt 				}
    997   1.1     yamt 			}
    998   1.1     yamt 		}
    999   1.1     yamt 	}
   1000   1.2     yamt 	VMEM_UNLOCK(vm);
   1001   1.1     yamt #if 1
   1002   1.2     yamt 	if (strat == VM_INSTANTFIT) {
   1003   1.2     yamt 		strat = VM_BESTFIT;
   1004   1.2     yamt 		goto retry_strat;
   1005   1.2     yamt 	}
   1006   1.1     yamt #endif
   1007  1.10     yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
   1008  1.10     yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
   1009  1.10     yamt 
   1010  1.10     yamt 		/*
   1011  1.10     yamt 		 * XXX should try to import a region large enough to
   1012  1.10     yamt 		 * satisfy restrictions?
   1013  1.10     yamt 		 */
   1014  1.10     yamt 
   1015  1.20     yamt 		goto fail;
   1016  1.10     yamt 	}
   1017   1.2     yamt 	if (vmem_import(vm, size, flags) == 0) {
   1018   1.2     yamt 		goto retry;
   1019   1.1     yamt 	}
   1020   1.2     yamt 	/* XXX */
   1021  1.20     yamt fail:
   1022  1.20     yamt 	bt_free(vm, btnew);
   1023  1.20     yamt 	bt_free(vm, btnew2);
   1024   1.2     yamt 	return VMEM_ADDR_NULL;
   1025   1.2     yamt 
   1026   1.2     yamt gotit:
   1027   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
   1028   1.1     yamt 	KASSERT(bt->bt_size >= size);
   1029   1.1     yamt 	bt_remfree(vm, bt);
   1030  1.55     yamt 	vmem_check(vm);
   1031  1.10     yamt 	if (bt->bt_start != start) {
   1032  1.10     yamt 		btnew2->bt_type = BT_TYPE_FREE;
   1033  1.10     yamt 		btnew2->bt_start = bt->bt_start;
   1034  1.10     yamt 		btnew2->bt_size = start - bt->bt_start;
   1035  1.10     yamt 		bt->bt_start = start;
   1036  1.10     yamt 		bt->bt_size -= btnew2->bt_size;
   1037  1.10     yamt 		bt_insfree(vm, btnew2);
   1038  1.10     yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
   1039  1.10     yamt 		btnew2 = NULL;
   1040  1.55     yamt 		vmem_check(vm);
   1041  1.10     yamt 	}
   1042  1.10     yamt 	KASSERT(bt->bt_start == start);
   1043   1.1     yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
   1044   1.1     yamt 		/* split */
   1045   1.1     yamt 		btnew->bt_type = BT_TYPE_BUSY;
   1046   1.1     yamt 		btnew->bt_start = bt->bt_start;
   1047   1.1     yamt 		btnew->bt_size = size;
   1048   1.1     yamt 		bt->bt_start = bt->bt_start + size;
   1049   1.1     yamt 		bt->bt_size -= size;
   1050   1.1     yamt 		bt_insfree(vm, bt);
   1051   1.1     yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
   1052   1.1     yamt 		bt_insbusy(vm, btnew);
   1053  1.55     yamt 		vmem_check(vm);
   1054   1.1     yamt 		VMEM_UNLOCK(vm);
   1055   1.1     yamt 	} else {
   1056   1.1     yamt 		bt->bt_type = BT_TYPE_BUSY;
   1057   1.1     yamt 		bt_insbusy(vm, bt);
   1058  1.55     yamt 		vmem_check(vm);
   1059   1.1     yamt 		VMEM_UNLOCK(vm);
   1060   1.1     yamt 		bt_free(vm, btnew);
   1061   1.1     yamt 		btnew = bt;
   1062   1.1     yamt 	}
   1063  1.10     yamt 	if (btnew2 != NULL) {
   1064  1.10     yamt 		bt_free(vm, btnew2);
   1065  1.10     yamt 	}
   1066   1.1     yamt 	KASSERT(btnew->bt_size >= size);
   1067   1.1     yamt 	btnew->bt_type = BT_TYPE_BUSY;
   1068   1.1     yamt 
   1069   1.1     yamt 	return btnew->bt_start;
   1070   1.1     yamt }
   1071   1.1     yamt 
   1072   1.1     yamt /*
   1073   1.1     yamt  * vmem_free:
   1074   1.1     yamt  *
   1075   1.1     yamt  * => caller must ensure appropriate spl,
   1076   1.1     yamt  *    if the arena can be accessed from interrupt context.
   1077   1.1     yamt  */
   1078   1.1     yamt 
   1079   1.1     yamt void
   1080   1.1     yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1081   1.1     yamt {
   1082   1.1     yamt 
   1083   1.1     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1084   1.1     yamt 	KASSERT(size > 0);
   1085   1.1     yamt 
   1086   1.5     yamt #if defined(QCACHE)
   1087   1.5     yamt 	if (size <= vm->vm_qcache_max) {
   1088   1.5     yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1089  1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1090   1.5     yamt 
   1091  1.35       ad 		return pool_cache_put(qc->qc_cache, (void *)addr);
   1092   1.5     yamt 	}
   1093   1.5     yamt #endif /* defined(QCACHE) */
   1094   1.5     yamt 
   1095  1.10     yamt 	vmem_xfree(vm, addr, size);
   1096  1.10     yamt }
   1097  1.10     yamt 
   1098  1.10     yamt void
   1099  1.17     yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1100  1.10     yamt {
   1101  1.10     yamt 	bt_t *bt;
   1102  1.10     yamt 	bt_t *t;
   1103  1.10     yamt 
   1104  1.10     yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1105  1.10     yamt 	KASSERT(size > 0);
   1106  1.10     yamt 
   1107   1.1     yamt 	VMEM_LOCK(vm);
   1108   1.1     yamt 
   1109   1.1     yamt 	bt = bt_lookupbusy(vm, addr);
   1110   1.1     yamt 	KASSERT(bt != NULL);
   1111   1.1     yamt 	KASSERT(bt->bt_start == addr);
   1112   1.1     yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1113   1.1     yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1114   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1115   1.1     yamt 	bt_rembusy(vm, bt);
   1116   1.1     yamt 	bt->bt_type = BT_TYPE_FREE;
   1117   1.1     yamt 
   1118   1.1     yamt 	/* coalesce */
   1119   1.1     yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1120   1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1121   1.1     yamt 		KASSERT(BT_END(bt) == t->bt_start);
   1122   1.1     yamt 		bt_remfree(vm, t);
   1123   1.1     yamt 		bt_remseg(vm, t);
   1124   1.1     yamt 		bt->bt_size += t->bt_size;
   1125   1.1     yamt 		bt_free(vm, t);
   1126   1.1     yamt 	}
   1127   1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1128   1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1129   1.1     yamt 		KASSERT(BT_END(t) == bt->bt_start);
   1130   1.1     yamt 		bt_remfree(vm, t);
   1131   1.1     yamt 		bt_remseg(vm, t);
   1132   1.1     yamt 		bt->bt_size += t->bt_size;
   1133   1.1     yamt 		bt->bt_start = t->bt_start;
   1134   1.1     yamt 		bt_free(vm, t);
   1135   1.1     yamt 	}
   1136   1.1     yamt 
   1137   1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1138   1.1     yamt 	KASSERT(t != NULL);
   1139   1.1     yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1140   1.1     yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1141   1.1     yamt 	    t->bt_size == bt->bt_size) {
   1142   1.1     yamt 		vmem_addr_t spanaddr;
   1143   1.1     yamt 		vmem_size_t spansize;
   1144   1.1     yamt 
   1145   1.1     yamt 		KASSERT(t->bt_start == bt->bt_start);
   1146   1.1     yamt 		spanaddr = bt->bt_start;
   1147   1.1     yamt 		spansize = bt->bt_size;
   1148   1.1     yamt 		bt_remseg(vm, bt);
   1149   1.1     yamt 		bt_free(vm, bt);
   1150   1.1     yamt 		bt_remseg(vm, t);
   1151   1.1     yamt 		bt_free(vm, t);
   1152   1.1     yamt 		VMEM_UNLOCK(vm);
   1153   1.1     yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1154   1.1     yamt 	} else {
   1155   1.1     yamt 		bt_insfree(vm, bt);
   1156   1.1     yamt 		VMEM_UNLOCK(vm);
   1157   1.1     yamt 	}
   1158   1.1     yamt }
   1159   1.1     yamt 
   1160   1.1     yamt /*
   1161   1.1     yamt  * vmem_add:
   1162   1.1     yamt  *
   1163   1.1     yamt  * => caller must ensure appropriate spl,
   1164   1.1     yamt  *    if the arena can be accessed from interrupt context.
   1165   1.1     yamt  */
   1166   1.1     yamt 
   1167   1.1     yamt vmem_addr_t
   1168   1.1     yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1169   1.1     yamt {
   1170   1.1     yamt 
   1171   1.1     yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1172   1.1     yamt }
   1173   1.1     yamt 
   1174   1.6     yamt /*
   1175   1.6     yamt  * vmem_reap: reap unused resources.
   1176   1.6     yamt  *
   1177  1.26  thorpej  * => return true if we successfully reaped something.
   1178   1.6     yamt  */
   1179   1.6     yamt 
   1180  1.25  thorpej bool
   1181   1.6     yamt vmem_reap(vmem_t *vm)
   1182   1.6     yamt {
   1183  1.26  thorpej 	bool didsomething = false;
   1184   1.6     yamt 
   1185   1.6     yamt #if defined(QCACHE)
   1186   1.6     yamt 	didsomething = qc_reap(vm);
   1187   1.6     yamt #endif /* defined(QCACHE) */
   1188   1.6     yamt 	return didsomething;
   1189   1.6     yamt }
   1190   1.6     yamt 
   1191  1.30     yamt /* ---- rehash */
   1192  1.30     yamt 
   1193  1.30     yamt #if defined(_KERNEL)
   1194  1.30     yamt static struct callout vmem_rehash_ch;
   1195  1.30     yamt static int vmem_rehash_interval;
   1196  1.30     yamt static struct workqueue *vmem_rehash_wq;
   1197  1.30     yamt static struct work vmem_rehash_wk;
   1198  1.30     yamt 
   1199  1.30     yamt static void
   1200  1.30     yamt vmem_rehash_all(struct work *wk, void *dummy)
   1201  1.30     yamt {
   1202  1.30     yamt 	vmem_t *vm;
   1203  1.30     yamt 
   1204  1.30     yamt 	KASSERT(wk == &vmem_rehash_wk);
   1205  1.30     yamt 	mutex_enter(&vmem_list_lock);
   1206  1.30     yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1207  1.30     yamt 		size_t desired;
   1208  1.30     yamt 		size_t current;
   1209  1.30     yamt 
   1210  1.30     yamt 		if (!VMEM_TRYLOCK(vm)) {
   1211  1.30     yamt 			continue;
   1212  1.30     yamt 		}
   1213  1.30     yamt 		desired = vm->vm_nbusytag;
   1214  1.30     yamt 		current = vm->vm_hashsize;
   1215  1.30     yamt 		VMEM_UNLOCK(vm);
   1216  1.30     yamt 
   1217  1.30     yamt 		if (desired > VMEM_HASHSIZE_MAX) {
   1218  1.30     yamt 			desired = VMEM_HASHSIZE_MAX;
   1219  1.30     yamt 		} else if (desired < VMEM_HASHSIZE_MIN) {
   1220  1.30     yamt 			desired = VMEM_HASHSIZE_MIN;
   1221  1.30     yamt 		}
   1222  1.30     yamt 		if (desired > current * 2 || desired * 2 < current) {
   1223  1.30     yamt 			vmem_rehash(vm, desired, VM_NOSLEEP);
   1224  1.30     yamt 		}
   1225  1.30     yamt 	}
   1226  1.30     yamt 	mutex_exit(&vmem_list_lock);
   1227  1.30     yamt 
   1228  1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1229  1.30     yamt }
   1230  1.30     yamt 
   1231  1.30     yamt static void
   1232  1.30     yamt vmem_rehash_all_kick(void *dummy)
   1233  1.30     yamt {
   1234  1.30     yamt 
   1235  1.32    rmind 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
   1236  1.30     yamt }
   1237  1.30     yamt 
   1238  1.30     yamt void
   1239  1.30     yamt vmem_rehash_start(void)
   1240  1.30     yamt {
   1241  1.30     yamt 	int error;
   1242  1.30     yamt 
   1243  1.30     yamt 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
   1244  1.41       ad 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
   1245  1.30     yamt 	if (error) {
   1246  1.30     yamt 		panic("%s: workqueue_create %d\n", __func__, error);
   1247  1.30     yamt 	}
   1248  1.41       ad 	callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
   1249  1.30     yamt 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
   1250  1.30     yamt 
   1251  1.30     yamt 	vmem_rehash_interval = hz * 10;
   1252  1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1253  1.30     yamt }
   1254  1.30     yamt #endif /* defined(_KERNEL) */
   1255  1.30     yamt 
   1256   1.1     yamt /* ---- debug */
   1257   1.1     yamt 
   1258  1.55     yamt #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
   1259  1.55     yamt 
   1260  1.55     yamt static void bt_dump(const bt_t *, void (*)(const char *, ...));
   1261  1.55     yamt 
   1262  1.55     yamt static const char *
   1263  1.55     yamt bt_type_string(int type)
   1264  1.55     yamt {
   1265  1.55     yamt 	static const char * const table[] = {
   1266  1.55     yamt 		[BT_TYPE_BUSY] = "busy",
   1267  1.55     yamt 		[BT_TYPE_FREE] = "free",
   1268  1.55     yamt 		[BT_TYPE_SPAN] = "span",
   1269  1.55     yamt 		[BT_TYPE_SPAN_STATIC] = "static span",
   1270  1.55     yamt 	};
   1271  1.55     yamt 
   1272  1.55     yamt 	if (type >= __arraycount(table)) {
   1273  1.55     yamt 		return "BOGUS";
   1274  1.55     yamt 	}
   1275  1.55     yamt 	return table[type];
   1276  1.55     yamt }
   1277  1.55     yamt 
   1278  1.55     yamt static void
   1279  1.55     yamt bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
   1280  1.55     yamt {
   1281  1.55     yamt 
   1282  1.55     yamt 	(*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
   1283  1.55     yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1284  1.55     yamt 	    bt->bt_type, bt_type_string(bt->bt_type));
   1285  1.55     yamt }
   1286  1.55     yamt 
   1287  1.55     yamt static void
   1288  1.55     yamt vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
   1289  1.55     yamt {
   1290  1.55     yamt 	const bt_t *bt;
   1291  1.55     yamt 	int i;
   1292  1.55     yamt 
   1293  1.55     yamt 	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
   1294  1.55     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1295  1.55     yamt 		bt_dump(bt, pr);
   1296  1.55     yamt 	}
   1297  1.55     yamt 
   1298  1.55     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1299  1.55     yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1300  1.55     yamt 
   1301  1.55     yamt 		if (LIST_EMPTY(fl)) {
   1302  1.55     yamt 			continue;
   1303  1.55     yamt 		}
   1304  1.55     yamt 
   1305  1.55     yamt 		(*pr)("freelist[%d]\n", i);
   1306  1.55     yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1307  1.55     yamt 			bt_dump(bt, pr);
   1308  1.55     yamt 		}
   1309  1.55     yamt 	}
   1310  1.55     yamt }
   1311  1.55     yamt 
   1312  1.55     yamt #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
   1313  1.55     yamt 
   1314  1.37     yamt #if defined(DDB)
   1315  1.37     yamt static bt_t *
   1316  1.37     yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
   1317  1.37     yamt {
   1318  1.39     yamt 	bt_t *bt;
   1319  1.37     yamt 
   1320  1.39     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1321  1.39     yamt 		if (BT_ISSPAN_P(bt)) {
   1322  1.39     yamt 			continue;
   1323  1.39     yamt 		}
   1324  1.39     yamt 		if (bt->bt_start <= addr && addr < BT_END(bt)) {
   1325  1.39     yamt 			return bt;
   1326  1.37     yamt 		}
   1327  1.37     yamt 	}
   1328  1.37     yamt 
   1329  1.37     yamt 	return NULL;
   1330  1.37     yamt }
   1331  1.37     yamt 
   1332  1.37     yamt void
   1333  1.37     yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1334  1.37     yamt {
   1335  1.37     yamt 	vmem_t *vm;
   1336  1.37     yamt 
   1337  1.37     yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1338  1.37     yamt 		bt_t *bt;
   1339  1.37     yamt 
   1340  1.37     yamt 		bt = vmem_whatis_lookup(vm, addr);
   1341  1.37     yamt 		if (bt == NULL) {
   1342  1.37     yamt 			continue;
   1343  1.37     yamt 		}
   1344  1.39     yamt 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
   1345  1.37     yamt 		    (void *)addr, (void *)bt->bt_start,
   1346  1.39     yamt 		    (size_t)(addr - bt->bt_start), vm->vm_name,
   1347  1.39     yamt 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
   1348  1.37     yamt 	}
   1349  1.37     yamt }
   1350  1.43   cegger 
   1351  1.55     yamt void
   1352  1.55     yamt vmem_printall(const char *modif, void (*pr)(const char *, ...))
   1353  1.43   cegger {
   1354  1.55     yamt 	const vmem_t *vm;
   1355  1.43   cegger 
   1356  1.47   cegger 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1357  1.55     yamt 		vmem_dump(vm, pr);
   1358  1.43   cegger 	}
   1359  1.43   cegger }
   1360  1.43   cegger 
   1361  1.43   cegger void
   1362  1.43   cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
   1363  1.43   cegger {
   1364  1.55     yamt 	const vmem_t *vm = (const void *)addr;
   1365  1.43   cegger 
   1366  1.55     yamt 	vmem_dump(vm, pr);
   1367  1.43   cegger }
   1368  1.37     yamt #endif /* defined(DDB) */
   1369  1.37     yamt 
   1370   1.1     yamt #if !defined(_KERNEL)
   1371   1.1     yamt #include <stdio.h>
   1372   1.1     yamt #endif /* !defined(_KERNEL) */
   1373   1.1     yamt 
   1374  1.55     yamt #if defined(VMEM_SANITY)
   1375   1.1     yamt 
   1376  1.55     yamt static bool
   1377  1.55     yamt vmem_check_sanity(vmem_t *vm)
   1378   1.1     yamt {
   1379  1.55     yamt 	const bt_t *bt, *bt2;
   1380   1.1     yamt 
   1381  1.55     yamt 	KASSERT(vm != NULL);
   1382   1.1     yamt 
   1383   1.1     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1384  1.55     yamt 		if (bt->bt_start >= BT_END(bt)) {
   1385  1.55     yamt 			printf("corrupted tag\n");
   1386  1.55     yamt 			bt_dump(bt, (void *)printf);
   1387  1.55     yamt 			return false;
   1388  1.55     yamt 		}
   1389  1.55     yamt 	}
   1390  1.55     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1391  1.55     yamt 		CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
   1392  1.55     yamt 			if (bt == bt2) {
   1393  1.55     yamt 				continue;
   1394  1.55     yamt 			}
   1395  1.55     yamt 			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
   1396  1.55     yamt 				continue;
   1397  1.55     yamt 			}
   1398  1.55     yamt 			if (bt->bt_start < BT_END(bt2) &&
   1399  1.55     yamt 			    bt2->bt_start < BT_END(bt)) {
   1400  1.55     yamt 				printf("overwrapped tags\n");
   1401  1.55     yamt 				bt_dump(bt, (void *)printf);
   1402  1.55     yamt 				bt_dump(bt2, (void *)printf);
   1403  1.55     yamt 				return false;
   1404  1.55     yamt 			}
   1405  1.55     yamt 		}
   1406   1.1     yamt 	}
   1407   1.1     yamt 
   1408  1.55     yamt 	return true;
   1409  1.55     yamt }
   1410   1.1     yamt 
   1411  1.55     yamt static void
   1412  1.55     yamt vmem_check(vmem_t *vm)
   1413  1.55     yamt {
   1414   1.1     yamt 
   1415  1.55     yamt 	if (!vmem_check_sanity(vm)) {
   1416  1.55     yamt 		panic("insanity vmem %p", vm);
   1417   1.1     yamt 	}
   1418   1.1     yamt }
   1419   1.1     yamt 
   1420  1.55     yamt #endif /* defined(VMEM_SANITY) */
   1421   1.1     yamt 
   1422  1.55     yamt #if defined(UNITTEST)
   1423   1.1     yamt int
   1424  1.57   cegger main(void)
   1425   1.1     yamt {
   1426   1.1     yamt 	vmem_t *vm;
   1427   1.1     yamt 	vmem_addr_t p;
   1428   1.1     yamt 	struct reg {
   1429   1.1     yamt 		vmem_addr_t p;
   1430   1.1     yamt 		vmem_size_t sz;
   1431  1.25  thorpej 		bool x;
   1432   1.1     yamt 	} *reg = NULL;
   1433   1.1     yamt 	int nreg = 0;
   1434   1.1     yamt 	int nalloc = 0;
   1435   1.1     yamt 	int nfree = 0;
   1436   1.1     yamt 	vmem_size_t total = 0;
   1437   1.1     yamt #if 1
   1438   1.1     yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1439   1.1     yamt #else
   1440   1.1     yamt 	vm_flag_t strat = VM_BESTFIT;
   1441   1.1     yamt #endif
   1442   1.1     yamt 
   1443   1.1     yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1444  1.55     yamt 	    NULL, NULL, NULL, 0, VM_SLEEP, 0/*XXX*/);
   1445   1.1     yamt 	if (vm == NULL) {
   1446   1.1     yamt 		printf("vmem_create\n");
   1447   1.1     yamt 		exit(EXIT_FAILURE);
   1448   1.1     yamt 	}
   1449  1.55     yamt 	vmem_dump(vm, (void *)printf);
   1450   1.1     yamt 
   1451   1.1     yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1452   1.1     yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1453   1.1     yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1454   1.1     yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1455   1.1     yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1456  1.55     yamt 	vmem_dump(vm, (void *)printf);
   1457   1.1     yamt 	for (;;) {
   1458   1.1     yamt 		struct reg *r;
   1459  1.10     yamt 		int t = rand() % 100;
   1460   1.1     yamt 
   1461  1.10     yamt 		if (t > 45) {
   1462  1.10     yamt 			/* alloc */
   1463   1.1     yamt 			vmem_size_t sz = rand() % 500 + 1;
   1464  1.25  thorpej 			bool x;
   1465  1.10     yamt 			vmem_size_t align, phase, nocross;
   1466  1.10     yamt 			vmem_addr_t minaddr, maxaddr;
   1467  1.10     yamt 
   1468  1.10     yamt 			if (t > 70) {
   1469  1.26  thorpej 				x = true;
   1470  1.10     yamt 				/* XXX */
   1471  1.10     yamt 				align = 1 << (rand() % 15);
   1472  1.10     yamt 				phase = rand() % 65536;
   1473  1.10     yamt 				nocross = 1 << (rand() % 15);
   1474  1.10     yamt 				if (align <= phase) {
   1475  1.10     yamt 					phase = 0;
   1476  1.10     yamt 				}
   1477  1.19     yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1478  1.19     yamt 				    nocross)) {
   1479  1.10     yamt 					nocross = 0;
   1480  1.10     yamt 				}
   1481  1.10     yamt 				minaddr = rand() % 50000;
   1482  1.10     yamt 				maxaddr = rand() % 70000;
   1483  1.10     yamt 				if (minaddr > maxaddr) {
   1484  1.10     yamt 					minaddr = 0;
   1485  1.10     yamt 					maxaddr = 0;
   1486  1.10     yamt 				}
   1487  1.10     yamt 				printf("=== xalloc %" PRIu64
   1488  1.10     yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1489  1.10     yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1490  1.10     yamt 				    ", max=%" PRIu64 "\n",
   1491  1.10     yamt 				    (uint64_t)sz,
   1492  1.10     yamt 				    (uint64_t)align,
   1493  1.10     yamt 				    (uint64_t)phase,
   1494  1.10     yamt 				    (uint64_t)nocross,
   1495  1.10     yamt 				    (uint64_t)minaddr,
   1496  1.10     yamt 				    (uint64_t)maxaddr);
   1497  1.10     yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1498  1.10     yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1499  1.10     yamt 			} else {
   1500  1.26  thorpej 				x = false;
   1501  1.10     yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1502  1.10     yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1503  1.10     yamt 			}
   1504   1.1     yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1505  1.55     yamt 			vmem_dump(vm, (void *)printf);
   1506   1.1     yamt 			if (p == VMEM_ADDR_NULL) {
   1507  1.10     yamt 				if (x) {
   1508  1.10     yamt 					continue;
   1509  1.10     yamt 				}
   1510   1.1     yamt 				break;
   1511   1.1     yamt 			}
   1512   1.1     yamt 			nreg++;
   1513   1.1     yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1514   1.1     yamt 			r = &reg[nreg - 1];
   1515   1.1     yamt 			r->p = p;
   1516   1.1     yamt 			r->sz = sz;
   1517  1.10     yamt 			r->x = x;
   1518   1.1     yamt 			total += sz;
   1519   1.1     yamt 			nalloc++;
   1520   1.1     yamt 		} else if (nreg != 0) {
   1521  1.10     yamt 			/* free */
   1522   1.1     yamt 			r = &reg[rand() % nreg];
   1523   1.1     yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1524   1.1     yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1525  1.10     yamt 			if (r->x) {
   1526  1.10     yamt 				vmem_xfree(vm, r->p, r->sz);
   1527  1.10     yamt 			} else {
   1528  1.10     yamt 				vmem_free(vm, r->p, r->sz);
   1529  1.10     yamt 			}
   1530   1.1     yamt 			total -= r->sz;
   1531  1.55     yamt 			vmem_dump(vm, (void *)printf);
   1532   1.1     yamt 			*r = reg[nreg - 1];
   1533   1.1     yamt 			nreg--;
   1534   1.1     yamt 			nfree++;
   1535   1.1     yamt 		}
   1536   1.1     yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1537   1.1     yamt 	}
   1538   1.1     yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1539   1.1     yamt 	    (uint64_t)total, nalloc, nfree);
   1540   1.1     yamt 	exit(EXIT_SUCCESS);
   1541   1.1     yamt }
   1542  1.55     yamt #endif /* defined(UNITTEST) */
   1543