subr_vmem.c revision 1.100.6.1 1 /* $NetBSD: subr_vmem.c,v 1.100.6.1 2020/04/20 11:29:10 bouyer Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * locking & the boundary tag pool:
36 * - A pool(9) is used for vmem boundary tags
37 * - During a pool get call the global vmem_btag_refill_lock is taken,
38 * to serialize access to the allocation reserve, but no other
39 * vmem arena locks.
40 * - During pool_put calls no vmem mutexes are locked.
41 * - pool_drain doesn't hold the pool's mutex while releasing memory to
42 * its backing therefore no interferance with any vmem mutexes.
43 * - The boundary tag pool is forced to put page headers into pool pages
44 * (PR_PHINPAGE) and not off page to avoid pool recursion.
45 * (due to sizeof(bt_t) it should be the case anyway)
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.100.6.1 2020/04/20 11:29:10 bouyer Exp $");
50
51 #if defined(_KERNEL) && defined(_KERNEL_OPT)
52 #include "opt_ddb.h"
53 #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
54
55 #include <sys/param.h>
56 #include <sys/hash.h>
57 #include <sys/queue.h>
58 #include <sys/bitops.h>
59
60 #if defined(_KERNEL)
61 #include <sys/systm.h>
62 #include <sys/kernel.h> /* hz */
63 #include <sys/callout.h>
64 #include <sys/kmem.h>
65 #include <sys/pool.h>
66 #include <sys/vmem.h>
67 #include <sys/vmem_impl.h>
68 #include <sys/workqueue.h>
69 #include <sys/atomic.h>
70 #include <uvm/uvm.h>
71 #include <uvm/uvm_extern.h>
72 #include <uvm/uvm_km.h>
73 #include <uvm/uvm_page.h>
74 #include <uvm/uvm_pdaemon.h>
75 #else /* defined(_KERNEL) */
76 #include <stdio.h>
77 #include <errno.h>
78 #include <assert.h>
79 #include <stdlib.h>
80 #include <string.h>
81 #include "../sys/vmem.h"
82 #include "../sys/vmem_impl.h"
83 #endif /* defined(_KERNEL) */
84
85
86 #if defined(_KERNEL)
87 #include <sys/evcnt.h>
88 #define VMEM_EVCNT_DEFINE(name) \
89 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
90 "vmem", #name); \
91 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
92 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
93 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
94
95 VMEM_EVCNT_DEFINE(static_bt_count)
96 VMEM_EVCNT_DEFINE(static_bt_inuse)
97
98 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
99 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
100 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
101 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
102
103 #else /* defined(_KERNEL) */
104
105 #define VMEM_EVCNT_INCR(ev) /* nothing */
106 #define VMEM_EVCNT_DECR(ev) /* nothing */
107
108 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
109 #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
110 #define VMEM_CONDVAR_WAIT(vm) /* nothing */
111 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
112
113 #define UNITTEST
114 #define KASSERT(a) assert(a)
115 #define mutex_init(a, b, c) /* nothing */
116 #define mutex_destroy(a) /* nothing */
117 #define mutex_enter(a) /* nothing */
118 #define mutex_tryenter(a) true
119 #define mutex_exit(a) /* nothing */
120 #define mutex_owned(a) /* nothing */
121 #define ASSERT_SLEEPABLE() /* nothing */
122 #define panic(...) printf(__VA_ARGS__); abort()
123 #endif /* defined(_KERNEL) */
124
125 #if defined(VMEM_SANITY)
126 static void vmem_check(vmem_t *);
127 #else /* defined(VMEM_SANITY) */
128 #define vmem_check(vm) /* nothing */
129 #endif /* defined(VMEM_SANITY) */
130
131 #define VMEM_HASHSIZE_MIN 1 /* XXX */
132 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
133 #define VMEM_HASHSIZE_INIT 1
134
135 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
136
137 #if defined(_KERNEL)
138 static bool vmem_bootstrapped = false;
139 static kmutex_t vmem_list_lock;
140 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
141 #endif /* defined(_KERNEL) */
142
143 /* ---- misc */
144
145 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
146 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
147 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
148 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
149 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
150 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
151
152 #define VMEM_ALIGNUP(addr, align) \
153 (-(-(addr) & -(align)))
154
155 #define VMEM_CROSS_P(addr1, addr2, boundary) \
156 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
157
158 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
159 #define SIZE2ORDER(size) ((int)ilog2(size))
160
161 #if !defined(_KERNEL)
162 #define xmalloc(sz, flags) malloc(sz)
163 #define xfree(p, sz) free(p)
164 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
165 #define bt_free(vm, bt) free(bt)
166 #else /* defined(_KERNEL) */
167
168 #define xmalloc(sz, flags) \
169 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
170 #define xfree(p, sz) kmem_free(p, sz);
171
172 /*
173 * BT_RESERVE calculation:
174 * we allocate memory for boundry tags with vmem; therefore we have
175 * to keep a reserve of bts used to allocated memory for bts.
176 * This reserve is 4 for each arena involved in allocating vmems memory.
177 * BT_MAXFREE: don't cache excessive counts of bts in arenas
178 */
179 #define STATIC_BT_COUNT 200
180 #define BT_MINRESERVE 4
181 #define BT_MAXFREE 64
182
183 static struct vmem_btag static_bts[STATIC_BT_COUNT];
184 static int static_bt_count = STATIC_BT_COUNT;
185
186 static struct vmem kmem_va_meta_arena_store;
187 vmem_t *kmem_va_meta_arena;
188 static struct vmem kmem_meta_arena_store;
189 vmem_t *kmem_meta_arena = NULL;
190
191 static kmutex_t vmem_btag_refill_lock;
192 static kmutex_t vmem_btag_lock;
193 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
194 static size_t vmem_btag_freelist_count = 0;
195 static struct pool vmem_btag_pool;
196
197 static void
198 vmem_kick_pdaemon(void)
199 {
200 #if defined(_KERNEL)
201 uvm_kick_pdaemon();
202 #endif
203 }
204
205 /* ---- boundary tag */
206
207 static int bt_refill(vmem_t *vm);
208 static int bt_refill_locked(vmem_t *vm);
209
210 static void *
211 pool_page_alloc_vmem_meta(struct pool *pp, int flags)
212 {
213 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
214 vmem_addr_t va;
215 int ret;
216
217 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
218 (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
219
220 return ret ? NULL : (void *)va;
221 }
222
223 static void
224 pool_page_free_vmem_meta(struct pool *pp, void *v)
225 {
226
227 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
228 }
229
230 /* allocator for vmem-pool metadata */
231 struct pool_allocator pool_allocator_vmem_meta = {
232 .pa_alloc = pool_page_alloc_vmem_meta,
233 .pa_free = pool_page_free_vmem_meta,
234 .pa_pagesz = 0
235 };
236
237 static int
238 bt_refill_locked(vmem_t *vm)
239 {
240 bt_t *bt;
241
242 VMEM_ASSERT_LOCKED(vm);
243
244 if (vm->vm_nfreetags > BT_MINRESERVE) {
245 return 0;
246 }
247
248 mutex_enter(&vmem_btag_lock);
249 while (!LIST_EMPTY(&vmem_btag_freelist) &&
250 vm->vm_nfreetags <= BT_MINRESERVE) {
251 bt = LIST_FIRST(&vmem_btag_freelist);
252 LIST_REMOVE(bt, bt_freelist);
253 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
254 vm->vm_nfreetags++;
255 vmem_btag_freelist_count--;
256 VMEM_EVCNT_INCR(static_bt_inuse);
257 }
258 mutex_exit(&vmem_btag_lock);
259
260 while (vm->vm_nfreetags <= BT_MINRESERVE) {
261 VMEM_UNLOCK(vm);
262 mutex_enter(&vmem_btag_refill_lock);
263 bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
264 mutex_exit(&vmem_btag_refill_lock);
265 VMEM_LOCK(vm);
266 if (bt == NULL)
267 break;
268 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
269 vm->vm_nfreetags++;
270 }
271
272 if (vm->vm_nfreetags <= BT_MINRESERVE) {
273 return ENOMEM;
274 }
275
276 if (kmem_meta_arena != NULL) {
277 VMEM_UNLOCK(vm);
278 (void)bt_refill(kmem_arena);
279 (void)bt_refill(kmem_va_meta_arena);
280 (void)bt_refill(kmem_meta_arena);
281 VMEM_LOCK(vm);
282 }
283
284 return 0;
285 }
286
287 static int
288 bt_refill(vmem_t *vm)
289 {
290 int rv;
291
292 VMEM_LOCK(vm);
293 rv = bt_refill_locked(vm);
294 VMEM_UNLOCK(vm);
295 return rv;
296 }
297
298 static bt_t *
299 bt_alloc(vmem_t *vm, vm_flag_t flags)
300 {
301 bt_t *bt;
302
303 VMEM_ASSERT_LOCKED(vm);
304
305 while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
306 if (bt_refill_locked(vm)) {
307 if ((flags & VM_NOSLEEP) != 0) {
308 return NULL;
309 }
310
311 /*
312 * It would be nice to wait for something specific here
313 * but there are multiple ways that a retry could
314 * succeed and we can't wait for multiple things
315 * simultaneously. So we'll just sleep for an arbitrary
316 * short period of time and retry regardless.
317 * This should be a very rare case.
318 */
319
320 vmem_kick_pdaemon();
321 kpause("btalloc", false, 1, &vm->vm_lock);
322 }
323 }
324 bt = LIST_FIRST(&vm->vm_freetags);
325 LIST_REMOVE(bt, bt_freelist);
326 vm->vm_nfreetags--;
327
328 return bt;
329 }
330
331 static void
332 bt_free(vmem_t *vm, bt_t *bt)
333 {
334
335 VMEM_ASSERT_LOCKED(vm);
336
337 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
338 vm->vm_nfreetags++;
339 }
340
341 static void
342 bt_freetrim(vmem_t *vm, int freelimit)
343 {
344 bt_t *t;
345 LIST_HEAD(, vmem_btag) tofree;
346
347 VMEM_ASSERT_LOCKED(vm);
348
349 LIST_INIT(&tofree);
350
351 while (vm->vm_nfreetags > freelimit) {
352 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
353 LIST_REMOVE(bt, bt_freelist);
354 vm->vm_nfreetags--;
355 if (bt >= static_bts
356 && bt < &static_bts[STATIC_BT_COUNT]) {
357 mutex_enter(&vmem_btag_lock);
358 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
359 vmem_btag_freelist_count++;
360 mutex_exit(&vmem_btag_lock);
361 VMEM_EVCNT_DECR(static_bt_inuse);
362 } else {
363 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
364 }
365 }
366
367 VMEM_UNLOCK(vm);
368 while (!LIST_EMPTY(&tofree)) {
369 t = LIST_FIRST(&tofree);
370 LIST_REMOVE(t, bt_freelist);
371 pool_put(&vmem_btag_pool, t);
372 }
373 }
374 #endif /* defined(_KERNEL) */
375
376 /*
377 * freelist[0] ... [1, 1]
378 * freelist[1] ... [2, 3]
379 * freelist[2] ... [4, 7]
380 * freelist[3] ... [8, 15]
381 * :
382 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
383 * :
384 */
385
386 static struct vmem_freelist *
387 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
388 {
389 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
390 const int idx = SIZE2ORDER(qsize);
391
392 KASSERT(size != 0 && qsize != 0);
393 KASSERT((size & vm->vm_quantum_mask) == 0);
394 KASSERT(idx >= 0);
395 KASSERT(idx < VMEM_MAXORDER);
396
397 return &vm->vm_freelist[idx];
398 }
399
400 /*
401 * bt_freehead_toalloc: return the freelist for the given size and allocation
402 * strategy.
403 *
404 * for VM_INSTANTFIT, return the list in which any blocks are large enough
405 * for the requested size. otherwise, return the list which can have blocks
406 * large enough for the requested size.
407 */
408
409 static struct vmem_freelist *
410 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
411 {
412 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
413 int idx = SIZE2ORDER(qsize);
414
415 KASSERT(size != 0 && qsize != 0);
416 KASSERT((size & vm->vm_quantum_mask) == 0);
417
418 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
419 idx++;
420 /* check too large request? */
421 }
422 KASSERT(idx >= 0);
423 KASSERT(idx < VMEM_MAXORDER);
424
425 return &vm->vm_freelist[idx];
426 }
427
428 /* ---- boundary tag hash */
429
430 static struct vmem_hashlist *
431 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
432 {
433 struct vmem_hashlist *list;
434 unsigned int hash;
435
436 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
437 list = &vm->vm_hashlist[hash & vm->vm_hashmask];
438
439 return list;
440 }
441
442 static bt_t *
443 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
444 {
445 struct vmem_hashlist *list;
446 bt_t *bt;
447
448 list = bt_hashhead(vm, addr);
449 LIST_FOREACH(bt, list, bt_hashlist) {
450 if (bt->bt_start == addr) {
451 break;
452 }
453 }
454
455 return bt;
456 }
457
458 static void
459 bt_rembusy(vmem_t *vm, bt_t *bt)
460 {
461
462 KASSERT(vm->vm_nbusytag > 0);
463 vm->vm_inuse -= bt->bt_size;
464 vm->vm_nbusytag--;
465 LIST_REMOVE(bt, bt_hashlist);
466 }
467
468 static void
469 bt_insbusy(vmem_t *vm, bt_t *bt)
470 {
471 struct vmem_hashlist *list;
472
473 KASSERT(bt->bt_type == BT_TYPE_BUSY);
474
475 list = bt_hashhead(vm, bt->bt_start);
476 LIST_INSERT_HEAD(list, bt, bt_hashlist);
477 if (++vm->vm_nbusytag > vm->vm_maxbusytag) {
478 vm->vm_maxbusytag = vm->vm_nbusytag;
479 }
480 vm->vm_inuse += bt->bt_size;
481 }
482
483 /* ---- boundary tag list */
484
485 static void
486 bt_remseg(vmem_t *vm, bt_t *bt)
487 {
488
489 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
490 }
491
492 static void
493 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
494 {
495
496 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
497 }
498
499 static void
500 bt_insseg_tail(vmem_t *vm, bt_t *bt)
501 {
502
503 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
504 }
505
506 static void
507 bt_remfree(vmem_t *vm, bt_t *bt)
508 {
509
510 KASSERT(bt->bt_type == BT_TYPE_FREE);
511
512 LIST_REMOVE(bt, bt_freelist);
513 }
514
515 static void
516 bt_insfree(vmem_t *vm, bt_t *bt)
517 {
518 struct vmem_freelist *list;
519
520 list = bt_freehead_tofree(vm, bt->bt_size);
521 LIST_INSERT_HEAD(list, bt, bt_freelist);
522 }
523
524 /* ---- vmem internal functions */
525
526 #if defined(QCACHE)
527 static inline vm_flag_t
528 prf_to_vmf(int prflags)
529 {
530 vm_flag_t vmflags;
531
532 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
533 if ((prflags & PR_WAITOK) != 0) {
534 vmflags = VM_SLEEP;
535 } else {
536 vmflags = VM_NOSLEEP;
537 }
538 return vmflags;
539 }
540
541 static inline int
542 vmf_to_prf(vm_flag_t vmflags)
543 {
544 int prflags;
545
546 if ((vmflags & VM_SLEEP) != 0) {
547 prflags = PR_WAITOK;
548 } else {
549 prflags = PR_NOWAIT;
550 }
551 return prflags;
552 }
553
554 static size_t
555 qc_poolpage_size(size_t qcache_max)
556 {
557 int i;
558
559 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
560 /* nothing */
561 }
562 return ORDER2SIZE(i);
563 }
564
565 static void *
566 qc_poolpage_alloc(struct pool *pool, int prflags)
567 {
568 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
569 vmem_t *vm = qc->qc_vmem;
570 vmem_addr_t addr;
571
572 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
573 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
574 return NULL;
575 return (void *)addr;
576 }
577
578 static void
579 qc_poolpage_free(struct pool *pool, void *addr)
580 {
581 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
582 vmem_t *vm = qc->qc_vmem;
583
584 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
585 }
586
587 static void
588 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
589 {
590 qcache_t *prevqc;
591 struct pool_allocator *pa;
592 int qcache_idx_max;
593 int i;
594
595 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
596 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
597 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
598 }
599 vm->vm_qcache_max = qcache_max;
600 pa = &vm->vm_qcache_allocator;
601 memset(pa, 0, sizeof(*pa));
602 pa->pa_alloc = qc_poolpage_alloc;
603 pa->pa_free = qc_poolpage_free;
604 pa->pa_pagesz = qc_poolpage_size(qcache_max);
605
606 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
607 prevqc = NULL;
608 for (i = qcache_idx_max; i > 0; i--) {
609 qcache_t *qc = &vm->vm_qcache_store[i - 1];
610 size_t size = i << vm->vm_quantum_shift;
611 pool_cache_t pc;
612
613 qc->qc_vmem = vm;
614 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
615 vm->vm_name, size);
616
617 pc = pool_cache_init(size,
618 ORDER2SIZE(vm->vm_quantum_shift), 0,
619 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
620 qc->qc_name, pa, ipl, NULL, NULL, NULL);
621
622 KASSERT(pc);
623
624 qc->qc_cache = pc;
625 KASSERT(qc->qc_cache != NULL); /* XXX */
626 if (prevqc != NULL &&
627 qc->qc_cache->pc_pool.pr_itemsperpage ==
628 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
629 pool_cache_destroy(qc->qc_cache);
630 vm->vm_qcache[i - 1] = prevqc;
631 continue;
632 }
633 qc->qc_cache->pc_pool.pr_qcache = qc;
634 vm->vm_qcache[i - 1] = qc;
635 prevqc = qc;
636 }
637 }
638
639 static void
640 qc_destroy(vmem_t *vm)
641 {
642 const qcache_t *prevqc;
643 int i;
644 int qcache_idx_max;
645
646 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
647 prevqc = NULL;
648 for (i = 0; i < qcache_idx_max; i++) {
649 qcache_t *qc = vm->vm_qcache[i];
650
651 if (prevqc == qc) {
652 continue;
653 }
654 pool_cache_destroy(qc->qc_cache);
655 prevqc = qc;
656 }
657 }
658 #endif
659
660 #if defined(_KERNEL)
661 static void
662 vmem_bootstrap(void)
663 {
664
665 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
666 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
667 mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
668
669 while (static_bt_count-- > 0) {
670 bt_t *bt = &static_bts[static_bt_count];
671 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
672 VMEM_EVCNT_INCR(static_bt_count);
673 vmem_btag_freelist_count++;
674 }
675 vmem_bootstrapped = TRUE;
676 }
677
678 void
679 vmem_subsystem_init(vmem_t *vm)
680 {
681
682 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
683 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
684 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
685 IPL_VM);
686
687 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
688 0, 0, PAGE_SIZE,
689 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
690 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
691
692 pool_init(&vmem_btag_pool, sizeof(bt_t), coherency_unit, 0,
693 PR_PHINPAGE, "vmembt", &pool_allocator_vmem_meta, IPL_VM);
694 }
695 #endif /* defined(_KERNEL) */
696
697 static int
698 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
699 int spanbttype)
700 {
701 bt_t *btspan;
702 bt_t *btfree;
703
704 VMEM_ASSERT_LOCKED(vm);
705 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
706 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
707 KASSERT(spanbttype == BT_TYPE_SPAN ||
708 spanbttype == BT_TYPE_SPAN_STATIC);
709
710 btspan = bt_alloc(vm, flags);
711 if (btspan == NULL) {
712 return ENOMEM;
713 }
714 btfree = bt_alloc(vm, flags);
715 if (btfree == NULL) {
716 bt_free(vm, btspan);
717 return ENOMEM;
718 }
719
720 btspan->bt_type = spanbttype;
721 btspan->bt_start = addr;
722 btspan->bt_size = size;
723
724 btfree->bt_type = BT_TYPE_FREE;
725 btfree->bt_start = addr;
726 btfree->bt_size = size;
727
728 bt_insseg_tail(vm, btspan);
729 bt_insseg(vm, btfree, btspan);
730 bt_insfree(vm, btfree);
731 vm->vm_size += size;
732
733 return 0;
734 }
735
736 static void
737 vmem_destroy1(vmem_t *vm)
738 {
739
740 #if defined(QCACHE)
741 qc_destroy(vm);
742 #endif /* defined(QCACHE) */
743 VMEM_LOCK(vm);
744
745 for (int i = 0; i < vm->vm_hashsize; i++) {
746 bt_t *bt;
747
748 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
749 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
750 LIST_REMOVE(bt, bt_hashlist);
751 bt_free(vm, bt);
752 }
753 }
754
755 /* bt_freetrim() drops the lock. */
756 bt_freetrim(vm, 0);
757 if (vm->vm_hashlist != &vm->vm_hash0) {
758 xfree(vm->vm_hashlist,
759 sizeof(struct vmem_hashlist) * vm->vm_hashsize);
760 }
761
762 VMEM_CONDVAR_DESTROY(vm);
763 VMEM_LOCK_DESTROY(vm);
764 xfree(vm, sizeof(*vm));
765 }
766
767 static int
768 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
769 {
770 vmem_addr_t addr;
771 int rc;
772
773 VMEM_ASSERT_LOCKED(vm);
774
775 if (vm->vm_importfn == NULL) {
776 return EINVAL;
777 }
778
779 if (vm->vm_flags & VM_LARGEIMPORT) {
780 size *= 16;
781 }
782
783 VMEM_UNLOCK(vm);
784 if (vm->vm_flags & VM_XIMPORT) {
785 rc = __FPTRCAST(vmem_ximport_t *, vm->vm_importfn)(vm->vm_arg,
786 size, &size, flags, &addr);
787 } else {
788 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
789 }
790 VMEM_LOCK(vm);
791
792 if (rc) {
793 return ENOMEM;
794 }
795
796 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
797 VMEM_UNLOCK(vm);
798 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
799 VMEM_LOCK(vm);
800 return ENOMEM;
801 }
802
803 return 0;
804 }
805
806 static int
807 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
808 {
809 bt_t *bt;
810 int i;
811 struct vmem_hashlist *newhashlist;
812 struct vmem_hashlist *oldhashlist;
813 size_t oldhashsize;
814
815 KASSERT(newhashsize > 0);
816
817 /* Round hash size up to a power of 2. */
818 newhashsize = 1 << (ilog2(newhashsize) + 1);
819
820 newhashlist =
821 xmalloc(sizeof(struct vmem_hashlist) * newhashsize, flags);
822 if (newhashlist == NULL) {
823 return ENOMEM;
824 }
825 for (i = 0; i < newhashsize; i++) {
826 LIST_INIT(&newhashlist[i]);
827 }
828
829 VMEM_LOCK(vm);
830 /* Decay back to a small hash slowly. */
831 if (vm->vm_maxbusytag >= 2) {
832 vm->vm_maxbusytag = vm->vm_maxbusytag / 2 - 1;
833 if (vm->vm_nbusytag > vm->vm_maxbusytag) {
834 vm->vm_maxbusytag = vm->vm_nbusytag;
835 }
836 } else {
837 vm->vm_maxbusytag = vm->vm_nbusytag;
838 }
839 oldhashlist = vm->vm_hashlist;
840 oldhashsize = vm->vm_hashsize;
841 vm->vm_hashlist = newhashlist;
842 vm->vm_hashsize = newhashsize;
843 vm->vm_hashmask = newhashsize - 1;
844 if (oldhashlist == NULL) {
845 VMEM_UNLOCK(vm);
846 return 0;
847 }
848 for (i = 0; i < oldhashsize; i++) {
849 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
850 bt_rembusy(vm, bt); /* XXX */
851 bt_insbusy(vm, bt);
852 }
853 }
854 VMEM_UNLOCK(vm);
855
856 if (oldhashlist != &vm->vm_hash0) {
857 xfree(oldhashlist,
858 sizeof(struct vmem_hashlist) * oldhashsize);
859 }
860
861 return 0;
862 }
863
864 /*
865 * vmem_fit: check if a bt can satisfy the given restrictions.
866 *
867 * it's a caller's responsibility to ensure the region is big enough
868 * before calling us.
869 */
870
871 static int
872 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
873 vmem_size_t phase, vmem_size_t nocross,
874 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
875 {
876 vmem_addr_t start;
877 vmem_addr_t end;
878
879 KASSERT(size > 0);
880 KASSERT(bt->bt_size >= size); /* caller's responsibility */
881
882 /*
883 * XXX assumption: vmem_addr_t and vmem_size_t are
884 * unsigned integer of the same size.
885 */
886
887 start = bt->bt_start;
888 if (start < minaddr) {
889 start = minaddr;
890 }
891 end = BT_END(bt);
892 if (end > maxaddr) {
893 end = maxaddr;
894 }
895 if (start > end) {
896 return ENOMEM;
897 }
898
899 start = VMEM_ALIGNUP(start - phase, align) + phase;
900 if (start < bt->bt_start) {
901 start += align;
902 }
903 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
904 KASSERT(align < nocross);
905 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
906 }
907 if (start <= end && end - start >= size - 1) {
908 KASSERT((start & (align - 1)) == phase);
909 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
910 KASSERT(minaddr <= start);
911 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
912 KASSERT(bt->bt_start <= start);
913 KASSERT(BT_END(bt) - start >= size - 1);
914 *addrp = start;
915 return 0;
916 }
917 return ENOMEM;
918 }
919
920 /* ---- vmem API */
921
922 /*
923 * vmem_init: creates a vmem arena.
924 */
925
926 vmem_t *
927 vmem_init(vmem_t *vm, const char *name,
928 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
929 vmem_import_t *importfn, vmem_release_t *releasefn,
930 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
931 {
932 int i;
933
934 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
935 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
936 KASSERT(quantum > 0);
937
938 #if defined(_KERNEL)
939 /* XXX: SMP, we get called early... */
940 if (!vmem_bootstrapped) {
941 vmem_bootstrap();
942 }
943 #endif /* defined(_KERNEL) */
944
945 if (vm == NULL) {
946 vm = xmalloc(sizeof(*vm), flags);
947 }
948 if (vm == NULL) {
949 return NULL;
950 }
951
952 VMEM_CONDVAR_INIT(vm, "vmem");
953 VMEM_LOCK_INIT(vm, ipl);
954 vm->vm_flags = flags;
955 vm->vm_nfreetags = 0;
956 LIST_INIT(&vm->vm_freetags);
957 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
958 vm->vm_quantum_mask = quantum - 1;
959 vm->vm_quantum_shift = SIZE2ORDER(quantum);
960 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
961 vm->vm_importfn = importfn;
962 vm->vm_releasefn = releasefn;
963 vm->vm_arg = arg;
964 vm->vm_nbusytag = 0;
965 vm->vm_maxbusytag = 0;
966 vm->vm_size = 0;
967 vm->vm_inuse = 0;
968 #if defined(QCACHE)
969 qc_init(vm, qcache_max, ipl);
970 #endif /* defined(QCACHE) */
971
972 TAILQ_INIT(&vm->vm_seglist);
973 for (i = 0; i < VMEM_MAXORDER; i++) {
974 LIST_INIT(&vm->vm_freelist[i]);
975 }
976 memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
977 vm->vm_hashsize = 1;
978 vm->vm_hashmask = vm->vm_hashsize - 1;
979 vm->vm_hashlist = &vm->vm_hash0;
980
981 if (size != 0) {
982 if (vmem_add(vm, base, size, flags) != 0) {
983 vmem_destroy1(vm);
984 return NULL;
985 }
986 }
987
988 #if defined(_KERNEL)
989 if (flags & VM_BOOTSTRAP) {
990 bt_refill(vm);
991 }
992
993 mutex_enter(&vmem_list_lock);
994 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
995 mutex_exit(&vmem_list_lock);
996 #endif /* defined(_KERNEL) */
997
998 return vm;
999 }
1000
1001
1002
1003 /*
1004 * vmem_create: create an arena.
1005 *
1006 * => must not be called from interrupt context.
1007 */
1008
1009 vmem_t *
1010 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1011 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1012 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1013 {
1014
1015 KASSERT((flags & (VM_XIMPORT)) == 0);
1016
1017 return vmem_init(NULL, name, base, size, quantum,
1018 importfn, releasefn, source, qcache_max, flags, ipl);
1019 }
1020
1021 /*
1022 * vmem_xcreate: create an arena takes alternative import func.
1023 *
1024 * => must not be called from interrupt context.
1025 */
1026
1027 vmem_t *
1028 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1029 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1030 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1031 {
1032
1033 KASSERT((flags & (VM_XIMPORT)) == 0);
1034
1035 return vmem_init(NULL, name, base, size, quantum,
1036 __FPTRCAST(vmem_import_t *, importfn), releasefn, source,
1037 qcache_max, flags | VM_XIMPORT, ipl);
1038 }
1039
1040 void
1041 vmem_destroy(vmem_t *vm)
1042 {
1043
1044 #if defined(_KERNEL)
1045 mutex_enter(&vmem_list_lock);
1046 LIST_REMOVE(vm, vm_alllist);
1047 mutex_exit(&vmem_list_lock);
1048 #endif /* defined(_KERNEL) */
1049
1050 vmem_destroy1(vm);
1051 }
1052
1053 vmem_size_t
1054 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1055 {
1056
1057 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1058 }
1059
1060 /*
1061 * vmem_alloc: allocate resource from the arena.
1062 */
1063
1064 int
1065 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1066 {
1067 const vm_flag_t strat __diagused = flags & VM_FITMASK;
1068 int error;
1069
1070 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1071 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1072
1073 KASSERT(size > 0);
1074 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1075 if ((flags & VM_SLEEP) != 0) {
1076 ASSERT_SLEEPABLE();
1077 }
1078
1079 #if defined(QCACHE)
1080 if (size <= vm->vm_qcache_max) {
1081 void *p;
1082 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1083 qcache_t *qc = vm->vm_qcache[qidx - 1];
1084
1085 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1086 if (addrp != NULL)
1087 *addrp = (vmem_addr_t)p;
1088 error = (p == NULL) ? ENOMEM : 0;
1089 goto out;
1090 }
1091 #endif /* defined(QCACHE) */
1092
1093 error = vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1094 flags, addrp);
1095 out:
1096 KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1097 return error;
1098 }
1099
1100 int
1101 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1102 const vmem_size_t phase, const vmem_size_t nocross,
1103 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1104 vmem_addr_t *addrp)
1105 {
1106 struct vmem_freelist *list;
1107 struct vmem_freelist *first;
1108 struct vmem_freelist *end;
1109 bt_t *bt;
1110 bt_t *btnew;
1111 bt_t *btnew2;
1112 const vmem_size_t size = vmem_roundup_size(vm, size0);
1113 vm_flag_t strat = flags & VM_FITMASK;
1114 vmem_addr_t start;
1115 int rc;
1116
1117 KASSERT(size0 > 0);
1118 KASSERT(size > 0);
1119 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1120 if ((flags & VM_SLEEP) != 0) {
1121 ASSERT_SLEEPABLE();
1122 }
1123 KASSERT((align & vm->vm_quantum_mask) == 0);
1124 KASSERT((align & (align - 1)) == 0);
1125 KASSERT((phase & vm->vm_quantum_mask) == 0);
1126 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1127 KASSERT((nocross & (nocross - 1)) == 0);
1128 KASSERT((align == 0 && phase == 0) || phase < align);
1129 KASSERT(nocross == 0 || nocross >= size);
1130 KASSERT(minaddr <= maxaddr);
1131 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1132
1133 if (align == 0) {
1134 align = vm->vm_quantum_mask + 1;
1135 }
1136
1137 /*
1138 * allocate boundary tags before acquiring the vmem lock.
1139 */
1140 VMEM_LOCK(vm);
1141 btnew = bt_alloc(vm, flags);
1142 if (btnew == NULL) {
1143 VMEM_UNLOCK(vm);
1144 return ENOMEM;
1145 }
1146 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1147 if (btnew2 == NULL) {
1148 bt_free(vm, btnew);
1149 VMEM_UNLOCK(vm);
1150 return ENOMEM;
1151 }
1152
1153 /*
1154 * choose a free block from which we allocate.
1155 */
1156 retry_strat:
1157 first = bt_freehead_toalloc(vm, size, strat);
1158 end = &vm->vm_freelist[VMEM_MAXORDER];
1159 retry:
1160 bt = NULL;
1161 vmem_check(vm);
1162 if (strat == VM_INSTANTFIT) {
1163 /*
1164 * just choose the first block which satisfies our restrictions.
1165 *
1166 * note that we don't need to check the size of the blocks
1167 * because any blocks found on these list should be larger than
1168 * the given size.
1169 */
1170 for (list = first; list < end; list++) {
1171 bt = LIST_FIRST(list);
1172 if (bt != NULL) {
1173 rc = vmem_fit(bt, size, align, phase,
1174 nocross, minaddr, maxaddr, &start);
1175 if (rc == 0) {
1176 goto gotit;
1177 }
1178 /*
1179 * don't bother to follow the bt_freelist link
1180 * here. the list can be very long and we are
1181 * told to run fast. blocks from the later free
1182 * lists are larger and have better chances to
1183 * satisfy our restrictions.
1184 */
1185 }
1186 }
1187 } else { /* VM_BESTFIT */
1188 /*
1189 * we assume that, for space efficiency, it's better to
1190 * allocate from a smaller block. thus we will start searching
1191 * from the lower-order list than VM_INSTANTFIT.
1192 * however, don't bother to find the smallest block in a free
1193 * list because the list can be very long. we can revisit it
1194 * if/when it turns out to be a problem.
1195 *
1196 * note that the 'first' list can contain blocks smaller than
1197 * the requested size. thus we need to check bt_size.
1198 */
1199 for (list = first; list < end; list++) {
1200 LIST_FOREACH(bt, list, bt_freelist) {
1201 if (bt->bt_size >= size) {
1202 rc = vmem_fit(bt, size, align, phase,
1203 nocross, minaddr, maxaddr, &start);
1204 if (rc == 0) {
1205 goto gotit;
1206 }
1207 }
1208 }
1209 }
1210 }
1211 #if 1
1212 if (strat == VM_INSTANTFIT) {
1213 strat = VM_BESTFIT;
1214 goto retry_strat;
1215 }
1216 #endif
1217 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1218
1219 /*
1220 * XXX should try to import a region large enough to
1221 * satisfy restrictions?
1222 */
1223
1224 goto fail;
1225 }
1226 /* XXX eeek, minaddr & maxaddr not respected */
1227 if (vmem_import(vm, size, flags) == 0) {
1228 goto retry;
1229 }
1230 /* XXX */
1231
1232 if ((flags & VM_SLEEP) != 0) {
1233 vmem_kick_pdaemon();
1234 VMEM_CONDVAR_WAIT(vm);
1235 goto retry;
1236 }
1237 fail:
1238 bt_free(vm, btnew);
1239 bt_free(vm, btnew2);
1240 VMEM_UNLOCK(vm);
1241 return ENOMEM;
1242
1243 gotit:
1244 KASSERT(bt->bt_type == BT_TYPE_FREE);
1245 KASSERT(bt->bt_size >= size);
1246 bt_remfree(vm, bt);
1247 vmem_check(vm);
1248 if (bt->bt_start != start) {
1249 btnew2->bt_type = BT_TYPE_FREE;
1250 btnew2->bt_start = bt->bt_start;
1251 btnew2->bt_size = start - bt->bt_start;
1252 bt->bt_start = start;
1253 bt->bt_size -= btnew2->bt_size;
1254 bt_insfree(vm, btnew2);
1255 bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1256 btnew2 = NULL;
1257 vmem_check(vm);
1258 }
1259 KASSERT(bt->bt_start == start);
1260 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1261 /* split */
1262 btnew->bt_type = BT_TYPE_BUSY;
1263 btnew->bt_start = bt->bt_start;
1264 btnew->bt_size = size;
1265 bt->bt_start = bt->bt_start + size;
1266 bt->bt_size -= size;
1267 bt_insfree(vm, bt);
1268 bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1269 bt_insbusy(vm, btnew);
1270 vmem_check(vm);
1271 } else {
1272 bt->bt_type = BT_TYPE_BUSY;
1273 bt_insbusy(vm, bt);
1274 vmem_check(vm);
1275 bt_free(vm, btnew);
1276 btnew = bt;
1277 }
1278 if (btnew2 != NULL) {
1279 bt_free(vm, btnew2);
1280 }
1281 KASSERT(btnew->bt_size >= size);
1282 btnew->bt_type = BT_TYPE_BUSY;
1283 if (addrp != NULL)
1284 *addrp = btnew->bt_start;
1285 VMEM_UNLOCK(vm);
1286 return 0;
1287 }
1288
1289 /*
1290 * vmem_free: free the resource to the arena.
1291 */
1292
1293 void
1294 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1295 {
1296
1297 KASSERT(size > 0);
1298
1299 #if defined(QCACHE)
1300 if (size <= vm->vm_qcache_max) {
1301 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1302 qcache_t *qc = vm->vm_qcache[qidx - 1];
1303
1304 pool_cache_put(qc->qc_cache, (void *)addr);
1305 return;
1306 }
1307 #endif /* defined(QCACHE) */
1308
1309 vmem_xfree(vm, addr, size);
1310 }
1311
1312 void
1313 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1314 {
1315 bt_t *bt;
1316 bt_t *t;
1317
1318 KASSERT(size > 0);
1319
1320 VMEM_LOCK(vm);
1321
1322 bt = bt_lookupbusy(vm, addr);
1323 KASSERT(bt != NULL);
1324 KASSERT(bt->bt_start == addr);
1325 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1326 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1327 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1328 bt_rembusy(vm, bt);
1329 bt->bt_type = BT_TYPE_FREE;
1330
1331 /* coalesce */
1332 t = TAILQ_NEXT(bt, bt_seglist);
1333 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1334 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1335 bt_remfree(vm, t);
1336 bt_remseg(vm, t);
1337 bt->bt_size += t->bt_size;
1338 bt_free(vm, t);
1339 }
1340 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1341 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1342 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1343 bt_remfree(vm, t);
1344 bt_remseg(vm, t);
1345 bt->bt_size += t->bt_size;
1346 bt->bt_start = t->bt_start;
1347 bt_free(vm, t);
1348 }
1349
1350 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1351 KASSERT(t != NULL);
1352 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1353 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1354 t->bt_size == bt->bt_size) {
1355 vmem_addr_t spanaddr;
1356 vmem_size_t spansize;
1357
1358 KASSERT(t->bt_start == bt->bt_start);
1359 spanaddr = bt->bt_start;
1360 spansize = bt->bt_size;
1361 bt_remseg(vm, bt);
1362 bt_free(vm, bt);
1363 bt_remseg(vm, t);
1364 bt_free(vm, t);
1365 vm->vm_size -= spansize;
1366 VMEM_CONDVAR_BROADCAST(vm);
1367 /* bt_freetrim() drops the lock. */
1368 bt_freetrim(vm, BT_MAXFREE);
1369 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1370 } else {
1371 bt_insfree(vm, bt);
1372 VMEM_CONDVAR_BROADCAST(vm);
1373 /* bt_freetrim() drops the lock. */
1374 bt_freetrim(vm, BT_MAXFREE);
1375 }
1376 }
1377
1378 /*
1379 * vmem_add:
1380 *
1381 * => caller must ensure appropriate spl,
1382 * if the arena can be accessed from interrupt context.
1383 */
1384
1385 int
1386 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1387 {
1388 int rv;
1389
1390 VMEM_LOCK(vm);
1391 rv = vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1392 VMEM_UNLOCK(vm);
1393
1394 return rv;
1395 }
1396
1397 /*
1398 * vmem_size: information about arenas size
1399 *
1400 * => return free/allocated size in arena
1401 */
1402 vmem_size_t
1403 vmem_size(vmem_t *vm, int typemask)
1404 {
1405
1406 switch (typemask) {
1407 case VMEM_ALLOC:
1408 return vm->vm_inuse;
1409 case VMEM_FREE:
1410 return vm->vm_size - vm->vm_inuse;
1411 case VMEM_FREE|VMEM_ALLOC:
1412 return vm->vm_size;
1413 default:
1414 panic("vmem_size");
1415 }
1416 }
1417
1418 /* ---- rehash */
1419
1420 #if defined(_KERNEL)
1421 static struct callout vmem_rehash_ch;
1422 static int vmem_rehash_interval;
1423 static struct workqueue *vmem_rehash_wq;
1424 static struct work vmem_rehash_wk;
1425
1426 static void
1427 vmem_rehash_all(struct work *wk, void *dummy)
1428 {
1429 vmem_t *vm;
1430
1431 KASSERT(wk == &vmem_rehash_wk);
1432 mutex_enter(&vmem_list_lock);
1433 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1434 size_t desired;
1435 size_t current;
1436
1437 desired = atomic_load_relaxed(&vm->vm_maxbusytag);
1438 current = atomic_load_relaxed(&vm->vm_hashsize);
1439
1440 if (desired > VMEM_HASHSIZE_MAX) {
1441 desired = VMEM_HASHSIZE_MAX;
1442 } else if (desired < VMEM_HASHSIZE_MIN) {
1443 desired = VMEM_HASHSIZE_MIN;
1444 }
1445 if (desired > current * 2 || desired * 2 < current) {
1446 vmem_rehash(vm, desired, VM_NOSLEEP);
1447 }
1448 }
1449 mutex_exit(&vmem_list_lock);
1450
1451 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1452 }
1453
1454 static void
1455 vmem_rehash_all_kick(void *dummy)
1456 {
1457
1458 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1459 }
1460
1461 void
1462 vmem_rehash_start(void)
1463 {
1464 int error;
1465
1466 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1467 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1468 if (error) {
1469 panic("%s: workqueue_create %d\n", __func__, error);
1470 }
1471 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1472 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1473
1474 vmem_rehash_interval = hz * 10;
1475 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1476 }
1477 #endif /* defined(_KERNEL) */
1478
1479 /* ---- debug */
1480
1481 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1482
1483 static void bt_dump(const bt_t *, void (*)(const char *, ...)
1484 __printflike(1, 2));
1485
1486 static const char *
1487 bt_type_string(int type)
1488 {
1489 static const char * const table[] = {
1490 [BT_TYPE_BUSY] = "busy",
1491 [BT_TYPE_FREE] = "free",
1492 [BT_TYPE_SPAN] = "span",
1493 [BT_TYPE_SPAN_STATIC] = "static span",
1494 };
1495
1496 if (type >= __arraycount(table)) {
1497 return "BOGUS";
1498 }
1499 return table[type];
1500 }
1501
1502 static void
1503 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1504 {
1505
1506 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1507 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1508 bt->bt_type, bt_type_string(bt->bt_type));
1509 }
1510
1511 static void
1512 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1513 {
1514 const bt_t *bt;
1515 int i;
1516
1517 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1518 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1519 bt_dump(bt, pr);
1520 }
1521
1522 for (i = 0; i < VMEM_MAXORDER; i++) {
1523 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1524
1525 if (LIST_EMPTY(fl)) {
1526 continue;
1527 }
1528
1529 (*pr)("freelist[%d]\n", i);
1530 LIST_FOREACH(bt, fl, bt_freelist) {
1531 bt_dump(bt, pr);
1532 }
1533 }
1534 }
1535
1536 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1537
1538 #if defined(DDB)
1539 static bt_t *
1540 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1541 {
1542 bt_t *bt;
1543
1544 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1545 if (BT_ISSPAN_P(bt)) {
1546 continue;
1547 }
1548 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1549 return bt;
1550 }
1551 }
1552
1553 return NULL;
1554 }
1555
1556 void
1557 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1558 {
1559 vmem_t *vm;
1560
1561 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1562 bt_t *bt;
1563
1564 bt = vmem_whatis_lookup(vm, addr);
1565 if (bt == NULL) {
1566 continue;
1567 }
1568 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1569 (void *)addr, (void *)bt->bt_start,
1570 (size_t)(addr - bt->bt_start), vm->vm_name,
1571 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1572 }
1573 }
1574
1575 void
1576 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1577 {
1578 const vmem_t *vm;
1579
1580 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1581 vmem_dump(vm, pr);
1582 }
1583 }
1584
1585 void
1586 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1587 {
1588 const vmem_t *vm = (const void *)addr;
1589
1590 vmem_dump(vm, pr);
1591 }
1592 #endif /* defined(DDB) */
1593
1594 #if defined(_KERNEL)
1595 #define vmem_printf printf
1596 #else
1597 #include <stdio.h>
1598 #include <stdarg.h>
1599
1600 static void
1601 vmem_printf(const char *fmt, ...)
1602 {
1603 va_list ap;
1604 va_start(ap, fmt);
1605 vprintf(fmt, ap);
1606 va_end(ap);
1607 }
1608 #endif
1609
1610 #if defined(VMEM_SANITY)
1611
1612 static bool
1613 vmem_check_sanity(vmem_t *vm)
1614 {
1615 const bt_t *bt, *bt2;
1616
1617 KASSERT(vm != NULL);
1618
1619 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1620 if (bt->bt_start > BT_END(bt)) {
1621 printf("corrupted tag\n");
1622 bt_dump(bt, vmem_printf);
1623 return false;
1624 }
1625 }
1626 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1627 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1628 if (bt == bt2) {
1629 continue;
1630 }
1631 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1632 continue;
1633 }
1634 if (bt->bt_start <= BT_END(bt2) &&
1635 bt2->bt_start <= BT_END(bt)) {
1636 printf("overwrapped tags\n");
1637 bt_dump(bt, vmem_printf);
1638 bt_dump(bt2, vmem_printf);
1639 return false;
1640 }
1641 }
1642 }
1643
1644 return true;
1645 }
1646
1647 static void
1648 vmem_check(vmem_t *vm)
1649 {
1650
1651 if (!vmem_check_sanity(vm)) {
1652 panic("insanity vmem %p", vm);
1653 }
1654 }
1655
1656 #endif /* defined(VMEM_SANITY) */
1657
1658 #if defined(UNITTEST)
1659 int
1660 main(void)
1661 {
1662 int rc;
1663 vmem_t *vm;
1664 vmem_addr_t p;
1665 struct reg {
1666 vmem_addr_t p;
1667 vmem_size_t sz;
1668 bool x;
1669 } *reg = NULL;
1670 int nreg = 0;
1671 int nalloc = 0;
1672 int nfree = 0;
1673 vmem_size_t total = 0;
1674 #if 1
1675 vm_flag_t strat = VM_INSTANTFIT;
1676 #else
1677 vm_flag_t strat = VM_BESTFIT;
1678 #endif
1679
1680 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1681 #ifdef _KERNEL
1682 IPL_NONE
1683 #else
1684 0
1685 #endif
1686 );
1687 if (vm == NULL) {
1688 printf("vmem_create\n");
1689 exit(EXIT_FAILURE);
1690 }
1691 vmem_dump(vm, vmem_printf);
1692
1693 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1694 assert(rc == 0);
1695 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1696 assert(rc == 0);
1697 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1698 assert(rc == 0);
1699 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1700 assert(rc == 0);
1701 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1702 assert(rc == 0);
1703 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1704 assert(rc == 0);
1705 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1706 assert(rc == 0);
1707 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1708 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1709 assert(rc != 0);
1710 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1711 assert(rc == 0 && p == 0);
1712 vmem_xfree(vm, p, 50);
1713 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1714 assert(rc == 0 && p == 0);
1715 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1716 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1717 assert(rc != 0);
1718 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1719 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1720 assert(rc != 0);
1721 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1722 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1723 assert(rc == 0);
1724 vmem_dump(vm, vmem_printf);
1725 for (;;) {
1726 struct reg *r;
1727 int t = rand() % 100;
1728
1729 if (t > 45) {
1730 /* alloc */
1731 vmem_size_t sz = rand() % 500 + 1;
1732 bool x;
1733 vmem_size_t align, phase, nocross;
1734 vmem_addr_t minaddr, maxaddr;
1735
1736 if (t > 70) {
1737 x = true;
1738 /* XXX */
1739 align = 1 << (rand() % 15);
1740 phase = rand() % 65536;
1741 nocross = 1 << (rand() % 15);
1742 if (align <= phase) {
1743 phase = 0;
1744 }
1745 if (VMEM_CROSS_P(phase, phase + sz - 1,
1746 nocross)) {
1747 nocross = 0;
1748 }
1749 do {
1750 minaddr = rand() % 50000;
1751 maxaddr = rand() % 70000;
1752 } while (minaddr > maxaddr);
1753 printf("=== xalloc %" PRIu64
1754 " align=%" PRIu64 ", phase=%" PRIu64
1755 ", nocross=%" PRIu64 ", min=%" PRIu64
1756 ", max=%" PRIu64 "\n",
1757 (uint64_t)sz,
1758 (uint64_t)align,
1759 (uint64_t)phase,
1760 (uint64_t)nocross,
1761 (uint64_t)minaddr,
1762 (uint64_t)maxaddr);
1763 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1764 minaddr, maxaddr, strat|VM_SLEEP, &p);
1765 } else {
1766 x = false;
1767 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1768 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1769 }
1770 printf("-> %" PRIu64 "\n", (uint64_t)p);
1771 vmem_dump(vm, vmem_printf);
1772 if (rc != 0) {
1773 if (x) {
1774 continue;
1775 }
1776 break;
1777 }
1778 nreg++;
1779 reg = realloc(reg, sizeof(*reg) * nreg);
1780 r = ®[nreg - 1];
1781 r->p = p;
1782 r->sz = sz;
1783 r->x = x;
1784 total += sz;
1785 nalloc++;
1786 } else if (nreg != 0) {
1787 /* free */
1788 r = ®[rand() % nreg];
1789 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1790 (uint64_t)r->p, (uint64_t)r->sz);
1791 if (r->x) {
1792 vmem_xfree(vm, r->p, r->sz);
1793 } else {
1794 vmem_free(vm, r->p, r->sz);
1795 }
1796 total -= r->sz;
1797 vmem_dump(vm, vmem_printf);
1798 *r = reg[nreg - 1];
1799 nreg--;
1800 nfree++;
1801 }
1802 printf("total=%" PRIu64 "\n", (uint64_t)total);
1803 }
1804 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1805 (uint64_t)total, nalloc, nfree);
1806 exit(EXIT_SUCCESS);
1807 }
1808 #endif /* defined(UNITTEST) */
1809