Home | History | Annotate | Line # | Download | only in kern
subr_vmem.c revision 1.8.6.2
      1  1.8.6.2    yamt /*	$NetBSD: subr_vmem.c,v 1.8.6.2 2006/12/10 07:18:45 yamt Exp $	*/
      2      1.1    yamt 
      3      1.1    yamt /*-
      4      1.1    yamt  * Copyright (c)2006 YAMAMOTO Takashi,
      5      1.1    yamt  * All rights reserved.
      6      1.1    yamt  *
      7      1.1    yamt  * Redistribution and use in source and binary forms, with or without
      8      1.1    yamt  * modification, are permitted provided that the following conditions
      9      1.1    yamt  * are met:
     10      1.1    yamt  * 1. Redistributions of source code must retain the above copyright
     11      1.1    yamt  *    notice, this list of conditions and the following disclaimer.
     12      1.1    yamt  * 2. Redistributions in binary form must reproduce the above copyright
     13      1.1    yamt  *    notice, this list of conditions and the following disclaimer in the
     14      1.1    yamt  *    documentation and/or other materials provided with the distribution.
     15      1.1    yamt  *
     16      1.1    yamt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17      1.1    yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18      1.1    yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19      1.1    yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20      1.1    yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21      1.1    yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22      1.1    yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23      1.1    yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24      1.1    yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25      1.1    yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26      1.1    yamt  * SUCH DAMAGE.
     27      1.1    yamt  */
     28      1.1    yamt 
     29      1.1    yamt /*
     30      1.1    yamt  * reference:
     31      1.1    yamt  * -	Magazines and Vmem: Extending the Slab Allocator
     32      1.1    yamt  *	to Many CPUs and Arbitrary Resources
     33      1.1    yamt  *	http://www.usenix.org/event/usenix01/bonwick.html
     34      1.1    yamt  *
     35  1.8.6.2    yamt  * todo:
     36  1.8.6.2    yamt  * -	decide how to import segments for vmem_xalloc.
     37  1.8.6.2    yamt  * -	don't rely on malloc(9).
     38      1.1    yamt  */
     39      1.1    yamt 
     40      1.1    yamt #include <sys/cdefs.h>
     41  1.8.6.2    yamt __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.8.6.2 2006/12/10 07:18:45 yamt Exp $");
     42      1.1    yamt 
     43      1.1    yamt #define	VMEM_DEBUG
     44      1.5    yamt #if defined(_KERNEL)
     45      1.5    yamt #define	QCACHE
     46      1.5    yamt #endif /* defined(_KERNEL) */
     47      1.1    yamt 
     48      1.1    yamt #include <sys/param.h>
     49      1.1    yamt #include <sys/hash.h>
     50      1.1    yamt #include <sys/queue.h>
     51      1.1    yamt 
     52      1.1    yamt #if defined(_KERNEL)
     53      1.1    yamt #include <sys/systm.h>
     54      1.1    yamt #include <sys/lock.h>
     55      1.1    yamt #include <sys/malloc.h>
     56      1.1    yamt #include <sys/once.h>
     57      1.1    yamt #include <sys/pool.h>
     58      1.3    yamt #include <sys/proc.h>
     59      1.1    yamt #include <sys/vmem.h>
     60      1.1    yamt #else /* defined(_KERNEL) */
     61      1.1    yamt #include "../sys/vmem.h"
     62      1.1    yamt #endif /* defined(_KERNEL) */
     63      1.1    yamt 
     64      1.1    yamt #if defined(_KERNEL)
     65      1.1    yamt #define	SIMPLELOCK_DECL(name)	struct simplelock name
     66      1.1    yamt #else /* defined(_KERNEL) */
     67      1.1    yamt #include <errno.h>
     68      1.1    yamt #include <assert.h>
     69      1.1    yamt #include <stdlib.h>
     70      1.1    yamt 
     71      1.1    yamt #define	KASSERT(a)		assert(a)
     72      1.1    yamt #define	SIMPLELOCK_DECL(name)	/* nothing */
     73      1.1    yamt #define	LOCK_ASSERT(a)		/* nothing */
     74      1.1    yamt #define	simple_lock_init(a)	/* nothing */
     75      1.1    yamt #define	simple_lock(a)		/* nothing */
     76      1.1    yamt #define	simple_unlock(a)	/* nothing */
     77      1.3    yamt #define	ASSERT_SLEEPABLE(lk, msg) /* nothing */
     78      1.1    yamt #endif /* defined(_KERNEL) */
     79      1.1    yamt 
     80      1.1    yamt struct vmem;
     81      1.1    yamt struct vmem_btag;
     82      1.1    yamt 
     83      1.1    yamt #if defined(VMEM_DEBUG)
     84      1.1    yamt void vmem_dump(const vmem_t *);
     85      1.1    yamt #endif /* defined(VMEM_DEBUG) */
     86      1.1    yamt 
     87      1.4    yamt #define	VMEM_MAXORDER		(sizeof(vmem_size_t) * CHAR_BIT)
     88      1.1    yamt #define	VMEM_HASHSIZE_INIT	4096	/* XXX */
     89      1.1    yamt 
     90      1.1    yamt #define	VM_FITMASK	(VM_BESTFIT | VM_INSTANTFIT)
     91      1.1    yamt 
     92      1.1    yamt CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
     93      1.1    yamt LIST_HEAD(vmem_freelist, vmem_btag);
     94      1.1    yamt LIST_HEAD(vmem_hashlist, vmem_btag);
     95      1.1    yamt 
     96      1.5    yamt #if defined(QCACHE)
     97      1.5    yamt #define	VMEM_QCACHE_IDX_MAX	32
     98      1.5    yamt 
     99      1.5    yamt #define	QC_NAME_MAX	16
    100      1.5    yamt 
    101      1.5    yamt struct qcache {
    102      1.5    yamt 	struct pool qc_pool;
    103      1.5    yamt 	struct pool_cache qc_cache;
    104      1.5    yamt 	vmem_t *qc_vmem;
    105      1.5    yamt 	char qc_name[QC_NAME_MAX];
    106      1.5    yamt };
    107      1.5    yamt typedef struct qcache qcache_t;
    108      1.5    yamt #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool))
    109      1.5    yamt #endif /* defined(QCACHE) */
    110      1.5    yamt 
    111      1.1    yamt /* vmem arena */
    112      1.1    yamt struct vmem {
    113      1.1    yamt 	SIMPLELOCK_DECL(vm_lock);
    114      1.1    yamt 	vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
    115      1.1    yamt 	    vm_flag_t);
    116      1.1    yamt 	void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
    117      1.1    yamt 	vmem_t *vm_source;
    118      1.1    yamt 	struct vmem_seglist vm_seglist;
    119      1.1    yamt 	struct vmem_freelist vm_freelist[VMEM_MAXORDER];
    120      1.1    yamt 	size_t vm_hashsize;
    121      1.1    yamt 	size_t vm_nbusytag;
    122      1.1    yamt 	struct vmem_hashlist *vm_hashlist;
    123      1.1    yamt 	size_t vm_quantum_mask;
    124      1.1    yamt 	int vm_quantum_shift;
    125      1.1    yamt 	const char *vm_name;
    126      1.5    yamt 
    127      1.5    yamt #if defined(QCACHE)
    128      1.5    yamt 	/* quantum cache */
    129      1.5    yamt 	size_t vm_qcache_max;
    130      1.5    yamt 	struct pool_allocator vm_qcache_allocator;
    131  1.8.6.2    yamt 	qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
    132  1.8.6.2    yamt 	qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
    133      1.5    yamt #endif /* defined(QCACHE) */
    134      1.1    yamt };
    135      1.1    yamt 
    136      1.1    yamt #define	VMEM_LOCK(vm)	simple_lock(&vm->vm_lock)
    137      1.1    yamt #define	VMEM_UNLOCK(vm)	simple_unlock(&vm->vm_lock)
    138      1.1    yamt #define	VMEM_LOCK_INIT(vm)	simple_lock_init(&vm->vm_lock);
    139      1.1    yamt #define	VMEM_ASSERT_LOCKED(vm) \
    140      1.1    yamt 	LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
    141      1.1    yamt #define	VMEM_ASSERT_UNLOCKED(vm) \
    142      1.1    yamt 	LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
    143      1.1    yamt 
    144      1.1    yamt /* boundary tag */
    145      1.1    yamt struct vmem_btag {
    146      1.1    yamt 	CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
    147      1.1    yamt 	union {
    148      1.1    yamt 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
    149      1.1    yamt 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
    150      1.1    yamt 	} bt_u;
    151      1.1    yamt #define	bt_hashlist	bt_u.u_hashlist
    152      1.1    yamt #define	bt_freelist	bt_u.u_freelist
    153      1.1    yamt 	vmem_addr_t bt_start;
    154      1.1    yamt 	vmem_size_t bt_size;
    155      1.1    yamt 	int bt_type;
    156      1.1    yamt };
    157      1.1    yamt 
    158      1.1    yamt #define	BT_TYPE_SPAN		1
    159      1.1    yamt #define	BT_TYPE_SPAN_STATIC	2
    160      1.1    yamt #define	BT_TYPE_FREE		3
    161      1.1    yamt #define	BT_TYPE_BUSY		4
    162      1.1    yamt #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
    163      1.1    yamt 
    164      1.1    yamt #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size)
    165      1.1    yamt 
    166      1.1    yamt typedef struct vmem_btag bt_t;
    167      1.1    yamt 
    168      1.1    yamt /* ---- misc */
    169      1.1    yamt 
    170  1.8.6.2    yamt #define	VMEM_ALIGNUP(addr, align) \
    171  1.8.6.2    yamt 	(-(-(addr) & -(align)))
    172  1.8.6.2    yamt #define	VMEM_CROSS_P(addr1, addr2, boundary) \
    173  1.8.6.2    yamt 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
    174  1.8.6.2    yamt 
    175      1.4    yamt #define	ORDER2SIZE(order)	((vmem_size_t)1 << (order))
    176      1.4    yamt 
    177      1.1    yamt static int
    178      1.1    yamt calc_order(vmem_size_t size)
    179      1.1    yamt {
    180      1.4    yamt 	vmem_size_t target;
    181      1.1    yamt 	int i;
    182      1.1    yamt 
    183      1.1    yamt 	KASSERT(size != 0);
    184      1.1    yamt 
    185      1.1    yamt 	i = 0;
    186      1.4    yamt 	target = size >> 1;
    187      1.4    yamt 	while (ORDER2SIZE(i) <= target) {
    188      1.1    yamt 		i++;
    189      1.1    yamt 	}
    190      1.1    yamt 
    191      1.4    yamt 	KASSERT(ORDER2SIZE(i) <= size);
    192      1.4    yamt 	KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
    193      1.1    yamt 
    194      1.1    yamt 	return i;
    195      1.1    yamt }
    196      1.1    yamt 
    197      1.1    yamt #if defined(_KERNEL)
    198      1.1    yamt static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
    199      1.1    yamt #endif /* defined(_KERNEL) */
    200      1.1    yamt 
    201      1.1    yamt static void *
    202      1.1    yamt xmalloc(size_t sz, vm_flag_t flags)
    203      1.1    yamt {
    204      1.1    yamt 
    205      1.1    yamt #if defined(_KERNEL)
    206      1.1    yamt 	return malloc(sz, M_VMEM,
    207      1.1    yamt 	    M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
    208      1.1    yamt #else /* defined(_KERNEL) */
    209      1.1    yamt 	return malloc(sz);
    210      1.1    yamt #endif /* defined(_KERNEL) */
    211      1.1    yamt }
    212      1.1    yamt 
    213      1.1    yamt static void
    214      1.1    yamt xfree(void *p)
    215      1.1    yamt {
    216      1.1    yamt 
    217      1.1    yamt #if defined(_KERNEL)
    218      1.1    yamt 	return free(p, M_VMEM);
    219      1.1    yamt #else /* defined(_KERNEL) */
    220      1.1    yamt 	return free(p);
    221      1.1    yamt #endif /* defined(_KERNEL) */
    222      1.1    yamt }
    223      1.1    yamt 
    224      1.1    yamt /* ---- boundary tag */
    225      1.1    yamt 
    226      1.1    yamt #if defined(_KERNEL)
    227      1.1    yamt static struct pool_cache bt_poolcache;
    228      1.1    yamt static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
    229      1.1    yamt #endif /* defined(_KERNEL) */
    230      1.1    yamt 
    231      1.1    yamt static bt_t *
    232  1.8.6.2    yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
    233      1.1    yamt {
    234      1.1    yamt 	bt_t *bt;
    235      1.1    yamt 
    236      1.1    yamt #if defined(_KERNEL)
    237  1.8.6.2    yamt 	int s;
    238  1.8.6.2    yamt 
    239      1.1    yamt 	/* XXX bootstrap */
    240  1.8.6.2    yamt 	s = splvm();
    241      1.1    yamt 	bt = pool_cache_get(&bt_poolcache,
    242      1.1    yamt 	    (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
    243  1.8.6.2    yamt 	splx(s);
    244      1.1    yamt #else /* defined(_KERNEL) */
    245      1.1    yamt 	bt = malloc(sizeof *bt);
    246      1.1    yamt #endif /* defined(_KERNEL) */
    247      1.1    yamt 
    248      1.1    yamt 	return bt;
    249      1.1    yamt }
    250      1.1    yamt 
    251      1.1    yamt static void
    252  1.8.6.2    yamt bt_free(vmem_t *vm, bt_t *bt)
    253      1.1    yamt {
    254      1.1    yamt 
    255      1.1    yamt #if defined(_KERNEL)
    256  1.8.6.2    yamt 	int s;
    257  1.8.6.2    yamt 
    258      1.1    yamt 	/* XXX bootstrap */
    259  1.8.6.2    yamt 	s = splvm();
    260      1.1    yamt 	pool_cache_put(&bt_poolcache, bt);
    261  1.8.6.2    yamt 	splx(s);
    262      1.1    yamt #else /* defined(_KERNEL) */
    263      1.1    yamt 	free(bt);
    264      1.1    yamt #endif /* defined(_KERNEL) */
    265      1.1    yamt }
    266      1.1    yamt 
    267      1.1    yamt /*
    268      1.1    yamt  * freelist[0] ... [1, 1]
    269      1.1    yamt  * freelist[1] ... [2, 3]
    270      1.1    yamt  * freelist[2] ... [4, 7]
    271      1.1    yamt  * freelist[3] ... [8, 15]
    272      1.1    yamt  *  :
    273      1.1    yamt  * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
    274      1.1    yamt  *  :
    275      1.1    yamt  */
    276      1.1    yamt 
    277      1.1    yamt static struct vmem_freelist *
    278      1.1    yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
    279      1.1    yamt {
    280      1.1    yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    281      1.1    yamt 	int idx;
    282      1.1    yamt 
    283      1.1    yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    284      1.1    yamt 	KASSERT(size != 0);
    285      1.1    yamt 
    286      1.1    yamt 	idx = calc_order(qsize);
    287      1.1    yamt 	KASSERT(idx >= 0);
    288      1.1    yamt 	KASSERT(idx < VMEM_MAXORDER);
    289      1.1    yamt 
    290      1.1    yamt 	return &vm->vm_freelist[idx];
    291      1.1    yamt }
    292      1.1    yamt 
    293      1.1    yamt static struct vmem_freelist *
    294      1.1    yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
    295      1.1    yamt {
    296      1.1    yamt 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
    297      1.1    yamt 	int idx;
    298      1.1    yamt 
    299      1.1    yamt 	KASSERT((size & vm->vm_quantum_mask) == 0);
    300      1.1    yamt 	KASSERT(size != 0);
    301      1.1    yamt 
    302      1.1    yamt 	idx = calc_order(qsize);
    303      1.4    yamt 	if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
    304      1.1    yamt 		idx++;
    305      1.1    yamt 		/* check too large request? */
    306      1.1    yamt 	}
    307      1.1    yamt 	KASSERT(idx >= 0);
    308      1.1    yamt 	KASSERT(idx < VMEM_MAXORDER);
    309      1.1    yamt 
    310      1.1    yamt 	return &vm->vm_freelist[idx];
    311      1.1    yamt }
    312      1.1    yamt 
    313      1.1    yamt /* ---- boundary tag hash */
    314      1.1    yamt 
    315      1.1    yamt static struct vmem_hashlist *
    316      1.1    yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
    317      1.1    yamt {
    318      1.1    yamt 	struct vmem_hashlist *list;
    319      1.1    yamt 	unsigned int hash;
    320      1.1    yamt 
    321      1.1    yamt 	hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
    322      1.1    yamt 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
    323      1.1    yamt 
    324      1.1    yamt 	return list;
    325      1.1    yamt }
    326      1.1    yamt 
    327      1.1    yamt static bt_t *
    328      1.1    yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
    329      1.1    yamt {
    330      1.1    yamt 	struct vmem_hashlist *list;
    331      1.1    yamt 	bt_t *bt;
    332      1.1    yamt 
    333      1.1    yamt 	list = bt_hashhead(vm, addr);
    334      1.1    yamt 	LIST_FOREACH(bt, list, bt_hashlist) {
    335      1.1    yamt 		if (bt->bt_start == addr) {
    336      1.1    yamt 			break;
    337      1.1    yamt 		}
    338      1.1    yamt 	}
    339      1.1    yamt 
    340      1.1    yamt 	return bt;
    341      1.1    yamt }
    342      1.1    yamt 
    343      1.1    yamt static void
    344      1.1    yamt bt_rembusy(vmem_t *vm, bt_t *bt)
    345      1.1    yamt {
    346      1.1    yamt 
    347      1.1    yamt 	KASSERT(vm->vm_nbusytag > 0);
    348      1.1    yamt 	vm->vm_nbusytag--;
    349      1.1    yamt 	LIST_REMOVE(bt, bt_hashlist);
    350      1.1    yamt }
    351      1.1    yamt 
    352      1.1    yamt static void
    353      1.1    yamt bt_insbusy(vmem_t *vm, bt_t *bt)
    354      1.1    yamt {
    355      1.1    yamt 	struct vmem_hashlist *list;
    356      1.1    yamt 
    357      1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
    358      1.1    yamt 
    359      1.1    yamt 	list = bt_hashhead(vm, bt->bt_start);
    360      1.1    yamt 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
    361      1.1    yamt 	vm->vm_nbusytag++;
    362      1.1    yamt }
    363      1.1    yamt 
    364      1.1    yamt /* ---- boundary tag list */
    365      1.1    yamt 
    366      1.1    yamt static void
    367      1.1    yamt bt_remseg(vmem_t *vm, bt_t *bt)
    368      1.1    yamt {
    369      1.1    yamt 
    370      1.1    yamt 	CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
    371      1.1    yamt }
    372      1.1    yamt 
    373      1.1    yamt static void
    374      1.1    yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
    375      1.1    yamt {
    376      1.1    yamt 
    377      1.1    yamt 	CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
    378      1.1    yamt }
    379      1.1    yamt 
    380      1.1    yamt static void
    381      1.1    yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
    382      1.1    yamt {
    383      1.1    yamt 
    384      1.1    yamt 	CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
    385      1.1    yamt }
    386      1.1    yamt 
    387      1.1    yamt static void
    388  1.8.6.2    yamt bt_remfree(vmem_t *vm, bt_t *bt)
    389      1.1    yamt {
    390      1.1    yamt 
    391      1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    392      1.1    yamt 
    393      1.1    yamt 	LIST_REMOVE(bt, bt_freelist);
    394      1.1    yamt }
    395      1.1    yamt 
    396      1.1    yamt static void
    397      1.1    yamt bt_insfree(vmem_t *vm, bt_t *bt)
    398      1.1    yamt {
    399      1.1    yamt 	struct vmem_freelist *list;
    400      1.1    yamt 
    401      1.1    yamt 	list = bt_freehead_tofree(vm, bt->bt_size);
    402      1.1    yamt 	LIST_INSERT_HEAD(list, bt, bt_freelist);
    403      1.1    yamt }
    404      1.1    yamt 
    405      1.1    yamt /* ---- vmem internal functions */
    406      1.1    yamt 
    407      1.5    yamt #if defined(QCACHE)
    408      1.5    yamt static inline vm_flag_t
    409      1.5    yamt prf_to_vmf(int prflags)
    410      1.5    yamt {
    411      1.5    yamt 	vm_flag_t vmflags;
    412      1.5    yamt 
    413      1.5    yamt 	KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
    414      1.5    yamt 	if ((prflags & PR_WAITOK) != 0) {
    415      1.5    yamt 		vmflags = VM_SLEEP;
    416      1.5    yamt 	} else {
    417      1.5    yamt 		vmflags = VM_NOSLEEP;
    418      1.5    yamt 	}
    419      1.5    yamt 	return vmflags;
    420      1.5    yamt }
    421      1.5    yamt 
    422      1.5    yamt static inline int
    423      1.5    yamt vmf_to_prf(vm_flag_t vmflags)
    424      1.5    yamt {
    425      1.5    yamt 	int prflags;
    426      1.5    yamt 
    427      1.7    yamt 	if ((vmflags & VM_SLEEP) != 0) {
    428      1.5    yamt 		prflags = PR_WAITOK;
    429      1.7    yamt 	} else {
    430      1.5    yamt 		prflags = PR_NOWAIT;
    431      1.5    yamt 	}
    432      1.5    yamt 	return prflags;
    433      1.5    yamt }
    434      1.5    yamt 
    435      1.5    yamt static size_t
    436      1.5    yamt qc_poolpage_size(size_t qcache_max)
    437      1.5    yamt {
    438      1.5    yamt 	int i;
    439      1.5    yamt 
    440      1.5    yamt 	for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
    441      1.5    yamt 		/* nothing */
    442      1.5    yamt 	}
    443      1.5    yamt 	return ORDER2SIZE(i);
    444      1.5    yamt }
    445      1.5    yamt 
    446      1.5    yamt static void *
    447      1.5    yamt qc_poolpage_alloc(struct pool *pool, int prflags)
    448      1.5    yamt {
    449      1.5    yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    450      1.5    yamt 	vmem_t *vm = qc->qc_vmem;
    451      1.5    yamt 
    452      1.5    yamt 	return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
    453      1.5    yamt 	    prf_to_vmf(prflags) | VM_INSTANTFIT);
    454      1.5    yamt }
    455      1.5    yamt 
    456      1.5    yamt static void
    457      1.5    yamt qc_poolpage_free(struct pool *pool, void *addr)
    458      1.5    yamt {
    459      1.5    yamt 	qcache_t *qc = QC_POOL_TO_QCACHE(pool);
    460      1.5    yamt 	vmem_t *vm = qc->qc_vmem;
    461      1.5    yamt 
    462      1.5    yamt 	vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
    463      1.5    yamt }
    464      1.5    yamt 
    465      1.5    yamt static void
    466      1.5    yamt qc_init(vmem_t *vm, size_t qcache_max)
    467      1.5    yamt {
    468  1.8.6.2    yamt 	qcache_t *prevqc;
    469      1.5    yamt 	struct pool_allocator *pa;
    470      1.5    yamt 	int qcache_idx_max;
    471      1.5    yamt 	int i;
    472      1.5    yamt 
    473      1.5    yamt 	KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
    474      1.5    yamt 	if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
    475      1.5    yamt 		qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
    476      1.5    yamt 	}
    477      1.5    yamt 	vm->vm_qcache_max = qcache_max;
    478      1.5    yamt 	pa = &vm->vm_qcache_allocator;
    479      1.5    yamt 	memset(pa, 0, sizeof(*pa));
    480      1.5    yamt 	pa->pa_alloc = qc_poolpage_alloc;
    481      1.5    yamt 	pa->pa_free = qc_poolpage_free;
    482      1.5    yamt 	pa->pa_pagesz = qc_poolpage_size(qcache_max);
    483      1.5    yamt 
    484      1.5    yamt 	qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
    485  1.8.6.2    yamt 	prevqc = NULL;
    486  1.8.6.2    yamt 	for (i = qcache_idx_max; i > 0; i--) {
    487  1.8.6.2    yamt 		qcache_t *qc = &vm->vm_qcache_store[i - 1];
    488      1.5    yamt 		size_t size = i << vm->vm_quantum_shift;
    489      1.5    yamt 
    490      1.5    yamt 		qc->qc_vmem = vm;
    491      1.8  martin 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
    492      1.5    yamt 		    vm->vm_name, size);
    493  1.8.6.2    yamt 		pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
    494  1.8.6.2    yamt 		    0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
    495  1.8.6.2    yamt 		if (prevqc != NULL &&
    496  1.8.6.2    yamt 		    qc->qc_pool.pr_itemsperpage ==
    497  1.8.6.2    yamt 		    prevqc->qc_pool.pr_itemsperpage) {
    498  1.8.6.2    yamt 			pool_destroy(&qc->qc_pool);
    499  1.8.6.2    yamt 			vm->vm_qcache[i - 1] = prevqc;
    500  1.8.6.2    yamt 		}
    501      1.5    yamt 		pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
    502  1.8.6.2    yamt 		vm->vm_qcache[i - 1] = qc;
    503  1.8.6.2    yamt 		prevqc = qc;
    504  1.8.6.2    yamt 	}
    505  1.8.6.2    yamt }
    506  1.8.6.2    yamt 
    507  1.8.6.2    yamt static void
    508  1.8.6.2    yamt qc_destroy(vmem_t *vm)
    509  1.8.6.2    yamt {
    510  1.8.6.2    yamt 	const qcache_t *prevqc;
    511  1.8.6.2    yamt 	int i;
    512  1.8.6.2    yamt 	int qcache_idx_max;
    513  1.8.6.2    yamt 
    514  1.8.6.2    yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    515  1.8.6.2    yamt 	prevqc = NULL;
    516  1.8.6.2    yamt 	for (i = 0; i < qcache_idx_max; i++) {
    517  1.8.6.2    yamt 		qcache_t *qc = vm->vm_qcache[i];
    518  1.8.6.2    yamt 
    519  1.8.6.2    yamt 		if (prevqc == qc) {
    520  1.8.6.2    yamt 			continue;
    521  1.8.6.2    yamt 		}
    522  1.8.6.2    yamt 		pool_cache_destroy(&qc->qc_cache);
    523  1.8.6.2    yamt 		pool_destroy(&qc->qc_pool);
    524  1.8.6.2    yamt 		prevqc = qc;
    525      1.5    yamt 	}
    526      1.5    yamt }
    527      1.6    yamt 
    528      1.6    yamt static boolean_t
    529      1.6    yamt qc_reap(vmem_t *vm)
    530      1.6    yamt {
    531  1.8.6.2    yamt 	const qcache_t *prevqc;
    532      1.6    yamt 	int i;
    533      1.6    yamt 	int qcache_idx_max;
    534      1.6    yamt 	boolean_t didsomething = FALSE;
    535      1.6    yamt 
    536      1.6    yamt 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
    537  1.8.6.2    yamt 	prevqc = NULL;
    538  1.8.6.2    yamt 	for (i = 0; i < qcache_idx_max; i++) {
    539  1.8.6.2    yamt 		qcache_t *qc = vm->vm_qcache[i];
    540      1.6    yamt 
    541  1.8.6.2    yamt 		if (prevqc == qc) {
    542  1.8.6.2    yamt 			continue;
    543  1.8.6.2    yamt 		}
    544      1.6    yamt 		if (pool_reclaim(&qc->qc_pool) != 0) {
    545      1.6    yamt 			didsomething = TRUE;
    546      1.6    yamt 		}
    547  1.8.6.2    yamt 		prevqc = qc;
    548      1.6    yamt 	}
    549      1.6    yamt 
    550      1.6    yamt 	return didsomething;
    551      1.6    yamt }
    552      1.5    yamt #endif /* defined(QCACHE) */
    553      1.5    yamt 
    554      1.1    yamt #if defined(_KERNEL)
    555      1.1    yamt static int
    556      1.1    yamt vmem_init(void)
    557      1.1    yamt {
    558      1.1    yamt 
    559      1.1    yamt 	pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
    560      1.1    yamt 	return 0;
    561      1.1    yamt }
    562      1.1    yamt #endif /* defined(_KERNEL) */
    563      1.1    yamt 
    564      1.1    yamt static vmem_addr_t
    565      1.1    yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
    566      1.1    yamt     int spanbttype)
    567      1.1    yamt {
    568      1.1    yamt 	bt_t *btspan;
    569      1.1    yamt 	bt_t *btfree;
    570      1.1    yamt 
    571      1.1    yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    572      1.1    yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    573      1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    574      1.1    yamt 
    575      1.1    yamt 	btspan = bt_alloc(vm, flags);
    576      1.1    yamt 	if (btspan == NULL) {
    577      1.1    yamt 		return VMEM_ADDR_NULL;
    578      1.1    yamt 	}
    579      1.1    yamt 	btfree = bt_alloc(vm, flags);
    580      1.1    yamt 	if (btfree == NULL) {
    581      1.1    yamt 		bt_free(vm, btspan);
    582      1.1    yamt 		return VMEM_ADDR_NULL;
    583      1.1    yamt 	}
    584      1.1    yamt 
    585      1.1    yamt 	btspan->bt_type = spanbttype;
    586      1.1    yamt 	btspan->bt_start = addr;
    587      1.1    yamt 	btspan->bt_size = size;
    588      1.1    yamt 
    589      1.1    yamt 	btfree->bt_type = BT_TYPE_FREE;
    590      1.1    yamt 	btfree->bt_start = addr;
    591      1.1    yamt 	btfree->bt_size = size;
    592      1.1    yamt 
    593      1.1    yamt 	VMEM_LOCK(vm);
    594      1.1    yamt 	bt_insseg_tail(vm, btspan);
    595      1.1    yamt 	bt_insseg(vm, btfree, btspan);
    596      1.1    yamt 	bt_insfree(vm, btfree);
    597      1.1    yamt 	VMEM_UNLOCK(vm);
    598      1.1    yamt 
    599      1.1    yamt 	return addr;
    600      1.1    yamt }
    601      1.1    yamt 
    602      1.1    yamt static int
    603      1.1    yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
    604      1.1    yamt {
    605      1.1    yamt 	vmem_addr_t addr;
    606      1.1    yamt 
    607      1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    608      1.1    yamt 
    609      1.1    yamt 	if (vm->vm_allocfn == NULL) {
    610      1.1    yamt 		return EINVAL;
    611      1.1    yamt 	}
    612      1.1    yamt 
    613      1.1    yamt 	addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
    614      1.1    yamt 	if (addr == VMEM_ADDR_NULL) {
    615      1.1    yamt 		return ENOMEM;
    616      1.1    yamt 	}
    617      1.1    yamt 
    618      1.1    yamt 	if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
    619      1.1    yamt 		(*vm->vm_freefn)(vm->vm_source, addr, size);
    620      1.1    yamt 		return ENOMEM;
    621      1.1    yamt 	}
    622      1.1    yamt 
    623      1.1    yamt 	return 0;
    624      1.1    yamt }
    625      1.1    yamt 
    626      1.1    yamt static int
    627      1.1    yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
    628      1.1    yamt {
    629      1.1    yamt 	bt_t *bt;
    630      1.1    yamt 	int i;
    631      1.1    yamt 	struct vmem_hashlist *newhashlist;
    632      1.1    yamt 	struct vmem_hashlist *oldhashlist;
    633      1.1    yamt 	size_t oldhashsize;
    634      1.1    yamt 
    635      1.1    yamt 	KASSERT(newhashsize > 0);
    636      1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    637      1.1    yamt 
    638      1.1    yamt 	newhashlist =
    639      1.1    yamt 	    xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
    640      1.1    yamt 	if (newhashlist == NULL) {
    641      1.1    yamt 		return ENOMEM;
    642      1.1    yamt 	}
    643      1.1    yamt 	for (i = 0; i < newhashsize; i++) {
    644      1.1    yamt 		LIST_INIT(&newhashlist[i]);
    645      1.1    yamt 	}
    646      1.1    yamt 
    647      1.1    yamt 	VMEM_LOCK(vm);
    648      1.1    yamt 	oldhashlist = vm->vm_hashlist;
    649      1.1    yamt 	oldhashsize = vm->vm_hashsize;
    650      1.1    yamt 	vm->vm_hashlist = newhashlist;
    651      1.1    yamt 	vm->vm_hashsize = newhashsize;
    652      1.1    yamt 	if (oldhashlist == NULL) {
    653      1.1    yamt 		VMEM_UNLOCK(vm);
    654      1.1    yamt 		return 0;
    655      1.1    yamt 	}
    656      1.1    yamt 	for (i = 0; i < oldhashsize; i++) {
    657      1.1    yamt 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
    658      1.1    yamt 			bt_rembusy(vm, bt); /* XXX */
    659      1.1    yamt 			bt_insbusy(vm, bt);
    660      1.1    yamt 		}
    661      1.1    yamt 	}
    662      1.1    yamt 	VMEM_UNLOCK(vm);
    663      1.1    yamt 
    664      1.1    yamt 	xfree(oldhashlist);
    665      1.1    yamt 
    666      1.1    yamt 	return 0;
    667      1.1    yamt }
    668      1.1    yamt 
    669  1.8.6.1    yamt /*
    670  1.8.6.1    yamt  * vmem_fit: check if a bt can satisfy the given restrictions.
    671  1.8.6.1    yamt  */
    672  1.8.6.1    yamt 
    673  1.8.6.1    yamt static vmem_addr_t
    674  1.8.6.1    yamt vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
    675  1.8.6.1    yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
    676  1.8.6.1    yamt {
    677  1.8.6.1    yamt 	vmem_addr_t start;
    678  1.8.6.1    yamt 	vmem_addr_t end;
    679  1.8.6.1    yamt 
    680  1.8.6.1    yamt 	KASSERT(bt->bt_size >= size);
    681  1.8.6.1    yamt 
    682  1.8.6.1    yamt 	/*
    683  1.8.6.1    yamt 	 * XXX assumption: vmem_addr_t and vmem_size_t are
    684  1.8.6.1    yamt 	 * unsigned integer of the same size.
    685  1.8.6.1    yamt 	 */
    686  1.8.6.1    yamt 
    687  1.8.6.1    yamt 	start = bt->bt_start;
    688  1.8.6.1    yamt 	if (start < minaddr) {
    689  1.8.6.1    yamt 		start = minaddr;
    690  1.8.6.1    yamt 	}
    691  1.8.6.1    yamt 	end = BT_END(bt);
    692  1.8.6.1    yamt 	if (end > maxaddr - 1) {
    693  1.8.6.1    yamt 		end = maxaddr - 1;
    694  1.8.6.1    yamt 	}
    695  1.8.6.1    yamt 	if (start >= end) {
    696  1.8.6.1    yamt 		return VMEM_ADDR_NULL;
    697  1.8.6.1    yamt 	}
    698  1.8.6.2    yamt 
    699  1.8.6.2    yamt 	start = VMEM_ALIGNUP(start - phase, align) + phase;
    700  1.8.6.1    yamt 	if (start < bt->bt_start) {
    701  1.8.6.1    yamt 		start += align;
    702  1.8.6.1    yamt 	}
    703  1.8.6.2    yamt 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
    704  1.8.6.1    yamt 		KASSERT(align < nocross);
    705  1.8.6.2    yamt 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
    706  1.8.6.1    yamt 	}
    707  1.8.6.1    yamt 	if (start < end && end - start >= size) {
    708  1.8.6.1    yamt 		KASSERT((start & (align - 1)) == phase);
    709  1.8.6.2    yamt 		KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
    710  1.8.6.1    yamt 		KASSERT(minaddr <= start);
    711  1.8.6.1    yamt 		KASSERT(maxaddr == 0 || start + size <= maxaddr);
    712  1.8.6.1    yamt 		KASSERT(bt->bt_start <= start);
    713  1.8.6.1    yamt 		KASSERT(start + size <= BT_END(bt));
    714  1.8.6.1    yamt 		return start;
    715  1.8.6.1    yamt 	}
    716  1.8.6.1    yamt 	return VMEM_ADDR_NULL;
    717  1.8.6.1    yamt }
    718  1.8.6.1    yamt 
    719      1.1    yamt /* ---- vmem API */
    720      1.1    yamt 
    721      1.1    yamt /*
    722      1.1    yamt  * vmem_create: create an arena.
    723      1.1    yamt  *
    724      1.1    yamt  * => must not be called from interrupt context.
    725      1.1    yamt  */
    726      1.1    yamt 
    727      1.1    yamt vmem_t *
    728      1.1    yamt vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    729      1.1    yamt     vmem_size_t quantum,
    730      1.1    yamt     vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
    731      1.1    yamt     void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
    732      1.1    yamt     vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
    733      1.1    yamt {
    734      1.1    yamt 	vmem_t *vm;
    735      1.1    yamt 	int i;
    736      1.1    yamt #if defined(_KERNEL)
    737      1.1    yamt 	static ONCE_DECL(control);
    738      1.1    yamt #endif /* defined(_KERNEL) */
    739      1.1    yamt 
    740      1.1    yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    741      1.1    yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    742      1.1    yamt 
    743      1.1    yamt #if defined(_KERNEL)
    744      1.1    yamt 	if (RUN_ONCE(&control, vmem_init)) {
    745      1.1    yamt 		return NULL;
    746      1.1    yamt 	}
    747      1.1    yamt #endif /* defined(_KERNEL) */
    748      1.1    yamt 	vm = xmalloc(sizeof(*vm), flags);
    749      1.1    yamt 	if (vm == NULL) {
    750      1.1    yamt 		return NULL;
    751      1.1    yamt 	}
    752      1.1    yamt 
    753      1.1    yamt 	VMEM_LOCK_INIT(vm);
    754      1.1    yamt 	vm->vm_name = name;
    755      1.1    yamt 	vm->vm_quantum_mask = quantum - 1;
    756      1.1    yamt 	vm->vm_quantum_shift = calc_order(quantum);
    757      1.4    yamt 	KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
    758      1.1    yamt 	vm->vm_allocfn = allocfn;
    759      1.1    yamt 	vm->vm_freefn = freefn;
    760      1.1    yamt 	vm->vm_source = source;
    761      1.1    yamt 	vm->vm_nbusytag = 0;
    762      1.5    yamt #if defined(QCACHE)
    763      1.5    yamt 	qc_init(vm, qcache_max);
    764      1.5    yamt #endif /* defined(QCACHE) */
    765      1.1    yamt 
    766      1.1    yamt 	CIRCLEQ_INIT(&vm->vm_seglist);
    767      1.1    yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
    768      1.1    yamt 		LIST_INIT(&vm->vm_freelist[i]);
    769      1.1    yamt 	}
    770      1.1    yamt 	vm->vm_hashlist = NULL;
    771      1.1    yamt 	if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
    772      1.1    yamt 		vmem_destroy(vm);
    773      1.1    yamt 		return NULL;
    774      1.1    yamt 	}
    775      1.1    yamt 
    776      1.1    yamt 	if (size != 0) {
    777      1.1    yamt 		if (vmem_add(vm, base, size, flags) == 0) {
    778      1.1    yamt 			vmem_destroy(vm);
    779      1.1    yamt 			return NULL;
    780      1.1    yamt 		}
    781      1.1    yamt 	}
    782      1.1    yamt 
    783      1.1    yamt 	return vm;
    784      1.1    yamt }
    785      1.1    yamt 
    786      1.1    yamt void
    787      1.1    yamt vmem_destroy(vmem_t *vm)
    788      1.1    yamt {
    789      1.1    yamt 
    790      1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    791      1.1    yamt 
    792  1.8.6.2    yamt #if defined(QCACHE)
    793  1.8.6.2    yamt 	qc_destroy(vm);
    794  1.8.6.2    yamt #endif /* defined(QCACHE) */
    795      1.1    yamt 	if (vm->vm_hashlist != NULL) {
    796      1.1    yamt 		int i;
    797      1.1    yamt 
    798      1.1    yamt 		for (i = 0; i < vm->vm_hashsize; i++) {
    799      1.1    yamt 			bt_t *bt;
    800      1.1    yamt 
    801      1.1    yamt 			while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
    802      1.1    yamt 				KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
    803      1.1    yamt 				bt_free(vm, bt);
    804      1.1    yamt 			}
    805      1.1    yamt 		}
    806      1.1    yamt 		xfree(vm->vm_hashlist);
    807      1.1    yamt 	}
    808      1.1    yamt 	xfree(vm);
    809      1.1    yamt }
    810      1.1    yamt 
    811      1.1    yamt vmem_size_t
    812      1.1    yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
    813      1.1    yamt {
    814      1.1    yamt 
    815      1.1    yamt 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
    816      1.1    yamt }
    817      1.1    yamt 
    818      1.1    yamt /*
    819      1.1    yamt  * vmem_alloc:
    820      1.1    yamt  *
    821      1.1    yamt  * => caller must ensure appropriate spl,
    822      1.1    yamt  *    if the arena can be accessed from interrupt context.
    823      1.1    yamt  */
    824      1.1    yamt 
    825      1.1    yamt vmem_addr_t
    826      1.1    yamt vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
    827      1.1    yamt {
    828  1.8.6.1    yamt 	const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
    829  1.8.6.1    yamt 	const vm_flag_t strat __unused = flags & VM_FITMASK;
    830      1.1    yamt 
    831      1.1    yamt 	KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    832      1.1    yamt 	KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
    833      1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
    834      1.1    yamt 
    835      1.1    yamt 	KASSERT(size0 > 0);
    836      1.1    yamt 	KASSERT(size > 0);
    837      1.1    yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    838      1.3    yamt 	if ((flags & VM_SLEEP) != 0) {
    839  1.8.6.2    yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    840      1.3    yamt 	}
    841      1.1    yamt 
    842      1.5    yamt #if defined(QCACHE)
    843      1.5    yamt 	if (size <= vm->vm_qcache_max) {
    844      1.5    yamt 		int qidx = size >> vm->vm_quantum_shift;
    845  1.8.6.2    yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
    846      1.5    yamt 
    847      1.5    yamt 		return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
    848      1.5    yamt 		    vmf_to_prf(flags));
    849      1.5    yamt 	}
    850      1.5    yamt #endif /* defined(QCACHE) */
    851      1.5    yamt 
    852  1.8.6.1    yamt 	return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
    853  1.8.6.1    yamt }
    854  1.8.6.1    yamt 
    855  1.8.6.1    yamt vmem_addr_t
    856  1.8.6.1    yamt vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
    857  1.8.6.1    yamt     vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
    858  1.8.6.1    yamt     vm_flag_t flags)
    859  1.8.6.1    yamt {
    860  1.8.6.1    yamt 	struct vmem_freelist *list;
    861  1.8.6.1    yamt 	struct vmem_freelist *first;
    862  1.8.6.1    yamt 	struct vmem_freelist *end;
    863  1.8.6.1    yamt 	bt_t *bt;
    864  1.8.6.1    yamt 	bt_t *btnew;
    865  1.8.6.1    yamt 	bt_t *btnew2;
    866  1.8.6.1    yamt 	const vmem_size_t size = vmem_roundup_size(vm, size0);
    867  1.8.6.1    yamt 	vm_flag_t strat = flags & VM_FITMASK;
    868  1.8.6.1    yamt 	vmem_addr_t start;
    869  1.8.6.1    yamt 
    870  1.8.6.1    yamt 	KASSERT(size0 > 0);
    871  1.8.6.1    yamt 	KASSERT(size > 0);
    872  1.8.6.1    yamt 	KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
    873  1.8.6.1    yamt 	if ((flags & VM_SLEEP) != 0) {
    874  1.8.6.2    yamt 		ASSERT_SLEEPABLE(NULL, __func__);
    875  1.8.6.1    yamt 	}
    876  1.8.6.1    yamt 	KASSERT((align & vm->vm_quantum_mask) == 0);
    877  1.8.6.1    yamt 	KASSERT((align & (align - 1)) == 0);
    878  1.8.6.1    yamt 	KASSERT((phase & vm->vm_quantum_mask) == 0);
    879  1.8.6.1    yamt 	KASSERT((nocross & vm->vm_quantum_mask) == 0);
    880  1.8.6.1    yamt 	KASSERT((nocross & (nocross - 1)) == 0);
    881  1.8.6.1    yamt 	KASSERT((align == 0 && phase == 0) || phase < align);
    882  1.8.6.1    yamt 	KASSERT(nocross == 0 || nocross >= size);
    883  1.8.6.1    yamt 	KASSERT(maxaddr == 0 || minaddr < maxaddr);
    884  1.8.6.2    yamt 	KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
    885  1.8.6.1    yamt 
    886  1.8.6.1    yamt 	if (align == 0) {
    887  1.8.6.1    yamt 		align = vm->vm_quantum_mask + 1;
    888  1.8.6.1    yamt 	}
    889      1.1    yamt 	btnew = bt_alloc(vm, flags);
    890      1.1    yamt 	if (btnew == NULL) {
    891      1.1    yamt 		return VMEM_ADDR_NULL;
    892      1.1    yamt 	}
    893  1.8.6.1    yamt 	btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
    894  1.8.6.1    yamt 	if (btnew2 == NULL) {
    895  1.8.6.1    yamt 		bt_free(vm, btnew);
    896  1.8.6.1    yamt 		return VMEM_ADDR_NULL;
    897  1.8.6.1    yamt 	}
    898      1.1    yamt 
    899      1.1    yamt retry_strat:
    900      1.1    yamt 	first = bt_freehead_toalloc(vm, size, strat);
    901      1.1    yamt 	end = &vm->vm_freelist[VMEM_MAXORDER];
    902      1.1    yamt retry:
    903      1.1    yamt 	bt = NULL;
    904      1.1    yamt 	VMEM_LOCK(vm);
    905      1.2    yamt 	if (strat == VM_INSTANTFIT) {
    906      1.2    yamt 		for (list = first; list < end; list++) {
    907      1.2    yamt 			bt = LIST_FIRST(list);
    908      1.2    yamt 			if (bt != NULL) {
    909  1.8.6.1    yamt 				start = vmem_fit(bt, size, align, phase,
    910  1.8.6.1    yamt 				    nocross, minaddr, maxaddr);
    911  1.8.6.1    yamt 				if (start != VMEM_ADDR_NULL) {
    912  1.8.6.1    yamt 					goto gotit;
    913  1.8.6.1    yamt 				}
    914      1.2    yamt 			}
    915      1.2    yamt 		}
    916      1.2    yamt 	} else { /* VM_BESTFIT */
    917      1.2    yamt 		for (list = first; list < end; list++) {
    918      1.2    yamt 			LIST_FOREACH(bt, list, bt_freelist) {
    919      1.2    yamt 				if (bt->bt_size >= size) {
    920  1.8.6.1    yamt 					start = vmem_fit(bt, size, align, phase,
    921  1.8.6.1    yamt 					    nocross, minaddr, maxaddr);
    922  1.8.6.1    yamt 					if (start != VMEM_ADDR_NULL) {
    923  1.8.6.1    yamt 						goto gotit;
    924  1.8.6.1    yamt 					}
    925      1.2    yamt 				}
    926      1.1    yamt 			}
    927      1.1    yamt 		}
    928      1.1    yamt 	}
    929      1.2    yamt 	VMEM_UNLOCK(vm);
    930      1.1    yamt #if 1
    931      1.2    yamt 	if (strat == VM_INSTANTFIT) {
    932      1.2    yamt 		strat = VM_BESTFIT;
    933      1.2    yamt 		goto retry_strat;
    934      1.2    yamt 	}
    935      1.1    yamt #endif
    936  1.8.6.1    yamt 	if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
    937  1.8.6.1    yamt 	    nocross != 0 || minaddr != 0 || maxaddr != 0) {
    938  1.8.6.1    yamt 
    939  1.8.6.1    yamt 		/*
    940  1.8.6.1    yamt 		 * XXX should try to import a region large enough to
    941  1.8.6.1    yamt 		 * satisfy restrictions?
    942  1.8.6.1    yamt 		 */
    943  1.8.6.1    yamt 
    944  1.8.6.2    yamt 		goto fail;
    945  1.8.6.1    yamt 	}
    946      1.2    yamt 	if (vmem_import(vm, size, flags) == 0) {
    947      1.2    yamt 		goto retry;
    948      1.1    yamt 	}
    949      1.2    yamt 	/* XXX */
    950  1.8.6.2    yamt fail:
    951  1.8.6.2    yamt 	bt_free(vm, btnew);
    952  1.8.6.2    yamt 	bt_free(vm, btnew2);
    953      1.2    yamt 	return VMEM_ADDR_NULL;
    954      1.2    yamt 
    955      1.2    yamt gotit:
    956      1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_FREE);
    957      1.1    yamt 	KASSERT(bt->bt_size >= size);
    958      1.1    yamt 	bt_remfree(vm, bt);
    959  1.8.6.1    yamt 	if (bt->bt_start != start) {
    960  1.8.6.1    yamt 		btnew2->bt_type = BT_TYPE_FREE;
    961  1.8.6.1    yamt 		btnew2->bt_start = bt->bt_start;
    962  1.8.6.1    yamt 		btnew2->bt_size = start - bt->bt_start;
    963  1.8.6.1    yamt 		bt->bt_start = start;
    964  1.8.6.1    yamt 		bt->bt_size -= btnew2->bt_size;
    965  1.8.6.1    yamt 		bt_insfree(vm, btnew2);
    966  1.8.6.1    yamt 		bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
    967  1.8.6.1    yamt 		btnew2 = NULL;
    968  1.8.6.1    yamt 	}
    969  1.8.6.1    yamt 	KASSERT(bt->bt_start == start);
    970      1.1    yamt 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
    971      1.1    yamt 		/* split */
    972      1.1    yamt 		btnew->bt_type = BT_TYPE_BUSY;
    973      1.1    yamt 		btnew->bt_start = bt->bt_start;
    974      1.1    yamt 		btnew->bt_size = size;
    975      1.1    yamt 		bt->bt_start = bt->bt_start + size;
    976      1.1    yamt 		bt->bt_size -= size;
    977      1.1    yamt 		bt_insfree(vm, bt);
    978      1.1    yamt 		bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
    979      1.1    yamt 		bt_insbusy(vm, btnew);
    980      1.1    yamt 		VMEM_UNLOCK(vm);
    981      1.1    yamt 	} else {
    982      1.1    yamt 		bt->bt_type = BT_TYPE_BUSY;
    983      1.1    yamt 		bt_insbusy(vm, bt);
    984      1.1    yamt 		VMEM_UNLOCK(vm);
    985      1.1    yamt 		bt_free(vm, btnew);
    986      1.1    yamt 		btnew = bt;
    987      1.1    yamt 	}
    988  1.8.6.1    yamt 	if (btnew2 != NULL) {
    989  1.8.6.1    yamt 		bt_free(vm, btnew2);
    990  1.8.6.1    yamt 	}
    991      1.1    yamt 	KASSERT(btnew->bt_size >= size);
    992      1.1    yamt 	btnew->bt_type = BT_TYPE_BUSY;
    993      1.1    yamt 
    994      1.1    yamt 	return btnew->bt_start;
    995      1.1    yamt }
    996      1.1    yamt 
    997      1.1    yamt /*
    998      1.1    yamt  * vmem_free:
    999      1.1    yamt  *
   1000      1.1    yamt  * => caller must ensure appropriate spl,
   1001      1.1    yamt  *    if the arena can be accessed from interrupt context.
   1002      1.1    yamt  */
   1003      1.1    yamt 
   1004      1.1    yamt void
   1005      1.1    yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1006      1.1    yamt {
   1007      1.1    yamt 
   1008      1.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
   1009      1.1    yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1010      1.1    yamt 	KASSERT(size > 0);
   1011      1.1    yamt 
   1012      1.5    yamt #if defined(QCACHE)
   1013      1.5    yamt 	if (size <= vm->vm_qcache_max) {
   1014      1.5    yamt 		int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
   1015  1.8.6.2    yamt 		qcache_t *qc = vm->vm_qcache[qidx - 1];
   1016      1.5    yamt 
   1017      1.5    yamt 		return pool_cache_put(&qc->qc_cache, (void *)addr);
   1018      1.5    yamt 	}
   1019      1.5    yamt #endif /* defined(QCACHE) */
   1020      1.5    yamt 
   1021  1.8.6.1    yamt 	vmem_xfree(vm, addr, size);
   1022  1.8.6.1    yamt }
   1023  1.8.6.1    yamt 
   1024  1.8.6.1    yamt void
   1025  1.8.6.2    yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
   1026  1.8.6.1    yamt {
   1027  1.8.6.1    yamt 	bt_t *bt;
   1028  1.8.6.1    yamt 	bt_t *t;
   1029  1.8.6.1    yamt 
   1030  1.8.6.1    yamt 	VMEM_ASSERT_UNLOCKED(vm);
   1031  1.8.6.1    yamt 	KASSERT(addr != VMEM_ADDR_NULL);
   1032  1.8.6.1    yamt 	KASSERT(size > 0);
   1033  1.8.6.1    yamt 
   1034      1.1    yamt 	VMEM_LOCK(vm);
   1035      1.1    yamt 
   1036      1.1    yamt 	bt = bt_lookupbusy(vm, addr);
   1037      1.1    yamt 	KASSERT(bt != NULL);
   1038      1.1    yamt 	KASSERT(bt->bt_start == addr);
   1039      1.1    yamt 	KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
   1040      1.1    yamt 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
   1041      1.1    yamt 	KASSERT(bt->bt_type == BT_TYPE_BUSY);
   1042      1.1    yamt 	bt_rembusy(vm, bt);
   1043      1.1    yamt 	bt->bt_type = BT_TYPE_FREE;
   1044      1.1    yamt 
   1045      1.1    yamt 	/* coalesce */
   1046      1.1    yamt 	t = CIRCLEQ_NEXT(bt, bt_seglist);
   1047      1.1    yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1048      1.1    yamt 		KASSERT(BT_END(bt) == t->bt_start);
   1049      1.1    yamt 		bt_remfree(vm, t);
   1050      1.1    yamt 		bt_remseg(vm, t);
   1051      1.1    yamt 		bt->bt_size += t->bt_size;
   1052      1.1    yamt 		bt_free(vm, t);
   1053      1.1    yamt 	}
   1054      1.1    yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1055      1.1    yamt 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
   1056      1.1    yamt 		KASSERT(BT_END(t) == bt->bt_start);
   1057      1.1    yamt 		bt_remfree(vm, t);
   1058      1.1    yamt 		bt_remseg(vm, t);
   1059      1.1    yamt 		bt->bt_size += t->bt_size;
   1060      1.1    yamt 		bt->bt_start = t->bt_start;
   1061      1.1    yamt 		bt_free(vm, t);
   1062      1.1    yamt 	}
   1063      1.1    yamt 
   1064      1.1    yamt 	t = CIRCLEQ_PREV(bt, bt_seglist);
   1065      1.1    yamt 	KASSERT(t != NULL);
   1066      1.1    yamt 	KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
   1067      1.1    yamt 	if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
   1068      1.1    yamt 	    t->bt_size == bt->bt_size) {
   1069      1.1    yamt 		vmem_addr_t spanaddr;
   1070      1.1    yamt 		vmem_size_t spansize;
   1071      1.1    yamt 
   1072      1.1    yamt 		KASSERT(t->bt_start == bt->bt_start);
   1073      1.1    yamt 		spanaddr = bt->bt_start;
   1074      1.1    yamt 		spansize = bt->bt_size;
   1075      1.1    yamt 		bt_remseg(vm, bt);
   1076      1.1    yamt 		bt_free(vm, bt);
   1077      1.1    yamt 		bt_remseg(vm, t);
   1078      1.1    yamt 		bt_free(vm, t);
   1079      1.1    yamt 		VMEM_UNLOCK(vm);
   1080      1.1    yamt 		(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
   1081      1.1    yamt 	} else {
   1082      1.1    yamt 		bt_insfree(vm, bt);
   1083      1.1    yamt 		VMEM_UNLOCK(vm);
   1084      1.1    yamt 	}
   1085      1.1    yamt }
   1086      1.1    yamt 
   1087      1.1    yamt /*
   1088      1.1    yamt  * vmem_add:
   1089      1.1    yamt  *
   1090      1.1    yamt  * => caller must ensure appropriate spl,
   1091      1.1    yamt  *    if the arena can be accessed from interrupt context.
   1092      1.1    yamt  */
   1093      1.1    yamt 
   1094      1.1    yamt vmem_addr_t
   1095      1.1    yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
   1096      1.1    yamt {
   1097      1.1    yamt 
   1098      1.1    yamt 	return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
   1099      1.1    yamt }
   1100      1.1    yamt 
   1101      1.6    yamt /*
   1102      1.6    yamt  * vmem_reap: reap unused resources.
   1103      1.6    yamt  *
   1104      1.6    yamt  * => return TRUE if we successfully reaped something.
   1105      1.6    yamt  */
   1106      1.6    yamt 
   1107      1.6    yamt boolean_t
   1108      1.6    yamt vmem_reap(vmem_t *vm)
   1109      1.6    yamt {
   1110      1.6    yamt 	boolean_t didsomething = FALSE;
   1111      1.6    yamt 
   1112      1.6    yamt 	VMEM_ASSERT_UNLOCKED(vm);
   1113      1.6    yamt 
   1114      1.6    yamt #if defined(QCACHE)
   1115      1.6    yamt 	didsomething = qc_reap(vm);
   1116      1.6    yamt #endif /* defined(QCACHE) */
   1117      1.6    yamt 	return didsomething;
   1118      1.6    yamt }
   1119      1.6    yamt 
   1120      1.1    yamt /* ---- debug */
   1121      1.1    yamt 
   1122      1.1    yamt #if defined(VMEM_DEBUG)
   1123      1.1    yamt 
   1124      1.1    yamt #if !defined(_KERNEL)
   1125      1.1    yamt #include <stdio.h>
   1126      1.1    yamt #endif /* !defined(_KERNEL) */
   1127      1.1    yamt 
   1128      1.1    yamt void bt_dump(const bt_t *);
   1129      1.1    yamt 
   1130      1.1    yamt void
   1131      1.1    yamt bt_dump(const bt_t *bt)
   1132      1.1    yamt {
   1133      1.1    yamt 
   1134      1.1    yamt 	printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
   1135      1.1    yamt 	    bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
   1136      1.1    yamt 	    bt->bt_type);
   1137      1.1    yamt }
   1138      1.1    yamt 
   1139      1.1    yamt void
   1140      1.1    yamt vmem_dump(const vmem_t *vm)
   1141      1.1    yamt {
   1142      1.1    yamt 	const bt_t *bt;
   1143      1.1    yamt 	int i;
   1144      1.1    yamt 
   1145      1.1    yamt 	printf("vmem %p '%s'\n", vm, vm->vm_name);
   1146      1.1    yamt 	CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
   1147      1.1    yamt 		bt_dump(bt);
   1148      1.1    yamt 	}
   1149      1.1    yamt 
   1150      1.1    yamt 	for (i = 0; i < VMEM_MAXORDER; i++) {
   1151      1.1    yamt 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
   1152      1.1    yamt 
   1153      1.1    yamt 		if (LIST_EMPTY(fl)) {
   1154      1.1    yamt 			continue;
   1155      1.1    yamt 		}
   1156      1.1    yamt 
   1157      1.1    yamt 		printf("freelist[%d]\n", i);
   1158      1.1    yamt 		LIST_FOREACH(bt, fl, bt_freelist) {
   1159      1.1    yamt 			bt_dump(bt);
   1160      1.1    yamt 			if (bt->bt_size) {
   1161      1.1    yamt 			}
   1162      1.1    yamt 		}
   1163      1.1    yamt 	}
   1164      1.1    yamt }
   1165      1.1    yamt 
   1166      1.1    yamt #if !defined(_KERNEL)
   1167      1.1    yamt 
   1168      1.1    yamt #include <stdlib.h>
   1169      1.1    yamt 
   1170      1.1    yamt int
   1171      1.1    yamt main()
   1172      1.1    yamt {
   1173      1.1    yamt 	vmem_t *vm;
   1174      1.1    yamt 	vmem_addr_t p;
   1175      1.1    yamt 	struct reg {
   1176      1.1    yamt 		vmem_addr_t p;
   1177      1.1    yamt 		vmem_size_t sz;
   1178  1.8.6.1    yamt 		boolean_t x;
   1179      1.1    yamt 	} *reg = NULL;
   1180      1.1    yamt 	int nreg = 0;
   1181      1.1    yamt 	int nalloc = 0;
   1182      1.1    yamt 	int nfree = 0;
   1183      1.1    yamt 	vmem_size_t total = 0;
   1184      1.1    yamt #if 1
   1185      1.1    yamt 	vm_flag_t strat = VM_INSTANTFIT;
   1186      1.1    yamt #else
   1187      1.1    yamt 	vm_flag_t strat = VM_BESTFIT;
   1188      1.1    yamt #endif
   1189      1.1    yamt 
   1190      1.1    yamt 	vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
   1191      1.1    yamt 	    NULL, NULL, NULL, 0, VM_NOSLEEP);
   1192      1.1    yamt 	if (vm == NULL) {
   1193      1.1    yamt 		printf("vmem_create\n");
   1194      1.1    yamt 		exit(EXIT_FAILURE);
   1195      1.1    yamt 	}
   1196      1.1    yamt 	vmem_dump(vm);
   1197      1.1    yamt 
   1198      1.1    yamt 	p = vmem_add(vm, 100, 200, VM_SLEEP);
   1199      1.1    yamt 	p = vmem_add(vm, 2000, 1, VM_SLEEP);
   1200      1.1    yamt 	p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
   1201      1.1    yamt 	p = vmem_add(vm, 10000, 10000, VM_SLEEP);
   1202      1.1    yamt 	p = vmem_add(vm, 500, 1000, VM_SLEEP);
   1203      1.1    yamt 	vmem_dump(vm);
   1204      1.1    yamt 	for (;;) {
   1205      1.1    yamt 		struct reg *r;
   1206  1.8.6.1    yamt 		int t = rand() % 100;
   1207      1.1    yamt 
   1208  1.8.6.1    yamt 		if (t > 45) {
   1209  1.8.6.1    yamt 			/* alloc */
   1210      1.1    yamt 			vmem_size_t sz = rand() % 500 + 1;
   1211  1.8.6.1    yamt 			boolean_t x;
   1212  1.8.6.1    yamt 			vmem_size_t align, phase, nocross;
   1213  1.8.6.1    yamt 			vmem_addr_t minaddr, maxaddr;
   1214  1.8.6.1    yamt 
   1215  1.8.6.1    yamt 			if (t > 70) {
   1216  1.8.6.1    yamt 				x = TRUE;
   1217  1.8.6.1    yamt 				/* XXX */
   1218  1.8.6.1    yamt 				align = 1 << (rand() % 15);
   1219  1.8.6.1    yamt 				phase = rand() % 65536;
   1220  1.8.6.1    yamt 				nocross = 1 << (rand() % 15);
   1221  1.8.6.1    yamt 				if (align <= phase) {
   1222  1.8.6.1    yamt 					phase = 0;
   1223  1.8.6.1    yamt 				}
   1224  1.8.6.2    yamt 				if (VMEM_CROSS_P(phase, phase + sz - 1,
   1225  1.8.6.2    yamt 				    nocross)) {
   1226  1.8.6.1    yamt 					nocross = 0;
   1227  1.8.6.1    yamt 				}
   1228  1.8.6.1    yamt 				minaddr = rand() % 50000;
   1229  1.8.6.1    yamt 				maxaddr = rand() % 70000;
   1230  1.8.6.1    yamt 				if (minaddr > maxaddr) {
   1231  1.8.6.1    yamt 					minaddr = 0;
   1232  1.8.6.1    yamt 					maxaddr = 0;
   1233  1.8.6.1    yamt 				}
   1234  1.8.6.1    yamt 				printf("=== xalloc %" PRIu64
   1235  1.8.6.1    yamt 				    " align=%" PRIu64 ", phase=%" PRIu64
   1236  1.8.6.1    yamt 				    ", nocross=%" PRIu64 ", min=%" PRIu64
   1237  1.8.6.1    yamt 				    ", max=%" PRIu64 "\n",
   1238  1.8.6.1    yamt 				    (uint64_t)sz,
   1239  1.8.6.1    yamt 				    (uint64_t)align,
   1240  1.8.6.1    yamt 				    (uint64_t)phase,
   1241  1.8.6.1    yamt 				    (uint64_t)nocross,
   1242  1.8.6.1    yamt 				    (uint64_t)minaddr,
   1243  1.8.6.1    yamt 				    (uint64_t)maxaddr);
   1244  1.8.6.1    yamt 				p = vmem_xalloc(vm, sz, align, phase, nocross,
   1245  1.8.6.1    yamt 				    minaddr, maxaddr, strat|VM_SLEEP);
   1246  1.8.6.1    yamt 			} else {
   1247  1.8.6.1    yamt 				x = FALSE;
   1248  1.8.6.1    yamt 				printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
   1249  1.8.6.1    yamt 				p = vmem_alloc(vm, sz, strat|VM_SLEEP);
   1250  1.8.6.1    yamt 			}
   1251      1.1    yamt 			printf("-> %" PRIu64 "\n", (uint64_t)p);
   1252      1.1    yamt 			vmem_dump(vm);
   1253      1.1    yamt 			if (p == VMEM_ADDR_NULL) {
   1254  1.8.6.1    yamt 				if (x) {
   1255  1.8.6.1    yamt 					continue;
   1256  1.8.6.1    yamt 				}
   1257      1.1    yamt 				break;
   1258      1.1    yamt 			}
   1259      1.1    yamt 			nreg++;
   1260      1.1    yamt 			reg = realloc(reg, sizeof(*reg) * nreg);
   1261      1.1    yamt 			r = &reg[nreg - 1];
   1262      1.1    yamt 			r->p = p;
   1263      1.1    yamt 			r->sz = sz;
   1264  1.8.6.1    yamt 			r->x = x;
   1265      1.1    yamt 			total += sz;
   1266      1.1    yamt 			nalloc++;
   1267      1.1    yamt 		} else if (nreg != 0) {
   1268  1.8.6.1    yamt 			/* free */
   1269      1.1    yamt 			r = &reg[rand() % nreg];
   1270      1.1    yamt 			printf("=== free %" PRIu64 ", %" PRIu64 "\n",
   1271      1.1    yamt 			    (uint64_t)r->p, (uint64_t)r->sz);
   1272  1.8.6.1    yamt 			if (r->x) {
   1273  1.8.6.1    yamt 				vmem_xfree(vm, r->p, r->sz);
   1274  1.8.6.1    yamt 			} else {
   1275  1.8.6.1    yamt 				vmem_free(vm, r->p, r->sz);
   1276  1.8.6.1    yamt 			}
   1277      1.1    yamt 			total -= r->sz;
   1278      1.1    yamt 			vmem_dump(vm);
   1279      1.1    yamt 			*r = reg[nreg - 1];
   1280      1.1    yamt 			nreg--;
   1281      1.1    yamt 			nfree++;
   1282      1.1    yamt 		}
   1283      1.1    yamt 		printf("total=%" PRIu64 "\n", (uint64_t)total);
   1284      1.1    yamt 	}
   1285      1.1    yamt 	fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
   1286      1.1    yamt 	    (uint64_t)total, nalloc, nfree);
   1287      1.1    yamt 	exit(EXIT_SUCCESS);
   1288      1.1    yamt }
   1289      1.1    yamt #endif /* !defined(_KERNEL) */
   1290      1.1    yamt #endif /* defined(VMEM_DEBUG) */
   1291