subr_vmem.c revision 1.61 1 1.61 dyoung /* $NetBSD: subr_vmem.c,v 1.61 2011/09/02 22:25:08 dyoung Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.55 yamt * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.18 yamt *
35 1.18 yamt * todo:
36 1.18 yamt * - decide how to import segments for vmem_xalloc.
37 1.18 yamt * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.61 dyoung __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.61 2011/09/02 22:25:08 dyoung Exp $");
42 1.1 yamt
43 1.5 yamt #if defined(_KERNEL)
44 1.37 yamt #include "opt_ddb.h"
45 1.5 yamt #define QCACHE
46 1.5 yamt #endif /* defined(_KERNEL) */
47 1.1 yamt
48 1.1 yamt #include <sys/param.h>
49 1.1 yamt #include <sys/hash.h>
50 1.1 yamt #include <sys/queue.h>
51 1.1 yamt
52 1.1 yamt #if defined(_KERNEL)
53 1.1 yamt #include <sys/systm.h>
54 1.30 yamt #include <sys/kernel.h> /* hz */
55 1.30 yamt #include <sys/callout.h>
56 1.1 yamt #include <sys/malloc.h>
57 1.1 yamt #include <sys/once.h>
58 1.1 yamt #include <sys/pool.h>
59 1.1 yamt #include <sys/vmem.h>
60 1.30 yamt #include <sys/workqueue.h>
61 1.1 yamt #else /* defined(_KERNEL) */
62 1.1 yamt #include "../sys/vmem.h"
63 1.1 yamt #endif /* defined(_KERNEL) */
64 1.1 yamt
65 1.1 yamt #if defined(_KERNEL)
66 1.52 ad #define LOCK_DECL(name) \
67 1.52 ad kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
68 1.1 yamt #else /* defined(_KERNEL) */
69 1.1 yamt #include <errno.h>
70 1.1 yamt #include <assert.h>
71 1.1 yamt #include <stdlib.h>
72 1.1 yamt
73 1.55 yamt #define UNITTEST
74 1.1 yamt #define KASSERT(a) assert(a)
75 1.31 ad #define LOCK_DECL(name) /* nothing */
76 1.31 ad #define mutex_init(a, b, c) /* nothing */
77 1.31 ad #define mutex_destroy(a) /* nothing */
78 1.31 ad #define mutex_enter(a) /* nothing */
79 1.55 yamt #define mutex_tryenter(a) true
80 1.31 ad #define mutex_exit(a) /* nothing */
81 1.31 ad #define mutex_owned(a) /* nothing */
82 1.55 yamt #define ASSERT_SLEEPABLE() /* nothing */
83 1.55 yamt #define panic(...) printf(__VA_ARGS__); abort()
84 1.1 yamt #endif /* defined(_KERNEL) */
85 1.1 yamt
86 1.1 yamt struct vmem;
87 1.1 yamt struct vmem_btag;
88 1.1 yamt
89 1.55 yamt #if defined(VMEM_SANITY)
90 1.55 yamt static void vmem_check(vmem_t *);
91 1.55 yamt #else /* defined(VMEM_SANITY) */
92 1.55 yamt #define vmem_check(vm) /* nothing */
93 1.55 yamt #endif /* defined(VMEM_SANITY) */
94 1.1 yamt
95 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
96 1.30 yamt
97 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
98 1.54 yamt #define VMEM_HASHSIZE_MAX 65536 /* XXX */
99 1.53 pooka #define VMEM_HASHSIZE_INIT 128
100 1.1 yamt
101 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
102 1.1 yamt
103 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
104 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
105 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
106 1.1 yamt
107 1.5 yamt #if defined(QCACHE)
108 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
109 1.5 yamt
110 1.5 yamt #define QC_NAME_MAX 16
111 1.5 yamt
112 1.5 yamt struct qcache {
113 1.35 ad pool_cache_t qc_cache;
114 1.5 yamt vmem_t *qc_vmem;
115 1.5 yamt char qc_name[QC_NAME_MAX];
116 1.5 yamt };
117 1.5 yamt typedef struct qcache qcache_t;
118 1.35 ad #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
119 1.5 yamt #endif /* defined(QCACHE) */
120 1.5 yamt
121 1.1 yamt /* vmem arena */
122 1.1 yamt struct vmem {
123 1.31 ad LOCK_DECL(vm_lock);
124 1.61 dyoung int (*vm_importfn)(void *, vmem_size_t, vmem_size_t *,
125 1.61 dyoung vm_flag_t, vmem_addr_t *);
126 1.61 dyoung void (*vm_releasefn)(void *, vmem_addr_t, vmem_size_t);
127 1.1 yamt vmem_t *vm_source;
128 1.61 dyoung void *vm_arg;
129 1.1 yamt struct vmem_seglist vm_seglist;
130 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
131 1.1 yamt size_t vm_hashsize;
132 1.1 yamt size_t vm_nbusytag;
133 1.1 yamt struct vmem_hashlist *vm_hashlist;
134 1.1 yamt size_t vm_quantum_mask;
135 1.1 yamt int vm_quantum_shift;
136 1.1 yamt const char *vm_name;
137 1.30 yamt LIST_ENTRY(vmem) vm_alllist;
138 1.5 yamt
139 1.5 yamt #if defined(QCACHE)
140 1.5 yamt /* quantum cache */
141 1.5 yamt size_t vm_qcache_max;
142 1.5 yamt struct pool_allocator vm_qcache_allocator;
143 1.22 yamt qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
144 1.22 yamt qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
145 1.5 yamt #endif /* defined(QCACHE) */
146 1.1 yamt };
147 1.1 yamt
148 1.31 ad #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
149 1.31 ad #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
150 1.31 ad #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
151 1.36 ad #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
152 1.31 ad #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
153 1.31 ad #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
154 1.1 yamt
155 1.1 yamt /* boundary tag */
156 1.1 yamt struct vmem_btag {
157 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
158 1.1 yamt union {
159 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
160 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
161 1.1 yamt } bt_u;
162 1.1 yamt #define bt_hashlist bt_u.u_hashlist
163 1.1 yamt #define bt_freelist bt_u.u_freelist
164 1.1 yamt vmem_addr_t bt_start;
165 1.1 yamt vmem_size_t bt_size;
166 1.1 yamt int bt_type;
167 1.1 yamt };
168 1.1 yamt
169 1.1 yamt #define BT_TYPE_SPAN 1
170 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
171 1.1 yamt #define BT_TYPE_FREE 3
172 1.1 yamt #define BT_TYPE_BUSY 4
173 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
174 1.1 yamt
175 1.60 dyoung #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
176 1.1 yamt
177 1.1 yamt typedef struct vmem_btag bt_t;
178 1.1 yamt
179 1.1 yamt /* ---- misc */
180 1.1 yamt
181 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
182 1.19 yamt (-(-(addr) & -(align)))
183 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
184 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
185 1.19 yamt
186 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
187 1.4 yamt
188 1.1 yamt static int
189 1.1 yamt calc_order(vmem_size_t size)
190 1.1 yamt {
191 1.4 yamt vmem_size_t target;
192 1.1 yamt int i;
193 1.1 yamt
194 1.1 yamt KASSERT(size != 0);
195 1.1 yamt
196 1.1 yamt i = 0;
197 1.4 yamt target = size >> 1;
198 1.4 yamt while (ORDER2SIZE(i) <= target) {
199 1.1 yamt i++;
200 1.1 yamt }
201 1.1 yamt
202 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
203 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
204 1.1 yamt
205 1.1 yamt return i;
206 1.1 yamt }
207 1.1 yamt
208 1.1 yamt #if defined(_KERNEL)
209 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
210 1.1 yamt #endif /* defined(_KERNEL) */
211 1.1 yamt
212 1.1 yamt static void *
213 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
214 1.1 yamt {
215 1.1 yamt
216 1.1 yamt #if defined(_KERNEL)
217 1.1 yamt return malloc(sz, M_VMEM,
218 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
219 1.1 yamt #else /* defined(_KERNEL) */
220 1.1 yamt return malloc(sz);
221 1.1 yamt #endif /* defined(_KERNEL) */
222 1.1 yamt }
223 1.1 yamt
224 1.1 yamt static void
225 1.1 yamt xfree(void *p)
226 1.1 yamt {
227 1.1 yamt
228 1.1 yamt #if defined(_KERNEL)
229 1.1 yamt return free(p, M_VMEM);
230 1.1 yamt #else /* defined(_KERNEL) */
231 1.1 yamt return free(p);
232 1.1 yamt #endif /* defined(_KERNEL) */
233 1.1 yamt }
234 1.1 yamt
235 1.1 yamt /* ---- boundary tag */
236 1.1 yamt
237 1.1 yamt #if defined(_KERNEL)
238 1.35 ad static struct pool_cache bt_cache;
239 1.1 yamt #endif /* defined(_KERNEL) */
240 1.1 yamt
241 1.1 yamt static bt_t *
242 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
243 1.1 yamt {
244 1.1 yamt bt_t *bt;
245 1.1 yamt
246 1.1 yamt #if defined(_KERNEL)
247 1.35 ad bt = pool_cache_get(&bt_cache,
248 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
249 1.1 yamt #else /* defined(_KERNEL) */
250 1.1 yamt bt = malloc(sizeof *bt);
251 1.1 yamt #endif /* defined(_KERNEL) */
252 1.1 yamt
253 1.1 yamt return bt;
254 1.1 yamt }
255 1.1 yamt
256 1.1 yamt static void
257 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
258 1.1 yamt {
259 1.1 yamt
260 1.1 yamt #if defined(_KERNEL)
261 1.35 ad pool_cache_put(&bt_cache, bt);
262 1.1 yamt #else /* defined(_KERNEL) */
263 1.1 yamt free(bt);
264 1.1 yamt #endif /* defined(_KERNEL) */
265 1.1 yamt }
266 1.1 yamt
267 1.1 yamt /*
268 1.1 yamt * freelist[0] ... [1, 1]
269 1.1 yamt * freelist[1] ... [2, 3]
270 1.1 yamt * freelist[2] ... [4, 7]
271 1.1 yamt * freelist[3] ... [8, 15]
272 1.1 yamt * :
273 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
274 1.1 yamt * :
275 1.1 yamt */
276 1.1 yamt
277 1.1 yamt static struct vmem_freelist *
278 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
279 1.1 yamt {
280 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
281 1.1 yamt int idx;
282 1.1 yamt
283 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
284 1.1 yamt KASSERT(size != 0);
285 1.1 yamt
286 1.1 yamt idx = calc_order(qsize);
287 1.1 yamt KASSERT(idx >= 0);
288 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
289 1.1 yamt
290 1.1 yamt return &vm->vm_freelist[idx];
291 1.1 yamt }
292 1.1 yamt
293 1.59 yamt /*
294 1.59 yamt * bt_freehead_toalloc: return the freelist for the given size and allocation
295 1.59 yamt * strategy.
296 1.59 yamt *
297 1.59 yamt * for VM_INSTANTFIT, return the list in which any blocks are large enough
298 1.59 yamt * for the requested size. otherwise, return the list which can have blocks
299 1.59 yamt * large enough for the requested size.
300 1.59 yamt */
301 1.59 yamt
302 1.1 yamt static struct vmem_freelist *
303 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
304 1.1 yamt {
305 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
306 1.1 yamt int idx;
307 1.1 yamt
308 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
309 1.1 yamt KASSERT(size != 0);
310 1.1 yamt
311 1.1 yamt idx = calc_order(qsize);
312 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
313 1.1 yamt idx++;
314 1.1 yamt /* check too large request? */
315 1.1 yamt }
316 1.1 yamt KASSERT(idx >= 0);
317 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
318 1.1 yamt
319 1.1 yamt return &vm->vm_freelist[idx];
320 1.1 yamt }
321 1.1 yamt
322 1.1 yamt /* ---- boundary tag hash */
323 1.1 yamt
324 1.1 yamt static struct vmem_hashlist *
325 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
326 1.1 yamt {
327 1.1 yamt struct vmem_hashlist *list;
328 1.1 yamt unsigned int hash;
329 1.1 yamt
330 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
331 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
332 1.1 yamt
333 1.1 yamt return list;
334 1.1 yamt }
335 1.1 yamt
336 1.1 yamt static bt_t *
337 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
338 1.1 yamt {
339 1.1 yamt struct vmem_hashlist *list;
340 1.1 yamt bt_t *bt;
341 1.1 yamt
342 1.1 yamt list = bt_hashhead(vm, addr);
343 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
344 1.1 yamt if (bt->bt_start == addr) {
345 1.1 yamt break;
346 1.1 yamt }
347 1.1 yamt }
348 1.1 yamt
349 1.1 yamt return bt;
350 1.1 yamt }
351 1.1 yamt
352 1.1 yamt static void
353 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
354 1.1 yamt {
355 1.1 yamt
356 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
357 1.1 yamt vm->vm_nbusytag--;
358 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
359 1.1 yamt }
360 1.1 yamt
361 1.1 yamt static void
362 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
363 1.1 yamt {
364 1.1 yamt struct vmem_hashlist *list;
365 1.1 yamt
366 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
367 1.1 yamt
368 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
369 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
370 1.1 yamt vm->vm_nbusytag++;
371 1.1 yamt }
372 1.1 yamt
373 1.1 yamt /* ---- boundary tag list */
374 1.1 yamt
375 1.1 yamt static void
376 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
377 1.1 yamt {
378 1.1 yamt
379 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
380 1.1 yamt }
381 1.1 yamt
382 1.1 yamt static void
383 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
384 1.1 yamt {
385 1.1 yamt
386 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
387 1.1 yamt }
388 1.1 yamt
389 1.1 yamt static void
390 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
391 1.1 yamt {
392 1.1 yamt
393 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
394 1.1 yamt }
395 1.1 yamt
396 1.1 yamt static void
397 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
398 1.1 yamt {
399 1.1 yamt
400 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
401 1.1 yamt
402 1.1 yamt LIST_REMOVE(bt, bt_freelist);
403 1.1 yamt }
404 1.1 yamt
405 1.1 yamt static void
406 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
407 1.1 yamt {
408 1.1 yamt struct vmem_freelist *list;
409 1.1 yamt
410 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
411 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
412 1.1 yamt }
413 1.1 yamt
414 1.1 yamt /* ---- vmem internal functions */
415 1.1 yamt
416 1.30 yamt #if defined(_KERNEL)
417 1.30 yamt static kmutex_t vmem_list_lock;
418 1.30 yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
419 1.30 yamt #endif /* defined(_KERNEL) */
420 1.30 yamt
421 1.5 yamt #if defined(QCACHE)
422 1.5 yamt static inline vm_flag_t
423 1.5 yamt prf_to_vmf(int prflags)
424 1.5 yamt {
425 1.5 yamt vm_flag_t vmflags;
426 1.5 yamt
427 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
428 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
429 1.5 yamt vmflags = VM_SLEEP;
430 1.5 yamt } else {
431 1.5 yamt vmflags = VM_NOSLEEP;
432 1.5 yamt }
433 1.5 yamt return vmflags;
434 1.5 yamt }
435 1.5 yamt
436 1.5 yamt static inline int
437 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
438 1.5 yamt {
439 1.5 yamt int prflags;
440 1.5 yamt
441 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
442 1.5 yamt prflags = PR_WAITOK;
443 1.7 yamt } else {
444 1.5 yamt prflags = PR_NOWAIT;
445 1.5 yamt }
446 1.5 yamt return prflags;
447 1.5 yamt }
448 1.5 yamt
449 1.5 yamt static size_t
450 1.5 yamt qc_poolpage_size(size_t qcache_max)
451 1.5 yamt {
452 1.5 yamt int i;
453 1.5 yamt
454 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
455 1.5 yamt /* nothing */
456 1.5 yamt }
457 1.5 yamt return ORDER2SIZE(i);
458 1.5 yamt }
459 1.5 yamt
460 1.5 yamt static void *
461 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
462 1.5 yamt {
463 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
464 1.5 yamt vmem_t *vm = qc->qc_vmem;
465 1.61 dyoung vmem_addr_t addr;
466 1.5 yamt
467 1.61 dyoung if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
468 1.61 dyoung prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
469 1.61 dyoung return NULL;
470 1.61 dyoung return (void *)addr;
471 1.5 yamt }
472 1.5 yamt
473 1.5 yamt static void
474 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
475 1.5 yamt {
476 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
477 1.5 yamt vmem_t *vm = qc->qc_vmem;
478 1.5 yamt
479 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
480 1.5 yamt }
481 1.5 yamt
482 1.5 yamt static void
483 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
484 1.5 yamt {
485 1.22 yamt qcache_t *prevqc;
486 1.5 yamt struct pool_allocator *pa;
487 1.5 yamt int qcache_idx_max;
488 1.5 yamt int i;
489 1.5 yamt
490 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
491 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
492 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
493 1.5 yamt }
494 1.5 yamt vm->vm_qcache_max = qcache_max;
495 1.5 yamt pa = &vm->vm_qcache_allocator;
496 1.5 yamt memset(pa, 0, sizeof(*pa));
497 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
498 1.5 yamt pa->pa_free = qc_poolpage_free;
499 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
500 1.5 yamt
501 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
502 1.22 yamt prevqc = NULL;
503 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
504 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
505 1.5 yamt size_t size = i << vm->vm_quantum_shift;
506 1.5 yamt
507 1.5 yamt qc->qc_vmem = vm;
508 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
509 1.5 yamt vm->vm_name, size);
510 1.35 ad qc->qc_cache = pool_cache_init(size,
511 1.35 ad ORDER2SIZE(vm->vm_quantum_shift), 0,
512 1.35 ad PR_NOALIGN | PR_NOTOUCH /* XXX */,
513 1.35 ad qc->qc_name, pa, ipl, NULL, NULL, NULL);
514 1.35 ad KASSERT(qc->qc_cache != NULL); /* XXX */
515 1.22 yamt if (prevqc != NULL &&
516 1.35 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
517 1.35 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
518 1.35 ad pool_cache_destroy(qc->qc_cache);
519 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
520 1.27 ad continue;
521 1.22 yamt }
522 1.35 ad qc->qc_cache->pc_pool.pr_qcache = qc;
523 1.22 yamt vm->vm_qcache[i - 1] = qc;
524 1.22 yamt prevqc = qc;
525 1.5 yamt }
526 1.5 yamt }
527 1.6 yamt
528 1.23 yamt static void
529 1.23 yamt qc_destroy(vmem_t *vm)
530 1.23 yamt {
531 1.23 yamt const qcache_t *prevqc;
532 1.23 yamt int i;
533 1.23 yamt int qcache_idx_max;
534 1.23 yamt
535 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
536 1.23 yamt prevqc = NULL;
537 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
538 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
539 1.23 yamt
540 1.23 yamt if (prevqc == qc) {
541 1.23 yamt continue;
542 1.23 yamt }
543 1.35 ad pool_cache_destroy(qc->qc_cache);
544 1.23 yamt prevqc = qc;
545 1.23 yamt }
546 1.23 yamt }
547 1.23 yamt
548 1.25 thorpej static bool
549 1.6 yamt qc_reap(vmem_t *vm)
550 1.6 yamt {
551 1.22 yamt const qcache_t *prevqc;
552 1.6 yamt int i;
553 1.6 yamt int qcache_idx_max;
554 1.26 thorpej bool didsomething = false;
555 1.6 yamt
556 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
557 1.22 yamt prevqc = NULL;
558 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
559 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
560 1.6 yamt
561 1.22 yamt if (prevqc == qc) {
562 1.22 yamt continue;
563 1.22 yamt }
564 1.35 ad if (pool_cache_reclaim(qc->qc_cache) != 0) {
565 1.26 thorpej didsomething = true;
566 1.6 yamt }
567 1.22 yamt prevqc = qc;
568 1.6 yamt }
569 1.6 yamt
570 1.6 yamt return didsomething;
571 1.6 yamt }
572 1.5 yamt #endif /* defined(QCACHE) */
573 1.5 yamt
574 1.1 yamt #if defined(_KERNEL)
575 1.1 yamt static int
576 1.1 yamt vmem_init(void)
577 1.1 yamt {
578 1.1 yamt
579 1.30 yamt mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
580 1.35 ad pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
581 1.35 ad NULL, IPL_VM, NULL, NULL, NULL);
582 1.1 yamt return 0;
583 1.1 yamt }
584 1.1 yamt #endif /* defined(_KERNEL) */
585 1.1 yamt
586 1.61 dyoung static int
587 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
588 1.1 yamt int spanbttype)
589 1.1 yamt {
590 1.1 yamt bt_t *btspan;
591 1.1 yamt bt_t *btfree;
592 1.1 yamt
593 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
594 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
595 1.58 yamt KASSERT(spanbttype == BT_TYPE_SPAN ||
596 1.58 yamt spanbttype == BT_TYPE_SPAN_STATIC);
597 1.1 yamt
598 1.1 yamt btspan = bt_alloc(vm, flags);
599 1.1 yamt if (btspan == NULL) {
600 1.61 dyoung return ENOMEM;
601 1.1 yamt }
602 1.1 yamt btfree = bt_alloc(vm, flags);
603 1.1 yamt if (btfree == NULL) {
604 1.1 yamt bt_free(vm, btspan);
605 1.61 dyoung return ENOMEM;
606 1.1 yamt }
607 1.1 yamt
608 1.1 yamt btspan->bt_type = spanbttype;
609 1.1 yamt btspan->bt_start = addr;
610 1.1 yamt btspan->bt_size = size;
611 1.1 yamt
612 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
613 1.1 yamt btfree->bt_start = addr;
614 1.1 yamt btfree->bt_size = size;
615 1.1 yamt
616 1.1 yamt VMEM_LOCK(vm);
617 1.1 yamt bt_insseg_tail(vm, btspan);
618 1.1 yamt bt_insseg(vm, btfree, btspan);
619 1.1 yamt bt_insfree(vm, btfree);
620 1.1 yamt VMEM_UNLOCK(vm);
621 1.1 yamt
622 1.61 dyoung return 0;
623 1.1 yamt }
624 1.1 yamt
625 1.30 yamt static void
626 1.30 yamt vmem_destroy1(vmem_t *vm)
627 1.30 yamt {
628 1.30 yamt
629 1.30 yamt #if defined(QCACHE)
630 1.30 yamt qc_destroy(vm);
631 1.30 yamt #endif /* defined(QCACHE) */
632 1.30 yamt if (vm->vm_hashlist != NULL) {
633 1.30 yamt int i;
634 1.30 yamt
635 1.30 yamt for (i = 0; i < vm->vm_hashsize; i++) {
636 1.30 yamt bt_t *bt;
637 1.30 yamt
638 1.30 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
639 1.30 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
640 1.30 yamt bt_free(vm, bt);
641 1.30 yamt }
642 1.30 yamt }
643 1.30 yamt xfree(vm->vm_hashlist);
644 1.30 yamt }
645 1.31 ad VMEM_LOCK_DESTROY(vm);
646 1.30 yamt xfree(vm);
647 1.30 yamt }
648 1.30 yamt
649 1.1 yamt static int
650 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
651 1.1 yamt {
652 1.1 yamt vmem_addr_t addr;
653 1.61 dyoung int rc;
654 1.1 yamt
655 1.61 dyoung if (vm->vm_importfn == NULL) {
656 1.1 yamt return EINVAL;
657 1.1 yamt }
658 1.1 yamt
659 1.61 dyoung rc = (*vm->vm_importfn)(vm->vm_arg, size, &size, flags, &addr);
660 1.61 dyoung if (rc != 0) {
661 1.1 yamt return ENOMEM;
662 1.1 yamt }
663 1.1 yamt
664 1.61 dyoung if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
665 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, addr, size);
666 1.1 yamt return ENOMEM;
667 1.1 yamt }
668 1.1 yamt
669 1.1 yamt return 0;
670 1.1 yamt }
671 1.1 yamt
672 1.1 yamt static int
673 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
674 1.1 yamt {
675 1.1 yamt bt_t *bt;
676 1.1 yamt int i;
677 1.1 yamt struct vmem_hashlist *newhashlist;
678 1.1 yamt struct vmem_hashlist *oldhashlist;
679 1.1 yamt size_t oldhashsize;
680 1.1 yamt
681 1.1 yamt KASSERT(newhashsize > 0);
682 1.1 yamt
683 1.1 yamt newhashlist =
684 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
685 1.1 yamt if (newhashlist == NULL) {
686 1.1 yamt return ENOMEM;
687 1.1 yamt }
688 1.1 yamt for (i = 0; i < newhashsize; i++) {
689 1.1 yamt LIST_INIT(&newhashlist[i]);
690 1.1 yamt }
691 1.1 yamt
692 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
693 1.30 yamt xfree(newhashlist);
694 1.30 yamt return EBUSY;
695 1.30 yamt }
696 1.1 yamt oldhashlist = vm->vm_hashlist;
697 1.1 yamt oldhashsize = vm->vm_hashsize;
698 1.1 yamt vm->vm_hashlist = newhashlist;
699 1.1 yamt vm->vm_hashsize = newhashsize;
700 1.1 yamt if (oldhashlist == NULL) {
701 1.1 yamt VMEM_UNLOCK(vm);
702 1.1 yamt return 0;
703 1.1 yamt }
704 1.1 yamt for (i = 0; i < oldhashsize; i++) {
705 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
706 1.1 yamt bt_rembusy(vm, bt); /* XXX */
707 1.1 yamt bt_insbusy(vm, bt);
708 1.1 yamt }
709 1.1 yamt }
710 1.1 yamt VMEM_UNLOCK(vm);
711 1.1 yamt
712 1.1 yamt xfree(oldhashlist);
713 1.1 yamt
714 1.1 yamt return 0;
715 1.1 yamt }
716 1.1 yamt
717 1.10 yamt /*
718 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
719 1.59 yamt *
720 1.59 yamt * it's a caller's responsibility to ensure the region is big enough
721 1.59 yamt * before calling us.
722 1.10 yamt */
723 1.10 yamt
724 1.61 dyoung static int
725 1.60 dyoung vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
726 1.60 dyoung vmem_size_t phase, vmem_size_t nocross,
727 1.61 dyoung vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
728 1.10 yamt {
729 1.10 yamt vmem_addr_t start;
730 1.10 yamt vmem_addr_t end;
731 1.10 yamt
732 1.60 dyoung KASSERT(size > 0);
733 1.59 yamt KASSERT(bt->bt_size >= size); /* caller's responsibility */
734 1.10 yamt
735 1.10 yamt /*
736 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
737 1.10 yamt * unsigned integer of the same size.
738 1.10 yamt */
739 1.10 yamt
740 1.10 yamt start = bt->bt_start;
741 1.10 yamt if (start < minaddr) {
742 1.10 yamt start = minaddr;
743 1.10 yamt }
744 1.10 yamt end = BT_END(bt);
745 1.60 dyoung if (end > maxaddr) {
746 1.60 dyoung end = maxaddr;
747 1.10 yamt }
748 1.60 dyoung if (start > end) {
749 1.61 dyoung return ENOMEM;
750 1.10 yamt }
751 1.19 yamt
752 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
753 1.10 yamt if (start < bt->bt_start) {
754 1.10 yamt start += align;
755 1.10 yamt }
756 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
757 1.10 yamt KASSERT(align < nocross);
758 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
759 1.10 yamt }
760 1.60 dyoung if (start <= end && end - start >= size - 1) {
761 1.10 yamt KASSERT((start & (align - 1)) == phase);
762 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
763 1.10 yamt KASSERT(minaddr <= start);
764 1.60 dyoung KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
765 1.10 yamt KASSERT(bt->bt_start <= start);
766 1.60 dyoung KASSERT(BT_END(bt) - start >= size - 1);
767 1.61 dyoung *addrp = start;
768 1.61 dyoung return 0;
769 1.10 yamt }
770 1.61 dyoung return ENOMEM;
771 1.10 yamt }
772 1.10 yamt
773 1.1 yamt /* ---- vmem API */
774 1.1 yamt
775 1.1 yamt /*
776 1.1 yamt * vmem_create: create an arena.
777 1.1 yamt *
778 1.1 yamt * => must not be called from interrupt context.
779 1.1 yamt */
780 1.1 yamt
781 1.1 yamt vmem_t *
782 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
783 1.1 yamt vmem_size_t quantum,
784 1.61 dyoung int (*importfn)(void *, vmem_size_t, vmem_size_t *, vm_flag_t,
785 1.61 dyoung vmem_addr_t *),
786 1.61 dyoung void (*releasefn)(void *, vmem_addr_t, vmem_size_t),
787 1.61 dyoung void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
788 1.1 yamt {
789 1.1 yamt vmem_t *vm;
790 1.1 yamt int i;
791 1.1 yamt #if defined(_KERNEL)
792 1.1 yamt static ONCE_DECL(control);
793 1.1 yamt #endif /* defined(_KERNEL) */
794 1.1 yamt
795 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
796 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
797 1.1 yamt
798 1.1 yamt #if defined(_KERNEL)
799 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
800 1.1 yamt return NULL;
801 1.1 yamt }
802 1.1 yamt #endif /* defined(_KERNEL) */
803 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
804 1.1 yamt if (vm == NULL) {
805 1.1 yamt return NULL;
806 1.1 yamt }
807 1.1 yamt
808 1.31 ad VMEM_LOCK_INIT(vm, ipl);
809 1.1 yamt vm->vm_name = name;
810 1.1 yamt vm->vm_quantum_mask = quantum - 1;
811 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
812 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
813 1.61 dyoung vm->vm_importfn = importfn;
814 1.61 dyoung vm->vm_releasefn = releasefn;
815 1.61 dyoung vm->vm_arg = arg;
816 1.1 yamt vm->vm_nbusytag = 0;
817 1.5 yamt #if defined(QCACHE)
818 1.31 ad qc_init(vm, qcache_max, ipl);
819 1.5 yamt #endif /* defined(QCACHE) */
820 1.1 yamt
821 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
822 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
823 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
824 1.1 yamt }
825 1.1 yamt vm->vm_hashlist = NULL;
826 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
827 1.30 yamt vmem_destroy1(vm);
828 1.1 yamt return NULL;
829 1.1 yamt }
830 1.1 yamt
831 1.1 yamt if (size != 0) {
832 1.61 dyoung if (vmem_add(vm, base, size, flags) != 0) {
833 1.30 yamt vmem_destroy1(vm);
834 1.1 yamt return NULL;
835 1.1 yamt }
836 1.1 yamt }
837 1.1 yamt
838 1.30 yamt #if defined(_KERNEL)
839 1.30 yamt mutex_enter(&vmem_list_lock);
840 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
841 1.30 yamt mutex_exit(&vmem_list_lock);
842 1.30 yamt #endif /* defined(_KERNEL) */
843 1.30 yamt
844 1.1 yamt return vm;
845 1.1 yamt }
846 1.1 yamt
847 1.1 yamt void
848 1.1 yamt vmem_destroy(vmem_t *vm)
849 1.1 yamt {
850 1.1 yamt
851 1.30 yamt #if defined(_KERNEL)
852 1.30 yamt mutex_enter(&vmem_list_lock);
853 1.30 yamt LIST_REMOVE(vm, vm_alllist);
854 1.30 yamt mutex_exit(&vmem_list_lock);
855 1.30 yamt #endif /* defined(_KERNEL) */
856 1.1 yamt
857 1.30 yamt vmem_destroy1(vm);
858 1.1 yamt }
859 1.1 yamt
860 1.1 yamt vmem_size_t
861 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
862 1.1 yamt {
863 1.1 yamt
864 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
865 1.1 yamt }
866 1.1 yamt
867 1.1 yamt /*
868 1.1 yamt * vmem_alloc:
869 1.1 yamt *
870 1.1 yamt * => caller must ensure appropriate spl,
871 1.1 yamt * if the arena can be accessed from interrupt context.
872 1.1 yamt */
873 1.1 yamt
874 1.61 dyoung int
875 1.61 dyoung vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
876 1.1 yamt {
877 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
878 1.1 yamt
879 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
880 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
881 1.1 yamt
882 1.1 yamt KASSERT(size > 0);
883 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
884 1.3 yamt if ((flags & VM_SLEEP) != 0) {
885 1.42 yamt ASSERT_SLEEPABLE();
886 1.3 yamt }
887 1.1 yamt
888 1.5 yamt #if defined(QCACHE)
889 1.5 yamt if (size <= vm->vm_qcache_max) {
890 1.61 dyoung void *p;
891 1.38 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
892 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
893 1.5 yamt
894 1.61 dyoung p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
895 1.61 dyoung if (addrp != NULL)
896 1.61 dyoung *addrp = (vmem_addr_t)p;
897 1.61 dyoung return (p == NULL) ? ENOMEM : 0;
898 1.5 yamt }
899 1.5 yamt #endif /* defined(QCACHE) */
900 1.5 yamt
901 1.60 dyoung return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
902 1.61 dyoung flags, addrp);
903 1.10 yamt }
904 1.10 yamt
905 1.61 dyoung int
906 1.60 dyoung vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
907 1.60 dyoung const vmem_size_t phase, const vmem_size_t nocross,
908 1.61 dyoung const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
909 1.61 dyoung vmem_addr_t *addrp)
910 1.10 yamt {
911 1.10 yamt struct vmem_freelist *list;
912 1.10 yamt struct vmem_freelist *first;
913 1.10 yamt struct vmem_freelist *end;
914 1.10 yamt bt_t *bt;
915 1.10 yamt bt_t *btnew;
916 1.10 yamt bt_t *btnew2;
917 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
918 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
919 1.10 yamt vmem_addr_t start;
920 1.61 dyoung int rc;
921 1.10 yamt
922 1.10 yamt KASSERT(size0 > 0);
923 1.10 yamt KASSERT(size > 0);
924 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
925 1.10 yamt if ((flags & VM_SLEEP) != 0) {
926 1.42 yamt ASSERT_SLEEPABLE();
927 1.10 yamt }
928 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
929 1.10 yamt KASSERT((align & (align - 1)) == 0);
930 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
931 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
932 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
933 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
934 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
935 1.60 dyoung KASSERT(minaddr <= maxaddr);
936 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
937 1.10 yamt
938 1.10 yamt if (align == 0) {
939 1.10 yamt align = vm->vm_quantum_mask + 1;
940 1.10 yamt }
941 1.59 yamt
942 1.59 yamt /*
943 1.59 yamt * allocate boundary tags before acquiring the vmem lock.
944 1.59 yamt */
945 1.1 yamt btnew = bt_alloc(vm, flags);
946 1.1 yamt if (btnew == NULL) {
947 1.61 dyoung return ENOMEM;
948 1.1 yamt }
949 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
950 1.10 yamt if (btnew2 == NULL) {
951 1.10 yamt bt_free(vm, btnew);
952 1.61 dyoung return ENOMEM;
953 1.10 yamt }
954 1.1 yamt
955 1.59 yamt /*
956 1.59 yamt * choose a free block from which we allocate.
957 1.59 yamt */
958 1.1 yamt retry_strat:
959 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
960 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
961 1.1 yamt retry:
962 1.1 yamt bt = NULL;
963 1.1 yamt VMEM_LOCK(vm);
964 1.55 yamt vmem_check(vm);
965 1.2 yamt if (strat == VM_INSTANTFIT) {
966 1.59 yamt /*
967 1.59 yamt * just choose the first block which satisfies our restrictions.
968 1.59 yamt *
969 1.59 yamt * note that we don't need to check the size of the blocks
970 1.59 yamt * because any blocks found on these list should be larger than
971 1.59 yamt * the given size.
972 1.59 yamt */
973 1.2 yamt for (list = first; list < end; list++) {
974 1.2 yamt bt = LIST_FIRST(list);
975 1.2 yamt if (bt != NULL) {
976 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
977 1.61 dyoung nocross, minaddr, maxaddr, &start);
978 1.61 dyoung if (rc == 0) {
979 1.10 yamt goto gotit;
980 1.10 yamt }
981 1.59 yamt /*
982 1.59 yamt * don't bother to follow the bt_freelist link
983 1.59 yamt * here. the list can be very long and we are
984 1.59 yamt * told to run fast. blocks from the later free
985 1.59 yamt * lists are larger and have better chances to
986 1.59 yamt * satisfy our restrictions.
987 1.59 yamt */
988 1.2 yamt }
989 1.2 yamt }
990 1.2 yamt } else { /* VM_BESTFIT */
991 1.59 yamt /*
992 1.59 yamt * we assume that, for space efficiency, it's better to
993 1.59 yamt * allocate from a smaller block. thus we will start searching
994 1.59 yamt * from the lower-order list than VM_INSTANTFIT.
995 1.59 yamt * however, don't bother to find the smallest block in a free
996 1.59 yamt * list because the list can be very long. we can revisit it
997 1.59 yamt * if/when it turns out to be a problem.
998 1.59 yamt *
999 1.59 yamt * note that the 'first' list can contain blocks smaller than
1000 1.59 yamt * the requested size. thus we need to check bt_size.
1001 1.59 yamt */
1002 1.2 yamt for (list = first; list < end; list++) {
1003 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
1004 1.2 yamt if (bt->bt_size >= size) {
1005 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
1006 1.61 dyoung nocross, minaddr, maxaddr, &start);
1007 1.61 dyoung if (rc == 0) {
1008 1.10 yamt goto gotit;
1009 1.10 yamt }
1010 1.2 yamt }
1011 1.1 yamt }
1012 1.1 yamt }
1013 1.1 yamt }
1014 1.2 yamt VMEM_UNLOCK(vm);
1015 1.1 yamt #if 1
1016 1.2 yamt if (strat == VM_INSTANTFIT) {
1017 1.2 yamt strat = VM_BESTFIT;
1018 1.2 yamt goto retry_strat;
1019 1.2 yamt }
1020 1.1 yamt #endif
1021 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
1022 1.60 dyoung nocross != 0) {
1023 1.10 yamt
1024 1.10 yamt /*
1025 1.10 yamt * XXX should try to import a region large enough to
1026 1.10 yamt * satisfy restrictions?
1027 1.10 yamt */
1028 1.10 yamt
1029 1.20 yamt goto fail;
1030 1.10 yamt }
1031 1.60 dyoung /* XXX eeek, minaddr & maxaddr not respected */
1032 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
1033 1.2 yamt goto retry;
1034 1.1 yamt }
1035 1.2 yamt /* XXX */
1036 1.20 yamt fail:
1037 1.20 yamt bt_free(vm, btnew);
1038 1.20 yamt bt_free(vm, btnew2);
1039 1.61 dyoung return ENOMEM;
1040 1.2 yamt
1041 1.2 yamt gotit:
1042 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
1043 1.1 yamt KASSERT(bt->bt_size >= size);
1044 1.1 yamt bt_remfree(vm, bt);
1045 1.55 yamt vmem_check(vm);
1046 1.10 yamt if (bt->bt_start != start) {
1047 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
1048 1.10 yamt btnew2->bt_start = bt->bt_start;
1049 1.10 yamt btnew2->bt_size = start - bt->bt_start;
1050 1.10 yamt bt->bt_start = start;
1051 1.10 yamt bt->bt_size -= btnew2->bt_size;
1052 1.10 yamt bt_insfree(vm, btnew2);
1053 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1054 1.10 yamt btnew2 = NULL;
1055 1.55 yamt vmem_check(vm);
1056 1.10 yamt }
1057 1.10 yamt KASSERT(bt->bt_start == start);
1058 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1059 1.1 yamt /* split */
1060 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1061 1.1 yamt btnew->bt_start = bt->bt_start;
1062 1.1 yamt btnew->bt_size = size;
1063 1.1 yamt bt->bt_start = bt->bt_start + size;
1064 1.1 yamt bt->bt_size -= size;
1065 1.1 yamt bt_insfree(vm, bt);
1066 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1067 1.1 yamt bt_insbusy(vm, btnew);
1068 1.55 yamt vmem_check(vm);
1069 1.1 yamt VMEM_UNLOCK(vm);
1070 1.1 yamt } else {
1071 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1072 1.1 yamt bt_insbusy(vm, bt);
1073 1.55 yamt vmem_check(vm);
1074 1.1 yamt VMEM_UNLOCK(vm);
1075 1.1 yamt bt_free(vm, btnew);
1076 1.1 yamt btnew = bt;
1077 1.1 yamt }
1078 1.10 yamt if (btnew2 != NULL) {
1079 1.10 yamt bt_free(vm, btnew2);
1080 1.10 yamt }
1081 1.1 yamt KASSERT(btnew->bt_size >= size);
1082 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1083 1.1 yamt
1084 1.61 dyoung if (addrp != NULL)
1085 1.61 dyoung *addrp = btnew->bt_start;
1086 1.61 dyoung return 0;
1087 1.1 yamt }
1088 1.1 yamt
1089 1.1 yamt /*
1090 1.1 yamt * vmem_free:
1091 1.1 yamt *
1092 1.1 yamt * => caller must ensure appropriate spl,
1093 1.1 yamt * if the arena can be accessed from interrupt context.
1094 1.1 yamt */
1095 1.1 yamt
1096 1.1 yamt void
1097 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1098 1.1 yamt {
1099 1.1 yamt
1100 1.1 yamt KASSERT(size > 0);
1101 1.1 yamt
1102 1.5 yamt #if defined(QCACHE)
1103 1.5 yamt if (size <= vm->vm_qcache_max) {
1104 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1105 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1106 1.5 yamt
1107 1.35 ad return pool_cache_put(qc->qc_cache, (void *)addr);
1108 1.5 yamt }
1109 1.5 yamt #endif /* defined(QCACHE) */
1110 1.5 yamt
1111 1.10 yamt vmem_xfree(vm, addr, size);
1112 1.10 yamt }
1113 1.10 yamt
1114 1.10 yamt void
1115 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1116 1.10 yamt {
1117 1.10 yamt bt_t *bt;
1118 1.10 yamt bt_t *t;
1119 1.10 yamt
1120 1.10 yamt KASSERT(size > 0);
1121 1.10 yamt
1122 1.1 yamt VMEM_LOCK(vm);
1123 1.1 yamt
1124 1.1 yamt bt = bt_lookupbusy(vm, addr);
1125 1.1 yamt KASSERT(bt != NULL);
1126 1.1 yamt KASSERT(bt->bt_start == addr);
1127 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1128 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1129 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1130 1.1 yamt bt_rembusy(vm, bt);
1131 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1132 1.1 yamt
1133 1.1 yamt /* coalesce */
1134 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1135 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1136 1.60 dyoung KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1137 1.1 yamt bt_remfree(vm, t);
1138 1.1 yamt bt_remseg(vm, t);
1139 1.1 yamt bt->bt_size += t->bt_size;
1140 1.1 yamt bt_free(vm, t);
1141 1.1 yamt }
1142 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1143 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1144 1.60 dyoung KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1145 1.1 yamt bt_remfree(vm, t);
1146 1.1 yamt bt_remseg(vm, t);
1147 1.1 yamt bt->bt_size += t->bt_size;
1148 1.1 yamt bt->bt_start = t->bt_start;
1149 1.1 yamt bt_free(vm, t);
1150 1.1 yamt }
1151 1.1 yamt
1152 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1153 1.1 yamt KASSERT(t != NULL);
1154 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1155 1.61 dyoung if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1156 1.1 yamt t->bt_size == bt->bt_size) {
1157 1.1 yamt vmem_addr_t spanaddr;
1158 1.1 yamt vmem_size_t spansize;
1159 1.1 yamt
1160 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1161 1.1 yamt spanaddr = bt->bt_start;
1162 1.1 yamt spansize = bt->bt_size;
1163 1.1 yamt bt_remseg(vm, bt);
1164 1.1 yamt bt_free(vm, bt);
1165 1.1 yamt bt_remseg(vm, t);
1166 1.1 yamt bt_free(vm, t);
1167 1.1 yamt VMEM_UNLOCK(vm);
1168 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1169 1.1 yamt } else {
1170 1.1 yamt bt_insfree(vm, bt);
1171 1.1 yamt VMEM_UNLOCK(vm);
1172 1.1 yamt }
1173 1.1 yamt }
1174 1.1 yamt
1175 1.1 yamt /*
1176 1.1 yamt * vmem_add:
1177 1.1 yamt *
1178 1.1 yamt * => caller must ensure appropriate spl,
1179 1.1 yamt * if the arena can be accessed from interrupt context.
1180 1.1 yamt */
1181 1.1 yamt
1182 1.61 dyoung int
1183 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1184 1.1 yamt {
1185 1.1 yamt
1186 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1187 1.1 yamt }
1188 1.1 yamt
1189 1.6 yamt /*
1190 1.6 yamt * vmem_reap: reap unused resources.
1191 1.6 yamt *
1192 1.26 thorpej * => return true if we successfully reaped something.
1193 1.6 yamt */
1194 1.6 yamt
1195 1.25 thorpej bool
1196 1.6 yamt vmem_reap(vmem_t *vm)
1197 1.6 yamt {
1198 1.26 thorpej bool didsomething = false;
1199 1.6 yamt
1200 1.6 yamt #if defined(QCACHE)
1201 1.6 yamt didsomething = qc_reap(vm);
1202 1.6 yamt #endif /* defined(QCACHE) */
1203 1.6 yamt return didsomething;
1204 1.6 yamt }
1205 1.6 yamt
1206 1.30 yamt /* ---- rehash */
1207 1.30 yamt
1208 1.30 yamt #if defined(_KERNEL)
1209 1.30 yamt static struct callout vmem_rehash_ch;
1210 1.30 yamt static int vmem_rehash_interval;
1211 1.30 yamt static struct workqueue *vmem_rehash_wq;
1212 1.30 yamt static struct work vmem_rehash_wk;
1213 1.30 yamt
1214 1.30 yamt static void
1215 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1216 1.30 yamt {
1217 1.30 yamt vmem_t *vm;
1218 1.30 yamt
1219 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1220 1.30 yamt mutex_enter(&vmem_list_lock);
1221 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1222 1.30 yamt size_t desired;
1223 1.30 yamt size_t current;
1224 1.30 yamt
1225 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
1226 1.30 yamt continue;
1227 1.30 yamt }
1228 1.30 yamt desired = vm->vm_nbusytag;
1229 1.30 yamt current = vm->vm_hashsize;
1230 1.30 yamt VMEM_UNLOCK(vm);
1231 1.30 yamt
1232 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1233 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1234 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1235 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1236 1.30 yamt }
1237 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1238 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1239 1.30 yamt }
1240 1.30 yamt }
1241 1.30 yamt mutex_exit(&vmem_list_lock);
1242 1.30 yamt
1243 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1244 1.30 yamt }
1245 1.30 yamt
1246 1.30 yamt static void
1247 1.30 yamt vmem_rehash_all_kick(void *dummy)
1248 1.30 yamt {
1249 1.30 yamt
1250 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1251 1.30 yamt }
1252 1.30 yamt
1253 1.30 yamt void
1254 1.30 yamt vmem_rehash_start(void)
1255 1.30 yamt {
1256 1.30 yamt int error;
1257 1.30 yamt
1258 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1259 1.41 ad vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1260 1.30 yamt if (error) {
1261 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1262 1.30 yamt }
1263 1.41 ad callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1264 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1265 1.30 yamt
1266 1.30 yamt vmem_rehash_interval = hz * 10;
1267 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1268 1.30 yamt }
1269 1.30 yamt #endif /* defined(_KERNEL) */
1270 1.30 yamt
1271 1.1 yamt /* ---- debug */
1272 1.1 yamt
1273 1.55 yamt #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1274 1.55 yamt
1275 1.55 yamt static void bt_dump(const bt_t *, void (*)(const char *, ...));
1276 1.55 yamt
1277 1.55 yamt static const char *
1278 1.55 yamt bt_type_string(int type)
1279 1.55 yamt {
1280 1.55 yamt static const char * const table[] = {
1281 1.55 yamt [BT_TYPE_BUSY] = "busy",
1282 1.55 yamt [BT_TYPE_FREE] = "free",
1283 1.55 yamt [BT_TYPE_SPAN] = "span",
1284 1.55 yamt [BT_TYPE_SPAN_STATIC] = "static span",
1285 1.55 yamt };
1286 1.55 yamt
1287 1.55 yamt if (type >= __arraycount(table)) {
1288 1.55 yamt return "BOGUS";
1289 1.55 yamt }
1290 1.55 yamt return table[type];
1291 1.55 yamt }
1292 1.55 yamt
1293 1.55 yamt static void
1294 1.55 yamt bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1295 1.55 yamt {
1296 1.55 yamt
1297 1.55 yamt (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1298 1.55 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1299 1.55 yamt bt->bt_type, bt_type_string(bt->bt_type));
1300 1.55 yamt }
1301 1.55 yamt
1302 1.55 yamt static void
1303 1.55 yamt vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1304 1.55 yamt {
1305 1.55 yamt const bt_t *bt;
1306 1.55 yamt int i;
1307 1.55 yamt
1308 1.55 yamt (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1309 1.55 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1310 1.55 yamt bt_dump(bt, pr);
1311 1.55 yamt }
1312 1.55 yamt
1313 1.55 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1314 1.55 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1315 1.55 yamt
1316 1.55 yamt if (LIST_EMPTY(fl)) {
1317 1.55 yamt continue;
1318 1.55 yamt }
1319 1.55 yamt
1320 1.55 yamt (*pr)("freelist[%d]\n", i);
1321 1.55 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1322 1.55 yamt bt_dump(bt, pr);
1323 1.55 yamt }
1324 1.55 yamt }
1325 1.55 yamt }
1326 1.55 yamt
1327 1.55 yamt #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1328 1.55 yamt
1329 1.37 yamt #if defined(DDB)
1330 1.37 yamt static bt_t *
1331 1.37 yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1332 1.37 yamt {
1333 1.39 yamt bt_t *bt;
1334 1.37 yamt
1335 1.39 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1336 1.39 yamt if (BT_ISSPAN_P(bt)) {
1337 1.39 yamt continue;
1338 1.39 yamt }
1339 1.60 dyoung if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1340 1.39 yamt return bt;
1341 1.37 yamt }
1342 1.37 yamt }
1343 1.37 yamt
1344 1.37 yamt return NULL;
1345 1.37 yamt }
1346 1.37 yamt
1347 1.37 yamt void
1348 1.37 yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1349 1.37 yamt {
1350 1.37 yamt vmem_t *vm;
1351 1.37 yamt
1352 1.37 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1353 1.37 yamt bt_t *bt;
1354 1.37 yamt
1355 1.37 yamt bt = vmem_whatis_lookup(vm, addr);
1356 1.37 yamt if (bt == NULL) {
1357 1.37 yamt continue;
1358 1.37 yamt }
1359 1.39 yamt (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1360 1.37 yamt (void *)addr, (void *)bt->bt_start,
1361 1.39 yamt (size_t)(addr - bt->bt_start), vm->vm_name,
1362 1.39 yamt (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1363 1.37 yamt }
1364 1.37 yamt }
1365 1.43 cegger
1366 1.55 yamt void
1367 1.55 yamt vmem_printall(const char *modif, void (*pr)(const char *, ...))
1368 1.43 cegger {
1369 1.55 yamt const vmem_t *vm;
1370 1.43 cegger
1371 1.47 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1372 1.55 yamt vmem_dump(vm, pr);
1373 1.43 cegger }
1374 1.43 cegger }
1375 1.43 cegger
1376 1.43 cegger void
1377 1.43 cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1378 1.43 cegger {
1379 1.55 yamt const vmem_t *vm = (const void *)addr;
1380 1.43 cegger
1381 1.55 yamt vmem_dump(vm, pr);
1382 1.43 cegger }
1383 1.37 yamt #endif /* defined(DDB) */
1384 1.37 yamt
1385 1.60 dyoung #if defined(_KERNEL)
1386 1.60 dyoung #define vmem_printf printf
1387 1.60 dyoung #else
1388 1.1 yamt #include <stdio.h>
1389 1.60 dyoung #include <stdarg.h>
1390 1.60 dyoung
1391 1.60 dyoung static void
1392 1.60 dyoung vmem_printf(const char *fmt, ...)
1393 1.60 dyoung {
1394 1.60 dyoung va_list ap;
1395 1.60 dyoung va_start(ap, fmt);
1396 1.60 dyoung vprintf(fmt, ap);
1397 1.60 dyoung va_end(ap);
1398 1.60 dyoung }
1399 1.60 dyoung #endif
1400 1.1 yamt
1401 1.55 yamt #if defined(VMEM_SANITY)
1402 1.1 yamt
1403 1.55 yamt static bool
1404 1.55 yamt vmem_check_sanity(vmem_t *vm)
1405 1.1 yamt {
1406 1.55 yamt const bt_t *bt, *bt2;
1407 1.1 yamt
1408 1.55 yamt KASSERT(vm != NULL);
1409 1.1 yamt
1410 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1411 1.60 dyoung if (bt->bt_start > BT_END(bt)) {
1412 1.55 yamt printf("corrupted tag\n");
1413 1.60 dyoung bt_dump(bt, vmem_printf);
1414 1.55 yamt return false;
1415 1.55 yamt }
1416 1.55 yamt }
1417 1.55 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1418 1.55 yamt CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1419 1.55 yamt if (bt == bt2) {
1420 1.55 yamt continue;
1421 1.55 yamt }
1422 1.55 yamt if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1423 1.55 yamt continue;
1424 1.55 yamt }
1425 1.60 dyoung if (bt->bt_start <= BT_END(bt2) &&
1426 1.60 dyoung bt2->bt_start <= BT_END(bt)) {
1427 1.55 yamt printf("overwrapped tags\n");
1428 1.60 dyoung bt_dump(bt, vmem_printf);
1429 1.60 dyoung bt_dump(bt2, vmem_printf);
1430 1.55 yamt return false;
1431 1.55 yamt }
1432 1.55 yamt }
1433 1.1 yamt }
1434 1.1 yamt
1435 1.55 yamt return true;
1436 1.55 yamt }
1437 1.1 yamt
1438 1.55 yamt static void
1439 1.55 yamt vmem_check(vmem_t *vm)
1440 1.55 yamt {
1441 1.1 yamt
1442 1.55 yamt if (!vmem_check_sanity(vm)) {
1443 1.55 yamt panic("insanity vmem %p", vm);
1444 1.1 yamt }
1445 1.1 yamt }
1446 1.1 yamt
1447 1.55 yamt #endif /* defined(VMEM_SANITY) */
1448 1.1 yamt
1449 1.55 yamt #if defined(UNITTEST)
1450 1.1 yamt int
1451 1.57 cegger main(void)
1452 1.1 yamt {
1453 1.61 dyoung int rc;
1454 1.1 yamt vmem_t *vm;
1455 1.1 yamt vmem_addr_t p;
1456 1.1 yamt struct reg {
1457 1.1 yamt vmem_addr_t p;
1458 1.1 yamt vmem_size_t sz;
1459 1.25 thorpej bool x;
1460 1.1 yamt } *reg = NULL;
1461 1.1 yamt int nreg = 0;
1462 1.1 yamt int nalloc = 0;
1463 1.1 yamt int nfree = 0;
1464 1.1 yamt vmem_size_t total = 0;
1465 1.1 yamt #if 1
1466 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1467 1.1 yamt #else
1468 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1469 1.1 yamt #endif
1470 1.1 yamt
1471 1.61 dyoung vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1472 1.61 dyoung #ifdef _KERNEL
1473 1.61 dyoung IPL_NONE
1474 1.61 dyoung #else
1475 1.61 dyoung 0
1476 1.61 dyoung #endif
1477 1.61 dyoung );
1478 1.1 yamt if (vm == NULL) {
1479 1.1 yamt printf("vmem_create\n");
1480 1.1 yamt exit(EXIT_FAILURE);
1481 1.1 yamt }
1482 1.60 dyoung vmem_dump(vm, vmem_printf);
1483 1.1 yamt
1484 1.61 dyoung rc = vmem_add(vm, 0, 50, VM_SLEEP);
1485 1.61 dyoung assert(rc == 0);
1486 1.61 dyoung rc = vmem_add(vm, 100, 200, VM_SLEEP);
1487 1.61 dyoung assert(rc == 0);
1488 1.61 dyoung rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1489 1.61 dyoung assert(rc == 0);
1490 1.61 dyoung rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1491 1.61 dyoung assert(rc == 0);
1492 1.61 dyoung rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1493 1.61 dyoung assert(rc == 0);
1494 1.61 dyoung rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1495 1.61 dyoung assert(rc == 0);
1496 1.61 dyoung rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1497 1.61 dyoung assert(rc == 0);
1498 1.61 dyoung rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1499 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1500 1.61 dyoung assert(rc != 0);
1501 1.61 dyoung rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1502 1.61 dyoung assert(rc == 0 && p == 0);
1503 1.61 dyoung vmem_xfree(vm, p, 50);
1504 1.61 dyoung rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1505 1.61 dyoung assert(rc == 0 && p == 0);
1506 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1507 1.61 dyoung 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1508 1.61 dyoung assert(rc != 0);
1509 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1510 1.61 dyoung 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1511 1.61 dyoung assert(rc != 0);
1512 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1513 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1514 1.61 dyoung assert(rc == 0);
1515 1.60 dyoung vmem_dump(vm, vmem_printf);
1516 1.1 yamt for (;;) {
1517 1.1 yamt struct reg *r;
1518 1.10 yamt int t = rand() % 100;
1519 1.1 yamt
1520 1.10 yamt if (t > 45) {
1521 1.10 yamt /* alloc */
1522 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1523 1.25 thorpej bool x;
1524 1.10 yamt vmem_size_t align, phase, nocross;
1525 1.10 yamt vmem_addr_t minaddr, maxaddr;
1526 1.10 yamt
1527 1.10 yamt if (t > 70) {
1528 1.26 thorpej x = true;
1529 1.10 yamt /* XXX */
1530 1.10 yamt align = 1 << (rand() % 15);
1531 1.10 yamt phase = rand() % 65536;
1532 1.10 yamt nocross = 1 << (rand() % 15);
1533 1.10 yamt if (align <= phase) {
1534 1.10 yamt phase = 0;
1535 1.10 yamt }
1536 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1537 1.19 yamt nocross)) {
1538 1.10 yamt nocross = 0;
1539 1.10 yamt }
1540 1.60 dyoung do {
1541 1.60 dyoung minaddr = rand() % 50000;
1542 1.60 dyoung maxaddr = rand() % 70000;
1543 1.60 dyoung } while (minaddr > maxaddr);
1544 1.10 yamt printf("=== xalloc %" PRIu64
1545 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1546 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1547 1.10 yamt ", max=%" PRIu64 "\n",
1548 1.10 yamt (uint64_t)sz,
1549 1.10 yamt (uint64_t)align,
1550 1.10 yamt (uint64_t)phase,
1551 1.10 yamt (uint64_t)nocross,
1552 1.10 yamt (uint64_t)minaddr,
1553 1.10 yamt (uint64_t)maxaddr);
1554 1.61 dyoung rc = vmem_xalloc(vm, sz, align, phase, nocross,
1555 1.61 dyoung minaddr, maxaddr, strat|VM_SLEEP, &p);
1556 1.10 yamt } else {
1557 1.26 thorpej x = false;
1558 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1559 1.61 dyoung rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1560 1.10 yamt }
1561 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1562 1.60 dyoung vmem_dump(vm, vmem_printf);
1563 1.61 dyoung if (rc != 0) {
1564 1.10 yamt if (x) {
1565 1.10 yamt continue;
1566 1.10 yamt }
1567 1.1 yamt break;
1568 1.1 yamt }
1569 1.1 yamt nreg++;
1570 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1571 1.1 yamt r = ®[nreg - 1];
1572 1.1 yamt r->p = p;
1573 1.1 yamt r->sz = sz;
1574 1.10 yamt r->x = x;
1575 1.1 yamt total += sz;
1576 1.1 yamt nalloc++;
1577 1.1 yamt } else if (nreg != 0) {
1578 1.10 yamt /* free */
1579 1.1 yamt r = ®[rand() % nreg];
1580 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1581 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1582 1.10 yamt if (r->x) {
1583 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1584 1.10 yamt } else {
1585 1.10 yamt vmem_free(vm, r->p, r->sz);
1586 1.10 yamt }
1587 1.1 yamt total -= r->sz;
1588 1.60 dyoung vmem_dump(vm, vmem_printf);
1589 1.1 yamt *r = reg[nreg - 1];
1590 1.1 yamt nreg--;
1591 1.1 yamt nfree++;
1592 1.1 yamt }
1593 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1594 1.1 yamt }
1595 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1596 1.1 yamt (uint64_t)total, nalloc, nfree);
1597 1.1 yamt exit(EXIT_SUCCESS);
1598 1.1 yamt }
1599 1.55 yamt #endif /* defined(UNITTEST) */
1600