Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.61
      1  1.61   dyoung /*	$NetBSD: subr_vmem.c,v 1.61 2011/09/02 22:25:08 dyoung Exp $	*/
      2   1.1     yamt 
      3   1.1     yamt /*-
      4  1.55     yamt  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
      5   1.1     yamt  * All rights reserved.
      6   1.1     yamt  *
      7   1.1     yamt  * Redistribution and use in source and binary forms, with or without
      8   1.1     yamt  * modification, are permitted provided that the following conditions
      9   1.1     yamt  * are met:
     10   1.1     yamt  * 1. Redistributions of source code must retain the above copyright
     11   1.1     yamt  *    notice, this list of conditions and the following disclaimer.
     12   1.1     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1     yamt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1     yamt  *    documentation and/or other materials provided with the distribution.
     15   1.1     yamt  *
     16   1.1     yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17   1.1     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18   1.1     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19   1.1     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20   1.1     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21   1.1     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22   1.1     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23   1.1     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24   1.1     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1     yamt  * SUCH DAMAGE.
     27   1.1     yamt  */
     28   1.1     yamt 
     29   1.1     yamt /*
     30   1.1     yamt  * reference:
     31   1.1     yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32   1.1     yamt  *	to Many CPUs and Arbitrary Resources
     33   1.1     yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34  1.18     yamt  *
     35  1.18     yamt  * todo:
     36  1.18     yamt  * -	decide how to import segments for vmem_xalloc.
     37  1.18     yamt  * -	don't rely on malloc(9).
     38   1.1     yamt  */
     39   1.1     yamt 
     40   1.1     yamt #include <sys/cdefs.h>
     41  1.61   dyoung __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.61 2011/09/02 22:25:08 dyoung Exp $");
     42   1.1     yamt 
     43   1.5     yamt #if defined(_KERNEL)
     44  1.37     yamt #include "opt_ddb.h"
     45   1.5     yamt #define	QCACHE
     46   1.5     yamt #endif /* defined(_KERNEL) */
     47   1.1     yamt 
     48   1.1     yamt #include <sys/param.h>
     49   1.1     yamt #include <sys/hash.h>
     50   1.1     yamt #include <sys/queue.h>
     51   1.1     yamt 
     52   1.1     yamt #if defined(_KERNEL)
     53   1.1     yamt #include <sys/systm.h>
     54  1.30     yamt #include <sys/kernel.h>	/* hz */
     55  1.30     yamt #include <sys/callout.h>
     56   1.1     yamt #include <sys/malloc.h>
     57   1.1     yamt #include <sys/once.h>
     58   1.1     yamt #include <sys/pool.h>
     59   1.1     yamt #include <sys/vmem.h>
     60  1.30     yamt #include <sys/workqueue.h>
     61   1.1     yamt #else /* defined(_KERNEL) */
     62   1.1     yamt #include "../sys/vmem.h"
     63   1.1     yamt #endif /* defined(_KERNEL) */
     64   1.1     yamt 
     65   1.1     yamt #if defined(_KERNEL)
     66  1.52       ad #define	LOCK_DECL(name)		\
     67  1.52       ad     kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
     68   1.1     yamt #else /* defined(_KERNEL) */
     69   1.1     yamt #include <errno.h>
     70   1.1     yamt #include <assert.h>
     71   1.1     yamt #include <stdlib.h>
     72   1.1     yamt 
     73  1.55     yamt #define	UNITTEST
     74   1.1     yamt #define	KASSERT(a)		assert(a)
     75  1.31       ad #define	LOCK_DECL(name)		/* nothing */
     76  1.31       ad #define	mutex_init(a, b, c)	/* nothing */
     77  1.31       ad #define	mutex_destroy(a)	/* nothing */
     78  1.31       ad #define	mutex_enter(a)		/* nothing */
     79  1.55     yamt #define	mutex_tryenter(a)	true
     80  1.31       ad #define	mutex_exit(a)		/* nothing */
     81  1.31       ad #define	mutex_owned(a)		/* nothing */
     82  1.55     yamt #define	ASSERT_SLEEPABLE()	/* nothing */
     83  1.55     yamt #define	panic(...)		printf(__VA_ARGS__); abort()
     84   1.1     yamt #endif /* defined(_KERNEL) */
     85   1.1     yamt 
     86   1.1     yamt struct vmem;
     87   1.1     yamt struct vmem_btag;
     88   1.1     yamt 
     89  1.55     yamt #if defined(VMEM_SANITY)
     90  1.55     yamt static void vmem_check(vmem_t *);
     91  1.55     yamt #else /* defined(VMEM_SANITY) */
     92  1.55     yamt #define vmem_check(vm)	/* nothing */
     93  1.55     yamt #endif /* defined(VMEM_SANITY) */
     94   1.1     yamt 
     95   1.4     yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     96  1.30     yamt 
     97  1.30     yamt #define	VMEM_HASHSIZE_MIN	1	/* XXX */
     98  1.54     yamt #define	VMEM_HASHSIZE_MAX	65536	/* XXX */
     99  1.53    pooka #define	VMEM_HASHSIZE_INIT	128
    100   1.1     yamt 
    101   1.1     yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
    102   1.1     yamt 
    103   1.1     yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
    104   1.1     yamt LIST_HEAD(vmem_freelist, vmem_btag);
    105   1.1     yamt LIST_HEAD(vmem_hashlist, vmem_btag);
    106   1.1     yamt 
    107   1.5     yamt #if defined(QCACHE)
    108   1.5     yamt #define	VMEM_QCACHE_IDX_MAX	32
    109   1.5     yamt 
    110   1.5     yamt #define	QC_NAME_MAX	16
    111   1.5     yamt 
    112   1.5     yamt struct qcache {
    113  1.35       ad 	pool_cache_t qc_cache;
    114   1.5     yamt 	vmem_t *qc_vmem;
    115   1.5     yamt 	char qc_name[QC_NAME_MAX];
    116   1.5     yamt };
    117   1.5     yamt typedef struct qcache qcache_t;
    118  1.35       ad #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
    119   1.5     yamt #endif /* defined(QCACHE) */
    120   1.5     yamt 
    121   1.1     yamt /* vmem arena */
    122   1.1     yamt struct vmem {
    123  1.31       ad 	LOCK_DECL(vm_lock);
    124  1.61   dyoung 	int (*vm_importfn)(void *, vmem_size_t, vmem_size_t *,
    125  1.61   dyoung 	    vm_flag_t, vmem_addr_t *);
    126  1.61   dyoung 	void (*vm_releasefn)(void *, vmem_addr_t, vmem_size_t);
    127   1.1     yamt 	vmem_t *vm_source;
    128  1.61   dyoung 	void *vm_arg;
    129   1.1     yamt 	struct vmem_seglist vm_seglist;
    130   1.1     yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    131   1.1     yamt 	size_t vm_hashsize;
    132   1.1     yamt 	size_t vm_nbusytag;
    133   1.1     yamt 	struct vmem_hashlist *vm_hashlist;
    134   1.1     yamt 	size_t vm_quantum_mask;
    135   1.1     yamt 	int vm_quantum_shift;
    136   1.1     yamt 	const char *vm_name;
    137  1.30     yamt 	LIST_ENTRY(vmem) vm_alllist;
    138   1.5     yamt 
    139   1.5     yamt #if defined(QCACHE)
    140   1.5     yamt 	/* quantum cache */
    141   1.5     yamt 	size_t vm_qcache_max;
    142   1.5     yamt 	struct pool_allocator vm_qcache_allocator;
    143  1.22     yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    144  1.22     yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    145   1.5     yamt #endif /* defined(QCACHE) */
    146   1.1     yamt };
    147   1.1     yamt 
    148  1.31       ad #define	VMEM_LOCK(vm)		mutex_enter(&vm->vm_lock)
    149  1.31       ad #define	VMEM_TRYLOCK(vm)	mutex_tryenter(&vm->vm_lock)
    150  1.31       ad #define	VMEM_UNLOCK(vm)		mutex_exit(&vm->vm_lock)
    151  1.36       ad #define	VMEM_LOCK_INIT(vm, ipl)	mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
    152  1.31       ad #define	VMEM_LOCK_DESTROY(vm)	mutex_destroy(&vm->vm_lock)
    153  1.31       ad #define	VMEM_ASSERT_LOCKED(vm)	KASSERT(mutex_owned(&vm->vm_lock))
    154   1.1     yamt 
    155   1.1     yamt /* boundary tag */
    156   1.1     yamt struct vmem_btag {
    157   1.1     yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    158   1.1     yamt 	union {
    159   1.1     yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    160   1.1     yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    161   1.1     yamt 	} bt_u;
    162   1.1     yamt #define	bt_hashlist	bt_u.u_hashlist
    163   1.1     yamt #define	bt_freelist	bt_u.u_freelist
    164   1.1     yamt 	vmem_addr_t bt_start;
    165   1.1     yamt 	vmem_size_t bt_size;
    166   1.1     yamt 	int bt_type;
    167   1.1     yamt };
    168   1.1     yamt 
    169   1.1     yamt #define	BT_TYPE_SPAN		1
    170   1.1     yamt #define	BT_TYPE_SPAN_STATIC	2
    171   1.1     yamt #define	BT_TYPE_FREE		3
    172   1.1     yamt #define	BT_TYPE_BUSY		4
    173   1.1     yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    174   1.1     yamt 
    175  1.60   dyoung #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)
    176   1.1     yamt 
    177   1.1     yamt typedef struct vmem_btag bt_t;
    178   1.1     yamt 
    179   1.1     yamt /* ---- misc */
    180   1.1     yamt 
    181  1.19     yamt #define	VMEM_ALIGNUP(addr, align) \
    182  1.19     yamt 	(-(-(addr) & -(align)))
    183  1.19     yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    184  1.19     yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    185  1.19     yamt 
    186   1.4     yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    187   1.4     yamt 
    188   1.1     yamt static int
    189   1.1     yamt calc_order(vmem_size_t size)
    190   1.1     yamt {
    191   1.4     yamt 	vmem_size_t target;
    192   1.1     yamt 	int i;
    193   1.1     yamt 
    194   1.1     yamt 	KASSERT(size != 0);
    195   1.1     yamt 
    196   1.1     yamt 	i = 0;
    197   1.4     yamt 	target = size >> 1;
    198   1.4     yamt 	while (ORDER2SIZE(i) <= target) {
    199   1.1     yamt 		i++;
    200   1.1     yamt 	}
    201   1.1     yamt 
    202   1.4     yamt 	KASSERT(ORDER2SIZE(i) <= size);
    203   1.4     yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    204   1.1     yamt 
    205   1.1     yamt 	return i;
    206   1.1     yamt }
    207   1.1     yamt 
    208   1.1     yamt #if defined(_KERNEL)
    209   1.1     yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    210   1.1     yamt #endif /* defined(_KERNEL) */
    211   1.1     yamt 
    212   1.1     yamt static void *
    213   1.1     yamt xmalloc(size_t sz, vm_flag_t flags)
    214   1.1     yamt {
    215   1.1     yamt 
    216   1.1     yamt #if defined(_KERNEL)
    217   1.1     yamt 	return malloc(sz, M_VMEM,
    218   1.1     yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    219   1.1     yamt #else /* defined(_KERNEL) */
    220   1.1     yamt 	return malloc(sz);
    221   1.1     yamt #endif /* defined(_KERNEL) */
    222   1.1     yamt }
    223   1.1     yamt 
    224   1.1     yamt static void
    225   1.1     yamt xfree(void *p)
    226   1.1     yamt {
    227   1.1     yamt 
    228   1.1     yamt #if defined(_KERNEL)
    229   1.1     yamt 	return free(p, M_VMEM);
    230   1.1     yamt #else /* defined(_KERNEL) */
    231   1.1     yamt 	return free(p);
    232   1.1     yamt #endif /* defined(_KERNEL) */
    233   1.1     yamt }
    234   1.1     yamt 
    235   1.1     yamt /* ---- boundary tag */
    236   1.1     yamt 
    237   1.1     yamt #if defined(_KERNEL)
    238  1.35       ad static struct pool_cache bt_cache;
    239   1.1     yamt #endif /* defined(_KERNEL) */
    240   1.1     yamt 
    241   1.1     yamt static bt_t *
    242  1.17     yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    243   1.1     yamt {
    244   1.1     yamt 	bt_t *bt;
    245   1.1     yamt 
    246   1.1     yamt #if defined(_KERNEL)
    247  1.35       ad 	bt = pool_cache_get(&bt_cache,
    248   1.1     yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    249   1.1     yamt #else /* defined(_KERNEL) */
    250   1.1     yamt 	bt = malloc(sizeof *bt);
    251   1.1     yamt #endif /* defined(_KERNEL) */
    252   1.1     yamt 
    253   1.1     yamt 	return bt;
    254   1.1     yamt }
    255   1.1     yamt 
    256   1.1     yamt static void
    257  1.17     yamt bt_free(vmem_t *vm, bt_t *bt)
    258   1.1     yamt {
    259   1.1     yamt 
    260   1.1     yamt #if defined(_KERNEL)
    261  1.35       ad 	pool_cache_put(&bt_cache, bt);
    262   1.1     yamt #else /* defined(_KERNEL) */
    263   1.1     yamt 	free(bt);
    264   1.1     yamt #endif /* defined(_KERNEL) */
    265   1.1     yamt }
    266   1.1     yamt 
    267   1.1     yamt /*
    268   1.1     yamt  * freelist[0] ... [1, 1]
    269   1.1     yamt  * freelist[1] ... [2, 3]
    270   1.1     yamt  * freelist[2] ... [4, 7]
    271   1.1     yamt  * freelist[3] ... [8, 15]
    272   1.1     yamt  *  :
    273   1.1     yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    274   1.1     yamt  *  :
    275   1.1     yamt  */
    276   1.1     yamt 
    277   1.1     yamt static struct vmem_freelist *
    278   1.1     yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    279   1.1     yamt {
    280   1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    281   1.1     yamt 	int idx;
    282   1.1     yamt 
    283   1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    284   1.1     yamt 	KASSERT(size != 0);
    285   1.1     yamt 
    286   1.1     yamt 	idx = calc_order(qsize);
    287   1.1     yamt 	KASSERT(idx >= 0);
    288   1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    289   1.1     yamt 
    290   1.1     yamt 	return &vm->vm_freelist[idx];
    291   1.1     yamt }
    292   1.1     yamt 
    293  1.59     yamt /*
    294  1.59     yamt  * bt_freehead_toalloc: return the freelist for the given size and allocation
    295  1.59     yamt  * strategy.
    296  1.59     yamt  *
    297  1.59     yamt  * for VM_INSTANTFIT, return the list in which any blocks are large enough
    298  1.59     yamt  * for the requested size.  otherwise, return the list which can have blocks
    299  1.59     yamt  * large enough for the requested size.
    300  1.59     yamt  */
    301  1.59     yamt 
    302   1.1     yamt static struct vmem_freelist *
    303   1.1     yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    304   1.1     yamt {
    305   1.1     yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    306   1.1     yamt 	int idx;
    307   1.1     yamt 
    308   1.1     yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    309   1.1     yamt 	KASSERT(size != 0);
    310   1.1     yamt 
    311   1.1     yamt 	idx = calc_order(qsize);
    312   1.4     yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    313   1.1     yamt 		idx++;
    314   1.1     yamt 		/* check too large request? */
    315   1.1     yamt 	}
    316   1.1     yamt 	KASSERT(idx >= 0);
    317   1.1     yamt 	KASSERT(idx < VMEM_MAXORDER);
    318   1.1     yamt 
    319   1.1     yamt 	return &vm->vm_freelist[idx];
    320   1.1     yamt }
    321   1.1     yamt 
    322   1.1     yamt /* ---- boundary tag hash */
    323   1.1     yamt 
    324   1.1     yamt static struct vmem_hashlist *
    325   1.1     yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    326   1.1     yamt {
    327   1.1     yamt 	struct vmem_hashlist *list;
    328   1.1     yamt 	unsigned int hash;
    329   1.1     yamt 
    330   1.1     yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    331   1.1     yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    332   1.1     yamt 
    333   1.1     yamt 	return list;
    334   1.1     yamt }
    335   1.1     yamt 
    336   1.1     yamt static bt_t *
    337   1.1     yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    338   1.1     yamt {
    339   1.1     yamt 	struct vmem_hashlist *list;
    340   1.1     yamt 	bt_t *bt;
    341   1.1     yamt 
    342   1.1     yamt 	list = bt_hashhead(vm, addr);
    343   1.1     yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    344   1.1     yamt 		if (bt->bt_start == addr) {
    345   1.1     yamt 			break;
    346   1.1     yamt 		}
    347   1.1     yamt 	}
    348   1.1     yamt 
    349   1.1     yamt 	return bt;
    350   1.1     yamt }
    351   1.1     yamt 
    352   1.1     yamt static void
    353   1.1     yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    354   1.1     yamt {
    355   1.1     yamt 
    356   1.1     yamt 	KASSERT(vm->vm_nbusytag > 0);
    357   1.1     yamt 	vm->vm_nbusytag--;
    358   1.1     yamt 	LIST_REMOVE(bt, bt_hashlist);
    359   1.1     yamt }
    360   1.1     yamt 
    361   1.1     yamt static void
    362   1.1     yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    363   1.1     yamt {
    364   1.1     yamt 	struct vmem_hashlist *list;
    365   1.1     yamt 
    366   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    367   1.1     yamt 
    368   1.1     yamt 	list = bt_hashhead(vm, bt->bt_start);
    369   1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    370   1.1     yamt 	vm->vm_nbusytag++;
    371   1.1     yamt }
    372   1.1     yamt 
    373   1.1     yamt /* ---- boundary tag list */
    374   1.1     yamt 
    375   1.1     yamt static void
    376   1.1     yamt bt_remseg(vmem_t *vm, bt_t *bt)
    377   1.1     yamt {
    378   1.1     yamt 
    379   1.1     yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    380   1.1     yamt }
    381   1.1     yamt 
    382   1.1     yamt static void
    383   1.1     yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    384   1.1     yamt {
    385   1.1     yamt 
    386   1.1     yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    387   1.1     yamt }
    388   1.1     yamt 
    389   1.1     yamt static void
    390   1.1     yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    391   1.1     yamt {
    392   1.1     yamt 
    393   1.1     yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    394   1.1     yamt }
    395   1.1     yamt 
    396   1.1     yamt static void
    397  1.17     yamt bt_remfree(vmem_t *vm, bt_t *bt)
    398   1.1     yamt {
    399   1.1     yamt 
    400   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    401   1.1     yamt 
    402   1.1     yamt 	LIST_REMOVE(bt, bt_freelist);
    403   1.1     yamt }
    404   1.1     yamt 
    405   1.1     yamt static void
    406   1.1     yamt bt_insfree(vmem_t *vm, bt_t *bt)
    407   1.1     yamt {
    408   1.1     yamt 	struct vmem_freelist *list;
    409   1.1     yamt 
    410   1.1     yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    411   1.1     yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    412   1.1     yamt }
    413   1.1     yamt 
    414   1.1     yamt /* ---- vmem internal functions */
    415   1.1     yamt 
    416  1.30     yamt #if defined(_KERNEL)
    417  1.30     yamt static kmutex_t vmem_list_lock;
    418  1.30     yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
    419  1.30     yamt #endif /* defined(_KERNEL) */
    420  1.30     yamt 
    421   1.5     yamt #if defined(QCACHE)
    422   1.5     yamt static inline vm_flag_t
    423   1.5     yamt prf_to_vmf(int prflags)
    424   1.5     yamt {
    425   1.5     yamt 	vm_flag_t vmflags;
    426   1.5     yamt 
    427   1.5     yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    428   1.5     yamt 	if ((prflags & PR_WAITOK) != 0) {
    429   1.5     yamt 		vmflags = VM_SLEEP;
    430   1.5     yamt 	} else {
    431   1.5     yamt 		vmflags = VM_NOSLEEP;
    432   1.5     yamt 	}
    433   1.5     yamt 	return vmflags;
    434   1.5     yamt }
    435   1.5     yamt 
    436   1.5     yamt static inline int
    437   1.5     yamt vmf_to_prf(vm_flag_t vmflags)
    438   1.5     yamt {
    439   1.5     yamt 	int prflags;
    440   1.5     yamt 
    441   1.7     yamt 	if ((vmflags & VM_SLEEP) != 0) {
    442   1.5     yamt 		prflags = PR_WAITOK;
    443   1.7     yamt 	} else {
    444   1.5     yamt 		prflags = PR_NOWAIT;
    445   1.5     yamt 	}
    446   1.5     yamt 	return prflags;
    447   1.5     yamt }
    448   1.5     yamt 
    449   1.5     yamt static size_t
    450   1.5     yamt qc_poolpage_size(size_t qcache_max)
    451   1.5     yamt {
    452   1.5     yamt 	int i;
    453   1.5     yamt 
    454   1.5     yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    455   1.5     yamt 		/* nothing */
    456   1.5     yamt 	}
    457   1.5     yamt 	return ORDER2SIZE(i);
    458   1.5     yamt }
    459   1.5     yamt 
    460   1.5     yamt static void *
    461   1.5     yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    462   1.5     yamt {
    463   1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    464   1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    465  1.61   dyoung 	vmem_addr_t addr;
    466   1.5     yamt 
    467  1.61   dyoung 	if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    468  1.61   dyoung 	    prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
    469  1.61   dyoung 		return NULL;
    470  1.61   dyoung 	return (void *)addr;
    471   1.5     yamt }
    472   1.5     yamt 
    473   1.5     yamt static void
    474   1.5     yamt qc_poolpage_free(struct pool *pool, void *addr)
    475   1.5     yamt {
    476   1.5     yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    477   1.5     yamt 	vmem_t *vm = qc->qc_vmem;
    478   1.5     yamt 
    479   1.5     yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    480   1.5     yamt }
    481   1.5     yamt 
    482   1.5     yamt static void
    483  1.31       ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
    484   1.5     yamt {
    485  1.22     yamt 	qcache_t *prevqc;
    486   1.5     yamt 	struct pool_allocator *pa;
    487   1.5     yamt 	int qcache_idx_max;
    488   1.5     yamt 	int i;
    489   1.5     yamt 
    490   1.5     yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    491   1.5     yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    492   1.5     yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    493   1.5     yamt 	}
    494   1.5     yamt 	vm->vm_qcache_max = qcache_max;
    495   1.5     yamt 	pa = &vm->vm_qcache_allocator;
    496   1.5     yamt 	memset(pa, 0, sizeof(*pa));
    497   1.5     yamt 	pa->pa_alloc = qc_poolpage_alloc;
    498   1.5     yamt 	pa->pa_free = qc_poolpage_free;
    499   1.5     yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    500   1.5     yamt 
    501   1.5     yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    502  1.22     yamt 	prevqc = NULL;
    503  1.22     yamt 	for (i = qcache_idx_max; i > 0; i--) {
    504  1.22     yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    505   1.5     yamt 		size_t size = i << vm->vm_quantum_shift;
    506   1.5     yamt 
    507   1.5     yamt 		qc->qc_vmem = vm;
    508   1.8   martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    509   1.5     yamt 		    vm->vm_name, size);
    510  1.35       ad 		qc->qc_cache = pool_cache_init(size,
    511  1.35       ad 		    ORDER2SIZE(vm->vm_quantum_shift), 0,
    512  1.35       ad 		    PR_NOALIGN | PR_NOTOUCH /* XXX */,
    513  1.35       ad 		    qc->qc_name, pa, ipl, NULL, NULL, NULL);
    514  1.35       ad 		KASSERT(qc->qc_cache != NULL);	/* XXX */
    515  1.22     yamt 		if (prevqc != NULL &&
    516  1.35       ad 		    qc->qc_cache->pc_pool.pr_itemsperpage ==
    517  1.35       ad 		    prevqc->qc_cache->pc_pool.pr_itemsperpage) {
    518  1.35       ad 			pool_cache_destroy(qc->qc_cache);
    519  1.22     yamt 			vm->vm_qcache[i - 1] = prevqc;
    520  1.27       ad 			continue;
    521  1.22     yamt 		}
    522  1.35       ad 		qc->qc_cache->pc_pool.pr_qcache = qc;
    523  1.22     yamt 		vm->vm_qcache[i - 1] = qc;
    524  1.22     yamt 		prevqc = qc;
    525   1.5     yamt 	}
    526   1.5     yamt }
    527   1.6     yamt 
    528  1.23     yamt static void
    529  1.23     yamt qc_destroy(vmem_t *vm)
    530  1.23     yamt {
    531  1.23     yamt 	const qcache_t *prevqc;
    532  1.23     yamt 	int i;
    533  1.23     yamt 	int qcache_idx_max;
    534  1.23     yamt 
    535  1.23     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    536  1.23     yamt 	prevqc = NULL;
    537  1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    538  1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    539  1.23     yamt 
    540  1.23     yamt 		if (prevqc == qc) {
    541  1.23     yamt 			continue;
    542  1.23     yamt 		}
    543  1.35       ad 		pool_cache_destroy(qc->qc_cache);
    544  1.23     yamt 		prevqc = qc;
    545  1.23     yamt 	}
    546  1.23     yamt }
    547  1.23     yamt 
    548  1.25  thorpej static bool
    549   1.6     yamt qc_reap(vmem_t *vm)
    550   1.6     yamt {
    551  1.22     yamt 	const qcache_t *prevqc;
    552   1.6     yamt 	int i;
    553   1.6     yamt 	int qcache_idx_max;
    554  1.26  thorpej 	bool didsomething = false;
    555   1.6     yamt 
    556   1.6     yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    557  1.22     yamt 	prevqc = NULL;
    558  1.24     yamt 	for (i = 0; i < qcache_idx_max; i++) {
    559  1.24     yamt 		qcache_t *qc = vm->vm_qcache[i];
    560   1.6     yamt 
    561  1.22     yamt 		if (prevqc == qc) {
    562  1.22     yamt 			continue;
    563  1.22     yamt 		}
    564  1.35       ad 		if (pool_cache_reclaim(qc->qc_cache) != 0) {
    565  1.26  thorpej 			didsomething = true;
    566   1.6     yamt 		}
    567  1.22     yamt 		prevqc = qc;
    568   1.6     yamt 	}
    569   1.6     yamt 
    570   1.6     yamt 	return didsomething;
    571   1.6     yamt }
    572   1.5     yamt #endif /* defined(QCACHE) */
    573   1.5     yamt 
    574   1.1     yamt #if defined(_KERNEL)
    575   1.1     yamt static int
    576   1.1     yamt vmem_init(void)
    577   1.1     yamt {
    578   1.1     yamt 
    579  1.30     yamt 	mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
    580  1.35       ad 	pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
    581  1.35       ad 	    NULL, IPL_VM, NULL, NULL, NULL);
    582   1.1     yamt 	return 0;
    583   1.1     yamt }
    584   1.1     yamt #endif /* defined(_KERNEL) */
    585   1.1     yamt 
    586  1.61   dyoung static int
    587   1.1     yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    588   1.1     yamt     int spanbttype)
    589   1.1     yamt {
    590   1.1     yamt 	bt_t *btspan;
    591   1.1     yamt 	bt_t *btfree;
    592   1.1     yamt 
    593   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    594   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    595  1.58     yamt 	KASSERT(spanbttype == BT_TYPE_SPAN ||
    596  1.58     yamt 	    spanbttype == BT_TYPE_SPAN_STATIC);
    597   1.1     yamt 
    598   1.1     yamt 	btspan = bt_alloc(vm, flags);
    599   1.1     yamt 	if (btspan == NULL) {
    600  1.61   dyoung 		return ENOMEM;
    601   1.1     yamt 	}
    602   1.1     yamt 	btfree = bt_alloc(vm, flags);
    603   1.1     yamt 	if (btfree == NULL) {
    604   1.1     yamt 		bt_free(vm, btspan);
    605  1.61   dyoung 		return ENOMEM;
    606   1.1     yamt 	}
    607   1.1     yamt 
    608   1.1     yamt 	btspan->bt_type = spanbttype;
    609   1.1     yamt 	btspan->bt_start = addr;
    610   1.1     yamt 	btspan->bt_size = size;
    611   1.1     yamt 
    612   1.1     yamt 	btfree->bt_type = BT_TYPE_FREE;
    613   1.1     yamt 	btfree->bt_start = addr;
    614   1.1     yamt 	btfree->bt_size = size;
    615   1.1     yamt 
    616   1.1     yamt 	VMEM_LOCK(vm);
    617   1.1     yamt 	bt_insseg_tail(vm, btspan);
    618   1.1     yamt 	bt_insseg(vm, btfree, btspan);
    619   1.1     yamt 	bt_insfree(vm, btfree);
    620   1.1     yamt 	VMEM_UNLOCK(vm);
    621   1.1     yamt 
    622  1.61   dyoung 	return 0;
    623   1.1     yamt }
    624   1.1     yamt 
    625  1.30     yamt static void
    626  1.30     yamt vmem_destroy1(vmem_t *vm)
    627  1.30     yamt {
    628  1.30     yamt 
    629  1.30     yamt #if defined(QCACHE)
    630  1.30     yamt 	qc_destroy(vm);
    631  1.30     yamt #endif /* defined(QCACHE) */
    632  1.30     yamt 	if (vm->vm_hashlist != NULL) {
    633  1.30     yamt 		int i;
    634  1.30     yamt 
    635  1.30     yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    636  1.30     yamt 			bt_t *bt;
    637  1.30     yamt 
    638  1.30     yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    639  1.30     yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    640  1.30     yamt 				bt_free(vm, bt);
    641  1.30     yamt 			}
    642  1.30     yamt 		}
    643  1.30     yamt 		xfree(vm->vm_hashlist);
    644  1.30     yamt 	}
    645  1.31       ad 	VMEM_LOCK_DESTROY(vm);
    646  1.30     yamt 	xfree(vm);
    647  1.30     yamt }
    648  1.30     yamt 
    649   1.1     yamt static int
    650   1.1     yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    651   1.1     yamt {
    652   1.1     yamt 	vmem_addr_t addr;
    653  1.61   dyoung 	int rc;
    654   1.1     yamt 
    655  1.61   dyoung 	if (vm->vm_importfn == NULL) {
    656   1.1     yamt 		return EINVAL;
    657   1.1     yamt 	}
    658   1.1     yamt 
    659  1.61   dyoung 	rc = (*vm->vm_importfn)(vm->vm_arg, size, &size, flags, &addr);
    660  1.61   dyoung 	if (rc != 0) {
    661   1.1     yamt 		return ENOMEM;
    662   1.1     yamt 	}
    663   1.1     yamt 
    664  1.61   dyoung 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
    665  1.61   dyoung 		(*vm->vm_releasefn)(vm->vm_arg, addr, size);
    666   1.1     yamt 		return ENOMEM;
    667   1.1     yamt 	}
    668   1.1     yamt 
    669   1.1     yamt 	return 0;
    670   1.1     yamt }
    671   1.1     yamt 
    672   1.1     yamt static int
    673   1.1     yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    674   1.1     yamt {
    675   1.1     yamt 	bt_t *bt;
    676   1.1     yamt 	int i;
    677   1.1     yamt 	struct vmem_hashlist *newhashlist;
    678   1.1     yamt 	struct vmem_hashlist *oldhashlist;
    679   1.1     yamt 	size_t oldhashsize;
    680   1.1     yamt 
    681   1.1     yamt 	KASSERT(newhashsize > 0);
    682   1.1     yamt 
    683   1.1     yamt 	newhashlist =
    684   1.1     yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    685   1.1     yamt 	if (newhashlist == NULL) {
    686   1.1     yamt 		return ENOMEM;
    687   1.1     yamt 	}
    688   1.1     yamt 	for (i = 0; i < newhashsize; i++) {
    689   1.1     yamt 		LIST_INIT(&newhashlist[i]);
    690   1.1     yamt 	}
    691   1.1     yamt 
    692  1.30     yamt 	if (!VMEM_TRYLOCK(vm)) {
    693  1.30     yamt 		xfree(newhashlist);
    694  1.30     yamt 		return EBUSY;
    695  1.30     yamt 	}
    696   1.1     yamt 	oldhashlist = vm->vm_hashlist;
    697   1.1     yamt 	oldhashsize = vm->vm_hashsize;
    698   1.1     yamt 	vm->vm_hashlist = newhashlist;
    699   1.1     yamt 	vm->vm_hashsize = newhashsize;
    700   1.1     yamt 	if (oldhashlist == NULL) {
    701   1.1     yamt 		VMEM_UNLOCK(vm);
    702   1.1     yamt 		return 0;
    703   1.1     yamt 	}
    704   1.1     yamt 	for (i = 0; i < oldhashsize; i++) {
    705   1.1     yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    706   1.1     yamt 			bt_rembusy(vm, bt); /* XXX */
    707   1.1     yamt 			bt_insbusy(vm, bt);
    708   1.1     yamt 		}
    709   1.1     yamt 	}
    710   1.1     yamt 	VMEM_UNLOCK(vm);
    711   1.1     yamt 
    712   1.1     yamt 	xfree(oldhashlist);
    713   1.1     yamt 
    714   1.1     yamt 	return 0;
    715   1.1     yamt }
    716   1.1     yamt 
    717  1.10     yamt /*
    718  1.10     yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    719  1.59     yamt  *
    720  1.59     yamt  * it's a caller's responsibility to ensure the region is big enough
    721  1.59     yamt  * before calling us.
    722  1.10     yamt  */
    723  1.10     yamt 
    724  1.61   dyoung static int
    725  1.60   dyoung vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
    726  1.60   dyoung     vmem_size_t phase, vmem_size_t nocross,
    727  1.61   dyoung     vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
    728  1.10     yamt {
    729  1.10     yamt 	vmem_addr_t start;
    730  1.10     yamt 	vmem_addr_t end;
    731  1.10     yamt 
    732  1.60   dyoung 	KASSERT(size > 0);
    733  1.59     yamt 	KASSERT(bt->bt_size >= size); /* caller's responsibility */
    734  1.10     yamt 
    735  1.10     yamt 	/*
    736  1.10     yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    737  1.10     yamt 	 * unsigned integer of the same size.
    738  1.10     yamt 	 */
    739  1.10     yamt 
    740  1.10     yamt 	start = bt->bt_start;
    741  1.10     yamt 	if (start < minaddr) {
    742  1.10     yamt 		start = minaddr;
    743  1.10     yamt 	}
    744  1.10     yamt 	end = BT_END(bt);
    745  1.60   dyoung 	if (end > maxaddr) {
    746  1.60   dyoung 		end = maxaddr;
    747  1.10     yamt 	}
    748  1.60   dyoung 	if (start > end) {
    749  1.61   dyoung 		return ENOMEM;
    750  1.10     yamt 	}
    751  1.19     yamt 
    752  1.19     yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    753  1.10     yamt 	if (start < bt->bt_start) {
    754  1.10     yamt 		start += align;
    755  1.10     yamt 	}
    756  1.19     yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    757  1.10     yamt 		KASSERT(align < nocross);
    758  1.19     yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    759  1.10     yamt 	}
    760  1.60   dyoung 	if (start <= end && end - start >= size - 1) {
    761  1.10     yamt 		KASSERT((start & (align - 1)) == phase);
    762  1.19     yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    763  1.10     yamt 		KASSERT(minaddr <= start);
    764  1.60   dyoung 		KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
    765  1.10     yamt 		KASSERT(bt->bt_start <= start);
    766  1.60   dyoung 		KASSERT(BT_END(bt) - start >= size - 1);
    767  1.61   dyoung 		*addrp = start;
    768  1.61   dyoung 		return 0;
    769  1.10     yamt 	}
    770  1.61   dyoung 	return ENOMEM;
    771  1.10     yamt }
    772  1.10     yamt 
    773   1.1     yamt /* ---- vmem API */
    774   1.1     yamt 
    775   1.1     yamt /*
    776   1.1     yamt  * vmem_create: create an arena.
    777   1.1     yamt  *
    778   1.1     yamt  * => must not be called from interrupt context.
    779   1.1     yamt  */
    780   1.1     yamt 
    781   1.1     yamt vmem_t *
    782   1.1     yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    783   1.1     yamt     vmem_size_t quantum,
    784  1.61   dyoung     int (*importfn)(void *, vmem_size_t, vmem_size_t *, vm_flag_t,
    785  1.61   dyoung         vmem_addr_t *),
    786  1.61   dyoung     void (*releasefn)(void *, vmem_addr_t, vmem_size_t),
    787  1.61   dyoung     void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
    788   1.1     yamt {
    789   1.1     yamt 	vmem_t *vm;
    790   1.1     yamt 	int i;
    791   1.1     yamt #if defined(_KERNEL)
    792   1.1     yamt 	static ONCE_DECL(control);
    793   1.1     yamt #endif /* defined(_KERNEL) */
    794   1.1     yamt 
    795   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    796   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    797   1.1     yamt 
    798   1.1     yamt #if defined(_KERNEL)
    799   1.1     yamt 	if (RUN_ONCE(&control, vmem_init)) {
    800   1.1     yamt 		return NULL;
    801   1.1     yamt 	}
    802   1.1     yamt #endif /* defined(_KERNEL) */
    803   1.1     yamt 	vm = xmalloc(sizeof(*vm), flags);
    804   1.1     yamt 	if (vm == NULL) {
    805   1.1     yamt 		return NULL;
    806   1.1     yamt 	}
    807   1.1     yamt 
    808  1.31       ad 	VMEM_LOCK_INIT(vm, ipl);
    809   1.1     yamt 	vm->vm_name = name;
    810   1.1     yamt 	vm->vm_quantum_mask = quantum - 1;
    811   1.1     yamt 	vm->vm_quantum_shift = calc_order(quantum);
    812   1.4     yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    813  1.61   dyoung 	vm->vm_importfn = importfn;
    814  1.61   dyoung 	vm->vm_releasefn = releasefn;
    815  1.61   dyoung 	vm->vm_arg = arg;
    816   1.1     yamt 	vm->vm_nbusytag = 0;
    817   1.5     yamt #if defined(QCACHE)
    818  1.31       ad 	qc_init(vm, qcache_max, ipl);
    819   1.5     yamt #endif /* defined(QCACHE) */
    820   1.1     yamt 
    821   1.1     yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    822   1.1     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    823   1.1     yamt 		LIST_INIT(&vm->vm_freelist[i]);
    824   1.1     yamt 	}
    825   1.1     yamt 	vm->vm_hashlist = NULL;
    826   1.1     yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    827  1.30     yamt 		vmem_destroy1(vm);
    828   1.1     yamt 		return NULL;
    829   1.1     yamt 	}
    830   1.1     yamt 
    831   1.1     yamt 	if (size != 0) {
    832  1.61   dyoung 		if (vmem_add(vm, base, size, flags) != 0) {
    833  1.30     yamt 			vmem_destroy1(vm);
    834   1.1     yamt 			return NULL;
    835   1.1     yamt 		}
    836   1.1     yamt 	}
    837   1.1     yamt 
    838  1.30     yamt #if defined(_KERNEL)
    839  1.30     yamt 	mutex_enter(&vmem_list_lock);
    840  1.30     yamt 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
    841  1.30     yamt 	mutex_exit(&vmem_list_lock);
    842  1.30     yamt #endif /* defined(_KERNEL) */
    843  1.30     yamt 
    844   1.1     yamt 	return vm;
    845   1.1     yamt }
    846   1.1     yamt 
    847   1.1     yamt void
    848   1.1     yamt vmem_destroy(vmem_t *vm)
    849   1.1     yamt {
    850   1.1     yamt 
    851  1.30     yamt #if defined(_KERNEL)
    852  1.30     yamt 	mutex_enter(&vmem_list_lock);
    853  1.30     yamt 	LIST_REMOVE(vm, vm_alllist);
    854  1.30     yamt 	mutex_exit(&vmem_list_lock);
    855  1.30     yamt #endif /* defined(_KERNEL) */
    856   1.1     yamt 
    857  1.30     yamt 	vmem_destroy1(vm);
    858   1.1     yamt }
    859   1.1     yamt 
    860   1.1     yamt vmem_size_t
    861   1.1     yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    862   1.1     yamt {
    863   1.1     yamt 
    864   1.1     yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    865   1.1     yamt }
    866   1.1     yamt 
    867   1.1     yamt /*
    868   1.1     yamt  * vmem_alloc:
    869   1.1     yamt  *
    870   1.1     yamt  * => caller must ensure appropriate spl,
    871   1.1     yamt  *    if the arena can be accessed from interrupt context.
    872   1.1     yamt  */
    873   1.1     yamt 
    874  1.61   dyoung int
    875  1.61   dyoung vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
    876   1.1     yamt {
    877  1.12     yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    878   1.1     yamt 
    879   1.1     yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    880   1.1     yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    881   1.1     yamt 
    882   1.1     yamt 	KASSERT(size > 0);
    883   1.1     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    884   1.3     yamt 	if ((flags & VM_SLEEP) != 0) {
    885  1.42     yamt 		ASSERT_SLEEPABLE();
    886   1.3     yamt 	}
    887   1.1     yamt 
    888   1.5     yamt #if defined(QCACHE)
    889   1.5     yamt 	if (size <= vm->vm_qcache_max) {
    890  1.61   dyoung 		void *p;
    891  1.38     yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
    892  1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    893   1.5     yamt 
    894  1.61   dyoung 		p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
    895  1.61   dyoung 		if (addrp != NULL)
    896  1.61   dyoung 			*addrp = (vmem_addr_t)p;
    897  1.61   dyoung 		return (p == NULL) ? ENOMEM : 0;
    898   1.5     yamt 	}
    899   1.5     yamt #endif /* defined(QCACHE) */
    900   1.5     yamt 
    901  1.60   dyoung 	return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
    902  1.61   dyoung 	    flags, addrp);
    903  1.10     yamt }
    904  1.10     yamt 
    905  1.61   dyoung int
    906  1.60   dyoung vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
    907  1.60   dyoung     const vmem_size_t phase, const vmem_size_t nocross,
    908  1.61   dyoung     const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
    909  1.61   dyoung     vmem_addr_t *addrp)
    910  1.10     yamt {
    911  1.10     yamt 	struct vmem_freelist *list;
    912  1.10     yamt 	struct vmem_freelist *first;
    913  1.10     yamt 	struct vmem_freelist *end;
    914  1.10     yamt 	bt_t *bt;
    915  1.10     yamt 	bt_t *btnew;
    916  1.10     yamt 	bt_t *btnew2;
    917  1.10     yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
    918  1.10     yamt 	vm_flag_t strat = flags & VM_FITMASK;
    919  1.10     yamt 	vmem_addr_t start;
    920  1.61   dyoung 	int rc;
    921  1.10     yamt 
    922  1.10     yamt 	KASSERT(size0 > 0);
    923  1.10     yamt 	KASSERT(size > 0);
    924  1.10     yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    925  1.10     yamt 	if ((flags & VM_SLEEP) != 0) {
    926  1.42     yamt 		ASSERT_SLEEPABLE();
    927  1.10     yamt 	}
    928  1.10     yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
    929  1.10     yamt 	KASSERT((align & (align - 1)) == 0);
    930  1.10     yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
    931  1.10     yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
    932  1.10     yamt 	KASSERT((nocross & (nocross - 1)) == 0);
    933  1.10     yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
    934  1.10     yamt 	KASSERT(nocross == 0 || nocross >= size);
    935  1.60   dyoung 	KASSERT(minaddr <= maxaddr);
    936  1.19     yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
    937  1.10     yamt 
    938  1.10     yamt 	if (align == 0) {
    939  1.10     yamt 		align = vm->vm_quantum_mask + 1;
    940  1.10     yamt 	}
    941  1.59     yamt 
    942  1.59     yamt 	/*
    943  1.59     yamt 	 * allocate boundary tags before acquiring the vmem lock.
    944  1.59     yamt 	 */
    945   1.1     yamt 	btnew = bt_alloc(vm, flags);
    946   1.1     yamt 	if (btnew == NULL) {
    947  1.61   dyoung 		return ENOMEM;
    948   1.1     yamt 	}
    949  1.10     yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
    950  1.10     yamt 	if (btnew2 == NULL) {
    951  1.10     yamt 		bt_free(vm, btnew);
    952  1.61   dyoung 		return ENOMEM;
    953  1.10     yamt 	}
    954   1.1     yamt 
    955  1.59     yamt 	/*
    956  1.59     yamt 	 * choose a free block from which we allocate.
    957  1.59     yamt 	 */
    958   1.1     yamt retry_strat:
    959   1.1     yamt 	first = bt_freehead_toalloc(vm, size, strat);
    960   1.1     yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
    961   1.1     yamt retry:
    962   1.1     yamt 	bt = NULL;
    963   1.1     yamt 	VMEM_LOCK(vm);
    964  1.55     yamt 	vmem_check(vm);
    965   1.2     yamt 	if (strat == VM_INSTANTFIT) {
    966  1.59     yamt 		/*
    967  1.59     yamt 		 * just choose the first block which satisfies our restrictions.
    968  1.59     yamt 		 *
    969  1.59     yamt 		 * note that we don't need to check the size of the blocks
    970  1.59     yamt 		 * because any blocks found on these list should be larger than
    971  1.59     yamt 		 * the given size.
    972  1.59     yamt 		 */
    973   1.2     yamt 		for (list = first; list < end; list++) {
    974   1.2     yamt 			bt = LIST_FIRST(list);
    975   1.2     yamt 			if (bt != NULL) {
    976  1.61   dyoung 				rc = vmem_fit(bt, size, align, phase,
    977  1.61   dyoung 				    nocross, minaddr, maxaddr, &start);
    978  1.61   dyoung 				if (rc == 0) {
    979  1.10     yamt 					goto gotit;
    980  1.10     yamt 				}
    981  1.59     yamt 				/*
    982  1.59     yamt 				 * don't bother to follow the bt_freelist link
    983  1.59     yamt 				 * here.  the list can be very long and we are
    984  1.59     yamt 				 * told to run fast.  blocks from the later free
    985  1.59     yamt 				 * lists are larger and have better chances to
    986  1.59     yamt 				 * satisfy our restrictions.
    987  1.59     yamt 				 */
    988   1.2     yamt 			}
    989   1.2     yamt 		}
    990   1.2     yamt 	} else { /* VM_BESTFIT */
    991  1.59     yamt 		/*
    992  1.59     yamt 		 * we assume that, for space efficiency, it's better to
    993  1.59     yamt 		 * allocate from a smaller block.  thus we will start searching
    994  1.59     yamt 		 * from the lower-order list than VM_INSTANTFIT.
    995  1.59     yamt 		 * however, don't bother to find the smallest block in a free
    996  1.59     yamt 		 * list because the list can be very long.  we can revisit it
    997  1.59     yamt 		 * if/when it turns out to be a problem.
    998  1.59     yamt 		 *
    999  1.59     yamt 		 * note that the 'first' list can contain blocks smaller than
   1000  1.59     yamt 		 * the requested size.  thus we need to check bt_size.
   1001  1.59     yamt 		 */
   1002   1.2     yamt 		for (list = first; list < end; list++) {
   1003   1.2     yamt 			LIST_FOREACH(bt, list, bt_freelist) {
   1004   1.2     yamt 				if (bt->bt_size >= size) {
   1005  1.61   dyoung 					rc = vmem_fit(bt, size, align, phase,
   1006  1.61   dyoung 					    nocross, minaddr, maxaddr, &start);
   1007  1.61   dyoung 					if (rc == 0) {
   1008  1.10     yamt 						goto gotit;
   1009  1.10     yamt 					}
   1010   1.2     yamt 				}
   1011   1.1     yamt 			}
   1012   1.1     yamt 		}
   1013   1.1     yamt 	}
   1014   1.2     yamt 	VMEM_UNLOCK(vm);
   1015   1.1     yamt #if 1
   1016   1.2     yamt 	if (strat == VM_INSTANTFIT) {
   1017   1.2     yamt 		strat = VM_BESTFIT;
   1018   1.2     yamt 		goto retry_strat;
   1019   1.2     yamt 	}
   1020   1.1     yamt #endif
   1021  1.10     yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
   1022  1.60   dyoung 	    nocross != 0) {
   1023  1.10     yamt 
   1024  1.10     yamt 		/*
   1025  1.10     yamt 		 * XXX should try to import a region large enough to
   1026  1.10     yamt 		 * satisfy restrictions?
   1027  1.10     yamt 		 */
   1028  1.10     yamt 
   1029  1.20     yamt 		goto fail;
   1030  1.10     yamt 	}
   1031  1.60   dyoung 	/* XXX eeek, minaddr & maxaddr not respected */
   1032   1.2     yamt 	if (vmem_import(vm, size, flags) == 0) {
   1033   1.2     yamt 		goto retry;
   1034   1.1     yamt 	}
   1035   1.2     yamt 	/* XXX */
   1036  1.20     yamt fail:
   1037  1.20     yamt 	bt_free(vm, btnew);
   1038  1.20     yamt 	bt_free(vm, btnew2);
   1039  1.61   dyoung 	return ENOMEM;
   1040   1.2     yamt 
   1041   1.2     yamt gotit:
   1042   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
   1043   1.1     yamt 	KASSERT(bt->bt_size >= size);
   1044   1.1     yamt 	bt_remfree(vm, bt);
   1045  1.55     yamt 	vmem_check(vm);
   1046  1.10     yamt 	if (bt->bt_start != start) {
   1047  1.10     yamt 		btnew2->bt_type = BT_TYPE_FREE;
   1048  1.10     yamt 		btnew2->bt_start = bt->bt_start;
   1049  1.10     yamt 		btnew2->bt_size = start - bt->bt_start;
   1050  1.10     yamt 		bt->bt_start = start;
   1051  1.10     yamt 		bt->bt_size -= btnew2->bt_size;
   1052  1.10     yamt 		bt_insfree(vm, btnew2);
   1053  1.10     yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
   1054  1.10     yamt 		btnew2 = NULL;
   1055  1.55     yamt 		vmem_check(vm);
   1056  1.10     yamt 	}
   1057  1.10     yamt 	KASSERT(bt->bt_start == start);
   1058   1.1     yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
   1059   1.1     yamt 		/* split */
   1060   1.1     yamt 		btnew->bt_type = BT_TYPE_BUSY;
   1061   1.1     yamt 		btnew->bt_start = bt->bt_start;
   1062   1.1     yamt 		btnew->bt_size = size;
   1063   1.1     yamt 		bt->bt_start = bt->bt_start + size;
   1064   1.1     yamt 		bt->bt_size -= size;
   1065   1.1     yamt 		bt_insfree(vm, bt);
   1066   1.1     yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
   1067   1.1     yamt 		bt_insbusy(vm, btnew);
   1068  1.55     yamt 		vmem_check(vm);
   1069   1.1     yamt 		VMEM_UNLOCK(vm);
   1070   1.1     yamt 	} else {
   1071   1.1     yamt 		bt->bt_type = BT_TYPE_BUSY;
   1072   1.1     yamt 		bt_insbusy(vm, bt);
   1073  1.55     yamt 		vmem_check(vm);
   1074   1.1     yamt 		VMEM_UNLOCK(vm);
   1075   1.1     yamt 		bt_free(vm, btnew);
   1076   1.1     yamt 		btnew = bt;
   1077   1.1     yamt 	}
   1078  1.10     yamt 	if (btnew2 != NULL) {
   1079  1.10     yamt 		bt_free(vm, btnew2);
   1080  1.10     yamt 	}
   1081   1.1     yamt 	KASSERT(btnew->bt_size >= size);
   1082   1.1     yamt 	btnew->bt_type = BT_TYPE_BUSY;
   1083   1.1     yamt 
   1084  1.61   dyoung 	if (addrp != NULL)
   1085  1.61   dyoung 		*addrp = btnew->bt_start;
   1086  1.61   dyoung 	return 0;
   1087   1.1     yamt }
   1088   1.1     yamt 
   1089   1.1     yamt /*
   1090   1.1     yamt  * vmem_free:
   1091   1.1     yamt  *
   1092   1.1     yamt  * => caller must ensure appropriate spl,
   1093   1.1     yamt  *    if the arena can be accessed from interrupt context.
   1094   1.1     yamt  */
   1095   1.1     yamt 
   1096   1.1     yamt void
   1097   1.1     yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1098   1.1     yamt {
   1099   1.1     yamt 
   1100   1.1     yamt 	KASSERT(size > 0);
   1101   1.1     yamt 
   1102   1.5     yamt #if defined(QCACHE)
   1103   1.5     yamt 	if (size <= vm->vm_qcache_max) {
   1104   1.5     yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1105  1.22     yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1106   1.5     yamt 
   1107  1.35       ad 		return pool_cache_put(qc->qc_cache, (void *)addr);
   1108   1.5     yamt 	}
   1109   1.5     yamt #endif /* defined(QCACHE) */
   1110   1.5     yamt 
   1111  1.10     yamt 	vmem_xfree(vm, addr, size);
   1112  1.10     yamt }
   1113  1.10     yamt 
   1114  1.10     yamt void
   1115  1.17     yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1116  1.10     yamt {
   1117  1.10     yamt 	bt_t *bt;
   1118  1.10     yamt 	bt_t *t;
   1119  1.10     yamt 
   1120  1.10     yamt 	KASSERT(size > 0);
   1121  1.10     yamt 
   1122   1.1     yamt 	VMEM_LOCK(vm);
   1123   1.1     yamt 
   1124   1.1     yamt 	bt = bt_lookupbusy(vm, addr);
   1125   1.1     yamt 	KASSERT(bt != NULL);
   1126   1.1     yamt 	KASSERT(bt->bt_start == addr);
   1127   1.1     yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1128   1.1     yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1129   1.1     yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1130   1.1     yamt 	bt_rembusy(vm, bt);
   1131   1.1     yamt 	bt->bt_type = BT_TYPE_FREE;
   1132   1.1     yamt 
   1133   1.1     yamt 	/* coalesce */
   1134   1.1     yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1135   1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1136  1.60   dyoung 		KASSERT(BT_END(bt) < t->bt_start);	/* YYY */
   1137   1.1     yamt 		bt_remfree(vm, t);
   1138   1.1     yamt 		bt_remseg(vm, t);
   1139   1.1     yamt 		bt->bt_size += t->bt_size;
   1140   1.1     yamt 		bt_free(vm, t);
   1141   1.1     yamt 	}
   1142   1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1143   1.1     yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1144  1.60   dyoung 		KASSERT(BT_END(t) < bt->bt_start);	/* YYY */
   1145   1.1     yamt 		bt_remfree(vm, t);
   1146   1.1     yamt 		bt_remseg(vm, t);
   1147   1.1     yamt 		bt->bt_size += t->bt_size;
   1148   1.1     yamt 		bt->bt_start = t->bt_start;
   1149   1.1     yamt 		bt_free(vm, t);
   1150   1.1     yamt 	}
   1151   1.1     yamt 
   1152   1.1     yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1153   1.1     yamt 	KASSERT(t != NULL);
   1154   1.1     yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1155  1.61   dyoung 	if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1156   1.1     yamt 	    t->bt_size == bt->bt_size) {
   1157   1.1     yamt 		vmem_addr_t spanaddr;
   1158   1.1     yamt 		vmem_size_t spansize;
   1159   1.1     yamt 
   1160   1.1     yamt 		KASSERT(t->bt_start == bt->bt_start);
   1161   1.1     yamt 		spanaddr = bt->bt_start;
   1162   1.1     yamt 		spansize = bt->bt_size;
   1163   1.1     yamt 		bt_remseg(vm, bt);
   1164   1.1     yamt 		bt_free(vm, bt);
   1165   1.1     yamt 		bt_remseg(vm, t);
   1166   1.1     yamt 		bt_free(vm, t);
   1167   1.1     yamt 		VMEM_UNLOCK(vm);
   1168  1.61   dyoung 		(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
   1169   1.1     yamt 	} else {
   1170   1.1     yamt 		bt_insfree(vm, bt);
   1171   1.1     yamt 		VMEM_UNLOCK(vm);
   1172   1.1     yamt 	}
   1173   1.1     yamt }
   1174   1.1     yamt 
   1175   1.1     yamt /*
   1176   1.1     yamt  * vmem_add:
   1177   1.1     yamt  *
   1178   1.1     yamt  * => caller must ensure appropriate spl,
   1179   1.1     yamt  *    if the arena can be accessed from interrupt context.
   1180   1.1     yamt  */
   1181   1.1     yamt 
   1182  1.61   dyoung int
   1183   1.1     yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1184   1.1     yamt {
   1185   1.1     yamt 
   1186   1.1     yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1187   1.1     yamt }
   1188   1.1     yamt 
   1189   1.6     yamt /*
   1190   1.6     yamt  * vmem_reap: reap unused resources.
   1191   1.6     yamt  *
   1192  1.26  thorpej  * => return true if we successfully reaped something.
   1193   1.6     yamt  */
   1194   1.6     yamt 
   1195  1.25  thorpej bool
   1196   1.6     yamt vmem_reap(vmem_t *vm)
   1197   1.6     yamt {
   1198  1.26  thorpej 	bool didsomething = false;
   1199   1.6     yamt 
   1200   1.6     yamt #if defined(QCACHE)
   1201   1.6     yamt 	didsomething = qc_reap(vm);
   1202   1.6     yamt #endif /* defined(QCACHE) */
   1203   1.6     yamt 	return didsomething;
   1204   1.6     yamt }
   1205   1.6     yamt 
   1206  1.30     yamt /* ---- rehash */
   1207  1.30     yamt 
   1208  1.30     yamt #if defined(_KERNEL)
   1209  1.30     yamt static struct callout vmem_rehash_ch;
   1210  1.30     yamt static int vmem_rehash_interval;
   1211  1.30     yamt static struct workqueue *vmem_rehash_wq;
   1212  1.30     yamt static struct work vmem_rehash_wk;
   1213  1.30     yamt 
   1214  1.30     yamt static void
   1215  1.30     yamt vmem_rehash_all(struct work *wk, void *dummy)
   1216  1.30     yamt {
   1217  1.30     yamt 	vmem_t *vm;
   1218  1.30     yamt 
   1219  1.30     yamt 	KASSERT(wk == &vmem_rehash_wk);
   1220  1.30     yamt 	mutex_enter(&vmem_list_lock);
   1221  1.30     yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1222  1.30     yamt 		size_t desired;
   1223  1.30     yamt 		size_t current;
   1224  1.30     yamt 
   1225  1.30     yamt 		if (!VMEM_TRYLOCK(vm)) {
   1226  1.30     yamt 			continue;
   1227  1.30     yamt 		}
   1228  1.30     yamt 		desired = vm->vm_nbusytag;
   1229  1.30     yamt 		current = vm->vm_hashsize;
   1230  1.30     yamt 		VMEM_UNLOCK(vm);
   1231  1.30     yamt 
   1232  1.30     yamt 		if (desired > VMEM_HASHSIZE_MAX) {
   1233  1.30     yamt 			desired = VMEM_HASHSIZE_MAX;
   1234  1.30     yamt 		} else if (desired < VMEM_HASHSIZE_MIN) {
   1235  1.30     yamt 			desired = VMEM_HASHSIZE_MIN;
   1236  1.30     yamt 		}
   1237  1.30     yamt 		if (desired > current * 2 || desired * 2 < current) {
   1238  1.30     yamt 			vmem_rehash(vm, desired, VM_NOSLEEP);
   1239  1.30     yamt 		}
   1240  1.30     yamt 	}
   1241  1.30     yamt 	mutex_exit(&vmem_list_lock);
   1242  1.30     yamt 
   1243  1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1244  1.30     yamt }
   1245  1.30     yamt 
   1246  1.30     yamt static void
   1247  1.30     yamt vmem_rehash_all_kick(void *dummy)
   1248  1.30     yamt {
   1249  1.30     yamt 
   1250  1.32    rmind 	workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
   1251  1.30     yamt }
   1252  1.30     yamt 
   1253  1.30     yamt void
   1254  1.30     yamt vmem_rehash_start(void)
   1255  1.30     yamt {
   1256  1.30     yamt 	int error;
   1257  1.30     yamt 
   1258  1.30     yamt 	error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
   1259  1.41       ad 	    vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
   1260  1.30     yamt 	if (error) {
   1261  1.30     yamt 		panic("%s: workqueue_create %d\n", __func__, error);
   1262  1.30     yamt 	}
   1263  1.41       ad 	callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
   1264  1.30     yamt 	callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
   1265  1.30     yamt 
   1266  1.30     yamt 	vmem_rehash_interval = hz * 10;
   1267  1.30     yamt 	callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
   1268  1.30     yamt }
   1269  1.30     yamt #endif /* defined(_KERNEL) */
   1270  1.30     yamt 
   1271   1.1     yamt /* ---- debug */
   1272   1.1     yamt 
   1273  1.55     yamt #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
   1274  1.55     yamt 
   1275  1.55     yamt static void bt_dump(const bt_t *, void (*)(const char *, ...));
   1276  1.55     yamt 
   1277  1.55     yamt static const char *
   1278  1.55     yamt bt_type_string(int type)
   1279  1.55     yamt {
   1280  1.55     yamt 	static const char * const table[] = {
   1281  1.55     yamt 		[BT_TYPE_BUSY] = "busy",
   1282  1.55     yamt 		[BT_TYPE_FREE] = "free",
   1283  1.55     yamt 		[BT_TYPE_SPAN] = "span",
   1284  1.55     yamt 		[BT_TYPE_SPAN_STATIC] = "static span",
   1285  1.55     yamt 	};
   1286  1.55     yamt 
   1287  1.55     yamt 	if (type >= __arraycount(table)) {
   1288  1.55     yamt 		return "BOGUS";
   1289  1.55     yamt 	}
   1290  1.55     yamt 	return table[type];
   1291  1.55     yamt }
   1292  1.55     yamt 
   1293  1.55     yamt static void
   1294  1.55     yamt bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
   1295  1.55     yamt {
   1296  1.55     yamt 
   1297  1.55     yamt 	(*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
   1298  1.55     yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1299  1.55     yamt 	    bt->bt_type, bt_type_string(bt->bt_type));
   1300  1.55     yamt }
   1301  1.55     yamt 
   1302  1.55     yamt static void
   1303  1.55     yamt vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
   1304  1.55     yamt {
   1305  1.55     yamt 	const bt_t *bt;
   1306  1.55     yamt 	int i;
   1307  1.55     yamt 
   1308  1.55     yamt 	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
   1309  1.55     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1310  1.55     yamt 		bt_dump(bt, pr);
   1311  1.55     yamt 	}
   1312  1.55     yamt 
   1313  1.55     yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1314  1.55     yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1315  1.55     yamt 
   1316  1.55     yamt 		if (LIST_EMPTY(fl)) {
   1317  1.55     yamt 			continue;
   1318  1.55     yamt 		}
   1319  1.55     yamt 
   1320  1.55     yamt 		(*pr)("freelist[%d]\n", i);
   1321  1.55     yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1322  1.55     yamt 			bt_dump(bt, pr);
   1323  1.55     yamt 		}
   1324  1.55     yamt 	}
   1325  1.55     yamt }
   1326  1.55     yamt 
   1327  1.55     yamt #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
   1328  1.55     yamt 
   1329  1.37     yamt #if defined(DDB)
   1330  1.37     yamt static bt_t *
   1331  1.37     yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
   1332  1.37     yamt {
   1333  1.39     yamt 	bt_t *bt;
   1334  1.37     yamt 
   1335  1.39     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1336  1.39     yamt 		if (BT_ISSPAN_P(bt)) {
   1337  1.39     yamt 			continue;
   1338  1.39     yamt 		}
   1339  1.60   dyoung 		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
   1340  1.39     yamt 			return bt;
   1341  1.37     yamt 		}
   1342  1.37     yamt 	}
   1343  1.37     yamt 
   1344  1.37     yamt 	return NULL;
   1345  1.37     yamt }
   1346  1.37     yamt 
   1347  1.37     yamt void
   1348  1.37     yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
   1349  1.37     yamt {
   1350  1.37     yamt 	vmem_t *vm;
   1351  1.37     yamt 
   1352  1.37     yamt 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1353  1.37     yamt 		bt_t *bt;
   1354  1.37     yamt 
   1355  1.37     yamt 		bt = vmem_whatis_lookup(vm, addr);
   1356  1.37     yamt 		if (bt == NULL) {
   1357  1.37     yamt 			continue;
   1358  1.37     yamt 		}
   1359  1.39     yamt 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
   1360  1.37     yamt 		    (void *)addr, (void *)bt->bt_start,
   1361  1.39     yamt 		    (size_t)(addr - bt->bt_start), vm->vm_name,
   1362  1.39     yamt 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
   1363  1.37     yamt 	}
   1364  1.37     yamt }
   1365  1.43   cegger 
   1366  1.55     yamt void
   1367  1.55     yamt vmem_printall(const char *modif, void (*pr)(const char *, ...))
   1368  1.43   cegger {
   1369  1.55     yamt 	const vmem_t *vm;
   1370  1.43   cegger 
   1371  1.47   cegger 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
   1372  1.55     yamt 		vmem_dump(vm, pr);
   1373  1.43   cegger 	}
   1374  1.43   cegger }
   1375  1.43   cegger 
   1376  1.43   cegger void
   1377  1.43   cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
   1378  1.43   cegger {
   1379  1.55     yamt 	const vmem_t *vm = (const void *)addr;
   1380  1.43   cegger 
   1381  1.55     yamt 	vmem_dump(vm, pr);
   1382  1.43   cegger }
   1383  1.37     yamt #endif /* defined(DDB) */
   1384  1.37     yamt 
   1385  1.60   dyoung #if defined(_KERNEL)
   1386  1.60   dyoung #define vmem_printf printf
   1387  1.60   dyoung #else
   1388   1.1     yamt #include <stdio.h>
   1389  1.60   dyoung #include <stdarg.h>
   1390  1.60   dyoung 
   1391  1.60   dyoung static void
   1392  1.60   dyoung vmem_printf(const char *fmt, ...)
   1393  1.60   dyoung {
   1394  1.60   dyoung 	va_list ap;
   1395  1.60   dyoung 	va_start(ap, fmt);
   1396  1.60   dyoung 	vprintf(fmt, ap);
   1397  1.60   dyoung 	va_end(ap);
   1398  1.60   dyoung }
   1399  1.60   dyoung #endif
   1400   1.1     yamt 
   1401  1.55     yamt #if defined(VMEM_SANITY)
   1402   1.1     yamt 
   1403  1.55     yamt static bool
   1404  1.55     yamt vmem_check_sanity(vmem_t *vm)
   1405   1.1     yamt {
   1406  1.55     yamt 	const bt_t *bt, *bt2;
   1407   1.1     yamt 
   1408  1.55     yamt 	KASSERT(vm != NULL);
   1409   1.1     yamt 
   1410   1.1     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1411  1.60   dyoung 		if (bt->bt_start > BT_END(bt)) {
   1412  1.55     yamt 			printf("corrupted tag\n");
   1413  1.60   dyoung 			bt_dump(bt, vmem_printf);
   1414  1.55     yamt 			return false;
   1415  1.55     yamt 		}
   1416  1.55     yamt 	}
   1417  1.55     yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1418  1.55     yamt 		CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
   1419  1.55     yamt 			if (bt == bt2) {
   1420  1.55     yamt 				continue;
   1421  1.55     yamt 			}
   1422  1.55     yamt 			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
   1423  1.55     yamt 				continue;
   1424  1.55     yamt 			}
   1425  1.60   dyoung 			if (bt->bt_start <= BT_END(bt2) &&
   1426  1.60   dyoung 			    bt2->bt_start <= BT_END(bt)) {
   1427  1.55     yamt 				printf("overwrapped tags\n");
   1428  1.60   dyoung 				bt_dump(bt, vmem_printf);
   1429  1.60   dyoung 				bt_dump(bt2, vmem_printf);
   1430  1.55     yamt 				return false;
   1431  1.55     yamt 			}
   1432  1.55     yamt 		}
   1433   1.1     yamt 	}
   1434   1.1     yamt 
   1435  1.55     yamt 	return true;
   1436  1.55     yamt }
   1437   1.1     yamt 
   1438  1.55     yamt static void
   1439  1.55     yamt vmem_check(vmem_t *vm)
   1440  1.55     yamt {
   1441   1.1     yamt 
   1442  1.55     yamt 	if (!vmem_check_sanity(vm)) {
   1443  1.55     yamt 		panic("insanity vmem %p", vm);
   1444   1.1     yamt 	}
   1445   1.1     yamt }
   1446   1.1     yamt 
   1447  1.55     yamt #endif /* defined(VMEM_SANITY) */
   1448   1.1     yamt 
   1449  1.55     yamt #if defined(UNITTEST)
   1450   1.1     yamt int
   1451  1.57   cegger main(void)
   1452   1.1     yamt {
   1453  1.61   dyoung 	int rc;
   1454   1.1     yamt 	vmem_t *vm;
   1455   1.1     yamt 	vmem_addr_t p;
   1456   1.1     yamt 	struct reg {
   1457   1.1     yamt 		vmem_addr_t p;
   1458   1.1     yamt 		vmem_size_t sz;
   1459  1.25  thorpej 		bool x;
   1460   1.1     yamt 	} *reg = NULL;
   1461   1.1     yamt 	int nreg = 0;
   1462   1.1     yamt 	int nalloc = 0;
   1463   1.1     yamt 	int nfree = 0;
   1464   1.1     yamt 	vmem_size_t total = 0;
   1465   1.1     yamt #if 1
   1466   1.1     yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1467   1.1     yamt #else
   1468   1.1     yamt 	vm_flag_t strat = VM_BESTFIT;
   1469   1.1     yamt #endif
   1470   1.1     yamt 
   1471  1.61   dyoung 	vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
   1472  1.61   dyoung #ifdef _KERNEL
   1473  1.61   dyoung 	    IPL_NONE
   1474  1.61   dyoung #else
   1475  1.61   dyoung 	    0
   1476  1.61   dyoung #endif
   1477  1.61   dyoung 	    );
   1478   1.1     yamt 	if (vm == NULL) {
   1479   1.1     yamt 		printf("vmem_create\n");
   1480   1.1     yamt 		exit(EXIT_FAILURE);
   1481   1.1     yamt 	}
   1482  1.60   dyoung 	vmem_dump(vm, vmem_printf);
   1483   1.1     yamt 
   1484  1.61   dyoung 	rc = vmem_add(vm, 0, 50, VM_SLEEP);
   1485  1.61   dyoung 	assert(rc == 0);
   1486  1.61   dyoung 	rc = vmem_add(vm, 100, 200, VM_SLEEP);
   1487  1.61   dyoung 	assert(rc == 0);
   1488  1.61   dyoung 	rc = vmem_add(vm, 2000, 1, VM_SLEEP);
   1489  1.61   dyoung 	assert(rc == 0);
   1490  1.61   dyoung 	rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
   1491  1.61   dyoung 	assert(rc == 0);
   1492  1.61   dyoung 	rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1493  1.61   dyoung 	assert(rc == 0);
   1494  1.61   dyoung 	rc = vmem_add(vm, 500, 1000, VM_SLEEP);
   1495  1.61   dyoung 	assert(rc == 0);
   1496  1.61   dyoung 	rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
   1497  1.61   dyoung 	assert(rc == 0);
   1498  1.61   dyoung 	rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
   1499  1.61   dyoung 	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
   1500  1.61   dyoung 	assert(rc != 0);
   1501  1.61   dyoung 	rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
   1502  1.61   dyoung 	assert(rc == 0 && p == 0);
   1503  1.61   dyoung 	vmem_xfree(vm, p, 50);
   1504  1.61   dyoung 	rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
   1505  1.61   dyoung 	assert(rc == 0 && p == 0);
   1506  1.61   dyoung 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
   1507  1.61   dyoung 	    0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
   1508  1.61   dyoung 	assert(rc != 0);
   1509  1.61   dyoung 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
   1510  1.61   dyoung 	    0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
   1511  1.61   dyoung 	assert(rc != 0);
   1512  1.61   dyoung 	rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
   1513  1.61   dyoung 	    0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
   1514  1.61   dyoung 	assert(rc == 0);
   1515  1.60   dyoung 	vmem_dump(vm, vmem_printf);
   1516   1.1     yamt 	for (;;) {
   1517   1.1     yamt 		struct reg *r;
   1518  1.10     yamt 		int t = rand() % 100;
   1519   1.1     yamt 
   1520  1.10     yamt 		if (t > 45) {
   1521  1.10     yamt 			/* alloc */
   1522   1.1     yamt 			vmem_size_t sz = rand() % 500 + 1;
   1523  1.25  thorpej 			bool x;
   1524  1.10     yamt 			vmem_size_t align, phase, nocross;
   1525  1.10     yamt 			vmem_addr_t minaddr, maxaddr;
   1526  1.10     yamt 
   1527  1.10     yamt 			if (t > 70) {
   1528  1.26  thorpej 				x = true;
   1529  1.10     yamt 				/* XXX */
   1530  1.10     yamt 				align = 1 << (rand() % 15);
   1531  1.10     yamt 				phase = rand() % 65536;
   1532  1.10     yamt 				nocross = 1 << (rand() % 15);
   1533  1.10     yamt 				if (align <= phase) {
   1534  1.10     yamt 					phase = 0;
   1535  1.10     yamt 				}
   1536  1.19     yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1537  1.19     yamt 				    nocross)) {
   1538  1.10     yamt 					nocross = 0;
   1539  1.10     yamt 				}
   1540  1.60   dyoung 				do {
   1541  1.60   dyoung 					minaddr = rand() % 50000;
   1542  1.60   dyoung 					maxaddr = rand() % 70000;
   1543  1.60   dyoung 				} while (minaddr > maxaddr);
   1544  1.10     yamt 				printf("=== xalloc %" PRIu64
   1545  1.10     yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1546  1.10     yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1547  1.10     yamt 				    ", max=%" PRIu64 "\n",
   1548  1.10     yamt 				    (uint64_t)sz,
   1549  1.10     yamt 				    (uint64_t)align,
   1550  1.10     yamt 				    (uint64_t)phase,
   1551  1.10     yamt 				    (uint64_t)nocross,
   1552  1.10     yamt 				    (uint64_t)minaddr,
   1553  1.10     yamt 				    (uint64_t)maxaddr);
   1554  1.61   dyoung 				rc = vmem_xalloc(vm, sz, align, phase, nocross,
   1555  1.61   dyoung 				    minaddr, maxaddr, strat|VM_SLEEP, &p);
   1556  1.10     yamt 			} else {
   1557  1.26  thorpej 				x = false;
   1558  1.10     yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1559  1.61   dyoung 				rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
   1560  1.10     yamt 			}
   1561   1.1     yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1562  1.60   dyoung 			vmem_dump(vm, vmem_printf);
   1563  1.61   dyoung 			if (rc != 0) {
   1564  1.10     yamt 				if (x) {
   1565  1.10     yamt 					continue;
   1566  1.10     yamt 				}
   1567   1.1     yamt 				break;
   1568   1.1     yamt 			}
   1569   1.1     yamt 			nreg++;
   1570   1.1     yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1571   1.1     yamt 			r = &reg[nreg - 1];
   1572   1.1     yamt 			r->p = p;
   1573   1.1     yamt 			r->sz = sz;
   1574  1.10     yamt 			r->x = x;
   1575   1.1     yamt 			total += sz;
   1576   1.1     yamt 			nalloc++;
   1577   1.1     yamt 		} else if (nreg != 0) {
   1578  1.10     yamt 			/* free */
   1579   1.1     yamt 			r = &reg[rand() % nreg];
   1580   1.1     yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1581   1.1     yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1582  1.10     yamt 			if (r->x) {
   1583  1.10     yamt 				vmem_xfree(vm, r->p, r->sz);
   1584  1.10     yamt 			} else {
   1585  1.10     yamt 				vmem_free(vm, r->p, r->sz);
   1586  1.10     yamt 			}
   1587   1.1     yamt 			total -= r->sz;
   1588  1.60   dyoung 			vmem_dump(vm, vmem_printf);
   1589   1.1     yamt 			*r = reg[nreg - 1];
   1590   1.1     yamt 			nreg--;
   1591   1.1     yamt 			nfree++;
   1592   1.1     yamt 		}
   1593   1.1     yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1594   1.1     yamt 	}
   1595   1.1     yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1596   1.1     yamt 	    (uint64_t)total, nalloc, nfree);
   1597   1.1     yamt 	exit(EXIT_SUCCESS);
   1598   1.1     yamt }
   1599  1.55     yamt #endif /* defined(UNITTEST) */
   1600