subr_vmem.c revision 1.8.2.1 1 1.8.2.1 ad /* $NetBSD: subr_vmem.c,v 1.8.2.1 2006/11/18 21:39:23 ad Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.1 yamt * Copyright (c)2006 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.1 yamt *
35 1.8.2.1 ad * todo:
36 1.8.2.1 ad * - decide how to import segments for vmem_xalloc.
37 1.8.2.1 ad * - don't rely on malloc(9).
38 1.1 yamt */
39 1.1 yamt
40 1.1 yamt #include <sys/cdefs.h>
41 1.8.2.1 ad __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.8.2.1 2006/11/18 21:39:23 ad Exp $");
42 1.1 yamt
43 1.1 yamt #define VMEM_DEBUG
44 1.5 yamt #if defined(_KERNEL)
45 1.5 yamt #define QCACHE
46 1.5 yamt #endif /* defined(_KERNEL) */
47 1.1 yamt
48 1.1 yamt #include <sys/param.h>
49 1.1 yamt #include <sys/hash.h>
50 1.1 yamt #include <sys/queue.h>
51 1.1 yamt
52 1.1 yamt #if defined(_KERNEL)
53 1.1 yamt #include <sys/systm.h>
54 1.1 yamt #include <sys/lock.h>
55 1.1 yamt #include <sys/malloc.h>
56 1.1 yamt #include <sys/once.h>
57 1.1 yamt #include <sys/pool.h>
58 1.3 yamt #include <sys/proc.h>
59 1.1 yamt #include <sys/vmem.h>
60 1.1 yamt #else /* defined(_KERNEL) */
61 1.1 yamt #include "../sys/vmem.h"
62 1.1 yamt #endif /* defined(_KERNEL) */
63 1.1 yamt
64 1.1 yamt #if defined(_KERNEL)
65 1.1 yamt #define SIMPLELOCK_DECL(name) struct simplelock name
66 1.1 yamt #else /* defined(_KERNEL) */
67 1.1 yamt #include <errno.h>
68 1.1 yamt #include <assert.h>
69 1.1 yamt #include <stdlib.h>
70 1.1 yamt
71 1.1 yamt #define KASSERT(a) assert(a)
72 1.1 yamt #define SIMPLELOCK_DECL(name) /* nothing */
73 1.1 yamt #define LOCK_ASSERT(a) /* nothing */
74 1.1 yamt #define simple_lock_init(a) /* nothing */
75 1.1 yamt #define simple_lock(a) /* nothing */
76 1.1 yamt #define simple_unlock(a) /* nothing */
77 1.3 yamt #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
78 1.1 yamt #endif /* defined(_KERNEL) */
79 1.1 yamt
80 1.1 yamt struct vmem;
81 1.1 yamt struct vmem_btag;
82 1.1 yamt
83 1.1 yamt #if defined(VMEM_DEBUG)
84 1.1 yamt void vmem_dump(const vmem_t *);
85 1.1 yamt #endif /* defined(VMEM_DEBUG) */
86 1.1 yamt
87 1.4 yamt #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
88 1.1 yamt #define VMEM_HASHSIZE_INIT 4096 /* XXX */
89 1.1 yamt
90 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
91 1.1 yamt
92 1.1 yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
93 1.1 yamt LIST_HEAD(vmem_freelist, vmem_btag);
94 1.1 yamt LIST_HEAD(vmem_hashlist, vmem_btag);
95 1.1 yamt
96 1.5 yamt #if defined(QCACHE)
97 1.5 yamt #define VMEM_QCACHE_IDX_MAX 32
98 1.5 yamt
99 1.5 yamt #define QC_NAME_MAX 16
100 1.5 yamt
101 1.5 yamt struct qcache {
102 1.5 yamt struct pool qc_pool;
103 1.5 yamt struct pool_cache qc_cache;
104 1.5 yamt vmem_t *qc_vmem;
105 1.5 yamt char qc_name[QC_NAME_MAX];
106 1.5 yamt };
107 1.5 yamt typedef struct qcache qcache_t;
108 1.5 yamt #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
109 1.5 yamt #endif /* defined(QCACHE) */
110 1.5 yamt
111 1.1 yamt /* vmem arena */
112 1.1 yamt struct vmem {
113 1.1 yamt SIMPLELOCK_DECL(vm_lock);
114 1.1 yamt vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
115 1.1 yamt vm_flag_t);
116 1.1 yamt void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
117 1.1 yamt vmem_t *vm_source;
118 1.1 yamt struct vmem_seglist vm_seglist;
119 1.1 yamt struct vmem_freelist vm_freelist[VMEM_MAXORDER];
120 1.1 yamt size_t vm_hashsize;
121 1.1 yamt size_t vm_nbusytag;
122 1.1 yamt struct vmem_hashlist *vm_hashlist;
123 1.1 yamt size_t vm_quantum_mask;
124 1.1 yamt int vm_quantum_shift;
125 1.1 yamt const char *vm_name;
126 1.5 yamt
127 1.5 yamt #if defined(QCACHE)
128 1.5 yamt /* quantum cache */
129 1.5 yamt size_t vm_qcache_max;
130 1.5 yamt struct pool_allocator vm_qcache_allocator;
131 1.5 yamt qcache_t vm_qcache[VMEM_QCACHE_IDX_MAX];
132 1.5 yamt #endif /* defined(QCACHE) */
133 1.1 yamt };
134 1.1 yamt
135 1.1 yamt #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
136 1.1 yamt #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
137 1.1 yamt #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
138 1.1 yamt #define VMEM_ASSERT_LOCKED(vm) \
139 1.1 yamt LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
140 1.1 yamt #define VMEM_ASSERT_UNLOCKED(vm) \
141 1.1 yamt LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
142 1.1 yamt
143 1.1 yamt /* boundary tag */
144 1.1 yamt struct vmem_btag {
145 1.1 yamt CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
146 1.1 yamt union {
147 1.1 yamt LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
148 1.1 yamt LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
149 1.1 yamt } bt_u;
150 1.1 yamt #define bt_hashlist bt_u.u_hashlist
151 1.1 yamt #define bt_freelist bt_u.u_freelist
152 1.1 yamt vmem_addr_t bt_start;
153 1.1 yamt vmem_size_t bt_size;
154 1.1 yamt int bt_type;
155 1.1 yamt };
156 1.1 yamt
157 1.1 yamt #define BT_TYPE_SPAN 1
158 1.1 yamt #define BT_TYPE_SPAN_STATIC 2
159 1.1 yamt #define BT_TYPE_FREE 3
160 1.1 yamt #define BT_TYPE_BUSY 4
161 1.1 yamt #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
162 1.1 yamt
163 1.1 yamt #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
164 1.1 yamt
165 1.1 yamt typedef struct vmem_btag bt_t;
166 1.1 yamt
167 1.1 yamt /* ---- misc */
168 1.1 yamt
169 1.8.2.1 ad #define VMEM_ALIGNUP(addr, align) \
170 1.8.2.1 ad (-(-(addr) & -(align)))
171 1.8.2.1 ad #define VMEM_CROSS_P(addr1, addr2, boundary) \
172 1.8.2.1 ad ((((addr1) ^ (addr2)) & -(boundary)) != 0)
173 1.8.2.1 ad
174 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
175 1.4 yamt
176 1.1 yamt static int
177 1.1 yamt calc_order(vmem_size_t size)
178 1.1 yamt {
179 1.4 yamt vmem_size_t target;
180 1.1 yamt int i;
181 1.1 yamt
182 1.1 yamt KASSERT(size != 0);
183 1.1 yamt
184 1.1 yamt i = 0;
185 1.4 yamt target = size >> 1;
186 1.4 yamt while (ORDER2SIZE(i) <= target) {
187 1.1 yamt i++;
188 1.1 yamt }
189 1.1 yamt
190 1.4 yamt KASSERT(ORDER2SIZE(i) <= size);
191 1.4 yamt KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
192 1.1 yamt
193 1.1 yamt return i;
194 1.1 yamt }
195 1.1 yamt
196 1.1 yamt #if defined(_KERNEL)
197 1.1 yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
198 1.1 yamt #endif /* defined(_KERNEL) */
199 1.1 yamt
200 1.1 yamt static void *
201 1.1 yamt xmalloc(size_t sz, vm_flag_t flags)
202 1.1 yamt {
203 1.1 yamt
204 1.1 yamt #if defined(_KERNEL)
205 1.1 yamt return malloc(sz, M_VMEM,
206 1.1 yamt M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
207 1.1 yamt #else /* defined(_KERNEL) */
208 1.1 yamt return malloc(sz);
209 1.1 yamt #endif /* defined(_KERNEL) */
210 1.1 yamt }
211 1.1 yamt
212 1.1 yamt static void
213 1.1 yamt xfree(void *p)
214 1.1 yamt {
215 1.1 yamt
216 1.1 yamt #if defined(_KERNEL)
217 1.1 yamt return free(p, M_VMEM);
218 1.1 yamt #else /* defined(_KERNEL) */
219 1.1 yamt return free(p);
220 1.1 yamt #endif /* defined(_KERNEL) */
221 1.1 yamt }
222 1.1 yamt
223 1.1 yamt /* ---- boundary tag */
224 1.1 yamt
225 1.1 yamt #if defined(_KERNEL)
226 1.1 yamt static struct pool_cache bt_poolcache;
227 1.1 yamt static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
228 1.1 yamt #endif /* defined(_KERNEL) */
229 1.1 yamt
230 1.1 yamt static bt_t *
231 1.1 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
232 1.1 yamt {
233 1.1 yamt bt_t *bt;
234 1.1 yamt
235 1.1 yamt #if defined(_KERNEL)
236 1.8.2.1 ad int s;
237 1.8.2.1 ad
238 1.1 yamt /* XXX bootstrap */
239 1.8.2.1 ad s = splvm();
240 1.1 yamt bt = pool_cache_get(&bt_poolcache,
241 1.1 yamt (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
242 1.8.2.1 ad splx(s);
243 1.1 yamt #else /* defined(_KERNEL) */
244 1.1 yamt bt = malloc(sizeof *bt);
245 1.1 yamt #endif /* defined(_KERNEL) */
246 1.1 yamt
247 1.1 yamt return bt;
248 1.1 yamt }
249 1.1 yamt
250 1.1 yamt static void
251 1.1 yamt bt_free(vmem_t *vm, bt_t *bt)
252 1.1 yamt {
253 1.1 yamt
254 1.1 yamt #if defined(_KERNEL)
255 1.8.2.1 ad int s;
256 1.8.2.1 ad
257 1.1 yamt /* XXX bootstrap */
258 1.8.2.1 ad s = splvm();
259 1.1 yamt pool_cache_put(&bt_poolcache, bt);
260 1.8.2.1 ad splx(s);
261 1.1 yamt #else /* defined(_KERNEL) */
262 1.1 yamt free(bt);
263 1.1 yamt #endif /* defined(_KERNEL) */
264 1.1 yamt }
265 1.1 yamt
266 1.1 yamt /*
267 1.1 yamt * freelist[0] ... [1, 1]
268 1.1 yamt * freelist[1] ... [2, 3]
269 1.1 yamt * freelist[2] ... [4, 7]
270 1.1 yamt * freelist[3] ... [8, 15]
271 1.1 yamt * :
272 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
273 1.1 yamt * :
274 1.1 yamt */
275 1.1 yamt
276 1.1 yamt static struct vmem_freelist *
277 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
278 1.1 yamt {
279 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
280 1.1 yamt int idx;
281 1.1 yamt
282 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
283 1.1 yamt KASSERT(size != 0);
284 1.1 yamt
285 1.1 yamt idx = calc_order(qsize);
286 1.1 yamt KASSERT(idx >= 0);
287 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
288 1.1 yamt
289 1.1 yamt return &vm->vm_freelist[idx];
290 1.1 yamt }
291 1.1 yamt
292 1.1 yamt static struct vmem_freelist *
293 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
294 1.1 yamt {
295 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
296 1.1 yamt int idx;
297 1.1 yamt
298 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
299 1.1 yamt KASSERT(size != 0);
300 1.1 yamt
301 1.1 yamt idx = calc_order(qsize);
302 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
303 1.1 yamt idx++;
304 1.1 yamt /* check too large request? */
305 1.1 yamt }
306 1.1 yamt KASSERT(idx >= 0);
307 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
308 1.1 yamt
309 1.1 yamt return &vm->vm_freelist[idx];
310 1.1 yamt }
311 1.1 yamt
312 1.1 yamt /* ---- boundary tag hash */
313 1.1 yamt
314 1.1 yamt static struct vmem_hashlist *
315 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
316 1.1 yamt {
317 1.1 yamt struct vmem_hashlist *list;
318 1.1 yamt unsigned int hash;
319 1.1 yamt
320 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
321 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
322 1.1 yamt
323 1.1 yamt return list;
324 1.1 yamt }
325 1.1 yamt
326 1.1 yamt static bt_t *
327 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
328 1.1 yamt {
329 1.1 yamt struct vmem_hashlist *list;
330 1.1 yamt bt_t *bt;
331 1.1 yamt
332 1.1 yamt list = bt_hashhead(vm, addr);
333 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
334 1.1 yamt if (bt->bt_start == addr) {
335 1.1 yamt break;
336 1.1 yamt }
337 1.1 yamt }
338 1.1 yamt
339 1.1 yamt return bt;
340 1.1 yamt }
341 1.1 yamt
342 1.1 yamt static void
343 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
344 1.1 yamt {
345 1.1 yamt
346 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
347 1.1 yamt vm->vm_nbusytag--;
348 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
349 1.1 yamt }
350 1.1 yamt
351 1.1 yamt static void
352 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
353 1.1 yamt {
354 1.1 yamt struct vmem_hashlist *list;
355 1.1 yamt
356 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
357 1.1 yamt
358 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
359 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
360 1.1 yamt vm->vm_nbusytag++;
361 1.1 yamt }
362 1.1 yamt
363 1.1 yamt /* ---- boundary tag list */
364 1.1 yamt
365 1.1 yamt static void
366 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
367 1.1 yamt {
368 1.1 yamt
369 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
370 1.1 yamt }
371 1.1 yamt
372 1.1 yamt static void
373 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
374 1.1 yamt {
375 1.1 yamt
376 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
377 1.1 yamt }
378 1.1 yamt
379 1.1 yamt static void
380 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
381 1.1 yamt {
382 1.1 yamt
383 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
384 1.1 yamt }
385 1.1 yamt
386 1.1 yamt static void
387 1.1 yamt bt_remfree(vmem_t *vm, bt_t *bt)
388 1.1 yamt {
389 1.1 yamt
390 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
391 1.1 yamt
392 1.1 yamt LIST_REMOVE(bt, bt_freelist);
393 1.1 yamt }
394 1.1 yamt
395 1.1 yamt static void
396 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
397 1.1 yamt {
398 1.1 yamt struct vmem_freelist *list;
399 1.1 yamt
400 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
401 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
402 1.1 yamt }
403 1.1 yamt
404 1.1 yamt /* ---- vmem internal functions */
405 1.1 yamt
406 1.5 yamt #if defined(QCACHE)
407 1.5 yamt static inline vm_flag_t
408 1.5 yamt prf_to_vmf(int prflags)
409 1.5 yamt {
410 1.5 yamt vm_flag_t vmflags;
411 1.5 yamt
412 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
413 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
414 1.5 yamt vmflags = VM_SLEEP;
415 1.5 yamt } else {
416 1.5 yamt vmflags = VM_NOSLEEP;
417 1.5 yamt }
418 1.5 yamt return vmflags;
419 1.5 yamt }
420 1.5 yamt
421 1.5 yamt static inline int
422 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
423 1.5 yamt {
424 1.5 yamt int prflags;
425 1.5 yamt
426 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
427 1.5 yamt prflags = PR_WAITOK;
428 1.7 yamt } else {
429 1.5 yamt prflags = PR_NOWAIT;
430 1.5 yamt }
431 1.5 yamt return prflags;
432 1.5 yamt }
433 1.5 yamt
434 1.5 yamt static size_t
435 1.5 yamt qc_poolpage_size(size_t qcache_max)
436 1.5 yamt {
437 1.5 yamt int i;
438 1.5 yamt
439 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
440 1.5 yamt /* nothing */
441 1.5 yamt }
442 1.5 yamt return ORDER2SIZE(i);
443 1.5 yamt }
444 1.5 yamt
445 1.5 yamt static void *
446 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
447 1.5 yamt {
448 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
449 1.5 yamt vmem_t *vm = qc->qc_vmem;
450 1.5 yamt
451 1.5 yamt return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
452 1.5 yamt prf_to_vmf(prflags) | VM_INSTANTFIT);
453 1.5 yamt }
454 1.5 yamt
455 1.5 yamt static void
456 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
457 1.5 yamt {
458 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
459 1.5 yamt vmem_t *vm = qc->qc_vmem;
460 1.5 yamt
461 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
462 1.5 yamt }
463 1.5 yamt
464 1.5 yamt static void
465 1.5 yamt qc_init(vmem_t *vm, size_t qcache_max)
466 1.5 yamt {
467 1.5 yamt struct pool_allocator *pa;
468 1.5 yamt int qcache_idx_max;
469 1.5 yamt int i;
470 1.5 yamt
471 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
472 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
473 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
474 1.5 yamt }
475 1.5 yamt vm->vm_qcache_max = qcache_max;
476 1.5 yamt pa = &vm->vm_qcache_allocator;
477 1.5 yamt memset(pa, 0, sizeof(*pa));
478 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
479 1.5 yamt pa->pa_free = qc_poolpage_free;
480 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
481 1.5 yamt
482 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
483 1.5 yamt for (i = 1; i <= qcache_idx_max; i++) {
484 1.5 yamt qcache_t *qc = &vm->vm_qcache[i - 1];
485 1.5 yamt size_t size = i << vm->vm_quantum_shift;
486 1.5 yamt
487 1.5 yamt qc->qc_vmem = vm;
488 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
489 1.5 yamt vm->vm_name, size);
490 1.8.2.1 ad pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
491 1.8.2.1 ad 0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
492 1.5 yamt pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
493 1.5 yamt }
494 1.5 yamt }
495 1.6 yamt
496 1.6 yamt static boolean_t
497 1.6 yamt qc_reap(vmem_t *vm)
498 1.6 yamt {
499 1.6 yamt int i;
500 1.6 yamt int qcache_idx_max;
501 1.6 yamt boolean_t didsomething = FALSE;
502 1.6 yamt
503 1.6 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
504 1.6 yamt for (i = 1; i <= qcache_idx_max; i++) {
505 1.6 yamt qcache_t *qc = &vm->vm_qcache[i - 1];
506 1.6 yamt
507 1.6 yamt if (pool_reclaim(&qc->qc_pool) != 0) {
508 1.6 yamt didsomething = TRUE;
509 1.6 yamt }
510 1.6 yamt }
511 1.6 yamt
512 1.6 yamt return didsomething;
513 1.6 yamt }
514 1.5 yamt #endif /* defined(QCACHE) */
515 1.5 yamt
516 1.1 yamt #if defined(_KERNEL)
517 1.1 yamt static int
518 1.1 yamt vmem_init(void)
519 1.1 yamt {
520 1.1 yamt
521 1.1 yamt pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
522 1.1 yamt return 0;
523 1.1 yamt }
524 1.1 yamt #endif /* defined(_KERNEL) */
525 1.1 yamt
526 1.1 yamt static vmem_addr_t
527 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
528 1.1 yamt int spanbttype)
529 1.1 yamt {
530 1.1 yamt bt_t *btspan;
531 1.1 yamt bt_t *btfree;
532 1.1 yamt
533 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
534 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
535 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
536 1.1 yamt
537 1.1 yamt btspan = bt_alloc(vm, flags);
538 1.1 yamt if (btspan == NULL) {
539 1.1 yamt return VMEM_ADDR_NULL;
540 1.1 yamt }
541 1.1 yamt btfree = bt_alloc(vm, flags);
542 1.1 yamt if (btfree == NULL) {
543 1.1 yamt bt_free(vm, btspan);
544 1.1 yamt return VMEM_ADDR_NULL;
545 1.1 yamt }
546 1.1 yamt
547 1.1 yamt btspan->bt_type = spanbttype;
548 1.1 yamt btspan->bt_start = addr;
549 1.1 yamt btspan->bt_size = size;
550 1.1 yamt
551 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
552 1.1 yamt btfree->bt_start = addr;
553 1.1 yamt btfree->bt_size = size;
554 1.1 yamt
555 1.1 yamt VMEM_LOCK(vm);
556 1.1 yamt bt_insseg_tail(vm, btspan);
557 1.1 yamt bt_insseg(vm, btfree, btspan);
558 1.1 yamt bt_insfree(vm, btfree);
559 1.1 yamt VMEM_UNLOCK(vm);
560 1.1 yamt
561 1.1 yamt return addr;
562 1.1 yamt }
563 1.1 yamt
564 1.1 yamt static int
565 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
566 1.1 yamt {
567 1.1 yamt vmem_addr_t addr;
568 1.1 yamt
569 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
570 1.1 yamt
571 1.1 yamt if (vm->vm_allocfn == NULL) {
572 1.1 yamt return EINVAL;
573 1.1 yamt }
574 1.1 yamt
575 1.1 yamt addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
576 1.1 yamt if (addr == VMEM_ADDR_NULL) {
577 1.1 yamt return ENOMEM;
578 1.1 yamt }
579 1.1 yamt
580 1.1 yamt if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
581 1.1 yamt (*vm->vm_freefn)(vm->vm_source, addr, size);
582 1.1 yamt return ENOMEM;
583 1.1 yamt }
584 1.1 yamt
585 1.1 yamt return 0;
586 1.1 yamt }
587 1.1 yamt
588 1.1 yamt static int
589 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
590 1.1 yamt {
591 1.1 yamt bt_t *bt;
592 1.1 yamt int i;
593 1.1 yamt struct vmem_hashlist *newhashlist;
594 1.1 yamt struct vmem_hashlist *oldhashlist;
595 1.1 yamt size_t oldhashsize;
596 1.1 yamt
597 1.1 yamt KASSERT(newhashsize > 0);
598 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
599 1.1 yamt
600 1.1 yamt newhashlist =
601 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
602 1.1 yamt if (newhashlist == NULL) {
603 1.1 yamt return ENOMEM;
604 1.1 yamt }
605 1.1 yamt for (i = 0; i < newhashsize; i++) {
606 1.1 yamt LIST_INIT(&newhashlist[i]);
607 1.1 yamt }
608 1.1 yamt
609 1.1 yamt VMEM_LOCK(vm);
610 1.1 yamt oldhashlist = vm->vm_hashlist;
611 1.1 yamt oldhashsize = vm->vm_hashsize;
612 1.1 yamt vm->vm_hashlist = newhashlist;
613 1.1 yamt vm->vm_hashsize = newhashsize;
614 1.1 yamt if (oldhashlist == NULL) {
615 1.1 yamt VMEM_UNLOCK(vm);
616 1.1 yamt return 0;
617 1.1 yamt }
618 1.1 yamt for (i = 0; i < oldhashsize; i++) {
619 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
620 1.1 yamt bt_rembusy(vm, bt); /* XXX */
621 1.1 yamt bt_insbusy(vm, bt);
622 1.1 yamt }
623 1.1 yamt }
624 1.1 yamt VMEM_UNLOCK(vm);
625 1.1 yamt
626 1.1 yamt xfree(oldhashlist);
627 1.1 yamt
628 1.1 yamt return 0;
629 1.1 yamt }
630 1.1 yamt
631 1.8.2.1 ad /*
632 1.8.2.1 ad * vmem_fit: check if a bt can satisfy the given restrictions.
633 1.8.2.1 ad */
634 1.8.2.1 ad
635 1.8.2.1 ad static vmem_addr_t
636 1.8.2.1 ad vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
637 1.8.2.1 ad vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
638 1.8.2.1 ad {
639 1.8.2.1 ad vmem_addr_t start;
640 1.8.2.1 ad vmem_addr_t end;
641 1.8.2.1 ad
642 1.8.2.1 ad KASSERT(bt->bt_size >= size);
643 1.8.2.1 ad
644 1.8.2.1 ad /*
645 1.8.2.1 ad * XXX assumption: vmem_addr_t and vmem_size_t are
646 1.8.2.1 ad * unsigned integer of the same size.
647 1.8.2.1 ad */
648 1.8.2.1 ad
649 1.8.2.1 ad start = bt->bt_start;
650 1.8.2.1 ad if (start < minaddr) {
651 1.8.2.1 ad start = minaddr;
652 1.8.2.1 ad }
653 1.8.2.1 ad end = BT_END(bt);
654 1.8.2.1 ad if (end > maxaddr - 1) {
655 1.8.2.1 ad end = maxaddr - 1;
656 1.8.2.1 ad }
657 1.8.2.1 ad if (start >= end) {
658 1.8.2.1 ad return VMEM_ADDR_NULL;
659 1.8.2.1 ad }
660 1.8.2.1 ad
661 1.8.2.1 ad start = VMEM_ALIGNUP(start - phase, align) + phase;
662 1.8.2.1 ad if (start < bt->bt_start) {
663 1.8.2.1 ad start += align;
664 1.8.2.1 ad }
665 1.8.2.1 ad if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
666 1.8.2.1 ad KASSERT(align < nocross);
667 1.8.2.1 ad start = VMEM_ALIGNUP(start - phase, nocross) + phase;
668 1.8.2.1 ad }
669 1.8.2.1 ad if (start < end && end - start >= size) {
670 1.8.2.1 ad KASSERT((start & (align - 1)) == phase);
671 1.8.2.1 ad KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
672 1.8.2.1 ad KASSERT(minaddr <= start);
673 1.8.2.1 ad KASSERT(maxaddr == 0 || start + size <= maxaddr);
674 1.8.2.1 ad KASSERT(bt->bt_start <= start);
675 1.8.2.1 ad KASSERT(start + size <= BT_END(bt));
676 1.8.2.1 ad return start;
677 1.8.2.1 ad }
678 1.8.2.1 ad return VMEM_ADDR_NULL;
679 1.8.2.1 ad }
680 1.8.2.1 ad
681 1.1 yamt /* ---- vmem API */
682 1.1 yamt
683 1.1 yamt /*
684 1.1 yamt * vmem_create: create an arena.
685 1.1 yamt *
686 1.1 yamt * => must not be called from interrupt context.
687 1.1 yamt */
688 1.1 yamt
689 1.1 yamt vmem_t *
690 1.1 yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
691 1.1 yamt vmem_size_t quantum,
692 1.1 yamt vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
693 1.1 yamt void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
694 1.1 yamt vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
695 1.1 yamt {
696 1.1 yamt vmem_t *vm;
697 1.1 yamt int i;
698 1.1 yamt #if defined(_KERNEL)
699 1.1 yamt static ONCE_DECL(control);
700 1.1 yamt #endif /* defined(_KERNEL) */
701 1.1 yamt
702 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
703 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
704 1.1 yamt
705 1.1 yamt #if defined(_KERNEL)
706 1.1 yamt if (RUN_ONCE(&control, vmem_init)) {
707 1.1 yamt return NULL;
708 1.1 yamt }
709 1.1 yamt #endif /* defined(_KERNEL) */
710 1.1 yamt vm = xmalloc(sizeof(*vm), flags);
711 1.1 yamt if (vm == NULL) {
712 1.1 yamt return NULL;
713 1.1 yamt }
714 1.1 yamt
715 1.1 yamt VMEM_LOCK_INIT(vm);
716 1.1 yamt vm->vm_name = name;
717 1.1 yamt vm->vm_quantum_mask = quantum - 1;
718 1.1 yamt vm->vm_quantum_shift = calc_order(quantum);
719 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
720 1.1 yamt vm->vm_allocfn = allocfn;
721 1.1 yamt vm->vm_freefn = freefn;
722 1.1 yamt vm->vm_source = source;
723 1.1 yamt vm->vm_nbusytag = 0;
724 1.5 yamt #if defined(QCACHE)
725 1.5 yamt qc_init(vm, qcache_max);
726 1.5 yamt #endif /* defined(QCACHE) */
727 1.1 yamt
728 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
729 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
730 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
731 1.1 yamt }
732 1.1 yamt vm->vm_hashlist = NULL;
733 1.1 yamt if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
734 1.1 yamt vmem_destroy(vm);
735 1.1 yamt return NULL;
736 1.1 yamt }
737 1.1 yamt
738 1.1 yamt if (size != 0) {
739 1.1 yamt if (vmem_add(vm, base, size, flags) == 0) {
740 1.1 yamt vmem_destroy(vm);
741 1.1 yamt return NULL;
742 1.1 yamt }
743 1.1 yamt }
744 1.1 yamt
745 1.1 yamt return vm;
746 1.1 yamt }
747 1.1 yamt
748 1.1 yamt void
749 1.1 yamt vmem_destroy(vmem_t *vm)
750 1.1 yamt {
751 1.1 yamt
752 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
753 1.1 yamt
754 1.1 yamt if (vm->vm_hashlist != NULL) {
755 1.1 yamt int i;
756 1.1 yamt
757 1.1 yamt for (i = 0; i < vm->vm_hashsize; i++) {
758 1.1 yamt bt_t *bt;
759 1.1 yamt
760 1.1 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
761 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
762 1.1 yamt bt_free(vm, bt);
763 1.1 yamt }
764 1.1 yamt }
765 1.1 yamt xfree(vm->vm_hashlist);
766 1.1 yamt }
767 1.1 yamt xfree(vm);
768 1.1 yamt }
769 1.1 yamt
770 1.1 yamt vmem_size_t
771 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
772 1.1 yamt {
773 1.1 yamt
774 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
775 1.1 yamt }
776 1.1 yamt
777 1.1 yamt /*
778 1.1 yamt * vmem_alloc:
779 1.1 yamt *
780 1.1 yamt * => caller must ensure appropriate spl,
781 1.1 yamt * if the arena can be accessed from interrupt context.
782 1.1 yamt */
783 1.1 yamt
784 1.1 yamt vmem_addr_t
785 1.1 yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
786 1.1 yamt {
787 1.8.2.1 ad const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
788 1.8.2.1 ad const vm_flag_t strat __unused = flags & VM_FITMASK;
789 1.1 yamt
790 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
791 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
792 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
793 1.1 yamt
794 1.1 yamt KASSERT(size0 > 0);
795 1.1 yamt KASSERT(size > 0);
796 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
797 1.3 yamt if ((flags & VM_SLEEP) != 0) {
798 1.8.2.1 ad ASSERT_SLEEPABLE(NULL, __func__);
799 1.3 yamt }
800 1.1 yamt
801 1.5 yamt #if defined(QCACHE)
802 1.5 yamt if (size <= vm->vm_qcache_max) {
803 1.5 yamt int qidx = size >> vm->vm_quantum_shift;
804 1.5 yamt qcache_t *qc = &vm->vm_qcache[qidx - 1];
805 1.5 yamt
806 1.5 yamt return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
807 1.5 yamt vmf_to_prf(flags));
808 1.5 yamt }
809 1.5 yamt #endif /* defined(QCACHE) */
810 1.5 yamt
811 1.8.2.1 ad return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
812 1.8.2.1 ad }
813 1.8.2.1 ad
814 1.8.2.1 ad vmem_addr_t
815 1.8.2.1 ad vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
816 1.8.2.1 ad vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
817 1.8.2.1 ad vm_flag_t flags)
818 1.8.2.1 ad {
819 1.8.2.1 ad struct vmem_freelist *list;
820 1.8.2.1 ad struct vmem_freelist *first;
821 1.8.2.1 ad struct vmem_freelist *end;
822 1.8.2.1 ad bt_t *bt;
823 1.8.2.1 ad bt_t *btnew;
824 1.8.2.1 ad bt_t *btnew2;
825 1.8.2.1 ad const vmem_size_t size = vmem_roundup_size(vm, size0);
826 1.8.2.1 ad vm_flag_t strat = flags & VM_FITMASK;
827 1.8.2.1 ad vmem_addr_t start;
828 1.8.2.1 ad
829 1.8.2.1 ad KASSERT(size0 > 0);
830 1.8.2.1 ad KASSERT(size > 0);
831 1.8.2.1 ad KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
832 1.8.2.1 ad if ((flags & VM_SLEEP) != 0) {
833 1.8.2.1 ad ASSERT_SLEEPABLE(NULL, __func__);
834 1.8.2.1 ad }
835 1.8.2.1 ad KASSERT((align & vm->vm_quantum_mask) == 0);
836 1.8.2.1 ad KASSERT((align & (align - 1)) == 0);
837 1.8.2.1 ad KASSERT((phase & vm->vm_quantum_mask) == 0);
838 1.8.2.1 ad KASSERT((nocross & vm->vm_quantum_mask) == 0);
839 1.8.2.1 ad KASSERT((nocross & (nocross - 1)) == 0);
840 1.8.2.1 ad KASSERT((align == 0 && phase == 0) || phase < align);
841 1.8.2.1 ad KASSERT(nocross == 0 || nocross >= size);
842 1.8.2.1 ad KASSERT(maxaddr == 0 || minaddr < maxaddr);
843 1.8.2.1 ad KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
844 1.8.2.1 ad
845 1.8.2.1 ad if (align == 0) {
846 1.8.2.1 ad align = vm->vm_quantum_mask + 1;
847 1.8.2.1 ad }
848 1.1 yamt btnew = bt_alloc(vm, flags);
849 1.1 yamt if (btnew == NULL) {
850 1.1 yamt return VMEM_ADDR_NULL;
851 1.1 yamt }
852 1.8.2.1 ad btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
853 1.8.2.1 ad if (btnew2 == NULL) {
854 1.8.2.1 ad bt_free(vm, btnew);
855 1.8.2.1 ad return VMEM_ADDR_NULL;
856 1.8.2.1 ad }
857 1.1 yamt
858 1.1 yamt retry_strat:
859 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
860 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
861 1.1 yamt retry:
862 1.1 yamt bt = NULL;
863 1.1 yamt VMEM_LOCK(vm);
864 1.2 yamt if (strat == VM_INSTANTFIT) {
865 1.2 yamt for (list = first; list < end; list++) {
866 1.2 yamt bt = LIST_FIRST(list);
867 1.2 yamt if (bt != NULL) {
868 1.8.2.1 ad start = vmem_fit(bt, size, align, phase,
869 1.8.2.1 ad nocross, minaddr, maxaddr);
870 1.8.2.1 ad if (start != VMEM_ADDR_NULL) {
871 1.8.2.1 ad goto gotit;
872 1.8.2.1 ad }
873 1.2 yamt }
874 1.2 yamt }
875 1.2 yamt } else { /* VM_BESTFIT */
876 1.2 yamt for (list = first; list < end; list++) {
877 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
878 1.2 yamt if (bt->bt_size >= size) {
879 1.8.2.1 ad start = vmem_fit(bt, size, align, phase,
880 1.8.2.1 ad nocross, minaddr, maxaddr);
881 1.8.2.1 ad if (start != VMEM_ADDR_NULL) {
882 1.8.2.1 ad goto gotit;
883 1.8.2.1 ad }
884 1.2 yamt }
885 1.1 yamt }
886 1.1 yamt }
887 1.1 yamt }
888 1.2 yamt VMEM_UNLOCK(vm);
889 1.1 yamt #if 1
890 1.2 yamt if (strat == VM_INSTANTFIT) {
891 1.2 yamt strat = VM_BESTFIT;
892 1.2 yamt goto retry_strat;
893 1.2 yamt }
894 1.1 yamt #endif
895 1.8.2.1 ad if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
896 1.8.2.1 ad nocross != 0 || minaddr != 0 || maxaddr != 0) {
897 1.8.2.1 ad
898 1.8.2.1 ad /*
899 1.8.2.1 ad * XXX should try to import a region large enough to
900 1.8.2.1 ad * satisfy restrictions?
901 1.8.2.1 ad */
902 1.8.2.1 ad
903 1.8.2.1 ad goto fail;
904 1.8.2.1 ad }
905 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
906 1.2 yamt goto retry;
907 1.1 yamt }
908 1.2 yamt /* XXX */
909 1.8.2.1 ad fail:
910 1.8.2.1 ad bt_free(vm, btnew);
911 1.8.2.1 ad bt_free(vm, btnew2);
912 1.2 yamt return VMEM_ADDR_NULL;
913 1.2 yamt
914 1.2 yamt gotit:
915 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
916 1.1 yamt KASSERT(bt->bt_size >= size);
917 1.1 yamt bt_remfree(vm, bt);
918 1.8.2.1 ad if (bt->bt_start != start) {
919 1.8.2.1 ad btnew2->bt_type = BT_TYPE_FREE;
920 1.8.2.1 ad btnew2->bt_start = bt->bt_start;
921 1.8.2.1 ad btnew2->bt_size = start - bt->bt_start;
922 1.8.2.1 ad bt->bt_start = start;
923 1.8.2.1 ad bt->bt_size -= btnew2->bt_size;
924 1.8.2.1 ad bt_insfree(vm, btnew2);
925 1.8.2.1 ad bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
926 1.8.2.1 ad btnew2 = NULL;
927 1.8.2.1 ad }
928 1.8.2.1 ad KASSERT(bt->bt_start == start);
929 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
930 1.1 yamt /* split */
931 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
932 1.1 yamt btnew->bt_start = bt->bt_start;
933 1.1 yamt btnew->bt_size = size;
934 1.1 yamt bt->bt_start = bt->bt_start + size;
935 1.1 yamt bt->bt_size -= size;
936 1.1 yamt bt_insfree(vm, bt);
937 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
938 1.1 yamt bt_insbusy(vm, btnew);
939 1.1 yamt VMEM_UNLOCK(vm);
940 1.1 yamt } else {
941 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
942 1.1 yamt bt_insbusy(vm, bt);
943 1.1 yamt VMEM_UNLOCK(vm);
944 1.1 yamt bt_free(vm, btnew);
945 1.1 yamt btnew = bt;
946 1.1 yamt }
947 1.8.2.1 ad if (btnew2 != NULL) {
948 1.8.2.1 ad bt_free(vm, btnew2);
949 1.8.2.1 ad }
950 1.1 yamt KASSERT(btnew->bt_size >= size);
951 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
952 1.1 yamt
953 1.1 yamt return btnew->bt_start;
954 1.1 yamt }
955 1.1 yamt
956 1.1 yamt /*
957 1.1 yamt * vmem_free:
958 1.1 yamt *
959 1.1 yamt * => caller must ensure appropriate spl,
960 1.1 yamt * if the arena can be accessed from interrupt context.
961 1.1 yamt */
962 1.1 yamt
963 1.1 yamt void
964 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
965 1.1 yamt {
966 1.1 yamt
967 1.1 yamt VMEM_ASSERT_UNLOCKED(vm);
968 1.1 yamt KASSERT(addr != VMEM_ADDR_NULL);
969 1.1 yamt KASSERT(size > 0);
970 1.1 yamt
971 1.5 yamt #if defined(QCACHE)
972 1.5 yamt if (size <= vm->vm_qcache_max) {
973 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
974 1.5 yamt qcache_t *qc = &vm->vm_qcache[qidx - 1];
975 1.5 yamt
976 1.5 yamt return pool_cache_put(&qc->qc_cache, (void *)addr);
977 1.5 yamt }
978 1.5 yamt #endif /* defined(QCACHE) */
979 1.5 yamt
980 1.8.2.1 ad vmem_xfree(vm, addr, size);
981 1.8.2.1 ad }
982 1.8.2.1 ad
983 1.8.2.1 ad void
984 1.8.2.1 ad vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
985 1.8.2.1 ad {
986 1.8.2.1 ad bt_t *bt;
987 1.8.2.1 ad bt_t *t;
988 1.8.2.1 ad
989 1.8.2.1 ad VMEM_ASSERT_UNLOCKED(vm);
990 1.8.2.1 ad KASSERT(addr != VMEM_ADDR_NULL);
991 1.8.2.1 ad KASSERT(size > 0);
992 1.8.2.1 ad
993 1.1 yamt VMEM_LOCK(vm);
994 1.1 yamt
995 1.1 yamt bt = bt_lookupbusy(vm, addr);
996 1.1 yamt KASSERT(bt != NULL);
997 1.1 yamt KASSERT(bt->bt_start == addr);
998 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
999 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1000 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1001 1.1 yamt bt_rembusy(vm, bt);
1002 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1003 1.1 yamt
1004 1.1 yamt /* coalesce */
1005 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1006 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1007 1.1 yamt KASSERT(BT_END(bt) == t->bt_start);
1008 1.1 yamt bt_remfree(vm, t);
1009 1.1 yamt bt_remseg(vm, t);
1010 1.1 yamt bt->bt_size += t->bt_size;
1011 1.1 yamt bt_free(vm, t);
1012 1.1 yamt }
1013 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1014 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1015 1.1 yamt KASSERT(BT_END(t) == bt->bt_start);
1016 1.1 yamt bt_remfree(vm, t);
1017 1.1 yamt bt_remseg(vm, t);
1018 1.1 yamt bt->bt_size += t->bt_size;
1019 1.1 yamt bt->bt_start = t->bt_start;
1020 1.1 yamt bt_free(vm, t);
1021 1.1 yamt }
1022 1.1 yamt
1023 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1024 1.1 yamt KASSERT(t != NULL);
1025 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1026 1.1 yamt if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1027 1.1 yamt t->bt_size == bt->bt_size) {
1028 1.1 yamt vmem_addr_t spanaddr;
1029 1.1 yamt vmem_size_t spansize;
1030 1.1 yamt
1031 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1032 1.1 yamt spanaddr = bt->bt_start;
1033 1.1 yamt spansize = bt->bt_size;
1034 1.1 yamt bt_remseg(vm, bt);
1035 1.1 yamt bt_free(vm, bt);
1036 1.1 yamt bt_remseg(vm, t);
1037 1.1 yamt bt_free(vm, t);
1038 1.1 yamt VMEM_UNLOCK(vm);
1039 1.1 yamt (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1040 1.1 yamt } else {
1041 1.1 yamt bt_insfree(vm, bt);
1042 1.1 yamt VMEM_UNLOCK(vm);
1043 1.1 yamt }
1044 1.1 yamt }
1045 1.1 yamt
1046 1.1 yamt /*
1047 1.1 yamt * vmem_add:
1048 1.1 yamt *
1049 1.1 yamt * => caller must ensure appropriate spl,
1050 1.1 yamt * if the arena can be accessed from interrupt context.
1051 1.1 yamt */
1052 1.1 yamt
1053 1.1 yamt vmem_addr_t
1054 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1055 1.1 yamt {
1056 1.1 yamt
1057 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1058 1.1 yamt }
1059 1.1 yamt
1060 1.6 yamt /*
1061 1.6 yamt * vmem_reap: reap unused resources.
1062 1.6 yamt *
1063 1.6 yamt * => return TRUE if we successfully reaped something.
1064 1.6 yamt */
1065 1.6 yamt
1066 1.6 yamt boolean_t
1067 1.6 yamt vmem_reap(vmem_t *vm)
1068 1.6 yamt {
1069 1.6 yamt boolean_t didsomething = FALSE;
1070 1.6 yamt
1071 1.6 yamt VMEM_ASSERT_UNLOCKED(vm);
1072 1.6 yamt
1073 1.6 yamt #if defined(QCACHE)
1074 1.6 yamt didsomething = qc_reap(vm);
1075 1.6 yamt #endif /* defined(QCACHE) */
1076 1.6 yamt return didsomething;
1077 1.6 yamt }
1078 1.6 yamt
1079 1.1 yamt /* ---- debug */
1080 1.1 yamt
1081 1.1 yamt #if defined(VMEM_DEBUG)
1082 1.1 yamt
1083 1.1 yamt #if !defined(_KERNEL)
1084 1.1 yamt #include <stdio.h>
1085 1.1 yamt #endif /* !defined(_KERNEL) */
1086 1.1 yamt
1087 1.1 yamt void bt_dump(const bt_t *);
1088 1.1 yamt
1089 1.1 yamt void
1090 1.1 yamt bt_dump(const bt_t *bt)
1091 1.1 yamt {
1092 1.1 yamt
1093 1.1 yamt printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1094 1.1 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1095 1.1 yamt bt->bt_type);
1096 1.1 yamt }
1097 1.1 yamt
1098 1.1 yamt void
1099 1.1 yamt vmem_dump(const vmem_t *vm)
1100 1.1 yamt {
1101 1.1 yamt const bt_t *bt;
1102 1.1 yamt int i;
1103 1.1 yamt
1104 1.1 yamt printf("vmem %p '%s'\n", vm, vm->vm_name);
1105 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1106 1.1 yamt bt_dump(bt);
1107 1.1 yamt }
1108 1.1 yamt
1109 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1110 1.1 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1111 1.1 yamt
1112 1.1 yamt if (LIST_EMPTY(fl)) {
1113 1.1 yamt continue;
1114 1.1 yamt }
1115 1.1 yamt
1116 1.1 yamt printf("freelist[%d]\n", i);
1117 1.1 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1118 1.1 yamt bt_dump(bt);
1119 1.1 yamt if (bt->bt_size) {
1120 1.1 yamt }
1121 1.1 yamt }
1122 1.1 yamt }
1123 1.1 yamt }
1124 1.1 yamt
1125 1.1 yamt #if !defined(_KERNEL)
1126 1.1 yamt
1127 1.1 yamt #include <stdlib.h>
1128 1.1 yamt
1129 1.1 yamt int
1130 1.1 yamt main()
1131 1.1 yamt {
1132 1.1 yamt vmem_t *vm;
1133 1.1 yamt vmem_addr_t p;
1134 1.1 yamt struct reg {
1135 1.1 yamt vmem_addr_t p;
1136 1.1 yamt vmem_size_t sz;
1137 1.8.2.1 ad boolean_t x;
1138 1.1 yamt } *reg = NULL;
1139 1.1 yamt int nreg = 0;
1140 1.1 yamt int nalloc = 0;
1141 1.1 yamt int nfree = 0;
1142 1.1 yamt vmem_size_t total = 0;
1143 1.1 yamt #if 1
1144 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1145 1.1 yamt #else
1146 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1147 1.1 yamt #endif
1148 1.1 yamt
1149 1.1 yamt vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1150 1.1 yamt NULL, NULL, NULL, 0, VM_NOSLEEP);
1151 1.1 yamt if (vm == NULL) {
1152 1.1 yamt printf("vmem_create\n");
1153 1.1 yamt exit(EXIT_FAILURE);
1154 1.1 yamt }
1155 1.1 yamt vmem_dump(vm);
1156 1.1 yamt
1157 1.1 yamt p = vmem_add(vm, 100, 200, VM_SLEEP);
1158 1.1 yamt p = vmem_add(vm, 2000, 1, VM_SLEEP);
1159 1.1 yamt p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1160 1.1 yamt p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1161 1.1 yamt p = vmem_add(vm, 500, 1000, VM_SLEEP);
1162 1.1 yamt vmem_dump(vm);
1163 1.1 yamt for (;;) {
1164 1.1 yamt struct reg *r;
1165 1.8.2.1 ad int t = rand() % 100;
1166 1.1 yamt
1167 1.8.2.1 ad if (t > 45) {
1168 1.8.2.1 ad /* alloc */
1169 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1170 1.8.2.1 ad boolean_t x;
1171 1.8.2.1 ad vmem_size_t align, phase, nocross;
1172 1.8.2.1 ad vmem_addr_t minaddr, maxaddr;
1173 1.8.2.1 ad
1174 1.8.2.1 ad if (t > 70) {
1175 1.8.2.1 ad x = TRUE;
1176 1.8.2.1 ad /* XXX */
1177 1.8.2.1 ad align = 1 << (rand() % 15);
1178 1.8.2.1 ad phase = rand() % 65536;
1179 1.8.2.1 ad nocross = 1 << (rand() % 15);
1180 1.8.2.1 ad if (align <= phase) {
1181 1.8.2.1 ad phase = 0;
1182 1.8.2.1 ad }
1183 1.8.2.1 ad if (VMEM_CROSS_P(phase, phase + sz - 1,
1184 1.8.2.1 ad nocross)) {
1185 1.8.2.1 ad nocross = 0;
1186 1.8.2.1 ad }
1187 1.8.2.1 ad minaddr = rand() % 50000;
1188 1.8.2.1 ad maxaddr = rand() % 70000;
1189 1.8.2.1 ad if (minaddr > maxaddr) {
1190 1.8.2.1 ad minaddr = 0;
1191 1.8.2.1 ad maxaddr = 0;
1192 1.8.2.1 ad }
1193 1.8.2.1 ad printf("=== xalloc %" PRIu64
1194 1.8.2.1 ad " align=%" PRIu64 ", phase=%" PRIu64
1195 1.8.2.1 ad ", nocross=%" PRIu64 ", min=%" PRIu64
1196 1.8.2.1 ad ", max=%" PRIu64 "\n",
1197 1.8.2.1 ad (uint64_t)sz,
1198 1.8.2.1 ad (uint64_t)align,
1199 1.8.2.1 ad (uint64_t)phase,
1200 1.8.2.1 ad (uint64_t)nocross,
1201 1.8.2.1 ad (uint64_t)minaddr,
1202 1.8.2.1 ad (uint64_t)maxaddr);
1203 1.8.2.1 ad p = vmem_xalloc(vm, sz, align, phase, nocross,
1204 1.8.2.1 ad minaddr, maxaddr, strat|VM_SLEEP);
1205 1.8.2.1 ad } else {
1206 1.8.2.1 ad x = FALSE;
1207 1.8.2.1 ad printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1208 1.8.2.1 ad p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1209 1.8.2.1 ad }
1210 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1211 1.1 yamt vmem_dump(vm);
1212 1.1 yamt if (p == VMEM_ADDR_NULL) {
1213 1.8.2.1 ad if (x) {
1214 1.8.2.1 ad continue;
1215 1.8.2.1 ad }
1216 1.1 yamt break;
1217 1.1 yamt }
1218 1.1 yamt nreg++;
1219 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1220 1.1 yamt r = ®[nreg - 1];
1221 1.1 yamt r->p = p;
1222 1.1 yamt r->sz = sz;
1223 1.8.2.1 ad r->x = x;
1224 1.1 yamt total += sz;
1225 1.1 yamt nalloc++;
1226 1.1 yamt } else if (nreg != 0) {
1227 1.8.2.1 ad /* free */
1228 1.1 yamt r = ®[rand() % nreg];
1229 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1230 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1231 1.8.2.1 ad if (r->x) {
1232 1.8.2.1 ad vmem_xfree(vm, r->p, r->sz);
1233 1.8.2.1 ad } else {
1234 1.8.2.1 ad vmem_free(vm, r->p, r->sz);
1235 1.8.2.1 ad }
1236 1.1 yamt total -= r->sz;
1237 1.1 yamt vmem_dump(vm);
1238 1.1 yamt *r = reg[nreg - 1];
1239 1.1 yamt nreg--;
1240 1.1 yamt nfree++;
1241 1.1 yamt }
1242 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1243 1.1 yamt }
1244 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1245 1.1 yamt (uint64_t)total, nalloc, nfree);
1246 1.1 yamt exit(EXIT_SUCCESS);
1247 1.1 yamt }
1248 1.1 yamt #endif /* !defined(_KERNEL) */
1249 1.1 yamt #endif /* defined(VMEM_DEBUG) */
1250