subr_vmem.c revision 1.62 1 1.62 rmind /* $NetBSD: subr_vmem.c,v 1.62 2011/10/02 21:32:48 rmind Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.55 yamt * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.18 yamt *
35 1.18 yamt * todo:
36 1.18 yamt * - decide how to import segments for vmem_xalloc.
37 1.18 yamt * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.62 rmind __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.62 2011/10/02 21:32:48 rmind Exp $");
42 1.1 yamt
43 1.5 yamt #if defined(_KERNEL)
44 1.37 yamt #include "opt_ddb.h"
45 1.5 yamt #define QCACHE
46 1.5 yamt #endif /* defined(_KERNEL) */
47 1.1 yamt
48 1.1 yamt #include <sys/param.h>
49 1.1 yamt #include <sys/hash.h>
50 1.1 yamt #include <sys/queue.h>
51 1.62 rmind #include <sys/bitops.h>
52 1.1 yamt
53 1.1 yamt #if defined(_KERNEL)
54 1.1 yamt #include <sys/systm.h>
55 1.30 yamt #include <sys/kernel.h> /* hz */
56 1.30 yamt #include <sys/callout.h>
57 1.1 yamt #include <sys/malloc.h>
58 1.1 yamt #include <sys/once.h>
59 1.1 yamt #include <sys/pool.h>
60 1.1 yamt #include <sys/vmem.h>
61 1.30 yamt #include <sys/workqueue.h>
62 1.1 yamt #else /* defined(_KERNEL) */
63 1.1 yamt #include "../sys/vmem.h"
64 1.1 yamt #endif /* defined(_KERNEL) */
65 1.1 yamt
66 1.1 yamt #if defined(_KERNEL)
67 1.52 ad #define LOCK_DECL(name) \
68 1.52 ad kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
69 1.1 yamt #else /* defined(_KERNEL) */
70 1.1 yamt #include <errno.h>
71 1.1 yamt #include <assert.h>
72 1.1 yamt #include <stdlib.h>
73 1.1 yamt
74 1.55 yamt #define UNITTEST
75 1.1 yamt #define KASSERT(a) assert(a)
76 1.31 ad #define LOCK_DECL(name) /* nothing */
77 1.31 ad #define mutex_init(a, b, c) /* nothing */
78 1.31 ad #define mutex_destroy(a) /* nothing */
79 1.31 ad #define mutex_enter(a) /* nothing */
80 1.55 yamt #define mutex_tryenter(a) true
81 1.31 ad #define mutex_exit(a) /* nothing */
82 1.31 ad #define mutex_owned(a) /* nothing */
83 1.55 yamt #define ASSERT_SLEEPABLE() /* nothing */
84 1.55 yamt #define panic(...) printf(__VA_ARGS__); abort()
85 1.1 yamt #endif /* defined(_KERNEL) */
86 1.1 yamt
87 1.1 yamt struct vmem;
88 1.1 yamt struct vmem_btag;
89 1.1 yamt
90 1.55 yamt #if defined(VMEM_SANITY)
91 1.55 yamt static void vmem_check(vmem_t *);
92 1.55 yamt #else /* defined(VMEM_SANITY) */
93 1.55 yamt #define vmem_check(vm) /* nothing */
94 1.55 yamt #endif /* defined(VMEM_SANITY) */
95 1.1 yamt
96 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
97 1.30 yamt
98 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
99 1.54 yamt #define VMEM_HASHSIZE_MAX 65536 /* XXX */
100 1.53 pooka #define VMEM_HASHSIZE_INIT 128
101 1.1 yamt
102 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
103 1.1 yamt
104 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
105 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
106 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
107 1.1 yamt
108 1.5 yamt #if defined(QCACHE)
109 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
110 1.5 yamt
111 1.5 yamt #define QC_NAME_MAX 16
112 1.5 yamt
113 1.5 yamt struct qcache {
114 1.35 ad pool_cache_t qc_cache;
115 1.5 yamt vmem_t *qc_vmem;
116 1.5 yamt char qc_name[QC_NAME_MAX];
117 1.5 yamt };
118 1.5 yamt typedef struct qcache qcache_t;
119 1.35 ad #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
120 1.5 yamt #endif /* defined(QCACHE) */
121 1.5 yamt
122 1.1 yamt /* vmem arena */
123 1.1 yamt struct vmem {
124 1.31 ad LOCK_DECL(vm_lock);
125 1.61 dyoung int (*vm_importfn)(void *, vmem_size_t, vmem_size_t *,
126 1.61 dyoung vm_flag_t, vmem_addr_t *);
127 1.61 dyoung void (*vm_releasefn)(void *, vmem_addr_t, vmem_size_t);
128 1.1 yamt vmem_t *vm_source;
129 1.61 dyoung void *vm_arg;
130 1.1 yamt struct vmem_seglist vm_seglist;
131 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
132 1.1 yamt size_t vm_hashsize;
133 1.1 yamt size_t vm_nbusytag;
134 1.1 yamt struct vmem_hashlist *vm_hashlist;
135 1.1 yamt size_t vm_quantum_mask;
136 1.1 yamt int vm_quantum_shift;
137 1.1 yamt const char *vm_name;
138 1.30 yamt LIST_ENTRY(vmem) vm_alllist;
139 1.5 yamt
140 1.5 yamt #if defined(QCACHE)
141 1.5 yamt /* quantum cache */
142 1.5 yamt size_t vm_qcache_max;
143 1.5 yamt struct pool_allocator vm_qcache_allocator;
144 1.22 yamt qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
145 1.22 yamt qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
146 1.5 yamt #endif /* defined(QCACHE) */
147 1.1 yamt };
148 1.1 yamt
149 1.31 ad #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
150 1.31 ad #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
151 1.31 ad #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
152 1.36 ad #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
153 1.31 ad #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
154 1.31 ad #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
155 1.1 yamt
156 1.1 yamt /* boundary tag */
157 1.1 yamt struct vmem_btag {
158 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
159 1.1 yamt union {
160 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
161 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
162 1.1 yamt } bt_u;
163 1.1 yamt #define bt_hashlist bt_u.u_hashlist
164 1.1 yamt #define bt_freelist bt_u.u_freelist
165 1.1 yamt vmem_addr_t bt_start;
166 1.1 yamt vmem_size_t bt_size;
167 1.1 yamt int bt_type;
168 1.1 yamt };
169 1.1 yamt
170 1.1 yamt #define BT_TYPE_SPAN 1
171 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
172 1.1 yamt #define BT_TYPE_FREE 3
173 1.1 yamt #define BT_TYPE_BUSY 4
174 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
175 1.1 yamt
176 1.60 dyoung #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
177 1.1 yamt
178 1.1 yamt typedef struct vmem_btag bt_t;
179 1.1 yamt
180 1.1 yamt /* ---- misc */
181 1.1 yamt
182 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
183 1.19 yamt (-(-(addr) & -(align)))
184 1.62 rmind
185 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
186 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
187 1.19 yamt
188 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
189 1.62 rmind #define SIZE2ORDER(size) ((int)ilog2(size))
190 1.4 yamt
191 1.62 rmind #if !defined(_KERNEL)
192 1.62 rmind #define xmalloc(sz, flags) malloc(sz)
193 1.62 rmind #define xfree(p) free(p)
194 1.62 rmind #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
195 1.62 rmind #define bt_free(vm, bt) free(bt)
196 1.62 rmind #else /* !defined(_KERNEL) */
197 1.1 yamt
198 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
199 1.1 yamt
200 1.62 rmind static inline void *
201 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
202 1.1 yamt {
203 1.1 yamt return malloc(sz, M_VMEM,
204 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
205 1.1 yamt }
206 1.1 yamt
207 1.62 rmind static inline void
208 1.1 yamt xfree(void *p)
209 1.1 yamt {
210 1.1 yamt return free(p, M_VMEM);
211 1.1 yamt }
212 1.1 yamt
213 1.1 yamt /* ---- boundary tag */
214 1.1 yamt
215 1.35 ad static struct pool_cache bt_cache;
216 1.1 yamt
217 1.62 rmind static inline bt_t *
218 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
219 1.1 yamt {
220 1.62 rmind return pool_cache_get(&bt_cache,
221 1.62 rmind (flags & VM_SLEEP) ? PR_WAITOK : PR_NOWAIT);
222 1.1 yamt }
223 1.1 yamt
224 1.62 rmind static inline void
225 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
226 1.1 yamt {
227 1.35 ad pool_cache_put(&bt_cache, bt);
228 1.1 yamt }
229 1.1 yamt
230 1.62 rmind #endif /* !defined(_KERNEL) */
231 1.62 rmind
232 1.1 yamt /*
233 1.1 yamt * freelist[0] ... [1, 1]
234 1.1 yamt * freelist[1] ... [2, 3]
235 1.1 yamt * freelist[2] ... [4, 7]
236 1.1 yamt * freelist[3] ... [8, 15]
237 1.1 yamt * :
238 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
239 1.1 yamt * :
240 1.1 yamt */
241 1.1 yamt
242 1.1 yamt static struct vmem_freelist *
243 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
244 1.1 yamt {
245 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
246 1.62 rmind const int idx = SIZE2ORDER(qsize);
247 1.1 yamt
248 1.62 rmind KASSERT(size != 0 && qsize != 0);
249 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
250 1.1 yamt KASSERT(idx >= 0);
251 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
252 1.1 yamt
253 1.1 yamt return &vm->vm_freelist[idx];
254 1.1 yamt }
255 1.1 yamt
256 1.59 yamt /*
257 1.59 yamt * bt_freehead_toalloc: return the freelist for the given size and allocation
258 1.59 yamt * strategy.
259 1.59 yamt *
260 1.59 yamt * for VM_INSTANTFIT, return the list in which any blocks are large enough
261 1.59 yamt * for the requested size. otherwise, return the list which can have blocks
262 1.59 yamt * large enough for the requested size.
263 1.59 yamt */
264 1.59 yamt
265 1.1 yamt static struct vmem_freelist *
266 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
267 1.1 yamt {
268 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
269 1.62 rmind int idx = SIZE2ORDER(qsize);
270 1.1 yamt
271 1.62 rmind KASSERT(size != 0 && qsize != 0);
272 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
273 1.1 yamt
274 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
275 1.1 yamt idx++;
276 1.1 yamt /* check too large request? */
277 1.1 yamt }
278 1.1 yamt KASSERT(idx >= 0);
279 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
280 1.1 yamt
281 1.1 yamt return &vm->vm_freelist[idx];
282 1.1 yamt }
283 1.1 yamt
284 1.1 yamt /* ---- boundary tag hash */
285 1.1 yamt
286 1.1 yamt static struct vmem_hashlist *
287 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
288 1.1 yamt {
289 1.1 yamt struct vmem_hashlist *list;
290 1.1 yamt unsigned int hash;
291 1.1 yamt
292 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
293 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
294 1.1 yamt
295 1.1 yamt return list;
296 1.1 yamt }
297 1.1 yamt
298 1.1 yamt static bt_t *
299 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
300 1.1 yamt {
301 1.1 yamt struct vmem_hashlist *list;
302 1.1 yamt bt_t *bt;
303 1.1 yamt
304 1.1 yamt list = bt_hashhead(vm, addr);
305 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
306 1.1 yamt if (bt->bt_start == addr) {
307 1.1 yamt break;
308 1.1 yamt }
309 1.1 yamt }
310 1.1 yamt
311 1.1 yamt return bt;
312 1.1 yamt }
313 1.1 yamt
314 1.1 yamt static void
315 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
316 1.1 yamt {
317 1.1 yamt
318 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
319 1.1 yamt vm->vm_nbusytag--;
320 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
321 1.1 yamt }
322 1.1 yamt
323 1.1 yamt static void
324 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
325 1.1 yamt {
326 1.1 yamt struct vmem_hashlist *list;
327 1.1 yamt
328 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
329 1.1 yamt
330 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
331 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
332 1.1 yamt vm->vm_nbusytag++;
333 1.1 yamt }
334 1.1 yamt
335 1.1 yamt /* ---- boundary tag list */
336 1.1 yamt
337 1.1 yamt static void
338 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
339 1.1 yamt {
340 1.1 yamt
341 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
342 1.1 yamt }
343 1.1 yamt
344 1.1 yamt static void
345 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
346 1.1 yamt {
347 1.1 yamt
348 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
349 1.1 yamt }
350 1.1 yamt
351 1.1 yamt static void
352 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
353 1.1 yamt {
354 1.1 yamt
355 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
356 1.1 yamt }
357 1.1 yamt
358 1.1 yamt static void
359 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
360 1.1 yamt {
361 1.1 yamt
362 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
363 1.1 yamt
364 1.1 yamt LIST_REMOVE(bt, bt_freelist);
365 1.1 yamt }
366 1.1 yamt
367 1.1 yamt static void
368 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
369 1.1 yamt {
370 1.1 yamt struct vmem_freelist *list;
371 1.1 yamt
372 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
373 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
374 1.1 yamt }
375 1.1 yamt
376 1.1 yamt /* ---- vmem internal functions */
377 1.1 yamt
378 1.30 yamt #if defined(_KERNEL)
379 1.30 yamt static kmutex_t vmem_list_lock;
380 1.30 yamt static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
381 1.30 yamt #endif /* defined(_KERNEL) */
382 1.30 yamt
383 1.5 yamt #if defined(QCACHE)
384 1.5 yamt static inline vm_flag_t
385 1.5 yamt prf_to_vmf(int prflags)
386 1.5 yamt {
387 1.5 yamt vm_flag_t vmflags;
388 1.5 yamt
389 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
390 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
391 1.5 yamt vmflags = VM_SLEEP;
392 1.5 yamt } else {
393 1.5 yamt vmflags = VM_NOSLEEP;
394 1.5 yamt }
395 1.5 yamt return vmflags;
396 1.5 yamt }
397 1.5 yamt
398 1.5 yamt static inline int
399 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
400 1.5 yamt {
401 1.5 yamt int prflags;
402 1.5 yamt
403 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
404 1.5 yamt prflags = PR_WAITOK;
405 1.7 yamt } else {
406 1.5 yamt prflags = PR_NOWAIT;
407 1.5 yamt }
408 1.5 yamt return prflags;
409 1.5 yamt }
410 1.5 yamt
411 1.5 yamt static size_t
412 1.5 yamt qc_poolpage_size(size_t qcache_max)
413 1.5 yamt {
414 1.5 yamt int i;
415 1.5 yamt
416 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
417 1.5 yamt /* nothing */
418 1.5 yamt }
419 1.5 yamt return ORDER2SIZE(i);
420 1.5 yamt }
421 1.5 yamt
422 1.5 yamt static void *
423 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
424 1.5 yamt {
425 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
426 1.5 yamt vmem_t *vm = qc->qc_vmem;
427 1.61 dyoung vmem_addr_t addr;
428 1.5 yamt
429 1.61 dyoung if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
430 1.61 dyoung prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
431 1.61 dyoung return NULL;
432 1.61 dyoung return (void *)addr;
433 1.5 yamt }
434 1.5 yamt
435 1.5 yamt static void
436 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
437 1.5 yamt {
438 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
439 1.5 yamt vmem_t *vm = qc->qc_vmem;
440 1.5 yamt
441 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
442 1.5 yamt }
443 1.5 yamt
444 1.5 yamt static void
445 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
446 1.5 yamt {
447 1.22 yamt qcache_t *prevqc;
448 1.5 yamt struct pool_allocator *pa;
449 1.5 yamt int qcache_idx_max;
450 1.5 yamt int i;
451 1.5 yamt
452 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
453 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
454 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
455 1.5 yamt }
456 1.5 yamt vm->vm_qcache_max = qcache_max;
457 1.5 yamt pa = &vm->vm_qcache_allocator;
458 1.5 yamt memset(pa, 0, sizeof(*pa));
459 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
460 1.5 yamt pa->pa_free = qc_poolpage_free;
461 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
462 1.5 yamt
463 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
464 1.22 yamt prevqc = NULL;
465 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
466 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
467 1.5 yamt size_t size = i << vm->vm_quantum_shift;
468 1.5 yamt
469 1.5 yamt qc->qc_vmem = vm;
470 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
471 1.5 yamt vm->vm_name, size);
472 1.35 ad qc->qc_cache = pool_cache_init(size,
473 1.35 ad ORDER2SIZE(vm->vm_quantum_shift), 0,
474 1.35 ad PR_NOALIGN | PR_NOTOUCH /* XXX */,
475 1.35 ad qc->qc_name, pa, ipl, NULL, NULL, NULL);
476 1.35 ad KASSERT(qc->qc_cache != NULL); /* XXX */
477 1.22 yamt if (prevqc != NULL &&
478 1.35 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
479 1.35 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
480 1.35 ad pool_cache_destroy(qc->qc_cache);
481 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
482 1.27 ad continue;
483 1.22 yamt }
484 1.35 ad qc->qc_cache->pc_pool.pr_qcache = qc;
485 1.22 yamt vm->vm_qcache[i - 1] = qc;
486 1.22 yamt prevqc = qc;
487 1.5 yamt }
488 1.5 yamt }
489 1.6 yamt
490 1.23 yamt static void
491 1.23 yamt qc_destroy(vmem_t *vm)
492 1.23 yamt {
493 1.23 yamt const qcache_t *prevqc;
494 1.23 yamt int i;
495 1.23 yamt int qcache_idx_max;
496 1.23 yamt
497 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
498 1.23 yamt prevqc = NULL;
499 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
500 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
501 1.23 yamt
502 1.23 yamt if (prevqc == qc) {
503 1.23 yamt continue;
504 1.23 yamt }
505 1.35 ad pool_cache_destroy(qc->qc_cache);
506 1.23 yamt prevqc = qc;
507 1.23 yamt }
508 1.23 yamt }
509 1.23 yamt
510 1.25 thorpej static bool
511 1.6 yamt qc_reap(vmem_t *vm)
512 1.6 yamt {
513 1.22 yamt const qcache_t *prevqc;
514 1.6 yamt int i;
515 1.6 yamt int qcache_idx_max;
516 1.26 thorpej bool didsomething = false;
517 1.6 yamt
518 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
519 1.22 yamt prevqc = NULL;
520 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
521 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
522 1.6 yamt
523 1.22 yamt if (prevqc == qc) {
524 1.22 yamt continue;
525 1.22 yamt }
526 1.35 ad if (pool_cache_reclaim(qc->qc_cache) != 0) {
527 1.26 thorpej didsomething = true;
528 1.6 yamt }
529 1.22 yamt prevqc = qc;
530 1.6 yamt }
531 1.6 yamt
532 1.6 yamt return didsomething;
533 1.6 yamt }
534 1.5 yamt #endif /* defined(QCACHE) */
535 1.5 yamt
536 1.1 yamt #if defined(_KERNEL)
537 1.1 yamt static int
538 1.1 yamt vmem_init(void)
539 1.1 yamt {
540 1.1 yamt
541 1.30 yamt mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
542 1.35 ad pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
543 1.35 ad NULL, IPL_VM, NULL, NULL, NULL);
544 1.1 yamt return 0;
545 1.1 yamt }
546 1.1 yamt #endif /* defined(_KERNEL) */
547 1.1 yamt
548 1.61 dyoung static int
549 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
550 1.1 yamt int spanbttype)
551 1.1 yamt {
552 1.1 yamt bt_t *btspan;
553 1.1 yamt bt_t *btfree;
554 1.1 yamt
555 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
556 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
557 1.58 yamt KASSERT(spanbttype == BT_TYPE_SPAN ||
558 1.58 yamt spanbttype == BT_TYPE_SPAN_STATIC);
559 1.1 yamt
560 1.1 yamt btspan = bt_alloc(vm, flags);
561 1.1 yamt if (btspan == NULL) {
562 1.61 dyoung return ENOMEM;
563 1.1 yamt }
564 1.1 yamt btfree = bt_alloc(vm, flags);
565 1.1 yamt if (btfree == NULL) {
566 1.1 yamt bt_free(vm, btspan);
567 1.61 dyoung return ENOMEM;
568 1.1 yamt }
569 1.1 yamt
570 1.1 yamt btspan->bt_type = spanbttype;
571 1.1 yamt btspan->bt_start = addr;
572 1.1 yamt btspan->bt_size = size;
573 1.1 yamt
574 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
575 1.1 yamt btfree->bt_start = addr;
576 1.1 yamt btfree->bt_size = size;
577 1.1 yamt
578 1.1 yamt VMEM_LOCK(vm);
579 1.1 yamt bt_insseg_tail(vm, btspan);
580 1.1 yamt bt_insseg(vm, btfree, btspan);
581 1.1 yamt bt_insfree(vm, btfree);
582 1.1 yamt VMEM_UNLOCK(vm);
583 1.1 yamt
584 1.61 dyoung return 0;
585 1.1 yamt }
586 1.1 yamt
587 1.30 yamt static void
588 1.30 yamt vmem_destroy1(vmem_t *vm)
589 1.30 yamt {
590 1.30 yamt
591 1.30 yamt #if defined(QCACHE)
592 1.30 yamt qc_destroy(vm);
593 1.30 yamt #endif /* defined(QCACHE) */
594 1.30 yamt if (vm->vm_hashlist != NULL) {
595 1.30 yamt int i;
596 1.30 yamt
597 1.30 yamt for (i = 0; i < vm->vm_hashsize; i++) {
598 1.30 yamt bt_t *bt;
599 1.30 yamt
600 1.30 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
601 1.30 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
602 1.30 yamt bt_free(vm, bt);
603 1.30 yamt }
604 1.30 yamt }
605 1.30 yamt xfree(vm->vm_hashlist);
606 1.30 yamt }
607 1.31 ad VMEM_LOCK_DESTROY(vm);
608 1.30 yamt xfree(vm);
609 1.30 yamt }
610 1.30 yamt
611 1.1 yamt static int
612 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
613 1.1 yamt {
614 1.1 yamt vmem_addr_t addr;
615 1.61 dyoung int rc;
616 1.1 yamt
617 1.61 dyoung if (vm->vm_importfn == NULL) {
618 1.1 yamt return EINVAL;
619 1.1 yamt }
620 1.1 yamt
621 1.61 dyoung rc = (*vm->vm_importfn)(vm->vm_arg, size, &size, flags, &addr);
622 1.61 dyoung if (rc != 0) {
623 1.1 yamt return ENOMEM;
624 1.1 yamt }
625 1.1 yamt
626 1.61 dyoung if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
627 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, addr, size);
628 1.1 yamt return ENOMEM;
629 1.1 yamt }
630 1.1 yamt
631 1.1 yamt return 0;
632 1.1 yamt }
633 1.1 yamt
634 1.1 yamt static int
635 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
636 1.1 yamt {
637 1.1 yamt bt_t *bt;
638 1.1 yamt int i;
639 1.1 yamt struct vmem_hashlist *newhashlist;
640 1.1 yamt struct vmem_hashlist *oldhashlist;
641 1.1 yamt size_t oldhashsize;
642 1.1 yamt
643 1.1 yamt KASSERT(newhashsize > 0);
644 1.1 yamt
645 1.1 yamt newhashlist =
646 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
647 1.1 yamt if (newhashlist == NULL) {
648 1.1 yamt return ENOMEM;
649 1.1 yamt }
650 1.1 yamt for (i = 0; i < newhashsize; i++) {
651 1.1 yamt LIST_INIT(&newhashlist[i]);
652 1.1 yamt }
653 1.1 yamt
654 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
655 1.30 yamt xfree(newhashlist);
656 1.30 yamt return EBUSY;
657 1.30 yamt }
658 1.1 yamt oldhashlist = vm->vm_hashlist;
659 1.1 yamt oldhashsize = vm->vm_hashsize;
660 1.1 yamt vm->vm_hashlist = newhashlist;
661 1.1 yamt vm->vm_hashsize = newhashsize;
662 1.1 yamt if (oldhashlist == NULL) {
663 1.1 yamt VMEM_UNLOCK(vm);
664 1.1 yamt return 0;
665 1.1 yamt }
666 1.1 yamt for (i = 0; i < oldhashsize; i++) {
667 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
668 1.1 yamt bt_rembusy(vm, bt); /* XXX */
669 1.1 yamt bt_insbusy(vm, bt);
670 1.1 yamt }
671 1.1 yamt }
672 1.1 yamt VMEM_UNLOCK(vm);
673 1.1 yamt
674 1.1 yamt xfree(oldhashlist);
675 1.1 yamt
676 1.1 yamt return 0;
677 1.1 yamt }
678 1.1 yamt
679 1.10 yamt /*
680 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
681 1.59 yamt *
682 1.59 yamt * it's a caller's responsibility to ensure the region is big enough
683 1.59 yamt * before calling us.
684 1.10 yamt */
685 1.10 yamt
686 1.61 dyoung static int
687 1.60 dyoung vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
688 1.60 dyoung vmem_size_t phase, vmem_size_t nocross,
689 1.61 dyoung vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
690 1.10 yamt {
691 1.10 yamt vmem_addr_t start;
692 1.10 yamt vmem_addr_t end;
693 1.10 yamt
694 1.60 dyoung KASSERT(size > 0);
695 1.59 yamt KASSERT(bt->bt_size >= size); /* caller's responsibility */
696 1.10 yamt
697 1.10 yamt /*
698 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
699 1.10 yamt * unsigned integer of the same size.
700 1.10 yamt */
701 1.10 yamt
702 1.10 yamt start = bt->bt_start;
703 1.10 yamt if (start < minaddr) {
704 1.10 yamt start = minaddr;
705 1.10 yamt }
706 1.10 yamt end = BT_END(bt);
707 1.60 dyoung if (end > maxaddr) {
708 1.60 dyoung end = maxaddr;
709 1.10 yamt }
710 1.60 dyoung if (start > end) {
711 1.61 dyoung return ENOMEM;
712 1.10 yamt }
713 1.19 yamt
714 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
715 1.10 yamt if (start < bt->bt_start) {
716 1.10 yamt start += align;
717 1.10 yamt }
718 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
719 1.10 yamt KASSERT(align < nocross);
720 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
721 1.10 yamt }
722 1.60 dyoung if (start <= end && end - start >= size - 1) {
723 1.10 yamt KASSERT((start & (align - 1)) == phase);
724 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
725 1.10 yamt KASSERT(minaddr <= start);
726 1.60 dyoung KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
727 1.10 yamt KASSERT(bt->bt_start <= start);
728 1.60 dyoung KASSERT(BT_END(bt) - start >= size - 1);
729 1.61 dyoung *addrp = start;
730 1.61 dyoung return 0;
731 1.10 yamt }
732 1.61 dyoung return ENOMEM;
733 1.10 yamt }
734 1.10 yamt
735 1.1 yamt /* ---- vmem API */
736 1.1 yamt
737 1.1 yamt /*
738 1.1 yamt * vmem_create: create an arena.
739 1.1 yamt *
740 1.1 yamt * => must not be called from interrupt context.
741 1.1 yamt */
742 1.1 yamt
743 1.1 yamt vmem_t *
744 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
745 1.1 yamt vmem_size_t quantum,
746 1.61 dyoung int (*importfn)(void *, vmem_size_t, vmem_size_t *, vm_flag_t,
747 1.61 dyoung vmem_addr_t *),
748 1.61 dyoung void (*releasefn)(void *, vmem_addr_t, vmem_size_t),
749 1.61 dyoung void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
750 1.1 yamt {
751 1.1 yamt vmem_t *vm;
752 1.1 yamt int i;
753 1.1 yamt #if defined(_KERNEL)
754 1.1 yamt static ONCE_DECL(control);
755 1.1 yamt #endif /* defined(_KERNEL) */
756 1.1 yamt
757 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
758 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
759 1.62 rmind KASSERT(quantum > 0);
760 1.1 yamt
761 1.1 yamt #if defined(_KERNEL)
762 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
763 1.1 yamt return NULL;
764 1.1 yamt }
765 1.1 yamt #endif /* defined(_KERNEL) */
766 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
767 1.1 yamt if (vm == NULL) {
768 1.1 yamt return NULL;
769 1.1 yamt }
770 1.1 yamt
771 1.31 ad VMEM_LOCK_INIT(vm, ipl);
772 1.1 yamt vm->vm_name = name;
773 1.1 yamt vm->vm_quantum_mask = quantum - 1;
774 1.62 rmind vm->vm_quantum_shift = SIZE2ORDER(quantum);
775 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
776 1.61 dyoung vm->vm_importfn = importfn;
777 1.61 dyoung vm->vm_releasefn = releasefn;
778 1.61 dyoung vm->vm_arg = arg;
779 1.1 yamt vm->vm_nbusytag = 0;
780 1.5 yamt #if defined(QCACHE)
781 1.31 ad qc_init(vm, qcache_max, ipl);
782 1.5 yamt #endif /* defined(QCACHE) */
783 1.1 yamt
784 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
785 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
786 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
787 1.1 yamt }
788 1.1 yamt vm->vm_hashlist = NULL;
789 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
790 1.30 yamt vmem_destroy1(vm);
791 1.1 yamt return NULL;
792 1.1 yamt }
793 1.1 yamt
794 1.1 yamt if (size != 0) {
795 1.61 dyoung if (vmem_add(vm, base, size, flags) != 0) {
796 1.30 yamt vmem_destroy1(vm);
797 1.1 yamt return NULL;
798 1.1 yamt }
799 1.1 yamt }
800 1.1 yamt
801 1.30 yamt #if defined(_KERNEL)
802 1.30 yamt mutex_enter(&vmem_list_lock);
803 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
804 1.30 yamt mutex_exit(&vmem_list_lock);
805 1.30 yamt #endif /* defined(_KERNEL) */
806 1.30 yamt
807 1.1 yamt return vm;
808 1.1 yamt }
809 1.1 yamt
810 1.1 yamt void
811 1.1 yamt vmem_destroy(vmem_t *vm)
812 1.1 yamt {
813 1.1 yamt
814 1.30 yamt #if defined(_KERNEL)
815 1.30 yamt mutex_enter(&vmem_list_lock);
816 1.30 yamt LIST_REMOVE(vm, vm_alllist);
817 1.30 yamt mutex_exit(&vmem_list_lock);
818 1.30 yamt #endif /* defined(_KERNEL) */
819 1.1 yamt
820 1.30 yamt vmem_destroy1(vm);
821 1.1 yamt }
822 1.1 yamt
823 1.1 yamt vmem_size_t
824 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
825 1.1 yamt {
826 1.1 yamt
827 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
828 1.1 yamt }
829 1.1 yamt
830 1.1 yamt /*
831 1.1 yamt * vmem_alloc:
832 1.1 yamt *
833 1.1 yamt * => caller must ensure appropriate spl,
834 1.1 yamt * if the arena can be accessed from interrupt context.
835 1.1 yamt */
836 1.1 yamt
837 1.61 dyoung int
838 1.61 dyoung vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
839 1.1 yamt {
840 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
841 1.1 yamt
842 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
843 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
844 1.1 yamt
845 1.1 yamt KASSERT(size > 0);
846 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
847 1.3 yamt if ((flags & VM_SLEEP) != 0) {
848 1.42 yamt ASSERT_SLEEPABLE();
849 1.3 yamt }
850 1.1 yamt
851 1.5 yamt #if defined(QCACHE)
852 1.5 yamt if (size <= vm->vm_qcache_max) {
853 1.61 dyoung void *p;
854 1.38 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
855 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
856 1.5 yamt
857 1.61 dyoung p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
858 1.61 dyoung if (addrp != NULL)
859 1.61 dyoung *addrp = (vmem_addr_t)p;
860 1.61 dyoung return (p == NULL) ? ENOMEM : 0;
861 1.5 yamt }
862 1.5 yamt #endif /* defined(QCACHE) */
863 1.5 yamt
864 1.60 dyoung return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
865 1.61 dyoung flags, addrp);
866 1.10 yamt }
867 1.10 yamt
868 1.61 dyoung int
869 1.60 dyoung vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
870 1.60 dyoung const vmem_size_t phase, const vmem_size_t nocross,
871 1.61 dyoung const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
872 1.61 dyoung vmem_addr_t *addrp)
873 1.10 yamt {
874 1.10 yamt struct vmem_freelist *list;
875 1.10 yamt struct vmem_freelist *first;
876 1.10 yamt struct vmem_freelist *end;
877 1.10 yamt bt_t *bt;
878 1.10 yamt bt_t *btnew;
879 1.10 yamt bt_t *btnew2;
880 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
881 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
882 1.10 yamt vmem_addr_t start;
883 1.61 dyoung int rc;
884 1.10 yamt
885 1.10 yamt KASSERT(size0 > 0);
886 1.10 yamt KASSERT(size > 0);
887 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
888 1.10 yamt if ((flags & VM_SLEEP) != 0) {
889 1.42 yamt ASSERT_SLEEPABLE();
890 1.10 yamt }
891 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
892 1.10 yamt KASSERT((align & (align - 1)) == 0);
893 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
894 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
895 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
896 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
897 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
898 1.60 dyoung KASSERT(minaddr <= maxaddr);
899 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
900 1.10 yamt
901 1.10 yamt if (align == 0) {
902 1.10 yamt align = vm->vm_quantum_mask + 1;
903 1.10 yamt }
904 1.59 yamt
905 1.59 yamt /*
906 1.59 yamt * allocate boundary tags before acquiring the vmem lock.
907 1.59 yamt */
908 1.1 yamt btnew = bt_alloc(vm, flags);
909 1.1 yamt if (btnew == NULL) {
910 1.61 dyoung return ENOMEM;
911 1.1 yamt }
912 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
913 1.10 yamt if (btnew2 == NULL) {
914 1.10 yamt bt_free(vm, btnew);
915 1.61 dyoung return ENOMEM;
916 1.10 yamt }
917 1.1 yamt
918 1.59 yamt /*
919 1.59 yamt * choose a free block from which we allocate.
920 1.59 yamt */
921 1.1 yamt retry_strat:
922 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
923 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
924 1.1 yamt retry:
925 1.1 yamt bt = NULL;
926 1.1 yamt VMEM_LOCK(vm);
927 1.55 yamt vmem_check(vm);
928 1.2 yamt if (strat == VM_INSTANTFIT) {
929 1.59 yamt /*
930 1.59 yamt * just choose the first block which satisfies our restrictions.
931 1.59 yamt *
932 1.59 yamt * note that we don't need to check the size of the blocks
933 1.59 yamt * because any blocks found on these list should be larger than
934 1.59 yamt * the given size.
935 1.59 yamt */
936 1.2 yamt for (list = first; list < end; list++) {
937 1.2 yamt bt = LIST_FIRST(list);
938 1.2 yamt if (bt != NULL) {
939 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
940 1.61 dyoung nocross, minaddr, maxaddr, &start);
941 1.61 dyoung if (rc == 0) {
942 1.10 yamt goto gotit;
943 1.10 yamt }
944 1.59 yamt /*
945 1.59 yamt * don't bother to follow the bt_freelist link
946 1.59 yamt * here. the list can be very long and we are
947 1.59 yamt * told to run fast. blocks from the later free
948 1.59 yamt * lists are larger and have better chances to
949 1.59 yamt * satisfy our restrictions.
950 1.59 yamt */
951 1.2 yamt }
952 1.2 yamt }
953 1.2 yamt } else { /* VM_BESTFIT */
954 1.59 yamt /*
955 1.59 yamt * we assume that, for space efficiency, it's better to
956 1.59 yamt * allocate from a smaller block. thus we will start searching
957 1.59 yamt * from the lower-order list than VM_INSTANTFIT.
958 1.59 yamt * however, don't bother to find the smallest block in a free
959 1.59 yamt * list because the list can be very long. we can revisit it
960 1.59 yamt * if/when it turns out to be a problem.
961 1.59 yamt *
962 1.59 yamt * note that the 'first' list can contain blocks smaller than
963 1.59 yamt * the requested size. thus we need to check bt_size.
964 1.59 yamt */
965 1.2 yamt for (list = first; list < end; list++) {
966 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
967 1.2 yamt if (bt->bt_size >= size) {
968 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
969 1.61 dyoung nocross, minaddr, maxaddr, &start);
970 1.61 dyoung if (rc == 0) {
971 1.10 yamt goto gotit;
972 1.10 yamt }
973 1.2 yamt }
974 1.1 yamt }
975 1.1 yamt }
976 1.1 yamt }
977 1.2 yamt VMEM_UNLOCK(vm);
978 1.1 yamt #if 1
979 1.2 yamt if (strat == VM_INSTANTFIT) {
980 1.2 yamt strat = VM_BESTFIT;
981 1.2 yamt goto retry_strat;
982 1.2 yamt }
983 1.1 yamt #endif
984 1.10 yamt if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
985 1.60 dyoung nocross != 0) {
986 1.10 yamt
987 1.10 yamt /*
988 1.10 yamt * XXX should try to import a region large enough to
989 1.10 yamt * satisfy restrictions?
990 1.10 yamt */
991 1.10 yamt
992 1.20 yamt goto fail;
993 1.10 yamt }
994 1.60 dyoung /* XXX eeek, minaddr & maxaddr not respected */
995 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
996 1.2 yamt goto retry;
997 1.1 yamt }
998 1.2 yamt /* XXX */
999 1.20 yamt fail:
1000 1.20 yamt bt_free(vm, btnew);
1001 1.20 yamt bt_free(vm, btnew2);
1002 1.61 dyoung return ENOMEM;
1003 1.2 yamt
1004 1.2 yamt gotit:
1005 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
1006 1.1 yamt KASSERT(bt->bt_size >= size);
1007 1.1 yamt bt_remfree(vm, bt);
1008 1.55 yamt vmem_check(vm);
1009 1.10 yamt if (bt->bt_start != start) {
1010 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
1011 1.10 yamt btnew2->bt_start = bt->bt_start;
1012 1.10 yamt btnew2->bt_size = start - bt->bt_start;
1013 1.10 yamt bt->bt_start = start;
1014 1.10 yamt bt->bt_size -= btnew2->bt_size;
1015 1.10 yamt bt_insfree(vm, btnew2);
1016 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1017 1.10 yamt btnew2 = NULL;
1018 1.55 yamt vmem_check(vm);
1019 1.10 yamt }
1020 1.10 yamt KASSERT(bt->bt_start == start);
1021 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1022 1.1 yamt /* split */
1023 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1024 1.1 yamt btnew->bt_start = bt->bt_start;
1025 1.1 yamt btnew->bt_size = size;
1026 1.1 yamt bt->bt_start = bt->bt_start + size;
1027 1.1 yamt bt->bt_size -= size;
1028 1.1 yamt bt_insfree(vm, bt);
1029 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1030 1.1 yamt bt_insbusy(vm, btnew);
1031 1.55 yamt vmem_check(vm);
1032 1.1 yamt VMEM_UNLOCK(vm);
1033 1.1 yamt } else {
1034 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1035 1.1 yamt bt_insbusy(vm, bt);
1036 1.55 yamt vmem_check(vm);
1037 1.1 yamt VMEM_UNLOCK(vm);
1038 1.1 yamt bt_free(vm, btnew);
1039 1.1 yamt btnew = bt;
1040 1.1 yamt }
1041 1.10 yamt if (btnew2 != NULL) {
1042 1.10 yamt bt_free(vm, btnew2);
1043 1.10 yamt }
1044 1.1 yamt KASSERT(btnew->bt_size >= size);
1045 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1046 1.1 yamt
1047 1.61 dyoung if (addrp != NULL)
1048 1.61 dyoung *addrp = btnew->bt_start;
1049 1.61 dyoung return 0;
1050 1.1 yamt }
1051 1.1 yamt
1052 1.1 yamt /*
1053 1.1 yamt * vmem_free:
1054 1.1 yamt *
1055 1.1 yamt * => caller must ensure appropriate spl,
1056 1.1 yamt * if the arena can be accessed from interrupt context.
1057 1.1 yamt */
1058 1.1 yamt
1059 1.1 yamt void
1060 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1061 1.1 yamt {
1062 1.1 yamt
1063 1.1 yamt KASSERT(size > 0);
1064 1.1 yamt
1065 1.5 yamt #if defined(QCACHE)
1066 1.5 yamt if (size <= vm->vm_qcache_max) {
1067 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1068 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1069 1.5 yamt
1070 1.35 ad return pool_cache_put(qc->qc_cache, (void *)addr);
1071 1.5 yamt }
1072 1.5 yamt #endif /* defined(QCACHE) */
1073 1.5 yamt
1074 1.10 yamt vmem_xfree(vm, addr, size);
1075 1.10 yamt }
1076 1.10 yamt
1077 1.10 yamt void
1078 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1079 1.10 yamt {
1080 1.10 yamt bt_t *bt;
1081 1.10 yamt bt_t *t;
1082 1.10 yamt
1083 1.10 yamt KASSERT(size > 0);
1084 1.10 yamt
1085 1.1 yamt VMEM_LOCK(vm);
1086 1.1 yamt
1087 1.1 yamt bt = bt_lookupbusy(vm, addr);
1088 1.1 yamt KASSERT(bt != NULL);
1089 1.1 yamt KASSERT(bt->bt_start == addr);
1090 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1091 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1092 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1093 1.1 yamt bt_rembusy(vm, bt);
1094 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1095 1.1 yamt
1096 1.1 yamt /* coalesce */
1097 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1098 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1099 1.60 dyoung KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1100 1.1 yamt bt_remfree(vm, t);
1101 1.1 yamt bt_remseg(vm, t);
1102 1.1 yamt bt->bt_size += t->bt_size;
1103 1.1 yamt bt_free(vm, t);
1104 1.1 yamt }
1105 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1106 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1107 1.60 dyoung KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1108 1.1 yamt bt_remfree(vm, t);
1109 1.1 yamt bt_remseg(vm, t);
1110 1.1 yamt bt->bt_size += t->bt_size;
1111 1.1 yamt bt->bt_start = t->bt_start;
1112 1.1 yamt bt_free(vm, t);
1113 1.1 yamt }
1114 1.1 yamt
1115 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1116 1.1 yamt KASSERT(t != NULL);
1117 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1118 1.61 dyoung if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1119 1.1 yamt t->bt_size == bt->bt_size) {
1120 1.1 yamt vmem_addr_t spanaddr;
1121 1.1 yamt vmem_size_t spansize;
1122 1.1 yamt
1123 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1124 1.1 yamt spanaddr = bt->bt_start;
1125 1.1 yamt spansize = bt->bt_size;
1126 1.1 yamt bt_remseg(vm, bt);
1127 1.1 yamt bt_free(vm, bt);
1128 1.1 yamt bt_remseg(vm, t);
1129 1.1 yamt bt_free(vm, t);
1130 1.1 yamt VMEM_UNLOCK(vm);
1131 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1132 1.1 yamt } else {
1133 1.1 yamt bt_insfree(vm, bt);
1134 1.1 yamt VMEM_UNLOCK(vm);
1135 1.1 yamt }
1136 1.1 yamt }
1137 1.1 yamt
1138 1.1 yamt /*
1139 1.1 yamt * vmem_add:
1140 1.1 yamt *
1141 1.1 yamt * => caller must ensure appropriate spl,
1142 1.1 yamt * if the arena can be accessed from interrupt context.
1143 1.1 yamt */
1144 1.1 yamt
1145 1.61 dyoung int
1146 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1147 1.1 yamt {
1148 1.1 yamt
1149 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1150 1.1 yamt }
1151 1.1 yamt
1152 1.6 yamt /*
1153 1.6 yamt * vmem_reap: reap unused resources.
1154 1.6 yamt *
1155 1.26 thorpej * => return true if we successfully reaped something.
1156 1.6 yamt */
1157 1.6 yamt
1158 1.25 thorpej bool
1159 1.6 yamt vmem_reap(vmem_t *vm)
1160 1.6 yamt {
1161 1.26 thorpej bool didsomething = false;
1162 1.6 yamt
1163 1.6 yamt #if defined(QCACHE)
1164 1.6 yamt didsomething = qc_reap(vm);
1165 1.6 yamt #endif /* defined(QCACHE) */
1166 1.6 yamt return didsomething;
1167 1.6 yamt }
1168 1.6 yamt
1169 1.30 yamt /* ---- rehash */
1170 1.30 yamt
1171 1.30 yamt #if defined(_KERNEL)
1172 1.30 yamt static struct callout vmem_rehash_ch;
1173 1.30 yamt static int vmem_rehash_interval;
1174 1.30 yamt static struct workqueue *vmem_rehash_wq;
1175 1.30 yamt static struct work vmem_rehash_wk;
1176 1.30 yamt
1177 1.30 yamt static void
1178 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1179 1.30 yamt {
1180 1.30 yamt vmem_t *vm;
1181 1.30 yamt
1182 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1183 1.30 yamt mutex_enter(&vmem_list_lock);
1184 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1185 1.30 yamt size_t desired;
1186 1.30 yamt size_t current;
1187 1.30 yamt
1188 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
1189 1.30 yamt continue;
1190 1.30 yamt }
1191 1.30 yamt desired = vm->vm_nbusytag;
1192 1.30 yamt current = vm->vm_hashsize;
1193 1.30 yamt VMEM_UNLOCK(vm);
1194 1.30 yamt
1195 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1196 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1197 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1198 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1199 1.30 yamt }
1200 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1201 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1202 1.30 yamt }
1203 1.30 yamt }
1204 1.30 yamt mutex_exit(&vmem_list_lock);
1205 1.30 yamt
1206 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1207 1.30 yamt }
1208 1.30 yamt
1209 1.30 yamt static void
1210 1.30 yamt vmem_rehash_all_kick(void *dummy)
1211 1.30 yamt {
1212 1.30 yamt
1213 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1214 1.30 yamt }
1215 1.30 yamt
1216 1.30 yamt void
1217 1.30 yamt vmem_rehash_start(void)
1218 1.30 yamt {
1219 1.30 yamt int error;
1220 1.30 yamt
1221 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1222 1.41 ad vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1223 1.30 yamt if (error) {
1224 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1225 1.30 yamt }
1226 1.41 ad callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1227 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1228 1.30 yamt
1229 1.30 yamt vmem_rehash_interval = hz * 10;
1230 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1231 1.30 yamt }
1232 1.30 yamt #endif /* defined(_KERNEL) */
1233 1.30 yamt
1234 1.1 yamt /* ---- debug */
1235 1.1 yamt
1236 1.55 yamt #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1237 1.55 yamt
1238 1.55 yamt static void bt_dump(const bt_t *, void (*)(const char *, ...));
1239 1.55 yamt
1240 1.55 yamt static const char *
1241 1.55 yamt bt_type_string(int type)
1242 1.55 yamt {
1243 1.55 yamt static const char * const table[] = {
1244 1.55 yamt [BT_TYPE_BUSY] = "busy",
1245 1.55 yamt [BT_TYPE_FREE] = "free",
1246 1.55 yamt [BT_TYPE_SPAN] = "span",
1247 1.55 yamt [BT_TYPE_SPAN_STATIC] = "static span",
1248 1.55 yamt };
1249 1.55 yamt
1250 1.55 yamt if (type >= __arraycount(table)) {
1251 1.55 yamt return "BOGUS";
1252 1.55 yamt }
1253 1.55 yamt return table[type];
1254 1.55 yamt }
1255 1.55 yamt
1256 1.55 yamt static void
1257 1.55 yamt bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1258 1.55 yamt {
1259 1.55 yamt
1260 1.55 yamt (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1261 1.55 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1262 1.55 yamt bt->bt_type, bt_type_string(bt->bt_type));
1263 1.55 yamt }
1264 1.55 yamt
1265 1.55 yamt static void
1266 1.55 yamt vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1267 1.55 yamt {
1268 1.55 yamt const bt_t *bt;
1269 1.55 yamt int i;
1270 1.55 yamt
1271 1.55 yamt (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1272 1.55 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1273 1.55 yamt bt_dump(bt, pr);
1274 1.55 yamt }
1275 1.55 yamt
1276 1.55 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1277 1.55 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1278 1.55 yamt
1279 1.55 yamt if (LIST_EMPTY(fl)) {
1280 1.55 yamt continue;
1281 1.55 yamt }
1282 1.55 yamt
1283 1.55 yamt (*pr)("freelist[%d]\n", i);
1284 1.55 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1285 1.55 yamt bt_dump(bt, pr);
1286 1.55 yamt }
1287 1.55 yamt }
1288 1.55 yamt }
1289 1.55 yamt
1290 1.55 yamt #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1291 1.55 yamt
1292 1.37 yamt #if defined(DDB)
1293 1.37 yamt static bt_t *
1294 1.37 yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1295 1.37 yamt {
1296 1.39 yamt bt_t *bt;
1297 1.37 yamt
1298 1.39 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1299 1.39 yamt if (BT_ISSPAN_P(bt)) {
1300 1.39 yamt continue;
1301 1.39 yamt }
1302 1.60 dyoung if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1303 1.39 yamt return bt;
1304 1.37 yamt }
1305 1.37 yamt }
1306 1.37 yamt
1307 1.37 yamt return NULL;
1308 1.37 yamt }
1309 1.37 yamt
1310 1.37 yamt void
1311 1.37 yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1312 1.37 yamt {
1313 1.37 yamt vmem_t *vm;
1314 1.37 yamt
1315 1.37 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1316 1.37 yamt bt_t *bt;
1317 1.37 yamt
1318 1.37 yamt bt = vmem_whatis_lookup(vm, addr);
1319 1.37 yamt if (bt == NULL) {
1320 1.37 yamt continue;
1321 1.37 yamt }
1322 1.39 yamt (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1323 1.37 yamt (void *)addr, (void *)bt->bt_start,
1324 1.39 yamt (size_t)(addr - bt->bt_start), vm->vm_name,
1325 1.39 yamt (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1326 1.37 yamt }
1327 1.37 yamt }
1328 1.43 cegger
1329 1.55 yamt void
1330 1.55 yamt vmem_printall(const char *modif, void (*pr)(const char *, ...))
1331 1.43 cegger {
1332 1.55 yamt const vmem_t *vm;
1333 1.43 cegger
1334 1.47 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1335 1.55 yamt vmem_dump(vm, pr);
1336 1.43 cegger }
1337 1.43 cegger }
1338 1.43 cegger
1339 1.43 cegger void
1340 1.43 cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1341 1.43 cegger {
1342 1.55 yamt const vmem_t *vm = (const void *)addr;
1343 1.43 cegger
1344 1.55 yamt vmem_dump(vm, pr);
1345 1.43 cegger }
1346 1.37 yamt #endif /* defined(DDB) */
1347 1.37 yamt
1348 1.60 dyoung #if defined(_KERNEL)
1349 1.60 dyoung #define vmem_printf printf
1350 1.60 dyoung #else
1351 1.1 yamt #include <stdio.h>
1352 1.60 dyoung #include <stdarg.h>
1353 1.60 dyoung
1354 1.60 dyoung static void
1355 1.60 dyoung vmem_printf(const char *fmt, ...)
1356 1.60 dyoung {
1357 1.60 dyoung va_list ap;
1358 1.60 dyoung va_start(ap, fmt);
1359 1.60 dyoung vprintf(fmt, ap);
1360 1.60 dyoung va_end(ap);
1361 1.60 dyoung }
1362 1.60 dyoung #endif
1363 1.1 yamt
1364 1.55 yamt #if defined(VMEM_SANITY)
1365 1.1 yamt
1366 1.55 yamt static bool
1367 1.55 yamt vmem_check_sanity(vmem_t *vm)
1368 1.1 yamt {
1369 1.55 yamt const bt_t *bt, *bt2;
1370 1.1 yamt
1371 1.55 yamt KASSERT(vm != NULL);
1372 1.1 yamt
1373 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1374 1.60 dyoung if (bt->bt_start > BT_END(bt)) {
1375 1.55 yamt printf("corrupted tag\n");
1376 1.60 dyoung bt_dump(bt, vmem_printf);
1377 1.55 yamt return false;
1378 1.55 yamt }
1379 1.55 yamt }
1380 1.55 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1381 1.55 yamt CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1382 1.55 yamt if (bt == bt2) {
1383 1.55 yamt continue;
1384 1.55 yamt }
1385 1.55 yamt if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1386 1.55 yamt continue;
1387 1.55 yamt }
1388 1.60 dyoung if (bt->bt_start <= BT_END(bt2) &&
1389 1.60 dyoung bt2->bt_start <= BT_END(bt)) {
1390 1.55 yamt printf("overwrapped tags\n");
1391 1.60 dyoung bt_dump(bt, vmem_printf);
1392 1.60 dyoung bt_dump(bt2, vmem_printf);
1393 1.55 yamt return false;
1394 1.55 yamt }
1395 1.55 yamt }
1396 1.1 yamt }
1397 1.1 yamt
1398 1.55 yamt return true;
1399 1.55 yamt }
1400 1.1 yamt
1401 1.55 yamt static void
1402 1.55 yamt vmem_check(vmem_t *vm)
1403 1.55 yamt {
1404 1.1 yamt
1405 1.55 yamt if (!vmem_check_sanity(vm)) {
1406 1.55 yamt panic("insanity vmem %p", vm);
1407 1.1 yamt }
1408 1.1 yamt }
1409 1.1 yamt
1410 1.55 yamt #endif /* defined(VMEM_SANITY) */
1411 1.1 yamt
1412 1.55 yamt #if defined(UNITTEST)
1413 1.1 yamt int
1414 1.57 cegger main(void)
1415 1.1 yamt {
1416 1.61 dyoung int rc;
1417 1.1 yamt vmem_t *vm;
1418 1.1 yamt vmem_addr_t p;
1419 1.1 yamt struct reg {
1420 1.1 yamt vmem_addr_t p;
1421 1.1 yamt vmem_size_t sz;
1422 1.25 thorpej bool x;
1423 1.1 yamt } *reg = NULL;
1424 1.1 yamt int nreg = 0;
1425 1.1 yamt int nalloc = 0;
1426 1.1 yamt int nfree = 0;
1427 1.1 yamt vmem_size_t total = 0;
1428 1.1 yamt #if 1
1429 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1430 1.1 yamt #else
1431 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1432 1.1 yamt #endif
1433 1.1 yamt
1434 1.61 dyoung vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1435 1.61 dyoung #ifdef _KERNEL
1436 1.61 dyoung IPL_NONE
1437 1.61 dyoung #else
1438 1.61 dyoung 0
1439 1.61 dyoung #endif
1440 1.61 dyoung );
1441 1.1 yamt if (vm == NULL) {
1442 1.1 yamt printf("vmem_create\n");
1443 1.1 yamt exit(EXIT_FAILURE);
1444 1.1 yamt }
1445 1.60 dyoung vmem_dump(vm, vmem_printf);
1446 1.1 yamt
1447 1.61 dyoung rc = vmem_add(vm, 0, 50, VM_SLEEP);
1448 1.61 dyoung assert(rc == 0);
1449 1.61 dyoung rc = vmem_add(vm, 100, 200, VM_SLEEP);
1450 1.61 dyoung assert(rc == 0);
1451 1.61 dyoung rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1452 1.61 dyoung assert(rc == 0);
1453 1.61 dyoung rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1454 1.61 dyoung assert(rc == 0);
1455 1.61 dyoung rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1456 1.61 dyoung assert(rc == 0);
1457 1.61 dyoung rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1458 1.61 dyoung assert(rc == 0);
1459 1.61 dyoung rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1460 1.61 dyoung assert(rc == 0);
1461 1.61 dyoung rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1462 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1463 1.61 dyoung assert(rc != 0);
1464 1.61 dyoung rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1465 1.61 dyoung assert(rc == 0 && p == 0);
1466 1.61 dyoung vmem_xfree(vm, p, 50);
1467 1.61 dyoung rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1468 1.61 dyoung assert(rc == 0 && p == 0);
1469 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1470 1.61 dyoung 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1471 1.61 dyoung assert(rc != 0);
1472 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1473 1.61 dyoung 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1474 1.61 dyoung assert(rc != 0);
1475 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1476 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1477 1.61 dyoung assert(rc == 0);
1478 1.60 dyoung vmem_dump(vm, vmem_printf);
1479 1.1 yamt for (;;) {
1480 1.1 yamt struct reg *r;
1481 1.10 yamt int t = rand() % 100;
1482 1.1 yamt
1483 1.10 yamt if (t > 45) {
1484 1.10 yamt /* alloc */
1485 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1486 1.25 thorpej bool x;
1487 1.10 yamt vmem_size_t align, phase, nocross;
1488 1.10 yamt vmem_addr_t minaddr, maxaddr;
1489 1.10 yamt
1490 1.10 yamt if (t > 70) {
1491 1.26 thorpej x = true;
1492 1.10 yamt /* XXX */
1493 1.10 yamt align = 1 << (rand() % 15);
1494 1.10 yamt phase = rand() % 65536;
1495 1.10 yamt nocross = 1 << (rand() % 15);
1496 1.10 yamt if (align <= phase) {
1497 1.10 yamt phase = 0;
1498 1.10 yamt }
1499 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1500 1.19 yamt nocross)) {
1501 1.10 yamt nocross = 0;
1502 1.10 yamt }
1503 1.60 dyoung do {
1504 1.60 dyoung minaddr = rand() % 50000;
1505 1.60 dyoung maxaddr = rand() % 70000;
1506 1.60 dyoung } while (minaddr > maxaddr);
1507 1.10 yamt printf("=== xalloc %" PRIu64
1508 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1509 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1510 1.10 yamt ", max=%" PRIu64 "\n",
1511 1.10 yamt (uint64_t)sz,
1512 1.10 yamt (uint64_t)align,
1513 1.10 yamt (uint64_t)phase,
1514 1.10 yamt (uint64_t)nocross,
1515 1.10 yamt (uint64_t)minaddr,
1516 1.10 yamt (uint64_t)maxaddr);
1517 1.61 dyoung rc = vmem_xalloc(vm, sz, align, phase, nocross,
1518 1.61 dyoung minaddr, maxaddr, strat|VM_SLEEP, &p);
1519 1.10 yamt } else {
1520 1.26 thorpej x = false;
1521 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1522 1.61 dyoung rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1523 1.10 yamt }
1524 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1525 1.60 dyoung vmem_dump(vm, vmem_printf);
1526 1.61 dyoung if (rc != 0) {
1527 1.10 yamt if (x) {
1528 1.10 yamt continue;
1529 1.10 yamt }
1530 1.1 yamt break;
1531 1.1 yamt }
1532 1.1 yamt nreg++;
1533 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1534 1.1 yamt r = ®[nreg - 1];
1535 1.1 yamt r->p = p;
1536 1.1 yamt r->sz = sz;
1537 1.10 yamt r->x = x;
1538 1.1 yamt total += sz;
1539 1.1 yamt nalloc++;
1540 1.1 yamt } else if (nreg != 0) {
1541 1.10 yamt /* free */
1542 1.1 yamt r = ®[rand() % nreg];
1543 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1544 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1545 1.10 yamt if (r->x) {
1546 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1547 1.10 yamt } else {
1548 1.10 yamt vmem_free(vm, r->p, r->sz);
1549 1.10 yamt }
1550 1.1 yamt total -= r->sz;
1551 1.60 dyoung vmem_dump(vm, vmem_printf);
1552 1.1 yamt *r = reg[nreg - 1];
1553 1.1 yamt nreg--;
1554 1.1 yamt nfree++;
1555 1.1 yamt }
1556 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1557 1.1 yamt }
1558 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1559 1.1 yamt (uint64_t)total, nalloc, nfree);
1560 1.1 yamt exit(EXIT_SUCCESS);
1561 1.1 yamt }
1562 1.55 yamt #endif /* defined(UNITTEST) */
1563