subr_vmem.c revision 1.100 1 /* $NetBSD: subr_vmem.c,v 1.100 2019/12/21 14:50:34 ad Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * locking & the boundary tag pool:
36 * - A pool(9) is used for vmem boundary tags
37 * - During a pool get call the global vmem_btag_refill_lock is taken,
38 * to serialize access to the allocation reserve, but no other
39 * vmem arena locks.
40 * - During pool_put calls no vmem mutexes are locked.
41 * - pool_drain doesn't hold the pool's mutex while releasing memory to
42 * its backing therefore no interferance with any vmem mutexes.
43 * - The boundary tag pool is forced to put page headers into pool pages
44 * (PR_PHINPAGE) and not off page to avoid pool recursion.
45 * (due to sizeof(bt_t) it should be the case anyway)
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.100 2019/12/21 14:50:34 ad Exp $");
50
51 #if defined(_KERNEL) && defined(_KERNEL_OPT)
52 #include "opt_ddb.h"
53 #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
54
55 #include <sys/param.h>
56 #include <sys/hash.h>
57 #include <sys/queue.h>
58 #include <sys/bitops.h>
59
60 #if defined(_KERNEL)
61 #include <sys/systm.h>
62 #include <sys/kernel.h> /* hz */
63 #include <sys/callout.h>
64 #include <sys/kmem.h>
65 #include <sys/pool.h>
66 #include <sys/vmem.h>
67 #include <sys/vmem_impl.h>
68 #include <sys/workqueue.h>
69 #include <sys/atomic.h>
70 #include <uvm/uvm.h>
71 #include <uvm/uvm_extern.h>
72 #include <uvm/uvm_km.h>
73 #include <uvm/uvm_page.h>
74 #include <uvm/uvm_pdaemon.h>
75 #else /* defined(_KERNEL) */
76 #include <stdio.h>
77 #include <errno.h>
78 #include <assert.h>
79 #include <stdlib.h>
80 #include <string.h>
81 #include "../sys/vmem.h"
82 #include "../sys/vmem_impl.h"
83 #endif /* defined(_KERNEL) */
84
85
86 #if defined(_KERNEL)
87 #include <sys/evcnt.h>
88 #define VMEM_EVCNT_DEFINE(name) \
89 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
90 "vmem", #name); \
91 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
92 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
93 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
94
95 VMEM_EVCNT_DEFINE(static_bt_count)
96 VMEM_EVCNT_DEFINE(static_bt_inuse)
97
98 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
99 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
100 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
101 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
102
103 #else /* defined(_KERNEL) */
104
105 #define VMEM_EVCNT_INCR(ev) /* nothing */
106 #define VMEM_EVCNT_DECR(ev) /* nothing */
107
108 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
109 #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
110 #define VMEM_CONDVAR_WAIT(vm) /* nothing */
111 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
112
113 #define UNITTEST
114 #define KASSERT(a) assert(a)
115 #define mutex_init(a, b, c) /* nothing */
116 #define mutex_destroy(a) /* nothing */
117 #define mutex_enter(a) /* nothing */
118 #define mutex_tryenter(a) true
119 #define mutex_exit(a) /* nothing */
120 #define mutex_owned(a) /* nothing */
121 #define ASSERT_SLEEPABLE() /* nothing */
122 #define panic(...) printf(__VA_ARGS__); abort()
123 #endif /* defined(_KERNEL) */
124
125 #if defined(VMEM_SANITY)
126 static void vmem_check(vmem_t *);
127 #else /* defined(VMEM_SANITY) */
128 #define vmem_check(vm) /* nothing */
129 #endif /* defined(VMEM_SANITY) */
130
131 #define VMEM_HASHSIZE_MIN 1 /* XXX */
132 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
133 #define VMEM_HASHSIZE_INIT 1
134
135 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
136
137 #if defined(_KERNEL)
138 static bool vmem_bootstrapped = false;
139 static kmutex_t vmem_list_lock;
140 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
141 #endif /* defined(_KERNEL) */
142
143 /* ---- misc */
144
145 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
146 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
147 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
148 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
149 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
150 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
151
152 #define VMEM_ALIGNUP(addr, align) \
153 (-(-(addr) & -(align)))
154
155 #define VMEM_CROSS_P(addr1, addr2, boundary) \
156 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
157
158 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
159 #define SIZE2ORDER(size) ((int)ilog2(size))
160
161 #if !defined(_KERNEL)
162 #define xmalloc(sz, flags) malloc(sz)
163 #define xfree(p, sz) free(p)
164 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
165 #define bt_free(vm, bt) free(bt)
166 #else /* defined(_KERNEL) */
167
168 #define xmalloc(sz, flags) \
169 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
170 #define xfree(p, sz) kmem_free(p, sz);
171
172 /*
173 * BT_RESERVE calculation:
174 * we allocate memory for boundry tags with vmem; therefore we have
175 * to keep a reserve of bts used to allocated memory for bts.
176 * This reserve is 4 for each arena involved in allocating vmems memory.
177 * BT_MAXFREE: don't cache excessive counts of bts in arenas
178 */
179 #define STATIC_BT_COUNT 200
180 #define BT_MINRESERVE 4
181 #define BT_MAXFREE 64
182
183 static struct vmem_btag static_bts[STATIC_BT_COUNT];
184 static int static_bt_count = STATIC_BT_COUNT;
185
186 static struct vmem kmem_va_meta_arena_store;
187 vmem_t *kmem_va_meta_arena;
188 static struct vmem kmem_meta_arena_store;
189 vmem_t *kmem_meta_arena = NULL;
190
191 static kmutex_t vmem_btag_refill_lock;
192 static kmutex_t vmem_btag_lock;
193 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
194 static size_t vmem_btag_freelist_count = 0;
195 static struct pool vmem_btag_pool;
196
197 static void
198 vmem_kick_pdaemon(void)
199 {
200 #if defined(_KERNEL)
201 uvm_kick_pdaemon();
202 #endif
203 }
204
205 /* ---- boundary tag */
206
207 static int bt_refill(vmem_t *vm);
208
209 static void *
210 pool_page_alloc_vmem_meta(struct pool *pp, int flags)
211 {
212 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
213 vmem_addr_t va;
214 int ret;
215
216 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
217 (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
218
219 return ret ? NULL : (void *)va;
220 }
221
222 static void
223 pool_page_free_vmem_meta(struct pool *pp, void *v)
224 {
225
226 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
227 }
228
229 /* allocator for vmem-pool metadata */
230 struct pool_allocator pool_allocator_vmem_meta = {
231 .pa_alloc = pool_page_alloc_vmem_meta,
232 .pa_free = pool_page_free_vmem_meta,
233 .pa_pagesz = 0
234 };
235
236 static int
237 bt_refill(vmem_t *vm)
238 {
239 bt_t *bt;
240
241 VMEM_LOCK(vm);
242 if (vm->vm_nfreetags > BT_MINRESERVE) {
243 VMEM_UNLOCK(vm);
244 return 0;
245 }
246
247 mutex_enter(&vmem_btag_lock);
248 while (!LIST_EMPTY(&vmem_btag_freelist) &&
249 vm->vm_nfreetags <= BT_MINRESERVE) {
250 bt = LIST_FIRST(&vmem_btag_freelist);
251 LIST_REMOVE(bt, bt_freelist);
252 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
253 vm->vm_nfreetags++;
254 vmem_btag_freelist_count--;
255 VMEM_EVCNT_INCR(static_bt_inuse);
256 }
257 mutex_exit(&vmem_btag_lock);
258
259 while (vm->vm_nfreetags <= BT_MINRESERVE) {
260 VMEM_UNLOCK(vm);
261 mutex_enter(&vmem_btag_refill_lock);
262 bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
263 mutex_exit(&vmem_btag_refill_lock);
264 VMEM_LOCK(vm);
265 if (bt == NULL)
266 break;
267 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
268 vm->vm_nfreetags++;
269 }
270
271 if (vm->vm_nfreetags <= BT_MINRESERVE) {
272 VMEM_UNLOCK(vm);
273 return ENOMEM;
274 }
275
276 VMEM_UNLOCK(vm);
277
278 if (kmem_meta_arena != NULL) {
279 (void)bt_refill(kmem_arena);
280 (void)bt_refill(kmem_va_meta_arena);
281 (void)bt_refill(kmem_meta_arena);
282 }
283
284 return 0;
285 }
286
287 static bt_t *
288 bt_alloc(vmem_t *vm, vm_flag_t flags)
289 {
290 bt_t *bt;
291 VMEM_LOCK(vm);
292 while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
293 VMEM_UNLOCK(vm);
294 if (bt_refill(vm)) {
295 if ((flags & VM_NOSLEEP) != 0) {
296 return NULL;
297 }
298
299 /*
300 * It would be nice to wait for something specific here
301 * but there are multiple ways that a retry could
302 * succeed and we can't wait for multiple things
303 * simultaneously. So we'll just sleep for an arbitrary
304 * short period of time and retry regardless.
305 * This should be a very rare case.
306 */
307
308 vmem_kick_pdaemon();
309 kpause("btalloc", false, 1, NULL);
310 }
311 VMEM_LOCK(vm);
312 }
313 bt = LIST_FIRST(&vm->vm_freetags);
314 LIST_REMOVE(bt, bt_freelist);
315 vm->vm_nfreetags--;
316 VMEM_UNLOCK(vm);
317
318 return bt;
319 }
320
321 static void
322 bt_free(vmem_t *vm, bt_t *bt)
323 {
324
325 VMEM_LOCK(vm);
326 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
327 vm->vm_nfreetags++;
328 VMEM_UNLOCK(vm);
329 }
330
331 static void
332 bt_freetrim(vmem_t *vm, int freelimit)
333 {
334 bt_t *t;
335 LIST_HEAD(, vmem_btag) tofree;
336
337 LIST_INIT(&tofree);
338
339 VMEM_LOCK(vm);
340 while (vm->vm_nfreetags > freelimit) {
341 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
342 LIST_REMOVE(bt, bt_freelist);
343 vm->vm_nfreetags--;
344 if (bt >= static_bts
345 && bt < &static_bts[STATIC_BT_COUNT]) {
346 mutex_enter(&vmem_btag_lock);
347 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
348 vmem_btag_freelist_count++;
349 mutex_exit(&vmem_btag_lock);
350 VMEM_EVCNT_DECR(static_bt_inuse);
351 } else {
352 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
353 }
354 }
355
356 VMEM_UNLOCK(vm);
357 while (!LIST_EMPTY(&tofree)) {
358 t = LIST_FIRST(&tofree);
359 LIST_REMOVE(t, bt_freelist);
360 pool_put(&vmem_btag_pool, t);
361 }
362 }
363 #endif /* defined(_KERNEL) */
364
365 /*
366 * freelist[0] ... [1, 1]
367 * freelist[1] ... [2, 3]
368 * freelist[2] ... [4, 7]
369 * freelist[3] ... [8, 15]
370 * :
371 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
372 * :
373 */
374
375 static struct vmem_freelist *
376 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
377 {
378 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
379 const int idx = SIZE2ORDER(qsize);
380
381 KASSERT(size != 0 && qsize != 0);
382 KASSERT((size & vm->vm_quantum_mask) == 0);
383 KASSERT(idx >= 0);
384 KASSERT(idx < VMEM_MAXORDER);
385
386 return &vm->vm_freelist[idx];
387 }
388
389 /*
390 * bt_freehead_toalloc: return the freelist for the given size and allocation
391 * strategy.
392 *
393 * for VM_INSTANTFIT, return the list in which any blocks are large enough
394 * for the requested size. otherwise, return the list which can have blocks
395 * large enough for the requested size.
396 */
397
398 static struct vmem_freelist *
399 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
400 {
401 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
402 int idx = SIZE2ORDER(qsize);
403
404 KASSERT(size != 0 && qsize != 0);
405 KASSERT((size & vm->vm_quantum_mask) == 0);
406
407 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
408 idx++;
409 /* check too large request? */
410 }
411 KASSERT(idx >= 0);
412 KASSERT(idx < VMEM_MAXORDER);
413
414 return &vm->vm_freelist[idx];
415 }
416
417 /* ---- boundary tag hash */
418
419 static struct vmem_hashlist *
420 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
421 {
422 struct vmem_hashlist *list;
423 unsigned int hash;
424
425 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
426 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
427
428 return list;
429 }
430
431 static bt_t *
432 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
433 {
434 struct vmem_hashlist *list;
435 bt_t *bt;
436
437 list = bt_hashhead(vm, addr);
438 LIST_FOREACH(bt, list, bt_hashlist) {
439 if (bt->bt_start == addr) {
440 break;
441 }
442 }
443
444 return bt;
445 }
446
447 static void
448 bt_rembusy(vmem_t *vm, bt_t *bt)
449 {
450
451 KASSERT(vm->vm_nbusytag > 0);
452 vm->vm_inuse -= bt->bt_size;
453 vm->vm_nbusytag--;
454 LIST_REMOVE(bt, bt_hashlist);
455 }
456
457 static void
458 bt_insbusy(vmem_t *vm, bt_t *bt)
459 {
460 struct vmem_hashlist *list;
461
462 KASSERT(bt->bt_type == BT_TYPE_BUSY);
463
464 list = bt_hashhead(vm, bt->bt_start);
465 LIST_INSERT_HEAD(list, bt, bt_hashlist);
466 vm->vm_nbusytag++;
467 vm->vm_inuse += bt->bt_size;
468 }
469
470 /* ---- boundary tag list */
471
472 static void
473 bt_remseg(vmem_t *vm, bt_t *bt)
474 {
475
476 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
477 }
478
479 static void
480 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
481 {
482
483 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
484 }
485
486 static void
487 bt_insseg_tail(vmem_t *vm, bt_t *bt)
488 {
489
490 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
491 }
492
493 static void
494 bt_remfree(vmem_t *vm, bt_t *bt)
495 {
496
497 KASSERT(bt->bt_type == BT_TYPE_FREE);
498
499 LIST_REMOVE(bt, bt_freelist);
500 }
501
502 static void
503 bt_insfree(vmem_t *vm, bt_t *bt)
504 {
505 struct vmem_freelist *list;
506
507 list = bt_freehead_tofree(vm, bt->bt_size);
508 LIST_INSERT_HEAD(list, bt, bt_freelist);
509 }
510
511 /* ---- vmem internal functions */
512
513 #if defined(QCACHE)
514 static inline vm_flag_t
515 prf_to_vmf(int prflags)
516 {
517 vm_flag_t vmflags;
518
519 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
520 if ((prflags & PR_WAITOK) != 0) {
521 vmflags = VM_SLEEP;
522 } else {
523 vmflags = VM_NOSLEEP;
524 }
525 return vmflags;
526 }
527
528 static inline int
529 vmf_to_prf(vm_flag_t vmflags)
530 {
531 int prflags;
532
533 if ((vmflags & VM_SLEEP) != 0) {
534 prflags = PR_WAITOK;
535 } else {
536 prflags = PR_NOWAIT;
537 }
538 return prflags;
539 }
540
541 static size_t
542 qc_poolpage_size(size_t qcache_max)
543 {
544 int i;
545
546 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
547 /* nothing */
548 }
549 return ORDER2SIZE(i);
550 }
551
552 static void *
553 qc_poolpage_alloc(struct pool *pool, int prflags)
554 {
555 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
556 vmem_t *vm = qc->qc_vmem;
557 vmem_addr_t addr;
558
559 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
560 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
561 return NULL;
562 return (void *)addr;
563 }
564
565 static void
566 qc_poolpage_free(struct pool *pool, void *addr)
567 {
568 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
569 vmem_t *vm = qc->qc_vmem;
570
571 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
572 }
573
574 static void
575 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
576 {
577 qcache_t *prevqc;
578 struct pool_allocator *pa;
579 int qcache_idx_max;
580 int i;
581
582 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
583 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
584 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
585 }
586 vm->vm_qcache_max = qcache_max;
587 pa = &vm->vm_qcache_allocator;
588 memset(pa, 0, sizeof(*pa));
589 pa->pa_alloc = qc_poolpage_alloc;
590 pa->pa_free = qc_poolpage_free;
591 pa->pa_pagesz = qc_poolpage_size(qcache_max);
592
593 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
594 prevqc = NULL;
595 for (i = qcache_idx_max; i > 0; i--) {
596 qcache_t *qc = &vm->vm_qcache_store[i - 1];
597 size_t size = i << vm->vm_quantum_shift;
598 pool_cache_t pc;
599
600 qc->qc_vmem = vm;
601 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
602 vm->vm_name, size);
603
604 pc = pool_cache_init(size,
605 ORDER2SIZE(vm->vm_quantum_shift), 0,
606 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
607 qc->qc_name, pa, ipl, NULL, NULL, NULL);
608
609 KASSERT(pc);
610
611 qc->qc_cache = pc;
612 KASSERT(qc->qc_cache != NULL); /* XXX */
613 if (prevqc != NULL &&
614 qc->qc_cache->pc_pool.pr_itemsperpage ==
615 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
616 pool_cache_destroy(qc->qc_cache);
617 vm->vm_qcache[i - 1] = prevqc;
618 continue;
619 }
620 qc->qc_cache->pc_pool.pr_qcache = qc;
621 vm->vm_qcache[i - 1] = qc;
622 prevqc = qc;
623 }
624 }
625
626 static void
627 qc_destroy(vmem_t *vm)
628 {
629 const qcache_t *prevqc;
630 int i;
631 int qcache_idx_max;
632
633 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
634 prevqc = NULL;
635 for (i = 0; i < qcache_idx_max; i++) {
636 qcache_t *qc = vm->vm_qcache[i];
637
638 if (prevqc == qc) {
639 continue;
640 }
641 pool_cache_destroy(qc->qc_cache);
642 prevqc = qc;
643 }
644 }
645 #endif
646
647 #if defined(_KERNEL)
648 static void
649 vmem_bootstrap(void)
650 {
651
652 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
653 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
654 mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
655
656 while (static_bt_count-- > 0) {
657 bt_t *bt = &static_bts[static_bt_count];
658 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
659 VMEM_EVCNT_INCR(static_bt_count);
660 vmem_btag_freelist_count++;
661 }
662 vmem_bootstrapped = TRUE;
663 }
664
665 void
666 vmem_subsystem_init(vmem_t *vm)
667 {
668
669 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
670 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
671 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
672 IPL_VM);
673
674 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
675 0, 0, PAGE_SIZE,
676 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
677 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
678
679 pool_init(&vmem_btag_pool, sizeof(bt_t), 0, 0, PR_PHINPAGE,
680 "vmembt", &pool_allocator_vmem_meta, IPL_VM);
681 }
682 #endif /* defined(_KERNEL) */
683
684 static int
685 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
686 int spanbttype)
687 {
688 bt_t *btspan;
689 bt_t *btfree;
690
691 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
692 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
693 KASSERT(spanbttype == BT_TYPE_SPAN ||
694 spanbttype == BT_TYPE_SPAN_STATIC);
695
696 btspan = bt_alloc(vm, flags);
697 if (btspan == NULL) {
698 return ENOMEM;
699 }
700 btfree = bt_alloc(vm, flags);
701 if (btfree == NULL) {
702 bt_free(vm, btspan);
703 return ENOMEM;
704 }
705
706 btspan->bt_type = spanbttype;
707 btspan->bt_start = addr;
708 btspan->bt_size = size;
709
710 btfree->bt_type = BT_TYPE_FREE;
711 btfree->bt_start = addr;
712 btfree->bt_size = size;
713
714 VMEM_LOCK(vm);
715 bt_insseg_tail(vm, btspan);
716 bt_insseg(vm, btfree, btspan);
717 bt_insfree(vm, btfree);
718 vm->vm_size += size;
719 VMEM_UNLOCK(vm);
720
721 return 0;
722 }
723
724 static void
725 vmem_destroy1(vmem_t *vm)
726 {
727
728 #if defined(QCACHE)
729 qc_destroy(vm);
730 #endif /* defined(QCACHE) */
731 if (vm->vm_hashlist != NULL) {
732 int i;
733
734 for (i = 0; i < vm->vm_hashsize; i++) {
735 bt_t *bt;
736
737 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
738 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
739 bt_free(vm, bt);
740 }
741 }
742 if (vm->vm_hashlist != &vm->vm_hash0) {
743 xfree(vm->vm_hashlist,
744 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
745 }
746 }
747
748 bt_freetrim(vm, 0);
749
750 VMEM_CONDVAR_DESTROY(vm);
751 VMEM_LOCK_DESTROY(vm);
752 xfree(vm, sizeof(*vm));
753 }
754
755 static int
756 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
757 {
758 vmem_addr_t addr;
759 int rc;
760
761 if (vm->vm_importfn == NULL) {
762 return EINVAL;
763 }
764
765 if (vm->vm_flags & VM_LARGEIMPORT) {
766 size *= 16;
767 }
768
769 if (vm->vm_flags & VM_XIMPORT) {
770 rc = __FPTRCAST(vmem_ximport_t *, vm->vm_importfn)(vm->vm_arg,
771 size, &size, flags, &addr);
772 } else {
773 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
774 }
775 if (rc) {
776 return ENOMEM;
777 }
778
779 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
780 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
781 return ENOMEM;
782 }
783
784 return 0;
785 }
786
787 static int
788 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
789 {
790 bt_t *bt;
791 int i;
792 struct vmem_hashlist *newhashlist;
793 struct vmem_hashlist *oldhashlist;
794 size_t oldhashsize;
795
796 KASSERT(newhashsize > 0);
797
798 newhashlist =
799 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
800 if (newhashlist == NULL) {
801 return ENOMEM;
802 }
803 for (i = 0; i < newhashsize; i++) {
804 LIST_INIT(&newhashlist[i]);
805 }
806
807 if (!VMEM_TRYLOCK(vm)) {
808 xfree(newhashlist,
809 sizeof(struct vmem_hashlist *) * newhashsize);
810 return EBUSY;
811 }
812 oldhashlist = vm->vm_hashlist;
813 oldhashsize = vm->vm_hashsize;
814 vm->vm_hashlist = newhashlist;
815 vm->vm_hashsize = newhashsize;
816 if (oldhashlist == NULL) {
817 VMEM_UNLOCK(vm);
818 return 0;
819 }
820 for (i = 0; i < oldhashsize; i++) {
821 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
822 bt_rembusy(vm, bt); /* XXX */
823 bt_insbusy(vm, bt);
824 }
825 }
826 VMEM_UNLOCK(vm);
827
828 if (oldhashlist != &vm->vm_hash0) {
829 xfree(oldhashlist,
830 sizeof(struct vmem_hashlist *) * oldhashsize);
831 }
832
833 return 0;
834 }
835
836 /*
837 * vmem_fit: check if a bt can satisfy the given restrictions.
838 *
839 * it's a caller's responsibility to ensure the region is big enough
840 * before calling us.
841 */
842
843 static int
844 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
845 vmem_size_t phase, vmem_size_t nocross,
846 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
847 {
848 vmem_addr_t start;
849 vmem_addr_t end;
850
851 KASSERT(size > 0);
852 KASSERT(bt->bt_size >= size); /* caller's responsibility */
853
854 /*
855 * XXX assumption: vmem_addr_t and vmem_size_t are
856 * unsigned integer of the same size.
857 */
858
859 start = bt->bt_start;
860 if (start < minaddr) {
861 start = minaddr;
862 }
863 end = BT_END(bt);
864 if (end > maxaddr) {
865 end = maxaddr;
866 }
867 if (start > end) {
868 return ENOMEM;
869 }
870
871 start = VMEM_ALIGNUP(start - phase, align) + phase;
872 if (start < bt->bt_start) {
873 start += align;
874 }
875 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
876 KASSERT(align < nocross);
877 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
878 }
879 if (start <= end && end - start >= size - 1) {
880 KASSERT((start & (align - 1)) == phase);
881 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
882 KASSERT(minaddr <= start);
883 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
884 KASSERT(bt->bt_start <= start);
885 KASSERT(BT_END(bt) - start >= size - 1);
886 *addrp = start;
887 return 0;
888 }
889 return ENOMEM;
890 }
891
892 /* ---- vmem API */
893
894 /*
895 * vmem_create_internal: creates a vmem arena.
896 */
897
898 vmem_t *
899 vmem_init(vmem_t *vm, const char *name,
900 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
901 vmem_import_t *importfn, vmem_release_t *releasefn,
902 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
903 {
904 int i;
905
906 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
907 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
908 KASSERT(quantum > 0);
909
910 #if defined(_KERNEL)
911 /* XXX: SMP, we get called early... */
912 if (!vmem_bootstrapped) {
913 vmem_bootstrap();
914 }
915 #endif /* defined(_KERNEL) */
916
917 if (vm == NULL) {
918 vm = xmalloc(sizeof(*vm), flags);
919 }
920 if (vm == NULL) {
921 return NULL;
922 }
923
924 VMEM_CONDVAR_INIT(vm, "vmem");
925 VMEM_LOCK_INIT(vm, ipl);
926 vm->vm_flags = flags;
927 vm->vm_nfreetags = 0;
928 LIST_INIT(&vm->vm_freetags);
929 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
930 vm->vm_quantum_mask = quantum - 1;
931 vm->vm_quantum_shift = SIZE2ORDER(quantum);
932 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
933 vm->vm_importfn = importfn;
934 vm->vm_releasefn = releasefn;
935 vm->vm_arg = arg;
936 vm->vm_nbusytag = 0;
937 vm->vm_size = 0;
938 vm->vm_inuse = 0;
939 #if defined(QCACHE)
940 qc_init(vm, qcache_max, ipl);
941 #endif /* defined(QCACHE) */
942
943 TAILQ_INIT(&vm->vm_seglist);
944 for (i = 0; i < VMEM_MAXORDER; i++) {
945 LIST_INIT(&vm->vm_freelist[i]);
946 }
947 memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist));
948 vm->vm_hashsize = 1;
949 vm->vm_hashlist = &vm->vm_hash0;
950
951 if (size != 0) {
952 if (vmem_add(vm, base, size, flags) != 0) {
953 vmem_destroy1(vm);
954 return NULL;
955 }
956 }
957
958 #if defined(_KERNEL)
959 if (flags & VM_BOOTSTRAP) {
960 bt_refill(vm);
961 }
962
963 mutex_enter(&vmem_list_lock);
964 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
965 mutex_exit(&vmem_list_lock);
966 #endif /* defined(_KERNEL) */
967
968 return vm;
969 }
970
971
972
973 /*
974 * vmem_create: create an arena.
975 *
976 * => must not be called from interrupt context.
977 */
978
979 vmem_t *
980 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
981 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
982 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
983 {
984
985 KASSERT((flags & (VM_XIMPORT)) == 0);
986
987 return vmem_init(NULL, name, base, size, quantum,
988 importfn, releasefn, source, qcache_max, flags, ipl);
989 }
990
991 /*
992 * vmem_xcreate: create an arena takes alternative import func.
993 *
994 * => must not be called from interrupt context.
995 */
996
997 vmem_t *
998 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
999 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1000 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1001 {
1002
1003 KASSERT((flags & (VM_XIMPORT)) == 0);
1004
1005 return vmem_init(NULL, name, base, size, quantum,
1006 __FPTRCAST(vmem_import_t *, importfn), releasefn, source,
1007 qcache_max, flags | VM_XIMPORT, ipl);
1008 }
1009
1010 void
1011 vmem_destroy(vmem_t *vm)
1012 {
1013
1014 #if defined(_KERNEL)
1015 mutex_enter(&vmem_list_lock);
1016 LIST_REMOVE(vm, vm_alllist);
1017 mutex_exit(&vmem_list_lock);
1018 #endif /* defined(_KERNEL) */
1019
1020 vmem_destroy1(vm);
1021 }
1022
1023 vmem_size_t
1024 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1025 {
1026
1027 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1028 }
1029
1030 /*
1031 * vmem_alloc: allocate resource from the arena.
1032 */
1033
1034 int
1035 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1036 {
1037 const vm_flag_t strat __diagused = flags & VM_FITMASK;
1038 int error;
1039
1040 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1041 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1042
1043 KASSERT(size > 0);
1044 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1045 if ((flags & VM_SLEEP) != 0) {
1046 ASSERT_SLEEPABLE();
1047 }
1048
1049 #if defined(QCACHE)
1050 if (size <= vm->vm_qcache_max) {
1051 void *p;
1052 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1053 qcache_t *qc = vm->vm_qcache[qidx - 1];
1054
1055 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1056 if (addrp != NULL)
1057 *addrp = (vmem_addr_t)p;
1058 error = (p == NULL) ? ENOMEM : 0;
1059 goto out;
1060 }
1061 #endif /* defined(QCACHE) */
1062
1063 error = vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1064 flags, addrp);
1065 out:
1066 KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1067 return error;
1068 }
1069
1070 int
1071 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1072 const vmem_size_t phase, const vmem_size_t nocross,
1073 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1074 vmem_addr_t *addrp)
1075 {
1076 struct vmem_freelist *list;
1077 struct vmem_freelist *first;
1078 struct vmem_freelist *end;
1079 bt_t *bt;
1080 bt_t *btnew;
1081 bt_t *btnew2;
1082 const vmem_size_t size = vmem_roundup_size(vm, size0);
1083 vm_flag_t strat = flags & VM_FITMASK;
1084 vmem_addr_t start;
1085 int rc;
1086
1087 KASSERT(size0 > 0);
1088 KASSERT(size > 0);
1089 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1090 if ((flags & VM_SLEEP) != 0) {
1091 ASSERT_SLEEPABLE();
1092 }
1093 KASSERT((align & vm->vm_quantum_mask) == 0);
1094 KASSERT((align & (align - 1)) == 0);
1095 KASSERT((phase & vm->vm_quantum_mask) == 0);
1096 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1097 KASSERT((nocross & (nocross - 1)) == 0);
1098 KASSERT((align == 0 && phase == 0) || phase < align);
1099 KASSERT(nocross == 0 || nocross >= size);
1100 KASSERT(minaddr <= maxaddr);
1101 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1102
1103 if (align == 0) {
1104 align = vm->vm_quantum_mask + 1;
1105 }
1106
1107 /*
1108 * allocate boundary tags before acquiring the vmem lock.
1109 */
1110 btnew = bt_alloc(vm, flags);
1111 if (btnew == NULL) {
1112 return ENOMEM;
1113 }
1114 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1115 if (btnew2 == NULL) {
1116 bt_free(vm, btnew);
1117 return ENOMEM;
1118 }
1119
1120 /*
1121 * choose a free block from which we allocate.
1122 */
1123 retry_strat:
1124 first = bt_freehead_toalloc(vm, size, strat);
1125 end = &vm->vm_freelist[VMEM_MAXORDER];
1126 retry:
1127 bt = NULL;
1128 VMEM_LOCK(vm);
1129 vmem_check(vm);
1130 if (strat == VM_INSTANTFIT) {
1131 /*
1132 * just choose the first block which satisfies our restrictions.
1133 *
1134 * note that we don't need to check the size of the blocks
1135 * because any blocks found on these list should be larger than
1136 * the given size.
1137 */
1138 for (list = first; list < end; list++) {
1139 bt = LIST_FIRST(list);
1140 if (bt != NULL) {
1141 rc = vmem_fit(bt, size, align, phase,
1142 nocross, minaddr, maxaddr, &start);
1143 if (rc == 0) {
1144 goto gotit;
1145 }
1146 /*
1147 * don't bother to follow the bt_freelist link
1148 * here. the list can be very long and we are
1149 * told to run fast. blocks from the later free
1150 * lists are larger and have better chances to
1151 * satisfy our restrictions.
1152 */
1153 }
1154 }
1155 } else { /* VM_BESTFIT */
1156 /*
1157 * we assume that, for space efficiency, it's better to
1158 * allocate from a smaller block. thus we will start searching
1159 * from the lower-order list than VM_INSTANTFIT.
1160 * however, don't bother to find the smallest block in a free
1161 * list because the list can be very long. we can revisit it
1162 * if/when it turns out to be a problem.
1163 *
1164 * note that the 'first' list can contain blocks smaller than
1165 * the requested size. thus we need to check bt_size.
1166 */
1167 for (list = first; list < end; list++) {
1168 LIST_FOREACH(bt, list, bt_freelist) {
1169 if (bt->bt_size >= size) {
1170 rc = vmem_fit(bt, size, align, phase,
1171 nocross, minaddr, maxaddr, &start);
1172 if (rc == 0) {
1173 goto gotit;
1174 }
1175 }
1176 }
1177 }
1178 }
1179 VMEM_UNLOCK(vm);
1180 #if 1
1181 if (strat == VM_INSTANTFIT) {
1182 strat = VM_BESTFIT;
1183 goto retry_strat;
1184 }
1185 #endif
1186 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1187
1188 /*
1189 * XXX should try to import a region large enough to
1190 * satisfy restrictions?
1191 */
1192
1193 goto fail;
1194 }
1195 /* XXX eeek, minaddr & maxaddr not respected */
1196 if (vmem_import(vm, size, flags) == 0) {
1197 goto retry;
1198 }
1199 /* XXX */
1200
1201 if ((flags & VM_SLEEP) != 0) {
1202 vmem_kick_pdaemon();
1203 VMEM_LOCK(vm);
1204 VMEM_CONDVAR_WAIT(vm);
1205 VMEM_UNLOCK(vm);
1206 goto retry;
1207 }
1208 fail:
1209 bt_free(vm, btnew);
1210 bt_free(vm, btnew2);
1211 return ENOMEM;
1212
1213 gotit:
1214 KASSERT(bt->bt_type == BT_TYPE_FREE);
1215 KASSERT(bt->bt_size >= size);
1216 bt_remfree(vm, bt);
1217 vmem_check(vm);
1218 if (bt->bt_start != start) {
1219 btnew2->bt_type = BT_TYPE_FREE;
1220 btnew2->bt_start = bt->bt_start;
1221 btnew2->bt_size = start - bt->bt_start;
1222 bt->bt_start = start;
1223 bt->bt_size -= btnew2->bt_size;
1224 bt_insfree(vm, btnew2);
1225 bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1226 btnew2 = NULL;
1227 vmem_check(vm);
1228 }
1229 KASSERT(bt->bt_start == start);
1230 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1231 /* split */
1232 btnew->bt_type = BT_TYPE_BUSY;
1233 btnew->bt_start = bt->bt_start;
1234 btnew->bt_size = size;
1235 bt->bt_start = bt->bt_start + size;
1236 bt->bt_size -= size;
1237 bt_insfree(vm, bt);
1238 bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1239 bt_insbusy(vm, btnew);
1240 vmem_check(vm);
1241 VMEM_UNLOCK(vm);
1242 } else {
1243 bt->bt_type = BT_TYPE_BUSY;
1244 bt_insbusy(vm, bt);
1245 vmem_check(vm);
1246 VMEM_UNLOCK(vm);
1247 bt_free(vm, btnew);
1248 btnew = bt;
1249 }
1250 if (btnew2 != NULL) {
1251 bt_free(vm, btnew2);
1252 }
1253 KASSERT(btnew->bt_size >= size);
1254 btnew->bt_type = BT_TYPE_BUSY;
1255
1256 if (addrp != NULL)
1257 *addrp = btnew->bt_start;
1258 return 0;
1259 }
1260
1261 /*
1262 * vmem_free: free the resource to the arena.
1263 */
1264
1265 void
1266 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1267 {
1268
1269 KASSERT(size > 0);
1270
1271 #if defined(QCACHE)
1272 if (size <= vm->vm_qcache_max) {
1273 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1274 qcache_t *qc = vm->vm_qcache[qidx - 1];
1275
1276 pool_cache_put(qc->qc_cache, (void *)addr);
1277 return;
1278 }
1279 #endif /* defined(QCACHE) */
1280
1281 vmem_xfree(vm, addr, size);
1282 }
1283
1284 void
1285 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1286 {
1287 bt_t *bt;
1288 bt_t *t;
1289 LIST_HEAD(, vmem_btag) tofree;
1290
1291 LIST_INIT(&tofree);
1292
1293 KASSERT(size > 0);
1294
1295 VMEM_LOCK(vm);
1296
1297 bt = bt_lookupbusy(vm, addr);
1298 KASSERT(bt != NULL);
1299 KASSERT(bt->bt_start == addr);
1300 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1301 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1302 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1303 bt_rembusy(vm, bt);
1304 bt->bt_type = BT_TYPE_FREE;
1305
1306 /* coalesce */
1307 t = TAILQ_NEXT(bt, bt_seglist);
1308 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1309 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1310 bt_remfree(vm, t);
1311 bt_remseg(vm, t);
1312 bt->bt_size += t->bt_size;
1313 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1314 }
1315 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1316 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1317 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1318 bt_remfree(vm, t);
1319 bt_remseg(vm, t);
1320 bt->bt_size += t->bt_size;
1321 bt->bt_start = t->bt_start;
1322 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1323 }
1324
1325 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1326 KASSERT(t != NULL);
1327 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1328 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1329 t->bt_size == bt->bt_size) {
1330 vmem_addr_t spanaddr;
1331 vmem_size_t spansize;
1332
1333 KASSERT(t->bt_start == bt->bt_start);
1334 spanaddr = bt->bt_start;
1335 spansize = bt->bt_size;
1336 bt_remseg(vm, bt);
1337 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1338 bt_remseg(vm, t);
1339 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1340 vm->vm_size -= spansize;
1341 VMEM_CONDVAR_BROADCAST(vm);
1342 VMEM_UNLOCK(vm);
1343 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1344 } else {
1345 bt_insfree(vm, bt);
1346 VMEM_CONDVAR_BROADCAST(vm);
1347 VMEM_UNLOCK(vm);
1348 }
1349
1350 while (!LIST_EMPTY(&tofree)) {
1351 t = LIST_FIRST(&tofree);
1352 LIST_REMOVE(t, bt_freelist);
1353 bt_free(vm, t);
1354 }
1355
1356 bt_freetrim(vm, BT_MAXFREE);
1357 }
1358
1359 /*
1360 * vmem_add:
1361 *
1362 * => caller must ensure appropriate spl,
1363 * if the arena can be accessed from interrupt context.
1364 */
1365
1366 int
1367 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1368 {
1369
1370 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1371 }
1372
1373 /*
1374 * vmem_size: information about arenas size
1375 *
1376 * => return free/allocated size in arena
1377 */
1378 vmem_size_t
1379 vmem_size(vmem_t *vm, int typemask)
1380 {
1381
1382 switch (typemask) {
1383 case VMEM_ALLOC:
1384 return vm->vm_inuse;
1385 case VMEM_FREE:
1386 return vm->vm_size - vm->vm_inuse;
1387 case VMEM_FREE|VMEM_ALLOC:
1388 return vm->vm_size;
1389 default:
1390 panic("vmem_size");
1391 }
1392 }
1393
1394 /* ---- rehash */
1395
1396 #if defined(_KERNEL)
1397 static struct callout vmem_rehash_ch;
1398 static int vmem_rehash_interval;
1399 static struct workqueue *vmem_rehash_wq;
1400 static struct work vmem_rehash_wk;
1401
1402 static void
1403 vmem_rehash_all(struct work *wk, void *dummy)
1404 {
1405 vmem_t *vm;
1406
1407 KASSERT(wk == &vmem_rehash_wk);
1408 mutex_enter(&vmem_list_lock);
1409 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1410 size_t desired;
1411 size_t current;
1412
1413 if (!VMEM_TRYLOCK(vm)) {
1414 continue;
1415 }
1416 desired = vm->vm_nbusytag;
1417 current = vm->vm_hashsize;
1418 VMEM_UNLOCK(vm);
1419
1420 if (desired > VMEM_HASHSIZE_MAX) {
1421 desired = VMEM_HASHSIZE_MAX;
1422 } else if (desired < VMEM_HASHSIZE_MIN) {
1423 desired = VMEM_HASHSIZE_MIN;
1424 }
1425 if (desired > current * 2 || desired * 2 < current) {
1426 vmem_rehash(vm, desired, VM_NOSLEEP);
1427 }
1428 }
1429 mutex_exit(&vmem_list_lock);
1430
1431 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1432 }
1433
1434 static void
1435 vmem_rehash_all_kick(void *dummy)
1436 {
1437
1438 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1439 }
1440
1441 void
1442 vmem_rehash_start(void)
1443 {
1444 int error;
1445
1446 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1447 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1448 if (error) {
1449 panic("%s: workqueue_create %d\n", __func__, error);
1450 }
1451 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1452 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1453
1454 vmem_rehash_interval = hz * 10;
1455 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1456 }
1457 #endif /* defined(_KERNEL) */
1458
1459 /* ---- debug */
1460
1461 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1462
1463 static void bt_dump(const bt_t *, void (*)(const char *, ...)
1464 __printflike(1, 2));
1465
1466 static const char *
1467 bt_type_string(int type)
1468 {
1469 static const char * const table[] = {
1470 [BT_TYPE_BUSY] = "busy",
1471 [BT_TYPE_FREE] = "free",
1472 [BT_TYPE_SPAN] = "span",
1473 [BT_TYPE_SPAN_STATIC] = "static span",
1474 };
1475
1476 if (type >= __arraycount(table)) {
1477 return "BOGUS";
1478 }
1479 return table[type];
1480 }
1481
1482 static void
1483 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1484 {
1485
1486 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1487 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1488 bt->bt_type, bt_type_string(bt->bt_type));
1489 }
1490
1491 static void
1492 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1493 {
1494 const bt_t *bt;
1495 int i;
1496
1497 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1498 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1499 bt_dump(bt, pr);
1500 }
1501
1502 for (i = 0; i < VMEM_MAXORDER; i++) {
1503 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1504
1505 if (LIST_EMPTY(fl)) {
1506 continue;
1507 }
1508
1509 (*pr)("freelist[%d]\n", i);
1510 LIST_FOREACH(bt, fl, bt_freelist) {
1511 bt_dump(bt, pr);
1512 }
1513 }
1514 }
1515
1516 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1517
1518 #if defined(DDB)
1519 static bt_t *
1520 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1521 {
1522 bt_t *bt;
1523
1524 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1525 if (BT_ISSPAN_P(bt)) {
1526 continue;
1527 }
1528 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1529 return bt;
1530 }
1531 }
1532
1533 return NULL;
1534 }
1535
1536 void
1537 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1538 {
1539 vmem_t *vm;
1540
1541 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1542 bt_t *bt;
1543
1544 bt = vmem_whatis_lookup(vm, addr);
1545 if (bt == NULL) {
1546 continue;
1547 }
1548 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1549 (void *)addr, (void *)bt->bt_start,
1550 (size_t)(addr - bt->bt_start), vm->vm_name,
1551 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1552 }
1553 }
1554
1555 void
1556 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1557 {
1558 const vmem_t *vm;
1559
1560 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1561 vmem_dump(vm, pr);
1562 }
1563 }
1564
1565 void
1566 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1567 {
1568 const vmem_t *vm = (const void *)addr;
1569
1570 vmem_dump(vm, pr);
1571 }
1572 #endif /* defined(DDB) */
1573
1574 #if defined(_KERNEL)
1575 #define vmem_printf printf
1576 #else
1577 #include <stdio.h>
1578 #include <stdarg.h>
1579
1580 static void
1581 vmem_printf(const char *fmt, ...)
1582 {
1583 va_list ap;
1584 va_start(ap, fmt);
1585 vprintf(fmt, ap);
1586 va_end(ap);
1587 }
1588 #endif
1589
1590 #if defined(VMEM_SANITY)
1591
1592 static bool
1593 vmem_check_sanity(vmem_t *vm)
1594 {
1595 const bt_t *bt, *bt2;
1596
1597 KASSERT(vm != NULL);
1598
1599 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1600 if (bt->bt_start > BT_END(bt)) {
1601 printf("corrupted tag\n");
1602 bt_dump(bt, vmem_printf);
1603 return false;
1604 }
1605 }
1606 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1607 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1608 if (bt == bt2) {
1609 continue;
1610 }
1611 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1612 continue;
1613 }
1614 if (bt->bt_start <= BT_END(bt2) &&
1615 bt2->bt_start <= BT_END(bt)) {
1616 printf("overwrapped tags\n");
1617 bt_dump(bt, vmem_printf);
1618 bt_dump(bt2, vmem_printf);
1619 return false;
1620 }
1621 }
1622 }
1623
1624 return true;
1625 }
1626
1627 static void
1628 vmem_check(vmem_t *vm)
1629 {
1630
1631 if (!vmem_check_sanity(vm)) {
1632 panic("insanity vmem %p", vm);
1633 }
1634 }
1635
1636 #endif /* defined(VMEM_SANITY) */
1637
1638 #if defined(UNITTEST)
1639 int
1640 main(void)
1641 {
1642 int rc;
1643 vmem_t *vm;
1644 vmem_addr_t p;
1645 struct reg {
1646 vmem_addr_t p;
1647 vmem_size_t sz;
1648 bool x;
1649 } *reg = NULL;
1650 int nreg = 0;
1651 int nalloc = 0;
1652 int nfree = 0;
1653 vmem_size_t total = 0;
1654 #if 1
1655 vm_flag_t strat = VM_INSTANTFIT;
1656 #else
1657 vm_flag_t strat = VM_BESTFIT;
1658 #endif
1659
1660 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1661 #ifdef _KERNEL
1662 IPL_NONE
1663 #else
1664 0
1665 #endif
1666 );
1667 if (vm == NULL) {
1668 printf("vmem_create\n");
1669 exit(EXIT_FAILURE);
1670 }
1671 vmem_dump(vm, vmem_printf);
1672
1673 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1674 assert(rc == 0);
1675 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1676 assert(rc == 0);
1677 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1678 assert(rc == 0);
1679 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1680 assert(rc == 0);
1681 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1682 assert(rc == 0);
1683 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1684 assert(rc == 0);
1685 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1686 assert(rc == 0);
1687 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1688 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1689 assert(rc != 0);
1690 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1691 assert(rc == 0 && p == 0);
1692 vmem_xfree(vm, p, 50);
1693 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1694 assert(rc == 0 && p == 0);
1695 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1696 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1697 assert(rc != 0);
1698 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1699 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1700 assert(rc != 0);
1701 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1702 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1703 assert(rc == 0);
1704 vmem_dump(vm, vmem_printf);
1705 for (;;) {
1706 struct reg *r;
1707 int t = rand() % 100;
1708
1709 if (t > 45) {
1710 /* alloc */
1711 vmem_size_t sz = rand() % 500 + 1;
1712 bool x;
1713 vmem_size_t align, phase, nocross;
1714 vmem_addr_t minaddr, maxaddr;
1715
1716 if (t > 70) {
1717 x = true;
1718 /* XXX */
1719 align = 1 << (rand() % 15);
1720 phase = rand() % 65536;
1721 nocross = 1 << (rand() % 15);
1722 if (align <= phase) {
1723 phase = 0;
1724 }
1725 if (VMEM_CROSS_P(phase, phase + sz - 1,
1726 nocross)) {
1727 nocross = 0;
1728 }
1729 do {
1730 minaddr = rand() % 50000;
1731 maxaddr = rand() % 70000;
1732 } while (minaddr > maxaddr);
1733 printf("=== xalloc %" PRIu64
1734 " align=%" PRIu64 ", phase=%" PRIu64
1735 ", nocross=%" PRIu64 ", min=%" PRIu64
1736 ", max=%" PRIu64 "\n",
1737 (uint64_t)sz,
1738 (uint64_t)align,
1739 (uint64_t)phase,
1740 (uint64_t)nocross,
1741 (uint64_t)minaddr,
1742 (uint64_t)maxaddr);
1743 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1744 minaddr, maxaddr, strat|VM_SLEEP, &p);
1745 } else {
1746 x = false;
1747 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1748 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1749 }
1750 printf("-> %" PRIu64 "\n", (uint64_t)p);
1751 vmem_dump(vm, vmem_printf);
1752 if (rc != 0) {
1753 if (x) {
1754 continue;
1755 }
1756 break;
1757 }
1758 nreg++;
1759 reg = realloc(reg, sizeof(*reg) * nreg);
1760 r = ®[nreg - 1];
1761 r->p = p;
1762 r->sz = sz;
1763 r->x = x;
1764 total += sz;
1765 nalloc++;
1766 } else if (nreg != 0) {
1767 /* free */
1768 r = ®[rand() % nreg];
1769 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1770 (uint64_t)r->p, (uint64_t)r->sz);
1771 if (r->x) {
1772 vmem_xfree(vm, r->p, r->sz);
1773 } else {
1774 vmem_free(vm, r->p, r->sz);
1775 }
1776 total -= r->sz;
1777 vmem_dump(vm, vmem_printf);
1778 *r = reg[nreg - 1];
1779 nreg--;
1780 nfree++;
1781 }
1782 printf("total=%" PRIu64 "\n", (uint64_t)total);
1783 }
1784 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1785 (uint64_t)total, nalloc, nfree);
1786 exit(EXIT_SUCCESS);
1787 }
1788 #endif /* defined(UNITTEST) */
1789