subr_vmem.c revision 1.82 1 1.82 christos /* $NetBSD: subr_vmem.c,v 1.82 2013/02/09 00:31:21 christos Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.55 yamt * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.1 yamt */
35 1.1 yamt
36 1.1 yamt #include <sys/cdefs.h>
37 1.82 christos __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.82 2013/02/09 00:31:21 christos Exp $");
38 1.1 yamt
39 1.5 yamt #if defined(_KERNEL)
40 1.37 yamt #include "opt_ddb.h"
41 1.5 yamt #endif /* defined(_KERNEL) */
42 1.1 yamt
43 1.1 yamt #include <sys/param.h>
44 1.1 yamt #include <sys/hash.h>
45 1.1 yamt #include <sys/queue.h>
46 1.62 rmind #include <sys/bitops.h>
47 1.1 yamt
48 1.1 yamt #if defined(_KERNEL)
49 1.1 yamt #include <sys/systm.h>
50 1.30 yamt #include <sys/kernel.h> /* hz */
51 1.30 yamt #include <sys/callout.h>
52 1.66 para #include <sys/kmem.h>
53 1.1 yamt #include <sys/pool.h>
54 1.1 yamt #include <sys/vmem.h>
55 1.80 para #include <sys/vmem_impl.h>
56 1.30 yamt #include <sys/workqueue.h>
57 1.66 para #include <sys/atomic.h>
58 1.66 para #include <uvm/uvm.h>
59 1.66 para #include <uvm/uvm_extern.h>
60 1.66 para #include <uvm/uvm_km.h>
61 1.66 para #include <uvm/uvm_page.h>
62 1.66 para #include <uvm/uvm_pdaemon.h>
63 1.1 yamt #else /* defined(_KERNEL) */
64 1.80 para #include <stdio.h>
65 1.80 para #include <errno.h>
66 1.80 para #include <assert.h>
67 1.80 para #include <stdlib.h>
68 1.80 para #include <string.h>
69 1.1 yamt #include "../sys/vmem.h"
70 1.80 para #include "../sys/vmem_impl.h"
71 1.1 yamt #endif /* defined(_KERNEL) */
72 1.1 yamt
73 1.66 para
74 1.1 yamt #if defined(_KERNEL)
75 1.66 para #include <sys/evcnt.h>
76 1.66 para #define VMEM_EVCNT_DEFINE(name) \
77 1.66 para struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
78 1.66 para "vmemev", #name); \
79 1.66 para EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
80 1.66 para #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
81 1.66 para #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
82 1.66 para
83 1.66 para VMEM_EVCNT_DEFINE(bt_pages)
84 1.66 para VMEM_EVCNT_DEFINE(bt_count)
85 1.66 para VMEM_EVCNT_DEFINE(bt_inuse)
86 1.66 para
87 1.80 para #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
88 1.80 para #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
89 1.80 para #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
90 1.80 para #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
91 1.66 para
92 1.1 yamt #else /* defined(_KERNEL) */
93 1.1 yamt
94 1.66 para #define VMEM_EVCNT_INCR(ev) /* nothing */
95 1.66 para #define VMEM_EVCNT_DECR(ev) /* nothing */
96 1.66 para
97 1.80 para #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
98 1.80 para #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
99 1.80 para #define VMEM_CONDVAR_WAIT(vm) /* nothing */
100 1.80 para #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
101 1.80 para
102 1.79 para #define UNITTEST
103 1.79 para #define KASSERT(a) assert(a)
104 1.31 ad #define mutex_init(a, b, c) /* nothing */
105 1.31 ad #define mutex_destroy(a) /* nothing */
106 1.31 ad #define mutex_enter(a) /* nothing */
107 1.55 yamt #define mutex_tryenter(a) true
108 1.31 ad #define mutex_exit(a) /* nothing */
109 1.31 ad #define mutex_owned(a) /* nothing */
110 1.55 yamt #define ASSERT_SLEEPABLE() /* nothing */
111 1.55 yamt #define panic(...) printf(__VA_ARGS__); abort()
112 1.1 yamt #endif /* defined(_KERNEL) */
113 1.1 yamt
114 1.55 yamt #if defined(VMEM_SANITY)
115 1.55 yamt static void vmem_check(vmem_t *);
116 1.55 yamt #else /* defined(VMEM_SANITY) */
117 1.55 yamt #define vmem_check(vm) /* nothing */
118 1.55 yamt #endif /* defined(VMEM_SANITY) */
119 1.1 yamt
120 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
121 1.54 yamt #define VMEM_HASHSIZE_MAX 65536 /* XXX */
122 1.66 para #define VMEM_HASHSIZE_INIT 1
123 1.1 yamt
124 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
125 1.1 yamt
126 1.80 para #if defined(_KERNEL)
127 1.80 para static bool vmem_bootstrapped = false;
128 1.80 para static kmutex_t vmem_list_lock;
129 1.80 para static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
130 1.80 para #endif /* defined(_KERNEL) */
131 1.79 para
132 1.80 para /* ---- misc */
133 1.1 yamt
134 1.31 ad #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
135 1.31 ad #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
136 1.31 ad #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
137 1.36 ad #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
138 1.31 ad #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
139 1.31 ad #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
140 1.1 yamt
141 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
142 1.19 yamt (-(-(addr) & -(align)))
143 1.62 rmind
144 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
145 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
146 1.19 yamt
147 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
148 1.62 rmind #define SIZE2ORDER(size) ((int)ilog2(size))
149 1.4 yamt
150 1.62 rmind #if !defined(_KERNEL)
151 1.62 rmind #define xmalloc(sz, flags) malloc(sz)
152 1.67 rmind #define xfree(p, sz) free(p)
153 1.62 rmind #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
154 1.62 rmind #define bt_free(vm, bt) free(bt)
155 1.66 para #else /* defined(_KERNEL) */
156 1.1 yamt
157 1.67 rmind #define xmalloc(sz, flags) \
158 1.80 para kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
159 1.80 para #define xfree(p, sz) kmem_free(p, sz);
160 1.66 para
161 1.75 para /*
162 1.75 para * BT_RESERVE calculation:
163 1.75 para * we allocate memory for boundry tags with vmem, therefor we have
164 1.75 para * to keep a reserve of bts used to allocated memory for bts.
165 1.75 para * This reserve is 4 for each arena involved in allocating vmems memory.
166 1.75 para * BT_MAXFREE: don't cache excessive counts of bts in arenas
167 1.75 para */
168 1.75 para #define STATIC_BT_COUNT 200
169 1.75 para #define BT_MINRESERVE 4
170 1.66 para #define BT_MAXFREE 64
171 1.66 para
172 1.66 para static struct vmem_btag static_bts[STATIC_BT_COUNT];
173 1.66 para static int static_bt_count = STATIC_BT_COUNT;
174 1.66 para
175 1.80 para static struct vmem kmem_va_meta_arena_store;
176 1.66 para vmem_t *kmem_va_meta_arena;
177 1.80 para static struct vmem kmem_meta_arena_store;
178 1.66 para vmem_t *kmem_meta_arena;
179 1.66 para
180 1.77 para static kmutex_t vmem_refill_lock;
181 1.66 para static kmutex_t vmem_btag_lock;
182 1.66 para static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
183 1.66 para static size_t vmem_btag_freelist_count = 0;
184 1.66 para static size_t vmem_btag_count = STATIC_BT_COUNT;
185 1.66 para
186 1.1 yamt /* ---- boundary tag */
187 1.1 yamt
188 1.67 rmind #define BT_PER_PAGE (PAGE_SIZE / sizeof(bt_t))
189 1.66 para
190 1.66 para static int bt_refill(vmem_t *vm, vm_flag_t flags);
191 1.66 para
192 1.66 para static int
193 1.66 para bt_refillglobal(vm_flag_t flags)
194 1.66 para {
195 1.66 para vmem_addr_t va;
196 1.66 para bt_t *btp;
197 1.66 para bt_t *bt;
198 1.66 para int i;
199 1.66 para
200 1.77 para mutex_enter(&vmem_refill_lock);
201 1.77 para
202 1.66 para mutex_enter(&vmem_btag_lock);
203 1.75 para if (vmem_btag_freelist_count > 0) {
204 1.66 para mutex_exit(&vmem_btag_lock);
205 1.77 para mutex_exit(&vmem_refill_lock);
206 1.66 para return 0;
207 1.66 para }
208 1.81 skrll mutex_exit(&vmem_btag_lock);
209 1.66 para
210 1.66 para if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
211 1.66 para (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
212 1.77 para mutex_exit(&vmem_refill_lock);
213 1.66 para return ENOMEM;
214 1.66 para }
215 1.66 para VMEM_EVCNT_INCR(bt_pages);
216 1.66 para
217 1.77 para mutex_enter(&vmem_btag_lock);
218 1.66 para btp = (void *) va;
219 1.66 para for (i = 0; i < (BT_PER_PAGE); i++) {
220 1.66 para bt = btp;
221 1.66 para memset(bt, 0, sizeof(*bt));
222 1.66 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
223 1.66 para bt_freelist);
224 1.66 para vmem_btag_freelist_count++;
225 1.66 para vmem_btag_count++;
226 1.66 para VMEM_EVCNT_INCR(bt_count);
227 1.66 para btp++;
228 1.66 para }
229 1.66 para mutex_exit(&vmem_btag_lock);
230 1.66 para
231 1.77 para bt_refill(kmem_arena, (flags & ~VM_FITMASK)
232 1.77 para | VM_INSTANTFIT | VM_POPULATING);
233 1.77 para bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK)
234 1.77 para | VM_INSTANTFIT | VM_POPULATING);
235 1.77 para bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK)
236 1.77 para | VM_INSTANTFIT | VM_POPULATING);
237 1.77 para
238 1.77 para mutex_exit(&vmem_refill_lock);
239 1.66 para
240 1.66 para return 0;
241 1.66 para }
242 1.66 para
243 1.66 para static int
244 1.66 para bt_refill(vmem_t *vm, vm_flag_t flags)
245 1.66 para {
246 1.66 para bt_t *bt;
247 1.66 para
248 1.77 para if (!(flags & VM_POPULATING)) {
249 1.77 para bt_refillglobal(flags);
250 1.77 para }
251 1.66 para
252 1.66 para VMEM_LOCK(vm);
253 1.66 para mutex_enter(&vmem_btag_lock);
254 1.66 para while (!LIST_EMPTY(&vmem_btag_freelist) &&
255 1.75 para vm->vm_nfreetags <= BT_MINRESERVE) {
256 1.66 para bt = LIST_FIRST(&vmem_btag_freelist);
257 1.66 para LIST_REMOVE(bt, bt_freelist);
258 1.66 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
259 1.66 para vm->vm_nfreetags++;
260 1.66 para vmem_btag_freelist_count--;
261 1.66 para }
262 1.66 para mutex_exit(&vmem_btag_lock);
263 1.66 para
264 1.66 para if (vm->vm_nfreetags == 0) {
265 1.66 para VMEM_UNLOCK(vm);
266 1.66 para return ENOMEM;
267 1.66 para }
268 1.66 para VMEM_UNLOCK(vm);
269 1.66 para
270 1.66 para return 0;
271 1.66 para }
272 1.1 yamt
273 1.62 rmind static inline bt_t *
274 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
275 1.1 yamt {
276 1.66 para bt_t *bt;
277 1.66 para again:
278 1.66 para VMEM_LOCK(vm);
279 1.75 para if (vm->vm_nfreetags <= BT_MINRESERVE &&
280 1.66 para (flags & VM_POPULATING) == 0) {
281 1.66 para VMEM_UNLOCK(vm);
282 1.66 para if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
283 1.66 para return NULL;
284 1.66 para }
285 1.66 para goto again;
286 1.66 para }
287 1.66 para bt = LIST_FIRST(&vm->vm_freetags);
288 1.66 para LIST_REMOVE(bt, bt_freelist);
289 1.66 para vm->vm_nfreetags--;
290 1.66 para VMEM_UNLOCK(vm);
291 1.66 para VMEM_EVCNT_INCR(bt_inuse);
292 1.66 para
293 1.66 para return bt;
294 1.1 yamt }
295 1.1 yamt
296 1.62 rmind static inline void
297 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
298 1.1 yamt {
299 1.66 para
300 1.66 para VMEM_LOCK(vm);
301 1.66 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
302 1.66 para vm->vm_nfreetags++;
303 1.66 para while (vm->vm_nfreetags > BT_MAXFREE) {
304 1.66 para bt = LIST_FIRST(&vm->vm_freetags);
305 1.66 para LIST_REMOVE(bt, bt_freelist);
306 1.66 para vm->vm_nfreetags--;
307 1.66 para mutex_enter(&vmem_btag_lock);
308 1.66 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
309 1.66 para vmem_btag_freelist_count++;
310 1.66 para mutex_exit(&vmem_btag_lock);
311 1.66 para }
312 1.66 para VMEM_UNLOCK(vm);
313 1.66 para VMEM_EVCNT_DECR(bt_inuse);
314 1.1 yamt }
315 1.1 yamt
316 1.67 rmind #endif /* defined(_KERNEL) */
317 1.62 rmind
318 1.1 yamt /*
319 1.67 rmind * freelist[0] ... [1, 1]
320 1.1 yamt * freelist[1] ... [2, 3]
321 1.1 yamt * freelist[2] ... [4, 7]
322 1.1 yamt * freelist[3] ... [8, 15]
323 1.1 yamt * :
324 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
325 1.1 yamt * :
326 1.1 yamt */
327 1.1 yamt
328 1.1 yamt static struct vmem_freelist *
329 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
330 1.1 yamt {
331 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
332 1.62 rmind const int idx = SIZE2ORDER(qsize);
333 1.1 yamt
334 1.62 rmind KASSERT(size != 0 && qsize != 0);
335 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
336 1.1 yamt KASSERT(idx >= 0);
337 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
338 1.1 yamt
339 1.1 yamt return &vm->vm_freelist[idx];
340 1.1 yamt }
341 1.1 yamt
342 1.59 yamt /*
343 1.59 yamt * bt_freehead_toalloc: return the freelist for the given size and allocation
344 1.59 yamt * strategy.
345 1.59 yamt *
346 1.59 yamt * for VM_INSTANTFIT, return the list in which any blocks are large enough
347 1.59 yamt * for the requested size. otherwise, return the list which can have blocks
348 1.59 yamt * large enough for the requested size.
349 1.59 yamt */
350 1.59 yamt
351 1.1 yamt static struct vmem_freelist *
352 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
353 1.1 yamt {
354 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
355 1.62 rmind int idx = SIZE2ORDER(qsize);
356 1.1 yamt
357 1.62 rmind KASSERT(size != 0 && qsize != 0);
358 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
359 1.1 yamt
360 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
361 1.1 yamt idx++;
362 1.1 yamt /* check too large request? */
363 1.1 yamt }
364 1.1 yamt KASSERT(idx >= 0);
365 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
366 1.1 yamt
367 1.1 yamt return &vm->vm_freelist[idx];
368 1.1 yamt }
369 1.1 yamt
370 1.1 yamt /* ---- boundary tag hash */
371 1.1 yamt
372 1.1 yamt static struct vmem_hashlist *
373 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
374 1.1 yamt {
375 1.1 yamt struct vmem_hashlist *list;
376 1.1 yamt unsigned int hash;
377 1.1 yamt
378 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
379 1.1 yamt list = &vm->vm_hashlist[hash % vm->vm_hashsize];
380 1.1 yamt
381 1.1 yamt return list;
382 1.1 yamt }
383 1.1 yamt
384 1.1 yamt static bt_t *
385 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
386 1.1 yamt {
387 1.1 yamt struct vmem_hashlist *list;
388 1.1 yamt bt_t *bt;
389 1.1 yamt
390 1.1 yamt list = bt_hashhead(vm, addr);
391 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
392 1.1 yamt if (bt->bt_start == addr) {
393 1.1 yamt break;
394 1.1 yamt }
395 1.1 yamt }
396 1.1 yamt
397 1.1 yamt return bt;
398 1.1 yamt }
399 1.1 yamt
400 1.1 yamt static void
401 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
402 1.1 yamt {
403 1.1 yamt
404 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
405 1.73 para vm->vm_inuse -= bt->bt_size;
406 1.1 yamt vm->vm_nbusytag--;
407 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
408 1.1 yamt }
409 1.1 yamt
410 1.1 yamt static void
411 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
412 1.1 yamt {
413 1.1 yamt struct vmem_hashlist *list;
414 1.1 yamt
415 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
416 1.1 yamt
417 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
418 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
419 1.1 yamt vm->vm_nbusytag++;
420 1.73 para vm->vm_inuse += bt->bt_size;
421 1.1 yamt }
422 1.1 yamt
423 1.1 yamt /* ---- boundary tag list */
424 1.1 yamt
425 1.1 yamt static void
426 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
427 1.1 yamt {
428 1.1 yamt
429 1.1 yamt CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
430 1.1 yamt }
431 1.1 yamt
432 1.1 yamt static void
433 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
434 1.1 yamt {
435 1.1 yamt
436 1.1 yamt CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
437 1.1 yamt }
438 1.1 yamt
439 1.1 yamt static void
440 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
441 1.1 yamt {
442 1.1 yamt
443 1.1 yamt CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
444 1.1 yamt }
445 1.1 yamt
446 1.1 yamt static void
447 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
448 1.1 yamt {
449 1.1 yamt
450 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
451 1.1 yamt
452 1.1 yamt LIST_REMOVE(bt, bt_freelist);
453 1.1 yamt }
454 1.1 yamt
455 1.1 yamt static void
456 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
457 1.1 yamt {
458 1.1 yamt struct vmem_freelist *list;
459 1.1 yamt
460 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
461 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
462 1.1 yamt }
463 1.1 yamt
464 1.1 yamt /* ---- vmem internal functions */
465 1.1 yamt
466 1.5 yamt #if defined(QCACHE)
467 1.5 yamt static inline vm_flag_t
468 1.5 yamt prf_to_vmf(int prflags)
469 1.5 yamt {
470 1.5 yamt vm_flag_t vmflags;
471 1.5 yamt
472 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
473 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
474 1.5 yamt vmflags = VM_SLEEP;
475 1.5 yamt } else {
476 1.5 yamt vmflags = VM_NOSLEEP;
477 1.5 yamt }
478 1.5 yamt return vmflags;
479 1.5 yamt }
480 1.5 yamt
481 1.5 yamt static inline int
482 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
483 1.5 yamt {
484 1.5 yamt int prflags;
485 1.5 yamt
486 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
487 1.5 yamt prflags = PR_WAITOK;
488 1.7 yamt } else {
489 1.5 yamt prflags = PR_NOWAIT;
490 1.5 yamt }
491 1.5 yamt return prflags;
492 1.5 yamt }
493 1.5 yamt
494 1.5 yamt static size_t
495 1.5 yamt qc_poolpage_size(size_t qcache_max)
496 1.5 yamt {
497 1.5 yamt int i;
498 1.5 yamt
499 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
500 1.5 yamt /* nothing */
501 1.5 yamt }
502 1.5 yamt return ORDER2SIZE(i);
503 1.5 yamt }
504 1.5 yamt
505 1.5 yamt static void *
506 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
507 1.5 yamt {
508 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
509 1.5 yamt vmem_t *vm = qc->qc_vmem;
510 1.61 dyoung vmem_addr_t addr;
511 1.5 yamt
512 1.61 dyoung if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
513 1.61 dyoung prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
514 1.61 dyoung return NULL;
515 1.61 dyoung return (void *)addr;
516 1.5 yamt }
517 1.5 yamt
518 1.5 yamt static void
519 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
520 1.5 yamt {
521 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
522 1.5 yamt vmem_t *vm = qc->qc_vmem;
523 1.5 yamt
524 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
525 1.5 yamt }
526 1.5 yamt
527 1.5 yamt static void
528 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
529 1.5 yamt {
530 1.22 yamt qcache_t *prevqc;
531 1.5 yamt struct pool_allocator *pa;
532 1.5 yamt int qcache_idx_max;
533 1.5 yamt int i;
534 1.5 yamt
535 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
536 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
537 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
538 1.5 yamt }
539 1.5 yamt vm->vm_qcache_max = qcache_max;
540 1.5 yamt pa = &vm->vm_qcache_allocator;
541 1.5 yamt memset(pa, 0, sizeof(*pa));
542 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
543 1.5 yamt pa->pa_free = qc_poolpage_free;
544 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
545 1.5 yamt
546 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
547 1.22 yamt prevqc = NULL;
548 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
549 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
550 1.5 yamt size_t size = i << vm->vm_quantum_shift;
551 1.66 para pool_cache_t pc;
552 1.5 yamt
553 1.5 yamt qc->qc_vmem = vm;
554 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
555 1.5 yamt vm->vm_name, size);
556 1.66 para
557 1.80 para pc = pool_cache_init(size,
558 1.80 para ORDER2SIZE(vm->vm_quantum_shift), 0,
559 1.80 para PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
560 1.80 para qc->qc_name, pa, ipl, NULL, NULL, NULL);
561 1.80 para
562 1.80 para KASSERT(pc);
563 1.80 para
564 1.66 para qc->qc_cache = pc;
565 1.35 ad KASSERT(qc->qc_cache != NULL); /* XXX */
566 1.22 yamt if (prevqc != NULL &&
567 1.35 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
568 1.35 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
569 1.80 para pool_cache_destroy(qc->qc_cache);
570 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
571 1.27 ad continue;
572 1.22 yamt }
573 1.35 ad qc->qc_cache->pc_pool.pr_qcache = qc;
574 1.22 yamt vm->vm_qcache[i - 1] = qc;
575 1.22 yamt prevqc = qc;
576 1.5 yamt }
577 1.5 yamt }
578 1.6 yamt
579 1.23 yamt static void
580 1.23 yamt qc_destroy(vmem_t *vm)
581 1.23 yamt {
582 1.23 yamt const qcache_t *prevqc;
583 1.23 yamt int i;
584 1.23 yamt int qcache_idx_max;
585 1.23 yamt
586 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
587 1.23 yamt prevqc = NULL;
588 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
589 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
590 1.23 yamt
591 1.23 yamt if (prevqc == qc) {
592 1.23 yamt continue;
593 1.23 yamt }
594 1.80 para pool_cache_destroy(qc->qc_cache);
595 1.23 yamt prevqc = qc;
596 1.23 yamt }
597 1.23 yamt }
598 1.66 para #endif
599 1.23 yamt
600 1.66 para #if defined(_KERNEL)
601 1.80 para static void
602 1.66 para vmem_bootstrap(void)
603 1.6 yamt {
604 1.6 yamt
605 1.66 para mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
606 1.77 para mutex_init(&vmem_refill_lock, MUTEX_DEFAULT, IPL_VM);
607 1.66 para mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
608 1.6 yamt
609 1.66 para while (static_bt_count-- > 0) {
610 1.66 para bt_t *bt = &static_bts[static_bt_count];
611 1.66 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
612 1.66 para VMEM_EVCNT_INCR(bt_count);
613 1.66 para vmem_btag_freelist_count++;
614 1.6 yamt }
615 1.80 para vmem_bootstrapped = TRUE;
616 1.6 yamt }
617 1.5 yamt
618 1.66 para void
619 1.80 para vmem_subsystem_init(vmem_t *vm)
620 1.1 yamt {
621 1.1 yamt
622 1.80 para kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
623 1.80 para 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
624 1.66 para 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
625 1.66 para IPL_VM);
626 1.66 para
627 1.80 para kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
628 1.80 para 0, 0, PAGE_SIZE,
629 1.66 para uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
630 1.66 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
631 1.1 yamt }
632 1.1 yamt #endif /* defined(_KERNEL) */
633 1.1 yamt
634 1.61 dyoung static int
635 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
636 1.1 yamt int spanbttype)
637 1.1 yamt {
638 1.1 yamt bt_t *btspan;
639 1.1 yamt bt_t *btfree;
640 1.1 yamt
641 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
642 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
643 1.58 yamt KASSERT(spanbttype == BT_TYPE_SPAN ||
644 1.58 yamt spanbttype == BT_TYPE_SPAN_STATIC);
645 1.1 yamt
646 1.1 yamt btspan = bt_alloc(vm, flags);
647 1.1 yamt if (btspan == NULL) {
648 1.61 dyoung return ENOMEM;
649 1.1 yamt }
650 1.1 yamt btfree = bt_alloc(vm, flags);
651 1.1 yamt if (btfree == NULL) {
652 1.1 yamt bt_free(vm, btspan);
653 1.61 dyoung return ENOMEM;
654 1.1 yamt }
655 1.1 yamt
656 1.1 yamt btspan->bt_type = spanbttype;
657 1.1 yamt btspan->bt_start = addr;
658 1.1 yamt btspan->bt_size = size;
659 1.1 yamt
660 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
661 1.1 yamt btfree->bt_start = addr;
662 1.1 yamt btfree->bt_size = size;
663 1.1 yamt
664 1.1 yamt VMEM_LOCK(vm);
665 1.1 yamt bt_insseg_tail(vm, btspan);
666 1.1 yamt bt_insseg(vm, btfree, btspan);
667 1.1 yamt bt_insfree(vm, btfree);
668 1.66 para vm->vm_size += size;
669 1.1 yamt VMEM_UNLOCK(vm);
670 1.1 yamt
671 1.61 dyoung return 0;
672 1.1 yamt }
673 1.1 yamt
674 1.30 yamt static void
675 1.30 yamt vmem_destroy1(vmem_t *vm)
676 1.30 yamt {
677 1.30 yamt
678 1.30 yamt #if defined(QCACHE)
679 1.30 yamt qc_destroy(vm);
680 1.30 yamt #endif /* defined(QCACHE) */
681 1.30 yamt if (vm->vm_hashlist != NULL) {
682 1.30 yamt int i;
683 1.30 yamt
684 1.30 yamt for (i = 0; i < vm->vm_hashsize; i++) {
685 1.30 yamt bt_t *bt;
686 1.30 yamt
687 1.30 yamt while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
688 1.30 yamt KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
689 1.30 yamt bt_free(vm, bt);
690 1.30 yamt }
691 1.30 yamt }
692 1.66 para if (vm->vm_hashlist != &vm->vm_hash0) {
693 1.66 para xfree(vm->vm_hashlist,
694 1.66 para sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
695 1.66 para }
696 1.66 para }
697 1.66 para
698 1.66 para while (vm->vm_nfreetags > 0) {
699 1.66 para bt_t *bt = LIST_FIRST(&vm->vm_freetags);
700 1.66 para LIST_REMOVE(bt, bt_freelist);
701 1.66 para vm->vm_nfreetags--;
702 1.66 para mutex_enter(&vmem_btag_lock);
703 1.66 para #if defined (_KERNEL)
704 1.66 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
705 1.66 para vmem_btag_freelist_count++;
706 1.66 para #endif /* defined(_KERNEL) */
707 1.66 para mutex_exit(&vmem_btag_lock);
708 1.30 yamt }
709 1.66 para
710 1.80 para VMEM_CONDVAR_DESTROY(vm);
711 1.31 ad VMEM_LOCK_DESTROY(vm);
712 1.66 para xfree(vm, sizeof(*vm));
713 1.30 yamt }
714 1.30 yamt
715 1.1 yamt static int
716 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
717 1.1 yamt {
718 1.1 yamt vmem_addr_t addr;
719 1.61 dyoung int rc;
720 1.1 yamt
721 1.61 dyoung if (vm->vm_importfn == NULL) {
722 1.1 yamt return EINVAL;
723 1.1 yamt }
724 1.1 yamt
725 1.66 para if (vm->vm_flags & VM_LARGEIMPORT) {
726 1.80 para size *= 16;
727 1.66 para }
728 1.66 para
729 1.66 para if (vm->vm_flags & VM_XIMPORT) {
730 1.66 para rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
731 1.66 para &size, flags, &addr);
732 1.66 para } else {
733 1.66 para rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
734 1.69 rmind }
735 1.69 rmind if (rc) {
736 1.69 rmind return ENOMEM;
737 1.1 yamt }
738 1.1 yamt
739 1.61 dyoung if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
740 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, addr, size);
741 1.1 yamt return ENOMEM;
742 1.1 yamt }
743 1.1 yamt
744 1.1 yamt return 0;
745 1.1 yamt }
746 1.1 yamt
747 1.1 yamt static int
748 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
749 1.1 yamt {
750 1.1 yamt bt_t *bt;
751 1.1 yamt int i;
752 1.1 yamt struct vmem_hashlist *newhashlist;
753 1.1 yamt struct vmem_hashlist *oldhashlist;
754 1.1 yamt size_t oldhashsize;
755 1.1 yamt
756 1.1 yamt KASSERT(newhashsize > 0);
757 1.1 yamt
758 1.1 yamt newhashlist =
759 1.1 yamt xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
760 1.1 yamt if (newhashlist == NULL) {
761 1.1 yamt return ENOMEM;
762 1.1 yamt }
763 1.1 yamt for (i = 0; i < newhashsize; i++) {
764 1.1 yamt LIST_INIT(&newhashlist[i]);
765 1.1 yamt }
766 1.1 yamt
767 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
768 1.66 para xfree(newhashlist,
769 1.66 para sizeof(struct vmem_hashlist *) * newhashsize);
770 1.30 yamt return EBUSY;
771 1.30 yamt }
772 1.1 yamt oldhashlist = vm->vm_hashlist;
773 1.1 yamt oldhashsize = vm->vm_hashsize;
774 1.1 yamt vm->vm_hashlist = newhashlist;
775 1.1 yamt vm->vm_hashsize = newhashsize;
776 1.1 yamt if (oldhashlist == NULL) {
777 1.1 yamt VMEM_UNLOCK(vm);
778 1.1 yamt return 0;
779 1.1 yamt }
780 1.1 yamt for (i = 0; i < oldhashsize; i++) {
781 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
782 1.1 yamt bt_rembusy(vm, bt); /* XXX */
783 1.1 yamt bt_insbusy(vm, bt);
784 1.1 yamt }
785 1.1 yamt }
786 1.1 yamt VMEM_UNLOCK(vm);
787 1.1 yamt
788 1.66 para if (oldhashlist != &vm->vm_hash0) {
789 1.66 para xfree(oldhashlist,
790 1.66 para sizeof(struct vmem_hashlist *) * oldhashsize);
791 1.66 para }
792 1.1 yamt
793 1.1 yamt return 0;
794 1.1 yamt }
795 1.1 yamt
796 1.10 yamt /*
797 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
798 1.59 yamt *
799 1.59 yamt * it's a caller's responsibility to ensure the region is big enough
800 1.59 yamt * before calling us.
801 1.10 yamt */
802 1.10 yamt
803 1.61 dyoung static int
804 1.76 joerg vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
805 1.60 dyoung vmem_size_t phase, vmem_size_t nocross,
806 1.61 dyoung vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
807 1.10 yamt {
808 1.10 yamt vmem_addr_t start;
809 1.10 yamt vmem_addr_t end;
810 1.10 yamt
811 1.60 dyoung KASSERT(size > 0);
812 1.59 yamt KASSERT(bt->bt_size >= size); /* caller's responsibility */
813 1.10 yamt
814 1.10 yamt /*
815 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
816 1.10 yamt * unsigned integer of the same size.
817 1.10 yamt */
818 1.10 yamt
819 1.10 yamt start = bt->bt_start;
820 1.10 yamt if (start < minaddr) {
821 1.10 yamt start = minaddr;
822 1.10 yamt }
823 1.10 yamt end = BT_END(bt);
824 1.60 dyoung if (end > maxaddr) {
825 1.60 dyoung end = maxaddr;
826 1.10 yamt }
827 1.60 dyoung if (start > end) {
828 1.61 dyoung return ENOMEM;
829 1.10 yamt }
830 1.19 yamt
831 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
832 1.10 yamt if (start < bt->bt_start) {
833 1.10 yamt start += align;
834 1.10 yamt }
835 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
836 1.10 yamt KASSERT(align < nocross);
837 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
838 1.10 yamt }
839 1.60 dyoung if (start <= end && end - start >= size - 1) {
840 1.10 yamt KASSERT((start & (align - 1)) == phase);
841 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
842 1.10 yamt KASSERT(minaddr <= start);
843 1.60 dyoung KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
844 1.10 yamt KASSERT(bt->bt_start <= start);
845 1.60 dyoung KASSERT(BT_END(bt) - start >= size - 1);
846 1.61 dyoung *addrp = start;
847 1.61 dyoung return 0;
848 1.10 yamt }
849 1.61 dyoung return ENOMEM;
850 1.10 yamt }
851 1.10 yamt
852 1.80 para /* ---- vmem API */
853 1.1 yamt
854 1.1 yamt /*
855 1.66 para * vmem_create_internal: creates a vmem arena.
856 1.1 yamt */
857 1.1 yamt
858 1.80 para vmem_t *
859 1.80 para vmem_init(vmem_t *vm, const char *name,
860 1.80 para vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
861 1.80 para vmem_import_t *importfn, vmem_release_t *releasefn,
862 1.80 para vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
863 1.1 yamt {
864 1.1 yamt int i;
865 1.1 yamt
866 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
867 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
868 1.62 rmind KASSERT(quantum > 0);
869 1.1 yamt
870 1.1 yamt #if defined(_KERNEL)
871 1.80 para /* XXX: SMP, we get called early... */
872 1.80 para if (!vmem_bootstrapped) {
873 1.80 para vmem_bootstrap();
874 1.80 para }
875 1.66 para #endif /* defined(_KERNEL) */
876 1.80 para
877 1.80 para if (vm == NULL) {
878 1.66 para vm = xmalloc(sizeof(*vm), flags);
879 1.1 yamt }
880 1.1 yamt if (vm == NULL) {
881 1.1 yamt return NULL;
882 1.1 yamt }
883 1.1 yamt
884 1.66 para VMEM_CONDVAR_INIT(vm, "vmem");
885 1.31 ad VMEM_LOCK_INIT(vm, ipl);
886 1.66 para vm->vm_flags = flags;
887 1.66 para vm->vm_nfreetags = 0;
888 1.66 para LIST_INIT(&vm->vm_freetags);
889 1.64 yamt strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
890 1.1 yamt vm->vm_quantum_mask = quantum - 1;
891 1.62 rmind vm->vm_quantum_shift = SIZE2ORDER(quantum);
892 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
893 1.61 dyoung vm->vm_importfn = importfn;
894 1.61 dyoung vm->vm_releasefn = releasefn;
895 1.61 dyoung vm->vm_arg = arg;
896 1.1 yamt vm->vm_nbusytag = 0;
897 1.66 para vm->vm_size = 0;
898 1.66 para vm->vm_inuse = 0;
899 1.5 yamt #if defined(QCACHE)
900 1.31 ad qc_init(vm, qcache_max, ipl);
901 1.5 yamt #endif /* defined(QCACHE) */
902 1.1 yamt
903 1.1 yamt CIRCLEQ_INIT(&vm->vm_seglist);
904 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
905 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
906 1.1 yamt }
907 1.80 para memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist));
908 1.80 para vm->vm_hashsize = 1;
909 1.80 para vm->vm_hashlist = &vm->vm_hash0;
910 1.1 yamt
911 1.1 yamt if (size != 0) {
912 1.61 dyoung if (vmem_add(vm, base, size, flags) != 0) {
913 1.30 yamt vmem_destroy1(vm);
914 1.1 yamt return NULL;
915 1.1 yamt }
916 1.1 yamt }
917 1.1 yamt
918 1.30 yamt #if defined(_KERNEL)
919 1.66 para if (flags & VM_BOOTSTRAP) {
920 1.66 para bt_refill(vm, VM_NOSLEEP);
921 1.66 para }
922 1.66 para
923 1.30 yamt mutex_enter(&vmem_list_lock);
924 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
925 1.30 yamt mutex_exit(&vmem_list_lock);
926 1.30 yamt #endif /* defined(_KERNEL) */
927 1.30 yamt
928 1.1 yamt return vm;
929 1.1 yamt }
930 1.1 yamt
931 1.66 para
932 1.66 para
933 1.66 para /*
934 1.66 para * vmem_create: create an arena.
935 1.66 para *
936 1.66 para * => must not be called from interrupt context.
937 1.66 para */
938 1.66 para
939 1.66 para vmem_t *
940 1.66 para vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
941 1.66 para vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
942 1.67 rmind vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
943 1.66 para {
944 1.66 para
945 1.66 para KASSERT((flags & (VM_XIMPORT)) == 0);
946 1.66 para
947 1.80 para return vmem_init(NULL, name, base, size, quantum,
948 1.66 para importfn, releasefn, source, qcache_max, flags, ipl);
949 1.66 para }
950 1.66 para
951 1.66 para /*
952 1.66 para * vmem_xcreate: create an arena takes alternative import func.
953 1.66 para *
954 1.66 para * => must not be called from interrupt context.
955 1.66 para */
956 1.66 para
957 1.66 para vmem_t *
958 1.66 para vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
959 1.66 para vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
960 1.67 rmind vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
961 1.66 para {
962 1.66 para
963 1.66 para KASSERT((flags & (VM_XIMPORT)) == 0);
964 1.66 para
965 1.80 para return vmem_init(NULL, name, base, size, quantum,
966 1.66 para (vmem_import_t *)importfn, releasefn, source,
967 1.66 para qcache_max, flags | VM_XIMPORT, ipl);
968 1.66 para }
969 1.66 para
970 1.1 yamt void
971 1.1 yamt vmem_destroy(vmem_t *vm)
972 1.1 yamt {
973 1.1 yamt
974 1.30 yamt #if defined(_KERNEL)
975 1.30 yamt mutex_enter(&vmem_list_lock);
976 1.30 yamt LIST_REMOVE(vm, vm_alllist);
977 1.30 yamt mutex_exit(&vmem_list_lock);
978 1.30 yamt #endif /* defined(_KERNEL) */
979 1.1 yamt
980 1.30 yamt vmem_destroy1(vm);
981 1.1 yamt }
982 1.1 yamt
983 1.1 yamt vmem_size_t
984 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
985 1.1 yamt {
986 1.1 yamt
987 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
988 1.1 yamt }
989 1.1 yamt
990 1.1 yamt /*
991 1.1 yamt * vmem_alloc:
992 1.1 yamt *
993 1.1 yamt * => caller must ensure appropriate spl,
994 1.1 yamt * if the arena can be accessed from interrupt context.
995 1.1 yamt */
996 1.1 yamt
997 1.61 dyoung int
998 1.61 dyoung vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
999 1.1 yamt {
1000 1.12 yamt const vm_flag_t strat __unused = flags & VM_FITMASK;
1001 1.1 yamt
1002 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1003 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1004 1.1 yamt
1005 1.1 yamt KASSERT(size > 0);
1006 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1007 1.3 yamt if ((flags & VM_SLEEP) != 0) {
1008 1.42 yamt ASSERT_SLEEPABLE();
1009 1.3 yamt }
1010 1.1 yamt
1011 1.5 yamt #if defined(QCACHE)
1012 1.5 yamt if (size <= vm->vm_qcache_max) {
1013 1.61 dyoung void *p;
1014 1.38 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1015 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1016 1.5 yamt
1017 1.61 dyoung p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1018 1.61 dyoung if (addrp != NULL)
1019 1.61 dyoung *addrp = (vmem_addr_t)p;
1020 1.61 dyoung return (p == NULL) ? ENOMEM : 0;
1021 1.5 yamt }
1022 1.5 yamt #endif /* defined(QCACHE) */
1023 1.5 yamt
1024 1.60 dyoung return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1025 1.61 dyoung flags, addrp);
1026 1.10 yamt }
1027 1.10 yamt
1028 1.61 dyoung int
1029 1.60 dyoung vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1030 1.60 dyoung const vmem_size_t phase, const vmem_size_t nocross,
1031 1.61 dyoung const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1032 1.61 dyoung vmem_addr_t *addrp)
1033 1.10 yamt {
1034 1.10 yamt struct vmem_freelist *list;
1035 1.10 yamt struct vmem_freelist *first;
1036 1.10 yamt struct vmem_freelist *end;
1037 1.10 yamt bt_t *bt;
1038 1.10 yamt bt_t *btnew;
1039 1.10 yamt bt_t *btnew2;
1040 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
1041 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
1042 1.10 yamt vmem_addr_t start;
1043 1.61 dyoung int rc;
1044 1.10 yamt
1045 1.10 yamt KASSERT(size0 > 0);
1046 1.10 yamt KASSERT(size > 0);
1047 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1048 1.10 yamt if ((flags & VM_SLEEP) != 0) {
1049 1.42 yamt ASSERT_SLEEPABLE();
1050 1.10 yamt }
1051 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
1052 1.10 yamt KASSERT((align & (align - 1)) == 0);
1053 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
1054 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
1055 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
1056 1.10 yamt KASSERT((align == 0 && phase == 0) || phase < align);
1057 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
1058 1.60 dyoung KASSERT(minaddr <= maxaddr);
1059 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1060 1.10 yamt
1061 1.10 yamt if (align == 0) {
1062 1.10 yamt align = vm->vm_quantum_mask + 1;
1063 1.10 yamt }
1064 1.59 yamt
1065 1.59 yamt /*
1066 1.59 yamt * allocate boundary tags before acquiring the vmem lock.
1067 1.59 yamt */
1068 1.1 yamt btnew = bt_alloc(vm, flags);
1069 1.1 yamt if (btnew == NULL) {
1070 1.61 dyoung return ENOMEM;
1071 1.1 yamt }
1072 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1073 1.10 yamt if (btnew2 == NULL) {
1074 1.10 yamt bt_free(vm, btnew);
1075 1.61 dyoung return ENOMEM;
1076 1.10 yamt }
1077 1.1 yamt
1078 1.59 yamt /*
1079 1.59 yamt * choose a free block from which we allocate.
1080 1.59 yamt */
1081 1.1 yamt retry_strat:
1082 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
1083 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
1084 1.1 yamt retry:
1085 1.1 yamt bt = NULL;
1086 1.1 yamt VMEM_LOCK(vm);
1087 1.55 yamt vmem_check(vm);
1088 1.2 yamt if (strat == VM_INSTANTFIT) {
1089 1.59 yamt /*
1090 1.59 yamt * just choose the first block which satisfies our restrictions.
1091 1.59 yamt *
1092 1.59 yamt * note that we don't need to check the size of the blocks
1093 1.59 yamt * because any blocks found on these list should be larger than
1094 1.59 yamt * the given size.
1095 1.59 yamt */
1096 1.2 yamt for (list = first; list < end; list++) {
1097 1.2 yamt bt = LIST_FIRST(list);
1098 1.2 yamt if (bt != NULL) {
1099 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
1100 1.61 dyoung nocross, minaddr, maxaddr, &start);
1101 1.61 dyoung if (rc == 0) {
1102 1.10 yamt goto gotit;
1103 1.10 yamt }
1104 1.59 yamt /*
1105 1.59 yamt * don't bother to follow the bt_freelist link
1106 1.59 yamt * here. the list can be very long and we are
1107 1.59 yamt * told to run fast. blocks from the later free
1108 1.59 yamt * lists are larger and have better chances to
1109 1.59 yamt * satisfy our restrictions.
1110 1.59 yamt */
1111 1.2 yamt }
1112 1.2 yamt }
1113 1.2 yamt } else { /* VM_BESTFIT */
1114 1.59 yamt /*
1115 1.59 yamt * we assume that, for space efficiency, it's better to
1116 1.59 yamt * allocate from a smaller block. thus we will start searching
1117 1.59 yamt * from the lower-order list than VM_INSTANTFIT.
1118 1.59 yamt * however, don't bother to find the smallest block in a free
1119 1.59 yamt * list because the list can be very long. we can revisit it
1120 1.59 yamt * if/when it turns out to be a problem.
1121 1.59 yamt *
1122 1.59 yamt * note that the 'first' list can contain blocks smaller than
1123 1.59 yamt * the requested size. thus we need to check bt_size.
1124 1.59 yamt */
1125 1.2 yamt for (list = first; list < end; list++) {
1126 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
1127 1.2 yamt if (bt->bt_size >= size) {
1128 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
1129 1.61 dyoung nocross, minaddr, maxaddr, &start);
1130 1.61 dyoung if (rc == 0) {
1131 1.10 yamt goto gotit;
1132 1.10 yamt }
1133 1.2 yamt }
1134 1.1 yamt }
1135 1.1 yamt }
1136 1.1 yamt }
1137 1.2 yamt VMEM_UNLOCK(vm);
1138 1.1 yamt #if 1
1139 1.2 yamt if (strat == VM_INSTANTFIT) {
1140 1.2 yamt strat = VM_BESTFIT;
1141 1.2 yamt goto retry_strat;
1142 1.2 yamt }
1143 1.1 yamt #endif
1144 1.69 rmind if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1145 1.10 yamt
1146 1.10 yamt /*
1147 1.10 yamt * XXX should try to import a region large enough to
1148 1.10 yamt * satisfy restrictions?
1149 1.10 yamt */
1150 1.10 yamt
1151 1.20 yamt goto fail;
1152 1.10 yamt }
1153 1.60 dyoung /* XXX eeek, minaddr & maxaddr not respected */
1154 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
1155 1.2 yamt goto retry;
1156 1.1 yamt }
1157 1.2 yamt /* XXX */
1158 1.66 para
1159 1.68 para if ((flags & VM_SLEEP) != 0) {
1160 1.71 para #if defined(_KERNEL) && !defined(_RUMPKERNEL)
1161 1.71 para mutex_spin_enter(&uvm_fpageqlock);
1162 1.71 para uvm_kick_pdaemon();
1163 1.71 para mutex_spin_exit(&uvm_fpageqlock);
1164 1.71 para #endif
1165 1.68 para VMEM_LOCK(vm);
1166 1.68 para VMEM_CONDVAR_WAIT(vm);
1167 1.68 para VMEM_UNLOCK(vm);
1168 1.68 para goto retry;
1169 1.68 para }
1170 1.20 yamt fail:
1171 1.20 yamt bt_free(vm, btnew);
1172 1.20 yamt bt_free(vm, btnew2);
1173 1.61 dyoung return ENOMEM;
1174 1.2 yamt
1175 1.2 yamt gotit:
1176 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
1177 1.1 yamt KASSERT(bt->bt_size >= size);
1178 1.1 yamt bt_remfree(vm, bt);
1179 1.55 yamt vmem_check(vm);
1180 1.10 yamt if (bt->bt_start != start) {
1181 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
1182 1.10 yamt btnew2->bt_start = bt->bt_start;
1183 1.10 yamt btnew2->bt_size = start - bt->bt_start;
1184 1.10 yamt bt->bt_start = start;
1185 1.10 yamt bt->bt_size -= btnew2->bt_size;
1186 1.10 yamt bt_insfree(vm, btnew2);
1187 1.10 yamt bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1188 1.10 yamt btnew2 = NULL;
1189 1.55 yamt vmem_check(vm);
1190 1.10 yamt }
1191 1.10 yamt KASSERT(bt->bt_start == start);
1192 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1193 1.1 yamt /* split */
1194 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1195 1.1 yamt btnew->bt_start = bt->bt_start;
1196 1.1 yamt btnew->bt_size = size;
1197 1.1 yamt bt->bt_start = bt->bt_start + size;
1198 1.1 yamt bt->bt_size -= size;
1199 1.1 yamt bt_insfree(vm, bt);
1200 1.1 yamt bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1201 1.1 yamt bt_insbusy(vm, btnew);
1202 1.55 yamt vmem_check(vm);
1203 1.1 yamt VMEM_UNLOCK(vm);
1204 1.1 yamt } else {
1205 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1206 1.1 yamt bt_insbusy(vm, bt);
1207 1.55 yamt vmem_check(vm);
1208 1.1 yamt VMEM_UNLOCK(vm);
1209 1.1 yamt bt_free(vm, btnew);
1210 1.1 yamt btnew = bt;
1211 1.1 yamt }
1212 1.10 yamt if (btnew2 != NULL) {
1213 1.10 yamt bt_free(vm, btnew2);
1214 1.10 yamt }
1215 1.1 yamt KASSERT(btnew->bt_size >= size);
1216 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1217 1.1 yamt
1218 1.61 dyoung if (addrp != NULL)
1219 1.61 dyoung *addrp = btnew->bt_start;
1220 1.61 dyoung return 0;
1221 1.1 yamt }
1222 1.1 yamt
1223 1.1 yamt /*
1224 1.1 yamt * vmem_free:
1225 1.1 yamt *
1226 1.1 yamt * => caller must ensure appropriate spl,
1227 1.1 yamt * if the arena can be accessed from interrupt context.
1228 1.1 yamt */
1229 1.1 yamt
1230 1.1 yamt void
1231 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1232 1.1 yamt {
1233 1.1 yamt
1234 1.1 yamt KASSERT(size > 0);
1235 1.1 yamt
1236 1.5 yamt #if defined(QCACHE)
1237 1.5 yamt if (size <= vm->vm_qcache_max) {
1238 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1239 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1240 1.5 yamt
1241 1.63 rmind pool_cache_put(qc->qc_cache, (void *)addr);
1242 1.63 rmind return;
1243 1.5 yamt }
1244 1.5 yamt #endif /* defined(QCACHE) */
1245 1.5 yamt
1246 1.10 yamt vmem_xfree(vm, addr, size);
1247 1.10 yamt }
1248 1.10 yamt
1249 1.10 yamt void
1250 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1251 1.10 yamt {
1252 1.10 yamt bt_t *bt;
1253 1.10 yamt bt_t *t;
1254 1.66 para LIST_HEAD(, vmem_btag) tofree;
1255 1.66 para
1256 1.66 para LIST_INIT(&tofree);
1257 1.10 yamt
1258 1.10 yamt KASSERT(size > 0);
1259 1.10 yamt
1260 1.1 yamt VMEM_LOCK(vm);
1261 1.1 yamt
1262 1.1 yamt bt = bt_lookupbusy(vm, addr);
1263 1.1 yamt KASSERT(bt != NULL);
1264 1.1 yamt KASSERT(bt->bt_start == addr);
1265 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1266 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1267 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1268 1.1 yamt bt_rembusy(vm, bt);
1269 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1270 1.1 yamt
1271 1.1 yamt /* coalesce */
1272 1.1 yamt t = CIRCLEQ_NEXT(bt, bt_seglist);
1273 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1274 1.60 dyoung KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1275 1.1 yamt bt_remfree(vm, t);
1276 1.1 yamt bt_remseg(vm, t);
1277 1.1 yamt bt->bt_size += t->bt_size;
1278 1.66 para LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1279 1.1 yamt }
1280 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1281 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1282 1.60 dyoung KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1283 1.1 yamt bt_remfree(vm, t);
1284 1.1 yamt bt_remseg(vm, t);
1285 1.1 yamt bt->bt_size += t->bt_size;
1286 1.1 yamt bt->bt_start = t->bt_start;
1287 1.66 para LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1288 1.1 yamt }
1289 1.1 yamt
1290 1.1 yamt t = CIRCLEQ_PREV(bt, bt_seglist);
1291 1.1 yamt KASSERT(t != NULL);
1292 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1293 1.61 dyoung if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1294 1.1 yamt t->bt_size == bt->bt_size) {
1295 1.1 yamt vmem_addr_t spanaddr;
1296 1.1 yamt vmem_size_t spansize;
1297 1.1 yamt
1298 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1299 1.1 yamt spanaddr = bt->bt_start;
1300 1.1 yamt spansize = bt->bt_size;
1301 1.1 yamt bt_remseg(vm, bt);
1302 1.66 para LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1303 1.1 yamt bt_remseg(vm, t);
1304 1.66 para LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1305 1.66 para vm->vm_size -= spansize;
1306 1.68 para VMEM_CONDVAR_BROADCAST(vm);
1307 1.1 yamt VMEM_UNLOCK(vm);
1308 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1309 1.1 yamt } else {
1310 1.1 yamt bt_insfree(vm, bt);
1311 1.68 para VMEM_CONDVAR_BROADCAST(vm);
1312 1.1 yamt VMEM_UNLOCK(vm);
1313 1.1 yamt }
1314 1.66 para
1315 1.66 para while (!LIST_EMPTY(&tofree)) {
1316 1.66 para t = LIST_FIRST(&tofree);
1317 1.66 para LIST_REMOVE(t, bt_freelist);
1318 1.66 para bt_free(vm, t);
1319 1.66 para }
1320 1.1 yamt }
1321 1.1 yamt
1322 1.1 yamt /*
1323 1.1 yamt * vmem_add:
1324 1.1 yamt *
1325 1.1 yamt * => caller must ensure appropriate spl,
1326 1.1 yamt * if the arena can be accessed from interrupt context.
1327 1.1 yamt */
1328 1.1 yamt
1329 1.61 dyoung int
1330 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1331 1.1 yamt {
1332 1.1 yamt
1333 1.1 yamt return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1334 1.1 yamt }
1335 1.1 yamt
1336 1.6 yamt /*
1337 1.66 para * vmem_size: information about arenas size
1338 1.6 yamt *
1339 1.66 para * => return free/allocated size in arena
1340 1.6 yamt */
1341 1.66 para vmem_size_t
1342 1.66 para vmem_size(vmem_t *vm, int typemask)
1343 1.6 yamt {
1344 1.6 yamt
1345 1.66 para switch (typemask) {
1346 1.66 para case VMEM_ALLOC:
1347 1.66 para return vm->vm_inuse;
1348 1.66 para case VMEM_FREE:
1349 1.66 para return vm->vm_size - vm->vm_inuse;
1350 1.66 para case VMEM_FREE|VMEM_ALLOC:
1351 1.66 para return vm->vm_size;
1352 1.66 para default:
1353 1.66 para panic("vmem_size");
1354 1.66 para }
1355 1.6 yamt }
1356 1.6 yamt
1357 1.30 yamt /* ---- rehash */
1358 1.30 yamt
1359 1.30 yamt #if defined(_KERNEL)
1360 1.30 yamt static struct callout vmem_rehash_ch;
1361 1.30 yamt static int vmem_rehash_interval;
1362 1.30 yamt static struct workqueue *vmem_rehash_wq;
1363 1.30 yamt static struct work vmem_rehash_wk;
1364 1.30 yamt
1365 1.30 yamt static void
1366 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1367 1.30 yamt {
1368 1.30 yamt vmem_t *vm;
1369 1.30 yamt
1370 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1371 1.30 yamt mutex_enter(&vmem_list_lock);
1372 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1373 1.30 yamt size_t desired;
1374 1.30 yamt size_t current;
1375 1.30 yamt
1376 1.30 yamt if (!VMEM_TRYLOCK(vm)) {
1377 1.30 yamt continue;
1378 1.30 yamt }
1379 1.30 yamt desired = vm->vm_nbusytag;
1380 1.30 yamt current = vm->vm_hashsize;
1381 1.30 yamt VMEM_UNLOCK(vm);
1382 1.30 yamt
1383 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1384 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1385 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1386 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1387 1.30 yamt }
1388 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1389 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1390 1.30 yamt }
1391 1.30 yamt }
1392 1.30 yamt mutex_exit(&vmem_list_lock);
1393 1.30 yamt
1394 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1395 1.30 yamt }
1396 1.30 yamt
1397 1.30 yamt static void
1398 1.30 yamt vmem_rehash_all_kick(void *dummy)
1399 1.30 yamt {
1400 1.30 yamt
1401 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1402 1.30 yamt }
1403 1.30 yamt
1404 1.30 yamt void
1405 1.30 yamt vmem_rehash_start(void)
1406 1.30 yamt {
1407 1.30 yamt int error;
1408 1.30 yamt
1409 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1410 1.41 ad vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1411 1.30 yamt if (error) {
1412 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1413 1.30 yamt }
1414 1.41 ad callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1415 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1416 1.30 yamt
1417 1.30 yamt vmem_rehash_interval = hz * 10;
1418 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1419 1.30 yamt }
1420 1.30 yamt #endif /* defined(_KERNEL) */
1421 1.30 yamt
1422 1.1 yamt /* ---- debug */
1423 1.1 yamt
1424 1.55 yamt #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1425 1.55 yamt
1426 1.82 christos static void bt_dump(const bt_t *, void (*)(const char *, ...)
1427 1.82 christos __printflike(1, 2));
1428 1.55 yamt
1429 1.55 yamt static const char *
1430 1.55 yamt bt_type_string(int type)
1431 1.55 yamt {
1432 1.55 yamt static const char * const table[] = {
1433 1.55 yamt [BT_TYPE_BUSY] = "busy",
1434 1.55 yamt [BT_TYPE_FREE] = "free",
1435 1.55 yamt [BT_TYPE_SPAN] = "span",
1436 1.55 yamt [BT_TYPE_SPAN_STATIC] = "static span",
1437 1.55 yamt };
1438 1.55 yamt
1439 1.55 yamt if (type >= __arraycount(table)) {
1440 1.55 yamt return "BOGUS";
1441 1.55 yamt }
1442 1.55 yamt return table[type];
1443 1.55 yamt }
1444 1.55 yamt
1445 1.55 yamt static void
1446 1.55 yamt bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1447 1.55 yamt {
1448 1.55 yamt
1449 1.55 yamt (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1450 1.55 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1451 1.55 yamt bt->bt_type, bt_type_string(bt->bt_type));
1452 1.55 yamt }
1453 1.55 yamt
1454 1.55 yamt static void
1455 1.82 christos vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1456 1.55 yamt {
1457 1.55 yamt const bt_t *bt;
1458 1.55 yamt int i;
1459 1.55 yamt
1460 1.55 yamt (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1461 1.55 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1462 1.55 yamt bt_dump(bt, pr);
1463 1.55 yamt }
1464 1.55 yamt
1465 1.55 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1466 1.55 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1467 1.55 yamt
1468 1.55 yamt if (LIST_EMPTY(fl)) {
1469 1.55 yamt continue;
1470 1.55 yamt }
1471 1.55 yamt
1472 1.55 yamt (*pr)("freelist[%d]\n", i);
1473 1.55 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1474 1.55 yamt bt_dump(bt, pr);
1475 1.55 yamt }
1476 1.55 yamt }
1477 1.55 yamt }
1478 1.55 yamt
1479 1.55 yamt #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1480 1.55 yamt
1481 1.37 yamt #if defined(DDB)
1482 1.37 yamt static bt_t *
1483 1.37 yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1484 1.37 yamt {
1485 1.39 yamt bt_t *bt;
1486 1.37 yamt
1487 1.39 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1488 1.39 yamt if (BT_ISSPAN_P(bt)) {
1489 1.39 yamt continue;
1490 1.39 yamt }
1491 1.60 dyoung if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1492 1.39 yamt return bt;
1493 1.37 yamt }
1494 1.37 yamt }
1495 1.37 yamt
1496 1.37 yamt return NULL;
1497 1.37 yamt }
1498 1.37 yamt
1499 1.37 yamt void
1500 1.37 yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1501 1.37 yamt {
1502 1.37 yamt vmem_t *vm;
1503 1.37 yamt
1504 1.37 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1505 1.37 yamt bt_t *bt;
1506 1.37 yamt
1507 1.37 yamt bt = vmem_whatis_lookup(vm, addr);
1508 1.37 yamt if (bt == NULL) {
1509 1.37 yamt continue;
1510 1.37 yamt }
1511 1.39 yamt (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1512 1.37 yamt (void *)addr, (void *)bt->bt_start,
1513 1.39 yamt (size_t)(addr - bt->bt_start), vm->vm_name,
1514 1.39 yamt (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1515 1.37 yamt }
1516 1.37 yamt }
1517 1.43 cegger
1518 1.55 yamt void
1519 1.55 yamt vmem_printall(const char *modif, void (*pr)(const char *, ...))
1520 1.43 cegger {
1521 1.55 yamt const vmem_t *vm;
1522 1.43 cegger
1523 1.47 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1524 1.55 yamt vmem_dump(vm, pr);
1525 1.43 cegger }
1526 1.43 cegger }
1527 1.43 cegger
1528 1.43 cegger void
1529 1.43 cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1530 1.43 cegger {
1531 1.55 yamt const vmem_t *vm = (const void *)addr;
1532 1.43 cegger
1533 1.55 yamt vmem_dump(vm, pr);
1534 1.43 cegger }
1535 1.37 yamt #endif /* defined(DDB) */
1536 1.37 yamt
1537 1.60 dyoung #if defined(_KERNEL)
1538 1.60 dyoung #define vmem_printf printf
1539 1.60 dyoung #else
1540 1.1 yamt #include <stdio.h>
1541 1.60 dyoung #include <stdarg.h>
1542 1.60 dyoung
1543 1.60 dyoung static void
1544 1.60 dyoung vmem_printf(const char *fmt, ...)
1545 1.60 dyoung {
1546 1.60 dyoung va_list ap;
1547 1.60 dyoung va_start(ap, fmt);
1548 1.60 dyoung vprintf(fmt, ap);
1549 1.60 dyoung va_end(ap);
1550 1.60 dyoung }
1551 1.60 dyoung #endif
1552 1.1 yamt
1553 1.55 yamt #if defined(VMEM_SANITY)
1554 1.1 yamt
1555 1.55 yamt static bool
1556 1.55 yamt vmem_check_sanity(vmem_t *vm)
1557 1.1 yamt {
1558 1.55 yamt const bt_t *bt, *bt2;
1559 1.1 yamt
1560 1.55 yamt KASSERT(vm != NULL);
1561 1.1 yamt
1562 1.1 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1563 1.60 dyoung if (bt->bt_start > BT_END(bt)) {
1564 1.55 yamt printf("corrupted tag\n");
1565 1.60 dyoung bt_dump(bt, vmem_printf);
1566 1.55 yamt return false;
1567 1.55 yamt }
1568 1.55 yamt }
1569 1.55 yamt CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1570 1.55 yamt CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1571 1.55 yamt if (bt == bt2) {
1572 1.55 yamt continue;
1573 1.55 yamt }
1574 1.55 yamt if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1575 1.55 yamt continue;
1576 1.55 yamt }
1577 1.60 dyoung if (bt->bt_start <= BT_END(bt2) &&
1578 1.60 dyoung bt2->bt_start <= BT_END(bt)) {
1579 1.55 yamt printf("overwrapped tags\n");
1580 1.60 dyoung bt_dump(bt, vmem_printf);
1581 1.60 dyoung bt_dump(bt2, vmem_printf);
1582 1.55 yamt return false;
1583 1.55 yamt }
1584 1.55 yamt }
1585 1.1 yamt }
1586 1.1 yamt
1587 1.55 yamt return true;
1588 1.55 yamt }
1589 1.1 yamt
1590 1.55 yamt static void
1591 1.55 yamt vmem_check(vmem_t *vm)
1592 1.55 yamt {
1593 1.1 yamt
1594 1.55 yamt if (!vmem_check_sanity(vm)) {
1595 1.55 yamt panic("insanity vmem %p", vm);
1596 1.1 yamt }
1597 1.1 yamt }
1598 1.1 yamt
1599 1.55 yamt #endif /* defined(VMEM_SANITY) */
1600 1.1 yamt
1601 1.55 yamt #if defined(UNITTEST)
1602 1.1 yamt int
1603 1.57 cegger main(void)
1604 1.1 yamt {
1605 1.61 dyoung int rc;
1606 1.1 yamt vmem_t *vm;
1607 1.1 yamt vmem_addr_t p;
1608 1.1 yamt struct reg {
1609 1.1 yamt vmem_addr_t p;
1610 1.1 yamt vmem_size_t sz;
1611 1.25 thorpej bool x;
1612 1.1 yamt } *reg = NULL;
1613 1.1 yamt int nreg = 0;
1614 1.1 yamt int nalloc = 0;
1615 1.1 yamt int nfree = 0;
1616 1.1 yamt vmem_size_t total = 0;
1617 1.1 yamt #if 1
1618 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1619 1.1 yamt #else
1620 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1621 1.1 yamt #endif
1622 1.1 yamt
1623 1.61 dyoung vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1624 1.61 dyoung #ifdef _KERNEL
1625 1.61 dyoung IPL_NONE
1626 1.61 dyoung #else
1627 1.61 dyoung 0
1628 1.61 dyoung #endif
1629 1.61 dyoung );
1630 1.1 yamt if (vm == NULL) {
1631 1.1 yamt printf("vmem_create\n");
1632 1.1 yamt exit(EXIT_FAILURE);
1633 1.1 yamt }
1634 1.60 dyoung vmem_dump(vm, vmem_printf);
1635 1.1 yamt
1636 1.61 dyoung rc = vmem_add(vm, 0, 50, VM_SLEEP);
1637 1.61 dyoung assert(rc == 0);
1638 1.61 dyoung rc = vmem_add(vm, 100, 200, VM_SLEEP);
1639 1.61 dyoung assert(rc == 0);
1640 1.61 dyoung rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1641 1.61 dyoung assert(rc == 0);
1642 1.61 dyoung rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1643 1.61 dyoung assert(rc == 0);
1644 1.61 dyoung rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1645 1.61 dyoung assert(rc == 0);
1646 1.61 dyoung rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1647 1.61 dyoung assert(rc == 0);
1648 1.61 dyoung rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1649 1.61 dyoung assert(rc == 0);
1650 1.61 dyoung rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1651 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1652 1.61 dyoung assert(rc != 0);
1653 1.61 dyoung rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1654 1.61 dyoung assert(rc == 0 && p == 0);
1655 1.61 dyoung vmem_xfree(vm, p, 50);
1656 1.61 dyoung rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1657 1.61 dyoung assert(rc == 0 && p == 0);
1658 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1659 1.61 dyoung 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1660 1.61 dyoung assert(rc != 0);
1661 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1662 1.61 dyoung 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1663 1.61 dyoung assert(rc != 0);
1664 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1665 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1666 1.61 dyoung assert(rc == 0);
1667 1.60 dyoung vmem_dump(vm, vmem_printf);
1668 1.1 yamt for (;;) {
1669 1.1 yamt struct reg *r;
1670 1.10 yamt int t = rand() % 100;
1671 1.1 yamt
1672 1.10 yamt if (t > 45) {
1673 1.10 yamt /* alloc */
1674 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1675 1.25 thorpej bool x;
1676 1.10 yamt vmem_size_t align, phase, nocross;
1677 1.10 yamt vmem_addr_t minaddr, maxaddr;
1678 1.10 yamt
1679 1.10 yamt if (t > 70) {
1680 1.26 thorpej x = true;
1681 1.10 yamt /* XXX */
1682 1.10 yamt align = 1 << (rand() % 15);
1683 1.10 yamt phase = rand() % 65536;
1684 1.10 yamt nocross = 1 << (rand() % 15);
1685 1.10 yamt if (align <= phase) {
1686 1.10 yamt phase = 0;
1687 1.10 yamt }
1688 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1689 1.19 yamt nocross)) {
1690 1.10 yamt nocross = 0;
1691 1.10 yamt }
1692 1.60 dyoung do {
1693 1.60 dyoung minaddr = rand() % 50000;
1694 1.60 dyoung maxaddr = rand() % 70000;
1695 1.60 dyoung } while (minaddr > maxaddr);
1696 1.10 yamt printf("=== xalloc %" PRIu64
1697 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1698 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1699 1.10 yamt ", max=%" PRIu64 "\n",
1700 1.10 yamt (uint64_t)sz,
1701 1.10 yamt (uint64_t)align,
1702 1.10 yamt (uint64_t)phase,
1703 1.10 yamt (uint64_t)nocross,
1704 1.10 yamt (uint64_t)minaddr,
1705 1.10 yamt (uint64_t)maxaddr);
1706 1.61 dyoung rc = vmem_xalloc(vm, sz, align, phase, nocross,
1707 1.61 dyoung minaddr, maxaddr, strat|VM_SLEEP, &p);
1708 1.10 yamt } else {
1709 1.26 thorpej x = false;
1710 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1711 1.61 dyoung rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1712 1.10 yamt }
1713 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1714 1.60 dyoung vmem_dump(vm, vmem_printf);
1715 1.61 dyoung if (rc != 0) {
1716 1.10 yamt if (x) {
1717 1.10 yamt continue;
1718 1.10 yamt }
1719 1.1 yamt break;
1720 1.1 yamt }
1721 1.1 yamt nreg++;
1722 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1723 1.1 yamt r = ®[nreg - 1];
1724 1.1 yamt r->p = p;
1725 1.1 yamt r->sz = sz;
1726 1.10 yamt r->x = x;
1727 1.1 yamt total += sz;
1728 1.1 yamt nalloc++;
1729 1.1 yamt } else if (nreg != 0) {
1730 1.10 yamt /* free */
1731 1.1 yamt r = ®[rand() % nreg];
1732 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1733 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1734 1.10 yamt if (r->x) {
1735 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1736 1.10 yamt } else {
1737 1.10 yamt vmem_free(vm, r->p, r->sz);
1738 1.10 yamt }
1739 1.1 yamt total -= r->sz;
1740 1.60 dyoung vmem_dump(vm, vmem_printf);
1741 1.1 yamt *r = reg[nreg - 1];
1742 1.1 yamt nreg--;
1743 1.1 yamt nfree++;
1744 1.1 yamt }
1745 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1746 1.1 yamt }
1747 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1748 1.1 yamt (uint64_t)total, nalloc, nfree);
1749 1.1 yamt exit(EXIT_SUCCESS);
1750 1.1 yamt }
1751 1.55 yamt #endif /* defined(UNITTEST) */
1752