subr_vmem.c revision 1.8.4.2 1 1.8.4.2 rpaulo /* $NetBSD: subr_vmem.c,v 1.8.4.2 2006/09/09 02:57:16 rpaulo Exp $ */
2 1.8.4.2 rpaulo
3 1.8.4.2 rpaulo /*-
4 1.8.4.2 rpaulo * Copyright (c)2006 YAMAMOTO Takashi,
5 1.8.4.2 rpaulo * All rights reserved.
6 1.8.4.2 rpaulo *
7 1.8.4.2 rpaulo * Redistribution and use in source and binary forms, with or without
8 1.8.4.2 rpaulo * modification, are permitted provided that the following conditions
9 1.8.4.2 rpaulo * are met:
10 1.8.4.2 rpaulo * 1. Redistributions of source code must retain the above copyright
11 1.8.4.2 rpaulo * notice, this list of conditions and the following disclaimer.
12 1.8.4.2 rpaulo * 2. Redistributions in binary form must reproduce the above copyright
13 1.8.4.2 rpaulo * notice, this list of conditions and the following disclaimer in the
14 1.8.4.2 rpaulo * documentation and/or other materials provided with the distribution.
15 1.8.4.2 rpaulo *
16 1.8.4.2 rpaulo * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.8.4.2 rpaulo * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.8.4.2 rpaulo * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.8.4.2 rpaulo * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.8.4.2 rpaulo * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.8.4.2 rpaulo * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.8.4.2 rpaulo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.8.4.2 rpaulo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.8.4.2 rpaulo * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.8.4.2 rpaulo * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.8.4.2 rpaulo * SUCH DAMAGE.
27 1.8.4.2 rpaulo */
28 1.8.4.2 rpaulo
29 1.8.4.2 rpaulo /*
30 1.8.4.2 rpaulo * reference:
31 1.8.4.2 rpaulo * - Magazines and Vmem: Extending the Slab Allocator
32 1.8.4.2 rpaulo * to Many CPUs and Arbitrary Resources
33 1.8.4.2 rpaulo * http://www.usenix.org/event/usenix01/bonwick.html
34 1.8.4.2 rpaulo *
35 1.8.4.2 rpaulo * TODO:
36 1.8.4.2 rpaulo * - implement vmem_xalloc/vmem_xfree
37 1.8.4.2 rpaulo */
38 1.8.4.2 rpaulo
39 1.8.4.2 rpaulo #include <sys/cdefs.h>
40 1.8.4.2 rpaulo __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.8.4.2 2006/09/09 02:57:16 rpaulo Exp $");
41 1.8.4.2 rpaulo
42 1.8.4.2 rpaulo #define VMEM_DEBUG
43 1.8.4.2 rpaulo #if defined(_KERNEL)
44 1.8.4.2 rpaulo #define QCACHE
45 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
46 1.8.4.2 rpaulo
47 1.8.4.2 rpaulo #include <sys/param.h>
48 1.8.4.2 rpaulo #include <sys/hash.h>
49 1.8.4.2 rpaulo #include <sys/queue.h>
50 1.8.4.2 rpaulo
51 1.8.4.2 rpaulo #if defined(_KERNEL)
52 1.8.4.2 rpaulo #include <sys/systm.h>
53 1.8.4.2 rpaulo #include <sys/lock.h>
54 1.8.4.2 rpaulo #include <sys/malloc.h>
55 1.8.4.2 rpaulo #include <sys/once.h>
56 1.8.4.2 rpaulo #include <sys/pool.h>
57 1.8.4.2 rpaulo #include <sys/proc.h>
58 1.8.4.2 rpaulo #include <sys/vmem.h>
59 1.8.4.2 rpaulo #else /* defined(_KERNEL) */
60 1.8.4.2 rpaulo #include "../sys/vmem.h"
61 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
62 1.8.4.2 rpaulo
63 1.8.4.2 rpaulo #if defined(_KERNEL)
64 1.8.4.2 rpaulo #define SIMPLELOCK_DECL(name) struct simplelock name
65 1.8.4.2 rpaulo #else /* defined(_KERNEL) */
66 1.8.4.2 rpaulo #include <errno.h>
67 1.8.4.2 rpaulo #include <assert.h>
68 1.8.4.2 rpaulo #include <stdlib.h>
69 1.8.4.2 rpaulo
70 1.8.4.2 rpaulo #define KASSERT(a) assert(a)
71 1.8.4.2 rpaulo #define SIMPLELOCK_DECL(name) /* nothing */
72 1.8.4.2 rpaulo #define LOCK_ASSERT(a) /* nothing */
73 1.8.4.2 rpaulo #define simple_lock_init(a) /* nothing */
74 1.8.4.2 rpaulo #define simple_lock(a) /* nothing */
75 1.8.4.2 rpaulo #define simple_unlock(a) /* nothing */
76 1.8.4.2 rpaulo #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
77 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
78 1.8.4.2 rpaulo
79 1.8.4.2 rpaulo struct vmem;
80 1.8.4.2 rpaulo struct vmem_btag;
81 1.8.4.2 rpaulo
82 1.8.4.2 rpaulo #if defined(VMEM_DEBUG)
83 1.8.4.2 rpaulo void vmem_dump(const vmem_t *);
84 1.8.4.2 rpaulo #endif /* defined(VMEM_DEBUG) */
85 1.8.4.2 rpaulo
86 1.8.4.2 rpaulo #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
87 1.8.4.2 rpaulo #define VMEM_HASHSIZE_INIT 4096 /* XXX */
88 1.8.4.2 rpaulo
89 1.8.4.2 rpaulo #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
90 1.8.4.2 rpaulo
91 1.8.4.2 rpaulo CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
92 1.8.4.2 rpaulo LIST_HEAD(vmem_freelist, vmem_btag);
93 1.8.4.2 rpaulo LIST_HEAD(vmem_hashlist, vmem_btag);
94 1.8.4.2 rpaulo
95 1.8.4.2 rpaulo #if defined(QCACHE)
96 1.8.4.2 rpaulo #define VMEM_QCACHE_IDX_MAX 32
97 1.8.4.2 rpaulo
98 1.8.4.2 rpaulo #define QC_NAME_MAX 16
99 1.8.4.2 rpaulo
100 1.8.4.2 rpaulo struct qcache {
101 1.8.4.2 rpaulo struct pool qc_pool;
102 1.8.4.2 rpaulo struct pool_cache qc_cache;
103 1.8.4.2 rpaulo vmem_t *qc_vmem;
104 1.8.4.2 rpaulo char qc_name[QC_NAME_MAX];
105 1.8.4.2 rpaulo };
106 1.8.4.2 rpaulo typedef struct qcache qcache_t;
107 1.8.4.2 rpaulo #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
108 1.8.4.2 rpaulo #endif /* defined(QCACHE) */
109 1.8.4.2 rpaulo
110 1.8.4.2 rpaulo /* vmem arena */
111 1.8.4.2 rpaulo struct vmem {
112 1.8.4.2 rpaulo SIMPLELOCK_DECL(vm_lock);
113 1.8.4.2 rpaulo vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
114 1.8.4.2 rpaulo vm_flag_t);
115 1.8.4.2 rpaulo void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
116 1.8.4.2 rpaulo vmem_t *vm_source;
117 1.8.4.2 rpaulo struct vmem_seglist vm_seglist;
118 1.8.4.2 rpaulo struct vmem_freelist vm_freelist[VMEM_MAXORDER];
119 1.8.4.2 rpaulo size_t vm_hashsize;
120 1.8.4.2 rpaulo size_t vm_nbusytag;
121 1.8.4.2 rpaulo struct vmem_hashlist *vm_hashlist;
122 1.8.4.2 rpaulo size_t vm_quantum_mask;
123 1.8.4.2 rpaulo int vm_quantum_shift;
124 1.8.4.2 rpaulo const char *vm_name;
125 1.8.4.2 rpaulo
126 1.8.4.2 rpaulo #if defined(QCACHE)
127 1.8.4.2 rpaulo /* quantum cache */
128 1.8.4.2 rpaulo size_t vm_qcache_max;
129 1.8.4.2 rpaulo struct pool_allocator vm_qcache_allocator;
130 1.8.4.2 rpaulo qcache_t vm_qcache[VMEM_QCACHE_IDX_MAX];
131 1.8.4.2 rpaulo #endif /* defined(QCACHE) */
132 1.8.4.2 rpaulo };
133 1.8.4.2 rpaulo
134 1.8.4.2 rpaulo #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
135 1.8.4.2 rpaulo #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
136 1.8.4.2 rpaulo #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
137 1.8.4.2 rpaulo #define VMEM_ASSERT_LOCKED(vm) \
138 1.8.4.2 rpaulo LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
139 1.8.4.2 rpaulo #define VMEM_ASSERT_UNLOCKED(vm) \
140 1.8.4.2 rpaulo LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
141 1.8.4.2 rpaulo
142 1.8.4.2 rpaulo /* boundary tag */
143 1.8.4.2 rpaulo struct vmem_btag {
144 1.8.4.2 rpaulo CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
145 1.8.4.2 rpaulo union {
146 1.8.4.2 rpaulo LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
147 1.8.4.2 rpaulo LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
148 1.8.4.2 rpaulo } bt_u;
149 1.8.4.2 rpaulo #define bt_hashlist bt_u.u_hashlist
150 1.8.4.2 rpaulo #define bt_freelist bt_u.u_freelist
151 1.8.4.2 rpaulo vmem_addr_t bt_start;
152 1.8.4.2 rpaulo vmem_size_t bt_size;
153 1.8.4.2 rpaulo int bt_type;
154 1.8.4.2 rpaulo };
155 1.8.4.2 rpaulo
156 1.8.4.2 rpaulo #define BT_TYPE_SPAN 1
157 1.8.4.2 rpaulo #define BT_TYPE_SPAN_STATIC 2
158 1.8.4.2 rpaulo #define BT_TYPE_FREE 3
159 1.8.4.2 rpaulo #define BT_TYPE_BUSY 4
160 1.8.4.2 rpaulo #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
161 1.8.4.2 rpaulo
162 1.8.4.2 rpaulo #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
163 1.8.4.2 rpaulo
164 1.8.4.2 rpaulo typedef struct vmem_btag bt_t;
165 1.8.4.2 rpaulo
166 1.8.4.2 rpaulo /* ---- misc */
167 1.8.4.2 rpaulo
168 1.8.4.2 rpaulo #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
169 1.8.4.2 rpaulo
170 1.8.4.2 rpaulo static int
171 1.8.4.2 rpaulo calc_order(vmem_size_t size)
172 1.8.4.2 rpaulo {
173 1.8.4.2 rpaulo vmem_size_t target;
174 1.8.4.2 rpaulo int i;
175 1.8.4.2 rpaulo
176 1.8.4.2 rpaulo KASSERT(size != 0);
177 1.8.4.2 rpaulo
178 1.8.4.2 rpaulo i = 0;
179 1.8.4.2 rpaulo target = size >> 1;
180 1.8.4.2 rpaulo while (ORDER2SIZE(i) <= target) {
181 1.8.4.2 rpaulo i++;
182 1.8.4.2 rpaulo }
183 1.8.4.2 rpaulo
184 1.8.4.2 rpaulo KASSERT(ORDER2SIZE(i) <= size);
185 1.8.4.2 rpaulo KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
186 1.8.4.2 rpaulo
187 1.8.4.2 rpaulo return i;
188 1.8.4.2 rpaulo }
189 1.8.4.2 rpaulo
190 1.8.4.2 rpaulo #if defined(_KERNEL)
191 1.8.4.2 rpaulo static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
192 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
193 1.8.4.2 rpaulo
194 1.8.4.2 rpaulo static void *
195 1.8.4.2 rpaulo xmalloc(size_t sz, vm_flag_t flags)
196 1.8.4.2 rpaulo {
197 1.8.4.2 rpaulo
198 1.8.4.2 rpaulo #if defined(_KERNEL)
199 1.8.4.2 rpaulo return malloc(sz, M_VMEM,
200 1.8.4.2 rpaulo M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
201 1.8.4.2 rpaulo #else /* defined(_KERNEL) */
202 1.8.4.2 rpaulo return malloc(sz);
203 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
204 1.8.4.2 rpaulo }
205 1.8.4.2 rpaulo
206 1.8.4.2 rpaulo static void
207 1.8.4.2 rpaulo xfree(void *p)
208 1.8.4.2 rpaulo {
209 1.8.4.2 rpaulo
210 1.8.4.2 rpaulo #if defined(_KERNEL)
211 1.8.4.2 rpaulo return free(p, M_VMEM);
212 1.8.4.2 rpaulo #else /* defined(_KERNEL) */
213 1.8.4.2 rpaulo return free(p);
214 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
215 1.8.4.2 rpaulo }
216 1.8.4.2 rpaulo
217 1.8.4.2 rpaulo /* ---- boundary tag */
218 1.8.4.2 rpaulo
219 1.8.4.2 rpaulo #if defined(_KERNEL)
220 1.8.4.2 rpaulo static struct pool_cache bt_poolcache;
221 1.8.4.2 rpaulo static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
222 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
223 1.8.4.2 rpaulo
224 1.8.4.2 rpaulo static bt_t *
225 1.8.4.2 rpaulo bt_alloc(vmem_t *vm, vm_flag_t flags)
226 1.8.4.2 rpaulo {
227 1.8.4.2 rpaulo bt_t *bt;
228 1.8.4.2 rpaulo
229 1.8.4.2 rpaulo #if defined(_KERNEL)
230 1.8.4.2 rpaulo /* XXX bootstrap */
231 1.8.4.2 rpaulo bt = pool_cache_get(&bt_poolcache,
232 1.8.4.2 rpaulo (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
233 1.8.4.2 rpaulo #else /* defined(_KERNEL) */
234 1.8.4.2 rpaulo bt = malloc(sizeof *bt);
235 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
236 1.8.4.2 rpaulo
237 1.8.4.2 rpaulo return bt;
238 1.8.4.2 rpaulo }
239 1.8.4.2 rpaulo
240 1.8.4.2 rpaulo static void
241 1.8.4.2 rpaulo bt_free(vmem_t *vm, bt_t *bt)
242 1.8.4.2 rpaulo {
243 1.8.4.2 rpaulo
244 1.8.4.2 rpaulo #if defined(_KERNEL)
245 1.8.4.2 rpaulo /* XXX bootstrap */
246 1.8.4.2 rpaulo pool_cache_put(&bt_poolcache, bt);
247 1.8.4.2 rpaulo #else /* defined(_KERNEL) */
248 1.8.4.2 rpaulo free(bt);
249 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
250 1.8.4.2 rpaulo }
251 1.8.4.2 rpaulo
252 1.8.4.2 rpaulo /*
253 1.8.4.2 rpaulo * freelist[0] ... [1, 1]
254 1.8.4.2 rpaulo * freelist[1] ... [2, 3]
255 1.8.4.2 rpaulo * freelist[2] ... [4, 7]
256 1.8.4.2 rpaulo * freelist[3] ... [8, 15]
257 1.8.4.2 rpaulo * :
258 1.8.4.2 rpaulo * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
259 1.8.4.2 rpaulo * :
260 1.8.4.2 rpaulo */
261 1.8.4.2 rpaulo
262 1.8.4.2 rpaulo static struct vmem_freelist *
263 1.8.4.2 rpaulo bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
264 1.8.4.2 rpaulo {
265 1.8.4.2 rpaulo const vmem_size_t qsize = size >> vm->vm_quantum_shift;
266 1.8.4.2 rpaulo int idx;
267 1.8.4.2 rpaulo
268 1.8.4.2 rpaulo KASSERT((size & vm->vm_quantum_mask) == 0);
269 1.8.4.2 rpaulo KASSERT(size != 0);
270 1.8.4.2 rpaulo
271 1.8.4.2 rpaulo idx = calc_order(qsize);
272 1.8.4.2 rpaulo KASSERT(idx >= 0);
273 1.8.4.2 rpaulo KASSERT(idx < VMEM_MAXORDER);
274 1.8.4.2 rpaulo
275 1.8.4.2 rpaulo return &vm->vm_freelist[idx];
276 1.8.4.2 rpaulo }
277 1.8.4.2 rpaulo
278 1.8.4.2 rpaulo static struct vmem_freelist *
279 1.8.4.2 rpaulo bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
280 1.8.4.2 rpaulo {
281 1.8.4.2 rpaulo const vmem_size_t qsize = size >> vm->vm_quantum_shift;
282 1.8.4.2 rpaulo int idx;
283 1.8.4.2 rpaulo
284 1.8.4.2 rpaulo KASSERT((size & vm->vm_quantum_mask) == 0);
285 1.8.4.2 rpaulo KASSERT(size != 0);
286 1.8.4.2 rpaulo
287 1.8.4.2 rpaulo idx = calc_order(qsize);
288 1.8.4.2 rpaulo if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
289 1.8.4.2 rpaulo idx++;
290 1.8.4.2 rpaulo /* check too large request? */
291 1.8.4.2 rpaulo }
292 1.8.4.2 rpaulo KASSERT(idx >= 0);
293 1.8.4.2 rpaulo KASSERT(idx < VMEM_MAXORDER);
294 1.8.4.2 rpaulo
295 1.8.4.2 rpaulo return &vm->vm_freelist[idx];
296 1.8.4.2 rpaulo }
297 1.8.4.2 rpaulo
298 1.8.4.2 rpaulo /* ---- boundary tag hash */
299 1.8.4.2 rpaulo
300 1.8.4.2 rpaulo static struct vmem_hashlist *
301 1.8.4.2 rpaulo bt_hashhead(vmem_t *vm, vmem_addr_t addr)
302 1.8.4.2 rpaulo {
303 1.8.4.2 rpaulo struct vmem_hashlist *list;
304 1.8.4.2 rpaulo unsigned int hash;
305 1.8.4.2 rpaulo
306 1.8.4.2 rpaulo hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
307 1.8.4.2 rpaulo list = &vm->vm_hashlist[hash % vm->vm_hashsize];
308 1.8.4.2 rpaulo
309 1.8.4.2 rpaulo return list;
310 1.8.4.2 rpaulo }
311 1.8.4.2 rpaulo
312 1.8.4.2 rpaulo static bt_t *
313 1.8.4.2 rpaulo bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
314 1.8.4.2 rpaulo {
315 1.8.4.2 rpaulo struct vmem_hashlist *list;
316 1.8.4.2 rpaulo bt_t *bt;
317 1.8.4.2 rpaulo
318 1.8.4.2 rpaulo list = bt_hashhead(vm, addr);
319 1.8.4.2 rpaulo LIST_FOREACH(bt, list, bt_hashlist) {
320 1.8.4.2 rpaulo if (bt->bt_start == addr) {
321 1.8.4.2 rpaulo break;
322 1.8.4.2 rpaulo }
323 1.8.4.2 rpaulo }
324 1.8.4.2 rpaulo
325 1.8.4.2 rpaulo return bt;
326 1.8.4.2 rpaulo }
327 1.8.4.2 rpaulo
328 1.8.4.2 rpaulo static void
329 1.8.4.2 rpaulo bt_rembusy(vmem_t *vm, bt_t *bt)
330 1.8.4.2 rpaulo {
331 1.8.4.2 rpaulo
332 1.8.4.2 rpaulo KASSERT(vm->vm_nbusytag > 0);
333 1.8.4.2 rpaulo vm->vm_nbusytag--;
334 1.8.4.2 rpaulo LIST_REMOVE(bt, bt_hashlist);
335 1.8.4.2 rpaulo }
336 1.8.4.2 rpaulo
337 1.8.4.2 rpaulo static void
338 1.8.4.2 rpaulo bt_insbusy(vmem_t *vm, bt_t *bt)
339 1.8.4.2 rpaulo {
340 1.8.4.2 rpaulo struct vmem_hashlist *list;
341 1.8.4.2 rpaulo
342 1.8.4.2 rpaulo KASSERT(bt->bt_type == BT_TYPE_BUSY);
343 1.8.4.2 rpaulo
344 1.8.4.2 rpaulo list = bt_hashhead(vm, bt->bt_start);
345 1.8.4.2 rpaulo LIST_INSERT_HEAD(list, bt, bt_hashlist);
346 1.8.4.2 rpaulo vm->vm_nbusytag++;
347 1.8.4.2 rpaulo }
348 1.8.4.2 rpaulo
349 1.8.4.2 rpaulo /* ---- boundary tag list */
350 1.8.4.2 rpaulo
351 1.8.4.2 rpaulo static void
352 1.8.4.2 rpaulo bt_remseg(vmem_t *vm, bt_t *bt)
353 1.8.4.2 rpaulo {
354 1.8.4.2 rpaulo
355 1.8.4.2 rpaulo CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
356 1.8.4.2 rpaulo }
357 1.8.4.2 rpaulo
358 1.8.4.2 rpaulo static void
359 1.8.4.2 rpaulo bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
360 1.8.4.2 rpaulo {
361 1.8.4.2 rpaulo
362 1.8.4.2 rpaulo CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
363 1.8.4.2 rpaulo }
364 1.8.4.2 rpaulo
365 1.8.4.2 rpaulo static void
366 1.8.4.2 rpaulo bt_insseg_tail(vmem_t *vm, bt_t *bt)
367 1.8.4.2 rpaulo {
368 1.8.4.2 rpaulo
369 1.8.4.2 rpaulo CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
370 1.8.4.2 rpaulo }
371 1.8.4.2 rpaulo
372 1.8.4.2 rpaulo static void
373 1.8.4.2 rpaulo bt_remfree(vmem_t *vm, bt_t *bt)
374 1.8.4.2 rpaulo {
375 1.8.4.2 rpaulo
376 1.8.4.2 rpaulo KASSERT(bt->bt_type == BT_TYPE_FREE);
377 1.8.4.2 rpaulo
378 1.8.4.2 rpaulo LIST_REMOVE(bt, bt_freelist);
379 1.8.4.2 rpaulo }
380 1.8.4.2 rpaulo
381 1.8.4.2 rpaulo static void
382 1.8.4.2 rpaulo bt_insfree(vmem_t *vm, bt_t *bt)
383 1.8.4.2 rpaulo {
384 1.8.4.2 rpaulo struct vmem_freelist *list;
385 1.8.4.2 rpaulo
386 1.8.4.2 rpaulo list = bt_freehead_tofree(vm, bt->bt_size);
387 1.8.4.2 rpaulo LIST_INSERT_HEAD(list, bt, bt_freelist);
388 1.8.4.2 rpaulo }
389 1.8.4.2 rpaulo
390 1.8.4.2 rpaulo /* ---- vmem internal functions */
391 1.8.4.2 rpaulo
392 1.8.4.2 rpaulo #if defined(QCACHE)
393 1.8.4.2 rpaulo static inline vm_flag_t
394 1.8.4.2 rpaulo prf_to_vmf(int prflags)
395 1.8.4.2 rpaulo {
396 1.8.4.2 rpaulo vm_flag_t vmflags;
397 1.8.4.2 rpaulo
398 1.8.4.2 rpaulo KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
399 1.8.4.2 rpaulo if ((prflags & PR_WAITOK) != 0) {
400 1.8.4.2 rpaulo vmflags = VM_SLEEP;
401 1.8.4.2 rpaulo } else {
402 1.8.4.2 rpaulo vmflags = VM_NOSLEEP;
403 1.8.4.2 rpaulo }
404 1.8.4.2 rpaulo return vmflags;
405 1.8.4.2 rpaulo }
406 1.8.4.2 rpaulo
407 1.8.4.2 rpaulo static inline int
408 1.8.4.2 rpaulo vmf_to_prf(vm_flag_t vmflags)
409 1.8.4.2 rpaulo {
410 1.8.4.2 rpaulo int prflags;
411 1.8.4.2 rpaulo
412 1.8.4.2 rpaulo if ((vmflags & VM_SLEEP) != 0) {
413 1.8.4.2 rpaulo prflags = PR_WAITOK;
414 1.8.4.2 rpaulo } else {
415 1.8.4.2 rpaulo prflags = PR_NOWAIT;
416 1.8.4.2 rpaulo }
417 1.8.4.2 rpaulo return prflags;
418 1.8.4.2 rpaulo }
419 1.8.4.2 rpaulo
420 1.8.4.2 rpaulo static size_t
421 1.8.4.2 rpaulo qc_poolpage_size(size_t qcache_max)
422 1.8.4.2 rpaulo {
423 1.8.4.2 rpaulo int i;
424 1.8.4.2 rpaulo
425 1.8.4.2 rpaulo for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
426 1.8.4.2 rpaulo /* nothing */
427 1.8.4.2 rpaulo }
428 1.8.4.2 rpaulo return ORDER2SIZE(i);
429 1.8.4.2 rpaulo }
430 1.8.4.2 rpaulo
431 1.8.4.2 rpaulo static void *
432 1.8.4.2 rpaulo qc_poolpage_alloc(struct pool *pool, int prflags)
433 1.8.4.2 rpaulo {
434 1.8.4.2 rpaulo qcache_t *qc = QC_POOL_TO_QCACHE(pool);
435 1.8.4.2 rpaulo vmem_t *vm = qc->qc_vmem;
436 1.8.4.2 rpaulo
437 1.8.4.2 rpaulo return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
438 1.8.4.2 rpaulo prf_to_vmf(prflags) | VM_INSTANTFIT);
439 1.8.4.2 rpaulo }
440 1.8.4.2 rpaulo
441 1.8.4.2 rpaulo static void
442 1.8.4.2 rpaulo qc_poolpage_free(struct pool *pool, void *addr)
443 1.8.4.2 rpaulo {
444 1.8.4.2 rpaulo qcache_t *qc = QC_POOL_TO_QCACHE(pool);
445 1.8.4.2 rpaulo vmem_t *vm = qc->qc_vmem;
446 1.8.4.2 rpaulo
447 1.8.4.2 rpaulo vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
448 1.8.4.2 rpaulo }
449 1.8.4.2 rpaulo
450 1.8.4.2 rpaulo static void
451 1.8.4.2 rpaulo qc_init(vmem_t *vm, size_t qcache_max)
452 1.8.4.2 rpaulo {
453 1.8.4.2 rpaulo struct pool_allocator *pa;
454 1.8.4.2 rpaulo int qcache_idx_max;
455 1.8.4.2 rpaulo int i;
456 1.8.4.2 rpaulo
457 1.8.4.2 rpaulo KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
458 1.8.4.2 rpaulo if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
459 1.8.4.2 rpaulo qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
460 1.8.4.2 rpaulo }
461 1.8.4.2 rpaulo vm->vm_qcache_max = qcache_max;
462 1.8.4.2 rpaulo pa = &vm->vm_qcache_allocator;
463 1.8.4.2 rpaulo memset(pa, 0, sizeof(*pa));
464 1.8.4.2 rpaulo pa->pa_alloc = qc_poolpage_alloc;
465 1.8.4.2 rpaulo pa->pa_free = qc_poolpage_free;
466 1.8.4.2 rpaulo pa->pa_pagesz = qc_poolpage_size(qcache_max);
467 1.8.4.2 rpaulo
468 1.8.4.2 rpaulo qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
469 1.8.4.2 rpaulo for (i = 1; i <= qcache_idx_max; i++) {
470 1.8.4.2 rpaulo qcache_t *qc = &vm->vm_qcache[i - 1];
471 1.8.4.2 rpaulo size_t size = i << vm->vm_quantum_shift;
472 1.8.4.2 rpaulo
473 1.8.4.2 rpaulo qc->qc_vmem = vm;
474 1.8.4.2 rpaulo snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
475 1.8.4.2 rpaulo vm->vm_name, size);
476 1.8.4.2 rpaulo pool_init(&qc->qc_pool, size, 0, 0,
477 1.8.4.2 rpaulo PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
478 1.8.4.2 rpaulo pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
479 1.8.4.2 rpaulo }
480 1.8.4.2 rpaulo }
481 1.8.4.2 rpaulo
482 1.8.4.2 rpaulo static boolean_t
483 1.8.4.2 rpaulo qc_reap(vmem_t *vm)
484 1.8.4.2 rpaulo {
485 1.8.4.2 rpaulo int i;
486 1.8.4.2 rpaulo int qcache_idx_max;
487 1.8.4.2 rpaulo boolean_t didsomething = FALSE;
488 1.8.4.2 rpaulo
489 1.8.4.2 rpaulo qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
490 1.8.4.2 rpaulo for (i = 1; i <= qcache_idx_max; i++) {
491 1.8.4.2 rpaulo qcache_t *qc = &vm->vm_qcache[i - 1];
492 1.8.4.2 rpaulo
493 1.8.4.2 rpaulo if (pool_reclaim(&qc->qc_pool) != 0) {
494 1.8.4.2 rpaulo didsomething = TRUE;
495 1.8.4.2 rpaulo }
496 1.8.4.2 rpaulo }
497 1.8.4.2 rpaulo
498 1.8.4.2 rpaulo return didsomething;
499 1.8.4.2 rpaulo }
500 1.8.4.2 rpaulo #endif /* defined(QCACHE) */
501 1.8.4.2 rpaulo
502 1.8.4.2 rpaulo #if defined(_KERNEL)
503 1.8.4.2 rpaulo static int
504 1.8.4.2 rpaulo vmem_init(void)
505 1.8.4.2 rpaulo {
506 1.8.4.2 rpaulo
507 1.8.4.2 rpaulo pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
508 1.8.4.2 rpaulo return 0;
509 1.8.4.2 rpaulo }
510 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
511 1.8.4.2 rpaulo
512 1.8.4.2 rpaulo static vmem_addr_t
513 1.8.4.2 rpaulo vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
514 1.8.4.2 rpaulo int spanbttype)
515 1.8.4.2 rpaulo {
516 1.8.4.2 rpaulo bt_t *btspan;
517 1.8.4.2 rpaulo bt_t *btfree;
518 1.8.4.2 rpaulo
519 1.8.4.2 rpaulo KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
520 1.8.4.2 rpaulo KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
521 1.8.4.2 rpaulo VMEM_ASSERT_UNLOCKED(vm);
522 1.8.4.2 rpaulo
523 1.8.4.2 rpaulo btspan = bt_alloc(vm, flags);
524 1.8.4.2 rpaulo if (btspan == NULL) {
525 1.8.4.2 rpaulo return VMEM_ADDR_NULL;
526 1.8.4.2 rpaulo }
527 1.8.4.2 rpaulo btfree = bt_alloc(vm, flags);
528 1.8.4.2 rpaulo if (btfree == NULL) {
529 1.8.4.2 rpaulo bt_free(vm, btspan);
530 1.8.4.2 rpaulo return VMEM_ADDR_NULL;
531 1.8.4.2 rpaulo }
532 1.8.4.2 rpaulo
533 1.8.4.2 rpaulo btspan->bt_type = spanbttype;
534 1.8.4.2 rpaulo btspan->bt_start = addr;
535 1.8.4.2 rpaulo btspan->bt_size = size;
536 1.8.4.2 rpaulo
537 1.8.4.2 rpaulo btfree->bt_type = BT_TYPE_FREE;
538 1.8.4.2 rpaulo btfree->bt_start = addr;
539 1.8.4.2 rpaulo btfree->bt_size = size;
540 1.8.4.2 rpaulo
541 1.8.4.2 rpaulo VMEM_LOCK(vm);
542 1.8.4.2 rpaulo bt_insseg_tail(vm, btspan);
543 1.8.4.2 rpaulo bt_insseg(vm, btfree, btspan);
544 1.8.4.2 rpaulo bt_insfree(vm, btfree);
545 1.8.4.2 rpaulo VMEM_UNLOCK(vm);
546 1.8.4.2 rpaulo
547 1.8.4.2 rpaulo return addr;
548 1.8.4.2 rpaulo }
549 1.8.4.2 rpaulo
550 1.8.4.2 rpaulo static int
551 1.8.4.2 rpaulo vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
552 1.8.4.2 rpaulo {
553 1.8.4.2 rpaulo vmem_addr_t addr;
554 1.8.4.2 rpaulo
555 1.8.4.2 rpaulo VMEM_ASSERT_UNLOCKED(vm);
556 1.8.4.2 rpaulo
557 1.8.4.2 rpaulo if (vm->vm_allocfn == NULL) {
558 1.8.4.2 rpaulo return EINVAL;
559 1.8.4.2 rpaulo }
560 1.8.4.2 rpaulo
561 1.8.4.2 rpaulo addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
562 1.8.4.2 rpaulo if (addr == VMEM_ADDR_NULL) {
563 1.8.4.2 rpaulo return ENOMEM;
564 1.8.4.2 rpaulo }
565 1.8.4.2 rpaulo
566 1.8.4.2 rpaulo if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
567 1.8.4.2 rpaulo (*vm->vm_freefn)(vm->vm_source, addr, size);
568 1.8.4.2 rpaulo return ENOMEM;
569 1.8.4.2 rpaulo }
570 1.8.4.2 rpaulo
571 1.8.4.2 rpaulo return 0;
572 1.8.4.2 rpaulo }
573 1.8.4.2 rpaulo
574 1.8.4.2 rpaulo static int
575 1.8.4.2 rpaulo vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
576 1.8.4.2 rpaulo {
577 1.8.4.2 rpaulo bt_t *bt;
578 1.8.4.2 rpaulo int i;
579 1.8.4.2 rpaulo struct vmem_hashlist *newhashlist;
580 1.8.4.2 rpaulo struct vmem_hashlist *oldhashlist;
581 1.8.4.2 rpaulo size_t oldhashsize;
582 1.8.4.2 rpaulo
583 1.8.4.2 rpaulo KASSERT(newhashsize > 0);
584 1.8.4.2 rpaulo VMEM_ASSERT_UNLOCKED(vm);
585 1.8.4.2 rpaulo
586 1.8.4.2 rpaulo newhashlist =
587 1.8.4.2 rpaulo xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
588 1.8.4.2 rpaulo if (newhashlist == NULL) {
589 1.8.4.2 rpaulo return ENOMEM;
590 1.8.4.2 rpaulo }
591 1.8.4.2 rpaulo for (i = 0; i < newhashsize; i++) {
592 1.8.4.2 rpaulo LIST_INIT(&newhashlist[i]);
593 1.8.4.2 rpaulo }
594 1.8.4.2 rpaulo
595 1.8.4.2 rpaulo VMEM_LOCK(vm);
596 1.8.4.2 rpaulo oldhashlist = vm->vm_hashlist;
597 1.8.4.2 rpaulo oldhashsize = vm->vm_hashsize;
598 1.8.4.2 rpaulo vm->vm_hashlist = newhashlist;
599 1.8.4.2 rpaulo vm->vm_hashsize = newhashsize;
600 1.8.4.2 rpaulo if (oldhashlist == NULL) {
601 1.8.4.2 rpaulo VMEM_UNLOCK(vm);
602 1.8.4.2 rpaulo return 0;
603 1.8.4.2 rpaulo }
604 1.8.4.2 rpaulo for (i = 0; i < oldhashsize; i++) {
605 1.8.4.2 rpaulo while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
606 1.8.4.2 rpaulo bt_rembusy(vm, bt); /* XXX */
607 1.8.4.2 rpaulo bt_insbusy(vm, bt);
608 1.8.4.2 rpaulo }
609 1.8.4.2 rpaulo }
610 1.8.4.2 rpaulo VMEM_UNLOCK(vm);
611 1.8.4.2 rpaulo
612 1.8.4.2 rpaulo xfree(oldhashlist);
613 1.8.4.2 rpaulo
614 1.8.4.2 rpaulo return 0;
615 1.8.4.2 rpaulo }
616 1.8.4.2 rpaulo
617 1.8.4.2 rpaulo /* ---- vmem API */
618 1.8.4.2 rpaulo
619 1.8.4.2 rpaulo /*
620 1.8.4.2 rpaulo * vmem_create: create an arena.
621 1.8.4.2 rpaulo *
622 1.8.4.2 rpaulo * => must not be called from interrupt context.
623 1.8.4.2 rpaulo */
624 1.8.4.2 rpaulo
625 1.8.4.2 rpaulo vmem_t *
626 1.8.4.2 rpaulo vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
627 1.8.4.2 rpaulo vmem_size_t quantum,
628 1.8.4.2 rpaulo vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
629 1.8.4.2 rpaulo void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
630 1.8.4.2 rpaulo vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
631 1.8.4.2 rpaulo {
632 1.8.4.2 rpaulo vmem_t *vm;
633 1.8.4.2 rpaulo int i;
634 1.8.4.2 rpaulo #if defined(_KERNEL)
635 1.8.4.2 rpaulo static ONCE_DECL(control);
636 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
637 1.8.4.2 rpaulo
638 1.8.4.2 rpaulo KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
639 1.8.4.2 rpaulo KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
640 1.8.4.2 rpaulo
641 1.8.4.2 rpaulo #if defined(_KERNEL)
642 1.8.4.2 rpaulo if (RUN_ONCE(&control, vmem_init)) {
643 1.8.4.2 rpaulo return NULL;
644 1.8.4.2 rpaulo }
645 1.8.4.2 rpaulo #endif /* defined(_KERNEL) */
646 1.8.4.2 rpaulo vm = xmalloc(sizeof(*vm), flags);
647 1.8.4.2 rpaulo if (vm == NULL) {
648 1.8.4.2 rpaulo return NULL;
649 1.8.4.2 rpaulo }
650 1.8.4.2 rpaulo
651 1.8.4.2 rpaulo VMEM_LOCK_INIT(vm);
652 1.8.4.2 rpaulo vm->vm_name = name;
653 1.8.4.2 rpaulo vm->vm_quantum_mask = quantum - 1;
654 1.8.4.2 rpaulo vm->vm_quantum_shift = calc_order(quantum);
655 1.8.4.2 rpaulo KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
656 1.8.4.2 rpaulo vm->vm_allocfn = allocfn;
657 1.8.4.2 rpaulo vm->vm_freefn = freefn;
658 1.8.4.2 rpaulo vm->vm_source = source;
659 1.8.4.2 rpaulo vm->vm_nbusytag = 0;
660 1.8.4.2 rpaulo #if defined(QCACHE)
661 1.8.4.2 rpaulo qc_init(vm, qcache_max);
662 1.8.4.2 rpaulo #endif /* defined(QCACHE) */
663 1.8.4.2 rpaulo
664 1.8.4.2 rpaulo CIRCLEQ_INIT(&vm->vm_seglist);
665 1.8.4.2 rpaulo for (i = 0; i < VMEM_MAXORDER; i++) {
666 1.8.4.2 rpaulo LIST_INIT(&vm->vm_freelist[i]);
667 1.8.4.2 rpaulo }
668 1.8.4.2 rpaulo vm->vm_hashlist = NULL;
669 1.8.4.2 rpaulo if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
670 1.8.4.2 rpaulo vmem_destroy(vm);
671 1.8.4.2 rpaulo return NULL;
672 1.8.4.2 rpaulo }
673 1.8.4.2 rpaulo
674 1.8.4.2 rpaulo if (size != 0) {
675 1.8.4.2 rpaulo if (vmem_add(vm, base, size, flags) == 0) {
676 1.8.4.2 rpaulo vmem_destroy(vm);
677 1.8.4.2 rpaulo return NULL;
678 1.8.4.2 rpaulo }
679 1.8.4.2 rpaulo }
680 1.8.4.2 rpaulo
681 1.8.4.2 rpaulo return vm;
682 1.8.4.2 rpaulo }
683 1.8.4.2 rpaulo
684 1.8.4.2 rpaulo void
685 1.8.4.2 rpaulo vmem_destroy(vmem_t *vm)
686 1.8.4.2 rpaulo {
687 1.8.4.2 rpaulo
688 1.8.4.2 rpaulo VMEM_ASSERT_UNLOCKED(vm);
689 1.8.4.2 rpaulo
690 1.8.4.2 rpaulo if (vm->vm_hashlist != NULL) {
691 1.8.4.2 rpaulo int i;
692 1.8.4.2 rpaulo
693 1.8.4.2 rpaulo for (i = 0; i < vm->vm_hashsize; i++) {
694 1.8.4.2 rpaulo bt_t *bt;
695 1.8.4.2 rpaulo
696 1.8.4.2 rpaulo while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
697 1.8.4.2 rpaulo KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
698 1.8.4.2 rpaulo bt_free(vm, bt);
699 1.8.4.2 rpaulo }
700 1.8.4.2 rpaulo }
701 1.8.4.2 rpaulo xfree(vm->vm_hashlist);
702 1.8.4.2 rpaulo }
703 1.8.4.2 rpaulo xfree(vm);
704 1.8.4.2 rpaulo }
705 1.8.4.2 rpaulo
706 1.8.4.2 rpaulo vmem_size_t
707 1.8.4.2 rpaulo vmem_roundup_size(vmem_t *vm, vmem_size_t size)
708 1.8.4.2 rpaulo {
709 1.8.4.2 rpaulo
710 1.8.4.2 rpaulo return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
711 1.8.4.2 rpaulo }
712 1.8.4.2 rpaulo
713 1.8.4.2 rpaulo /*
714 1.8.4.2 rpaulo * vmem_alloc:
715 1.8.4.2 rpaulo *
716 1.8.4.2 rpaulo * => caller must ensure appropriate spl,
717 1.8.4.2 rpaulo * if the arena can be accessed from interrupt context.
718 1.8.4.2 rpaulo */
719 1.8.4.2 rpaulo
720 1.8.4.2 rpaulo vmem_addr_t
721 1.8.4.2 rpaulo vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
722 1.8.4.2 rpaulo {
723 1.8.4.2 rpaulo struct vmem_freelist *list;
724 1.8.4.2 rpaulo struct vmem_freelist *first;
725 1.8.4.2 rpaulo struct vmem_freelist *end;
726 1.8.4.2 rpaulo bt_t *bt;
727 1.8.4.2 rpaulo bt_t *btnew;
728 1.8.4.2 rpaulo const vmem_size_t size = vmem_roundup_size(vm, size0);
729 1.8.4.2 rpaulo vm_flag_t strat = flags & VM_FITMASK;
730 1.8.4.2 rpaulo
731 1.8.4.2 rpaulo KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
732 1.8.4.2 rpaulo KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
733 1.8.4.2 rpaulo VMEM_ASSERT_UNLOCKED(vm);
734 1.8.4.2 rpaulo
735 1.8.4.2 rpaulo KASSERT(size0 > 0);
736 1.8.4.2 rpaulo KASSERT(size > 0);
737 1.8.4.2 rpaulo KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
738 1.8.4.2 rpaulo if ((flags & VM_SLEEP) != 0) {
739 1.8.4.2 rpaulo ASSERT_SLEEPABLE(NULL, "vmem_alloc");
740 1.8.4.2 rpaulo }
741 1.8.4.2 rpaulo
742 1.8.4.2 rpaulo #if defined(QCACHE)
743 1.8.4.2 rpaulo if (size <= vm->vm_qcache_max) {
744 1.8.4.2 rpaulo int qidx = size >> vm->vm_quantum_shift;
745 1.8.4.2 rpaulo qcache_t *qc = &vm->vm_qcache[qidx - 1];
746 1.8.4.2 rpaulo
747 1.8.4.2 rpaulo return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
748 1.8.4.2 rpaulo vmf_to_prf(flags));
749 1.8.4.2 rpaulo }
750 1.8.4.2 rpaulo #endif /* defined(QCACHE) */
751 1.8.4.2 rpaulo
752 1.8.4.2 rpaulo btnew = bt_alloc(vm, flags);
753 1.8.4.2 rpaulo if (btnew == NULL) {
754 1.8.4.2 rpaulo return VMEM_ADDR_NULL;
755 1.8.4.2 rpaulo }
756 1.8.4.2 rpaulo
757 1.8.4.2 rpaulo retry_strat:
758 1.8.4.2 rpaulo first = bt_freehead_toalloc(vm, size, strat);
759 1.8.4.2 rpaulo end = &vm->vm_freelist[VMEM_MAXORDER];
760 1.8.4.2 rpaulo retry:
761 1.8.4.2 rpaulo bt = NULL;
762 1.8.4.2 rpaulo VMEM_LOCK(vm);
763 1.8.4.2 rpaulo if (strat == VM_INSTANTFIT) {
764 1.8.4.2 rpaulo for (list = first; list < end; list++) {
765 1.8.4.2 rpaulo bt = LIST_FIRST(list);
766 1.8.4.2 rpaulo if (bt != NULL) {
767 1.8.4.2 rpaulo goto gotit;
768 1.8.4.2 rpaulo }
769 1.8.4.2 rpaulo }
770 1.8.4.2 rpaulo } else { /* VM_BESTFIT */
771 1.8.4.2 rpaulo for (list = first; list < end; list++) {
772 1.8.4.2 rpaulo LIST_FOREACH(bt, list, bt_freelist) {
773 1.8.4.2 rpaulo if (bt->bt_size >= size) {
774 1.8.4.2 rpaulo goto gotit;
775 1.8.4.2 rpaulo }
776 1.8.4.2 rpaulo }
777 1.8.4.2 rpaulo }
778 1.8.4.2 rpaulo }
779 1.8.4.2 rpaulo VMEM_UNLOCK(vm);
780 1.8.4.2 rpaulo #if 1
781 1.8.4.2 rpaulo if (strat == VM_INSTANTFIT) {
782 1.8.4.2 rpaulo strat = VM_BESTFIT;
783 1.8.4.2 rpaulo goto retry_strat;
784 1.8.4.2 rpaulo }
785 1.8.4.2 rpaulo #endif
786 1.8.4.2 rpaulo if (vmem_import(vm, size, flags) == 0) {
787 1.8.4.2 rpaulo goto retry;
788 1.8.4.2 rpaulo }
789 1.8.4.2 rpaulo /* XXX */
790 1.8.4.2 rpaulo return VMEM_ADDR_NULL;
791 1.8.4.2 rpaulo
792 1.8.4.2 rpaulo gotit:
793 1.8.4.2 rpaulo KASSERT(bt->bt_type == BT_TYPE_FREE);
794 1.8.4.2 rpaulo KASSERT(bt->bt_size >= size);
795 1.8.4.2 rpaulo bt_remfree(vm, bt);
796 1.8.4.2 rpaulo if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
797 1.8.4.2 rpaulo /* split */
798 1.8.4.2 rpaulo btnew->bt_type = BT_TYPE_BUSY;
799 1.8.4.2 rpaulo btnew->bt_start = bt->bt_start;
800 1.8.4.2 rpaulo btnew->bt_size = size;
801 1.8.4.2 rpaulo bt->bt_start = bt->bt_start + size;
802 1.8.4.2 rpaulo bt->bt_size -= size;
803 1.8.4.2 rpaulo bt_insfree(vm, bt);
804 1.8.4.2 rpaulo bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
805 1.8.4.2 rpaulo bt_insbusy(vm, btnew);
806 1.8.4.2 rpaulo VMEM_UNLOCK(vm);
807 1.8.4.2 rpaulo } else {
808 1.8.4.2 rpaulo bt->bt_type = BT_TYPE_BUSY;
809 1.8.4.2 rpaulo bt_insbusy(vm, bt);
810 1.8.4.2 rpaulo VMEM_UNLOCK(vm);
811 1.8.4.2 rpaulo bt_free(vm, btnew);
812 1.8.4.2 rpaulo btnew = bt;
813 1.8.4.2 rpaulo }
814 1.8.4.2 rpaulo KASSERT(btnew->bt_size >= size);
815 1.8.4.2 rpaulo btnew->bt_type = BT_TYPE_BUSY;
816 1.8.4.2 rpaulo
817 1.8.4.2 rpaulo return btnew->bt_start;
818 1.8.4.2 rpaulo }
819 1.8.4.2 rpaulo
820 1.8.4.2 rpaulo /*
821 1.8.4.2 rpaulo * vmem_free:
822 1.8.4.2 rpaulo *
823 1.8.4.2 rpaulo * => caller must ensure appropriate spl,
824 1.8.4.2 rpaulo * if the arena can be accessed from interrupt context.
825 1.8.4.2 rpaulo */
826 1.8.4.2 rpaulo
827 1.8.4.2 rpaulo void
828 1.8.4.2 rpaulo vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
829 1.8.4.2 rpaulo {
830 1.8.4.2 rpaulo bt_t *bt;
831 1.8.4.2 rpaulo bt_t *t;
832 1.8.4.2 rpaulo
833 1.8.4.2 rpaulo VMEM_ASSERT_UNLOCKED(vm);
834 1.8.4.2 rpaulo
835 1.8.4.2 rpaulo KASSERT(addr != VMEM_ADDR_NULL);
836 1.8.4.2 rpaulo KASSERT(size > 0);
837 1.8.4.2 rpaulo
838 1.8.4.2 rpaulo #if defined(QCACHE)
839 1.8.4.2 rpaulo if (size <= vm->vm_qcache_max) {
840 1.8.4.2 rpaulo int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
841 1.8.4.2 rpaulo qcache_t *qc = &vm->vm_qcache[qidx - 1];
842 1.8.4.2 rpaulo
843 1.8.4.2 rpaulo return pool_cache_put(&qc->qc_cache, (void *)addr);
844 1.8.4.2 rpaulo }
845 1.8.4.2 rpaulo #endif /* defined(QCACHE) */
846 1.8.4.2 rpaulo
847 1.8.4.2 rpaulo VMEM_LOCK(vm);
848 1.8.4.2 rpaulo
849 1.8.4.2 rpaulo bt = bt_lookupbusy(vm, addr);
850 1.8.4.2 rpaulo KASSERT(bt != NULL);
851 1.8.4.2 rpaulo KASSERT(bt->bt_start == addr);
852 1.8.4.2 rpaulo KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
853 1.8.4.2 rpaulo bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
854 1.8.4.2 rpaulo KASSERT(bt->bt_type == BT_TYPE_BUSY);
855 1.8.4.2 rpaulo bt_rembusy(vm, bt);
856 1.8.4.2 rpaulo bt->bt_type = BT_TYPE_FREE;
857 1.8.4.2 rpaulo
858 1.8.4.2 rpaulo /* coalesce */
859 1.8.4.2 rpaulo t = CIRCLEQ_NEXT(bt, bt_seglist);
860 1.8.4.2 rpaulo if (t != NULL && t->bt_type == BT_TYPE_FREE) {
861 1.8.4.2 rpaulo KASSERT(BT_END(bt) == t->bt_start);
862 1.8.4.2 rpaulo bt_remfree(vm, t);
863 1.8.4.2 rpaulo bt_remseg(vm, t);
864 1.8.4.2 rpaulo bt->bt_size += t->bt_size;
865 1.8.4.2 rpaulo bt_free(vm, t);
866 1.8.4.2 rpaulo }
867 1.8.4.2 rpaulo t = CIRCLEQ_PREV(bt, bt_seglist);
868 1.8.4.2 rpaulo if (t != NULL && t->bt_type == BT_TYPE_FREE) {
869 1.8.4.2 rpaulo KASSERT(BT_END(t) == bt->bt_start);
870 1.8.4.2 rpaulo bt_remfree(vm, t);
871 1.8.4.2 rpaulo bt_remseg(vm, t);
872 1.8.4.2 rpaulo bt->bt_size += t->bt_size;
873 1.8.4.2 rpaulo bt->bt_start = t->bt_start;
874 1.8.4.2 rpaulo bt_free(vm, t);
875 1.8.4.2 rpaulo }
876 1.8.4.2 rpaulo
877 1.8.4.2 rpaulo t = CIRCLEQ_PREV(bt, bt_seglist);
878 1.8.4.2 rpaulo KASSERT(t != NULL);
879 1.8.4.2 rpaulo KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
880 1.8.4.2 rpaulo if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
881 1.8.4.2 rpaulo t->bt_size == bt->bt_size) {
882 1.8.4.2 rpaulo vmem_addr_t spanaddr;
883 1.8.4.2 rpaulo vmem_size_t spansize;
884 1.8.4.2 rpaulo
885 1.8.4.2 rpaulo KASSERT(t->bt_start == bt->bt_start);
886 1.8.4.2 rpaulo spanaddr = bt->bt_start;
887 1.8.4.2 rpaulo spansize = bt->bt_size;
888 1.8.4.2 rpaulo bt_remseg(vm, bt);
889 1.8.4.2 rpaulo bt_free(vm, bt);
890 1.8.4.2 rpaulo bt_remseg(vm, t);
891 1.8.4.2 rpaulo bt_free(vm, t);
892 1.8.4.2 rpaulo VMEM_UNLOCK(vm);
893 1.8.4.2 rpaulo (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
894 1.8.4.2 rpaulo } else {
895 1.8.4.2 rpaulo bt_insfree(vm, bt);
896 1.8.4.2 rpaulo VMEM_UNLOCK(vm);
897 1.8.4.2 rpaulo }
898 1.8.4.2 rpaulo }
899 1.8.4.2 rpaulo
900 1.8.4.2 rpaulo /*
901 1.8.4.2 rpaulo * vmem_add:
902 1.8.4.2 rpaulo *
903 1.8.4.2 rpaulo * => caller must ensure appropriate spl,
904 1.8.4.2 rpaulo * if the arena can be accessed from interrupt context.
905 1.8.4.2 rpaulo */
906 1.8.4.2 rpaulo
907 1.8.4.2 rpaulo vmem_addr_t
908 1.8.4.2 rpaulo vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
909 1.8.4.2 rpaulo {
910 1.8.4.2 rpaulo
911 1.8.4.2 rpaulo return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
912 1.8.4.2 rpaulo }
913 1.8.4.2 rpaulo
914 1.8.4.2 rpaulo /*
915 1.8.4.2 rpaulo * vmem_reap: reap unused resources.
916 1.8.4.2 rpaulo *
917 1.8.4.2 rpaulo * => return TRUE if we successfully reaped something.
918 1.8.4.2 rpaulo */
919 1.8.4.2 rpaulo
920 1.8.4.2 rpaulo boolean_t
921 1.8.4.2 rpaulo vmem_reap(vmem_t *vm)
922 1.8.4.2 rpaulo {
923 1.8.4.2 rpaulo boolean_t didsomething = FALSE;
924 1.8.4.2 rpaulo
925 1.8.4.2 rpaulo VMEM_ASSERT_UNLOCKED(vm);
926 1.8.4.2 rpaulo
927 1.8.4.2 rpaulo #if defined(QCACHE)
928 1.8.4.2 rpaulo didsomething = qc_reap(vm);
929 1.8.4.2 rpaulo #endif /* defined(QCACHE) */
930 1.8.4.2 rpaulo return didsomething;
931 1.8.4.2 rpaulo }
932 1.8.4.2 rpaulo
933 1.8.4.2 rpaulo /* ---- debug */
934 1.8.4.2 rpaulo
935 1.8.4.2 rpaulo #if defined(VMEM_DEBUG)
936 1.8.4.2 rpaulo
937 1.8.4.2 rpaulo #if !defined(_KERNEL)
938 1.8.4.2 rpaulo #include <stdio.h>
939 1.8.4.2 rpaulo #endif /* !defined(_KERNEL) */
940 1.8.4.2 rpaulo
941 1.8.4.2 rpaulo void bt_dump(const bt_t *);
942 1.8.4.2 rpaulo
943 1.8.4.2 rpaulo void
944 1.8.4.2 rpaulo bt_dump(const bt_t *bt)
945 1.8.4.2 rpaulo {
946 1.8.4.2 rpaulo
947 1.8.4.2 rpaulo printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
948 1.8.4.2 rpaulo bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
949 1.8.4.2 rpaulo bt->bt_type);
950 1.8.4.2 rpaulo }
951 1.8.4.2 rpaulo
952 1.8.4.2 rpaulo void
953 1.8.4.2 rpaulo vmem_dump(const vmem_t *vm)
954 1.8.4.2 rpaulo {
955 1.8.4.2 rpaulo const bt_t *bt;
956 1.8.4.2 rpaulo int i;
957 1.8.4.2 rpaulo
958 1.8.4.2 rpaulo printf("vmem %p '%s'\n", vm, vm->vm_name);
959 1.8.4.2 rpaulo CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
960 1.8.4.2 rpaulo bt_dump(bt);
961 1.8.4.2 rpaulo }
962 1.8.4.2 rpaulo
963 1.8.4.2 rpaulo for (i = 0; i < VMEM_MAXORDER; i++) {
964 1.8.4.2 rpaulo const struct vmem_freelist *fl = &vm->vm_freelist[i];
965 1.8.4.2 rpaulo
966 1.8.4.2 rpaulo if (LIST_EMPTY(fl)) {
967 1.8.4.2 rpaulo continue;
968 1.8.4.2 rpaulo }
969 1.8.4.2 rpaulo
970 1.8.4.2 rpaulo printf("freelist[%d]\n", i);
971 1.8.4.2 rpaulo LIST_FOREACH(bt, fl, bt_freelist) {
972 1.8.4.2 rpaulo bt_dump(bt);
973 1.8.4.2 rpaulo if (bt->bt_size) {
974 1.8.4.2 rpaulo }
975 1.8.4.2 rpaulo }
976 1.8.4.2 rpaulo }
977 1.8.4.2 rpaulo }
978 1.8.4.2 rpaulo
979 1.8.4.2 rpaulo #if !defined(_KERNEL)
980 1.8.4.2 rpaulo
981 1.8.4.2 rpaulo #include <stdlib.h>
982 1.8.4.2 rpaulo
983 1.8.4.2 rpaulo int
984 1.8.4.2 rpaulo main()
985 1.8.4.2 rpaulo {
986 1.8.4.2 rpaulo vmem_t *vm;
987 1.8.4.2 rpaulo vmem_addr_t p;
988 1.8.4.2 rpaulo struct reg {
989 1.8.4.2 rpaulo vmem_addr_t p;
990 1.8.4.2 rpaulo vmem_size_t sz;
991 1.8.4.2 rpaulo } *reg = NULL;
992 1.8.4.2 rpaulo int nreg = 0;
993 1.8.4.2 rpaulo int nalloc = 0;
994 1.8.4.2 rpaulo int nfree = 0;
995 1.8.4.2 rpaulo vmem_size_t total = 0;
996 1.8.4.2 rpaulo #if 1
997 1.8.4.2 rpaulo vm_flag_t strat = VM_INSTANTFIT;
998 1.8.4.2 rpaulo #else
999 1.8.4.2 rpaulo vm_flag_t strat = VM_BESTFIT;
1000 1.8.4.2 rpaulo #endif
1001 1.8.4.2 rpaulo
1002 1.8.4.2 rpaulo vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1003 1.8.4.2 rpaulo NULL, NULL, NULL, 0, VM_NOSLEEP);
1004 1.8.4.2 rpaulo if (vm == NULL) {
1005 1.8.4.2 rpaulo printf("vmem_create\n");
1006 1.8.4.2 rpaulo exit(EXIT_FAILURE);
1007 1.8.4.2 rpaulo }
1008 1.8.4.2 rpaulo vmem_dump(vm);
1009 1.8.4.2 rpaulo
1010 1.8.4.2 rpaulo p = vmem_add(vm, 100, 200, VM_SLEEP);
1011 1.8.4.2 rpaulo p = vmem_add(vm, 2000, 1, VM_SLEEP);
1012 1.8.4.2 rpaulo p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1013 1.8.4.2 rpaulo p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1014 1.8.4.2 rpaulo p = vmem_add(vm, 500, 1000, VM_SLEEP);
1015 1.8.4.2 rpaulo vmem_dump(vm);
1016 1.8.4.2 rpaulo for (;;) {
1017 1.8.4.2 rpaulo struct reg *r;
1018 1.8.4.2 rpaulo
1019 1.8.4.2 rpaulo if (rand() % 100 > 40) {
1020 1.8.4.2 rpaulo vmem_size_t sz = rand() % 500 + 1;
1021 1.8.4.2 rpaulo
1022 1.8.4.2 rpaulo printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1023 1.8.4.2 rpaulo p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1024 1.8.4.2 rpaulo printf("-> %" PRIu64 "\n", (uint64_t)p);
1025 1.8.4.2 rpaulo vmem_dump(vm);
1026 1.8.4.2 rpaulo if (p == VMEM_ADDR_NULL) {
1027 1.8.4.2 rpaulo break;
1028 1.8.4.2 rpaulo }
1029 1.8.4.2 rpaulo nreg++;
1030 1.8.4.2 rpaulo reg = realloc(reg, sizeof(*reg) * nreg);
1031 1.8.4.2 rpaulo r = ®[nreg - 1];
1032 1.8.4.2 rpaulo r->p = p;
1033 1.8.4.2 rpaulo r->sz = sz;
1034 1.8.4.2 rpaulo total += sz;
1035 1.8.4.2 rpaulo nalloc++;
1036 1.8.4.2 rpaulo } else if (nreg != 0) {
1037 1.8.4.2 rpaulo r = ®[rand() % nreg];
1038 1.8.4.2 rpaulo printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1039 1.8.4.2 rpaulo (uint64_t)r->p, (uint64_t)r->sz);
1040 1.8.4.2 rpaulo vmem_free(vm, r->p, r->sz);
1041 1.8.4.2 rpaulo total -= r->sz;
1042 1.8.4.2 rpaulo vmem_dump(vm);
1043 1.8.4.2 rpaulo *r = reg[nreg - 1];
1044 1.8.4.2 rpaulo nreg--;
1045 1.8.4.2 rpaulo nfree++;
1046 1.8.4.2 rpaulo }
1047 1.8.4.2 rpaulo printf("total=%" PRIu64 "\n", (uint64_t)total);
1048 1.8.4.2 rpaulo }
1049 1.8.4.2 rpaulo fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1050 1.8.4.2 rpaulo (uint64_t)total, nalloc, nfree);
1051 1.8.4.2 rpaulo exit(EXIT_SUCCESS);
1052 1.8.4.2 rpaulo }
1053 1.8.4.2 rpaulo #endif /* !defined(_KERNEL) */
1054 1.8.4.2 rpaulo #endif /* defined(VMEM_DEBUG) */
1055