subr_vmem.c revision 1.114 1 /* $NetBSD: subr_vmem.c,v 1.114 2023/12/03 15:06:45 thorpej Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * locking & the boundary tag pool:
36 * - A pool(9) is used for vmem boundary tags
37 * - During a pool get call the global vmem_btag_refill_lock is taken,
38 * to serialize access to the allocation reserve, but no other
39 * vmem arena locks.
40 * - During pool_put calls no vmem mutexes are locked.
41 * - pool_drain doesn't hold the pool's mutex while releasing memory to
42 * its backing therefore no interference with any vmem mutexes.
43 * - The boundary tag pool is forced to put page headers into pool pages
44 * (PR_PHINPAGE) and not off page to avoid pool recursion.
45 * (due to sizeof(bt_t) it should be the case anyway)
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.114 2023/12/03 15:06:45 thorpej Exp $");
50
51 #if defined(_KERNEL) && defined(_KERNEL_OPT)
52 #include "opt_ddb.h"
53 #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
54
55 #include <sys/param.h>
56 #include <sys/hash.h>
57 #include <sys/queue.h>
58 #include <sys/bitops.h>
59
60 #if defined(_KERNEL)
61 #include <sys/systm.h>
62 #include <sys/kernel.h> /* hz */
63 #include <sys/callout.h>
64 #include <sys/kmem.h>
65 #include <sys/pool.h>
66 #include <sys/vmem.h>
67 #include <sys/vmem_impl.h>
68 #include <sys/workqueue.h>
69 #include <sys/atomic.h>
70 #include <uvm/uvm.h>
71 #include <uvm/uvm_extern.h>
72 #include <uvm/uvm_km.h>
73 #include <uvm/uvm_page.h>
74 #include <uvm/uvm_pdaemon.h>
75 #else /* defined(_KERNEL) */
76 #include <stdio.h>
77 #include <errno.h>
78 #include <assert.h>
79 #include <stdlib.h>
80 #include <string.h>
81 #include "../sys/vmem.h"
82 #include "../sys/vmem_impl.h"
83 #endif /* defined(_KERNEL) */
84
85
86 #if defined(_KERNEL)
87 #include <sys/evcnt.h>
88 #define VMEM_EVCNT_DEFINE(name) \
89 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
90 "vmem", #name); \
91 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
92 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
93 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
94
95 VMEM_EVCNT_DEFINE(static_bt_count)
96 VMEM_EVCNT_DEFINE(static_bt_inuse)
97
98 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
99 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
100 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
101 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
102
103 #else /* defined(_KERNEL) */
104
105 #define VMEM_EVCNT_INCR(ev) /* nothing */
106 #define VMEM_EVCNT_DECR(ev) /* nothing */
107
108 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
109 #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
110 #define VMEM_CONDVAR_WAIT(vm) /* nothing */
111 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
112
113 #define UNITTEST
114 #define KASSERT(a) assert(a)
115 #define KASSERTMSG(a, m, ...) assert(a)
116 #define mutex_init(a, b, c) /* nothing */
117 #define mutex_destroy(a) /* nothing */
118 #define mutex_enter(a) /* nothing */
119 #define mutex_tryenter(a) true
120 #define mutex_exit(a) /* nothing */
121 #define mutex_owned(a) true
122 #define ASSERT_SLEEPABLE() /* nothing */
123 #define panic(...) printf(__VA_ARGS__); abort()
124 #endif /* defined(_KERNEL) */
125
126 #if defined(VMEM_SANITY)
127 static void vmem_check(vmem_t *);
128 #else /* defined(VMEM_SANITY) */
129 #define vmem_check(vm) /* nothing */
130 #endif /* defined(VMEM_SANITY) */
131
132 #define VMEM_HASHSIZE_MIN 1 /* XXX */
133 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
134 #define VMEM_HASHSIZE_INIT 1
135
136 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
137
138 #if defined(_KERNEL)
139 static bool vmem_bootstrapped = false;
140 static kmutex_t vmem_list_lock;
141 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
142 #endif /* defined(_KERNEL) */
143
144 /* ---- misc */
145
146 #define VMEM_LOCK(vm) mutex_enter(&(vm)->vm_lock)
147 #define VMEM_TRYLOCK(vm) mutex_tryenter(&(vm)->vm_lock)
148 #define VMEM_UNLOCK(vm) mutex_exit(&(vm)->vm_lock)
149 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&(vm)->vm_lock, MUTEX_DEFAULT, (ipl))
150 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&(vm)->vm_lock)
151 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&(vm)->vm_lock))
152
153 #define VMEM_ALIGNUP(addr, align) \
154 (-(-(addr) & -(align)))
155
156 #define VMEM_CROSS_P(addr1, addr2, boundary) \
157 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
158
159 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
160 #define SIZE2ORDER(size) ((int)ilog2(size))
161
162 static void
163 vmem_kick_pdaemon(void)
164 {
165 #if defined(_KERNEL)
166 uvm_kick_pdaemon();
167 #endif
168 }
169
170 static void vmem_xfree_bt(vmem_t *, bt_t *);
171
172 #if !defined(_KERNEL)
173 #define xmalloc(sz, flags) malloc(sz)
174 #define xfree(p, sz) free(p)
175 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
176 #define bt_free(vm, bt) free(bt)
177 #define bt_freetrim(vm, l) /* nothing */
178 #else /* defined(_KERNEL) */
179
180 #define xmalloc(sz, flags) \
181 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
182 #define xfree(p, sz) kmem_free(p, sz);
183
184 /*
185 * BT_RESERVE calculation:
186 * we allocate memory for boundary tags with vmem; therefore we have
187 * to keep a reserve of bts used to allocated memory for bts.
188 * This reserve is 4 for each arena involved in allocating vmems memory.
189 * BT_MAXFREE: don't cache excessive counts of bts in arenas
190 */
191 #define STATIC_BT_COUNT 200
192 #define BT_MINRESERVE 4
193 #define BT_MAXFREE 64
194
195 static struct vmem_btag static_bts[STATIC_BT_COUNT];
196 static int static_bt_count = STATIC_BT_COUNT;
197
198 static struct vmem kmem_va_meta_arena_store;
199 vmem_t *kmem_va_meta_arena;
200 static struct vmem kmem_meta_arena_store;
201 vmem_t *kmem_meta_arena = NULL;
202
203 static kmutex_t vmem_btag_refill_lock;
204 static kmutex_t vmem_btag_lock;
205 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
206 static size_t vmem_btag_freelist_count = 0;
207 static struct pool vmem_btag_pool;
208 static bool vmem_btag_pool_initialized __read_mostly;
209
210 /* ---- boundary tag */
211
212 static int bt_refill(vmem_t *vm);
213 static int bt_refill_locked(vmem_t *vm);
214
215 static void *
216 pool_page_alloc_vmem_meta(struct pool *pp, int flags)
217 {
218 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
219 vmem_addr_t va;
220 int ret;
221
222 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
223 (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
224
225 return ret ? NULL : (void *)va;
226 }
227
228 static void
229 pool_page_free_vmem_meta(struct pool *pp, void *v)
230 {
231
232 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
233 }
234
235 /* allocator for vmem-pool metadata */
236 struct pool_allocator pool_allocator_vmem_meta = {
237 .pa_alloc = pool_page_alloc_vmem_meta,
238 .pa_free = pool_page_free_vmem_meta,
239 .pa_pagesz = 0
240 };
241
242 static int
243 bt_refill_locked(vmem_t *vm)
244 {
245 bt_t *bt;
246
247 VMEM_ASSERT_LOCKED(vm);
248
249 if (vm->vm_nfreetags > BT_MINRESERVE) {
250 return 0;
251 }
252
253 mutex_enter(&vmem_btag_lock);
254 while (!LIST_EMPTY(&vmem_btag_freelist) &&
255 vm->vm_nfreetags <= BT_MINRESERVE) {
256 bt = LIST_FIRST(&vmem_btag_freelist);
257 LIST_REMOVE(bt, bt_freelist);
258 bt->bt_flags = 0;
259 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
260 vm->vm_nfreetags++;
261 vmem_btag_freelist_count--;
262 VMEM_EVCNT_INCR(static_bt_inuse);
263 }
264 mutex_exit(&vmem_btag_lock);
265
266 while (vm->vm_nfreetags <= BT_MINRESERVE) {
267 VMEM_UNLOCK(vm);
268 KASSERT(vmem_btag_pool_initialized);
269 mutex_enter(&vmem_btag_refill_lock);
270 bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
271 mutex_exit(&vmem_btag_refill_lock);
272 VMEM_LOCK(vm);
273 if (bt == NULL)
274 break;
275 bt->bt_flags = 0;
276 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
277 vm->vm_nfreetags++;
278 }
279
280 if (vm->vm_nfreetags <= BT_MINRESERVE) {
281 return ENOMEM;
282 }
283
284 if (kmem_meta_arena != NULL) {
285 VMEM_UNLOCK(vm);
286 (void)bt_refill(kmem_arena);
287 (void)bt_refill(kmem_va_meta_arena);
288 (void)bt_refill(kmem_meta_arena);
289 VMEM_LOCK(vm);
290 }
291
292 return 0;
293 }
294
295 static int
296 bt_refill(vmem_t *vm)
297 {
298 int rv;
299
300 VMEM_LOCK(vm);
301 rv = bt_refill_locked(vm);
302 VMEM_UNLOCK(vm);
303 return rv;
304 }
305
306 static bt_t *
307 bt_alloc(vmem_t *vm, vm_flag_t flags)
308 {
309 bt_t *bt;
310
311 VMEM_ASSERT_LOCKED(vm);
312
313 while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
314 if (bt_refill_locked(vm)) {
315 if ((flags & VM_NOSLEEP) != 0) {
316 return NULL;
317 }
318
319 /*
320 * It would be nice to wait for something specific here
321 * but there are multiple ways that a retry could
322 * succeed and we can't wait for multiple things
323 * simultaneously. So we'll just sleep for an arbitrary
324 * short period of time and retry regardless.
325 * This should be a very rare case.
326 */
327
328 vmem_kick_pdaemon();
329 kpause("btalloc", false, 1, &vm->vm_lock);
330 }
331 }
332 bt = LIST_FIRST(&vm->vm_freetags);
333 LIST_REMOVE(bt, bt_freelist);
334 vm->vm_nfreetags--;
335
336 return bt;
337 }
338
339 static void
340 bt_free(vmem_t *vm, bt_t *bt)
341 {
342
343 VMEM_ASSERT_LOCKED(vm);
344
345 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
346 vm->vm_nfreetags++;
347 }
348
349 static void
350 bt_freetrim(vmem_t *vm, int freelimit)
351 {
352 bt_t *bt, *next_bt;
353 LIST_HEAD(, vmem_btag) tofree;
354
355 VMEM_ASSERT_LOCKED(vm);
356
357 LIST_INIT(&tofree);
358
359 LIST_FOREACH_SAFE(bt, &vm->vm_freetags, bt_freelist, next_bt) {
360 if (vm->vm_nfreetags <= freelimit) {
361 break;
362 }
363 LIST_REMOVE(bt, bt_freelist);
364 vm->vm_nfreetags--;
365 if (bt >= static_bts
366 && bt < &static_bts[STATIC_BT_COUNT]) {
367 mutex_enter(&vmem_btag_lock);
368 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
369 vmem_btag_freelist_count++;
370 mutex_exit(&vmem_btag_lock);
371 VMEM_EVCNT_DECR(static_bt_inuse);
372 } else {
373 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
374 }
375 }
376
377 VMEM_UNLOCK(vm);
378 while (!LIST_EMPTY(&tofree)) {
379 bt = LIST_FIRST(&tofree);
380 LIST_REMOVE(bt, bt_freelist);
381 pool_put(&vmem_btag_pool, bt);
382 }
383 }
384 #endif /* defined(_KERNEL) */
385
386 /*
387 * freelist[0] ... [1, 1]
388 * freelist[1] ... [2, 3]
389 * freelist[2] ... [4, 7]
390 * freelist[3] ... [8, 15]
391 * :
392 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
393 * :
394 */
395
396 static struct vmem_freelist *
397 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
398 {
399 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
400 const int idx = SIZE2ORDER(qsize);
401
402 KASSERT(size != 0);
403 KASSERT(qsize != 0);
404 KASSERT((size & vm->vm_quantum_mask) == 0);
405 KASSERT(idx >= 0);
406 KASSERT(idx < VMEM_MAXORDER);
407
408 return &vm->vm_freelist[idx];
409 }
410
411 /*
412 * bt_freehead_toalloc: return the freelist for the given size and allocation
413 * strategy.
414 *
415 * for VM_INSTANTFIT, return the list in which any blocks are large enough
416 * for the requested size. otherwise, return the list which can have blocks
417 * large enough for the requested size.
418 */
419
420 static struct vmem_freelist *
421 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
422 {
423 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
424 int idx = SIZE2ORDER(qsize);
425
426 KASSERT(size != 0);
427 KASSERT(qsize != 0);
428 KASSERT((size & vm->vm_quantum_mask) == 0);
429
430 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
431 idx++;
432 /* check too large request? */
433 }
434 KASSERT(idx >= 0);
435 KASSERT(idx < VMEM_MAXORDER);
436
437 return &vm->vm_freelist[idx];
438 }
439
440 /* ---- boundary tag hash */
441
442 static struct vmem_hashlist *
443 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
444 {
445 struct vmem_hashlist *list;
446 unsigned int hash;
447
448 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
449 list = &vm->vm_hashlist[hash & vm->vm_hashmask];
450
451 return list;
452 }
453
454 static bt_t *
455 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
456 {
457 struct vmem_hashlist *list;
458 bt_t *bt;
459
460 list = bt_hashhead(vm, addr);
461 LIST_FOREACH(bt, list, bt_hashlist) {
462 if (bt->bt_start == addr) {
463 break;
464 }
465 }
466
467 return bt;
468 }
469
470 static void
471 bt_rembusy(vmem_t *vm, bt_t *bt)
472 {
473
474 KASSERT(vm->vm_nbusytag > 0);
475 vm->vm_inuse -= bt->bt_size;
476 vm->vm_nbusytag--;
477 LIST_REMOVE(bt, bt_hashlist);
478 }
479
480 static void
481 bt_insbusy(vmem_t *vm, bt_t *bt)
482 {
483 struct vmem_hashlist *list;
484
485 KASSERT(bt->bt_type == BT_TYPE_BUSY);
486
487 list = bt_hashhead(vm, bt->bt_start);
488 LIST_INSERT_HEAD(list, bt, bt_hashlist);
489 if (++vm->vm_nbusytag > vm->vm_maxbusytag) {
490 vm->vm_maxbusytag = vm->vm_nbusytag;
491 }
492 vm->vm_inuse += bt->bt_size;
493 }
494
495 /* ---- boundary tag list */
496
497 static void
498 bt_remseg(vmem_t *vm, bt_t *bt)
499 {
500
501 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
502 }
503
504 static void
505 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
506 {
507
508 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
509 }
510
511 static void
512 bt_insseg_tail(vmem_t *vm, bt_t *bt)
513 {
514
515 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
516 }
517
518 static void
519 bt_remfree(vmem_t *vm, bt_t *bt)
520 {
521
522 KASSERT(bt->bt_type == BT_TYPE_FREE);
523
524 LIST_REMOVE(bt, bt_freelist);
525 }
526
527 static void
528 bt_insfree(vmem_t *vm, bt_t *bt)
529 {
530 struct vmem_freelist *list;
531
532 list = bt_freehead_tofree(vm, bt->bt_size);
533 LIST_INSERT_HEAD(list, bt, bt_freelist);
534 }
535
536 /* ---- vmem internal functions */
537
538 #if defined(QCACHE)
539 static inline vm_flag_t
540 prf_to_vmf(int prflags)
541 {
542 vm_flag_t vmflags;
543
544 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
545 if ((prflags & PR_WAITOK) != 0) {
546 vmflags = VM_SLEEP;
547 } else {
548 vmflags = VM_NOSLEEP;
549 }
550 return vmflags;
551 }
552
553 static inline int
554 vmf_to_prf(vm_flag_t vmflags)
555 {
556 int prflags;
557
558 if ((vmflags & VM_SLEEP) != 0) {
559 prflags = PR_WAITOK;
560 } else {
561 prflags = PR_NOWAIT;
562 }
563 return prflags;
564 }
565
566 static size_t
567 qc_poolpage_size(size_t qcache_max)
568 {
569 int i;
570
571 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
572 /* nothing */
573 }
574 return ORDER2SIZE(i);
575 }
576
577 static void *
578 qc_poolpage_alloc(struct pool *pool, int prflags)
579 {
580 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
581 vmem_t *vm = qc->qc_vmem;
582 vmem_addr_t addr;
583
584 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
585 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
586 return NULL;
587 return (void *)addr;
588 }
589
590 static void
591 qc_poolpage_free(struct pool *pool, void *addr)
592 {
593 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
594 vmem_t *vm = qc->qc_vmem;
595
596 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
597 }
598
599 static void
600 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
601 {
602 qcache_t *prevqc;
603 struct pool_allocator *pa;
604 int qcache_idx_max;
605 int i;
606
607 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
608 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
609 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
610 }
611 vm->vm_qcache_max = qcache_max;
612 pa = &vm->vm_qcache_allocator;
613 memset(pa, 0, sizeof(*pa));
614 pa->pa_alloc = qc_poolpage_alloc;
615 pa->pa_free = qc_poolpage_free;
616 pa->pa_pagesz = qc_poolpage_size(qcache_max);
617
618 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
619 prevqc = NULL;
620 for (i = qcache_idx_max; i > 0; i--) {
621 qcache_t *qc = &vm->vm_qcache_store[i - 1];
622 size_t size = i << vm->vm_quantum_shift;
623 pool_cache_t pc;
624
625 qc->qc_vmem = vm;
626 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
627 vm->vm_name, size);
628
629 pc = pool_cache_init(size,
630 ORDER2SIZE(vm->vm_quantum_shift), 0,
631 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
632 qc->qc_name, pa, ipl, NULL, NULL, NULL);
633
634 KASSERT(pc);
635
636 qc->qc_cache = pc;
637 KASSERT(qc->qc_cache != NULL); /* XXX */
638 if (prevqc != NULL &&
639 qc->qc_cache->pc_pool.pr_itemsperpage ==
640 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
641 pool_cache_destroy(qc->qc_cache);
642 vm->vm_qcache[i - 1] = prevqc;
643 continue;
644 }
645 qc->qc_cache->pc_pool.pr_qcache = qc;
646 vm->vm_qcache[i - 1] = qc;
647 prevqc = qc;
648 }
649 }
650
651 static void
652 qc_destroy(vmem_t *vm)
653 {
654 const qcache_t *prevqc;
655 int i;
656 int qcache_idx_max;
657
658 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
659 prevqc = NULL;
660 for (i = 0; i < qcache_idx_max; i++) {
661 qcache_t *qc = vm->vm_qcache[i];
662
663 if (prevqc == qc) {
664 continue;
665 }
666 pool_cache_destroy(qc->qc_cache);
667 prevqc = qc;
668 }
669 }
670 #endif
671
672 #if defined(_KERNEL)
673 static void
674 vmem_bootstrap(void)
675 {
676
677 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
678 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
679 mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
680
681 while (static_bt_count-- > 0) {
682 bt_t *bt = &static_bts[static_bt_count];
683 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
684 VMEM_EVCNT_INCR(static_bt_count);
685 vmem_btag_freelist_count++;
686 }
687 vmem_bootstrapped = TRUE;
688 }
689
690 void
691 vmem_subsystem_init(vmem_t *vm)
692 {
693
694 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
695 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
696 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
697 IPL_VM);
698
699 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
700 0, 0, PAGE_SIZE,
701 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
702 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
703
704 pool_init(&vmem_btag_pool, sizeof(bt_t), coherency_unit, 0,
705 PR_PHINPAGE, "vmembt", &pool_allocator_vmem_meta, IPL_VM);
706 vmem_btag_pool_initialized = true;
707 }
708 #endif /* defined(_KERNEL) */
709
710 static int
711 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
712 int spanbttype)
713 {
714 bt_t *btspan;
715 bt_t *btfree;
716
717 VMEM_ASSERT_LOCKED(vm);
718 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
719 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
720 KASSERT(spanbttype == BT_TYPE_SPAN ||
721 spanbttype == BT_TYPE_SPAN_STATIC);
722
723 btspan = bt_alloc(vm, flags);
724 if (btspan == NULL) {
725 return ENOMEM;
726 }
727 btfree = bt_alloc(vm, flags);
728 if (btfree == NULL) {
729 bt_free(vm, btspan);
730 return ENOMEM;
731 }
732
733 btspan->bt_type = spanbttype;
734 btspan->bt_start = addr;
735 btspan->bt_size = size;
736
737 btfree->bt_type = BT_TYPE_FREE;
738 btfree->bt_start = addr;
739 btfree->bt_size = size;
740
741 bt_insseg_tail(vm, btspan);
742 bt_insseg(vm, btfree, btspan);
743 bt_insfree(vm, btfree);
744 vm->vm_size += size;
745
746 return 0;
747 }
748
749 static void
750 vmem_destroy1(vmem_t *vm)
751 {
752
753 #if defined(QCACHE)
754 qc_destroy(vm);
755 #endif /* defined(QCACHE) */
756 VMEM_LOCK(vm);
757
758 for (int i = 0; i < vm->vm_hashsize; i++) {
759 bt_t *bt;
760
761 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
762 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
763 LIST_REMOVE(bt, bt_hashlist);
764 bt_free(vm, bt);
765 }
766 }
767
768 /* bt_freetrim() drops the lock. */
769 bt_freetrim(vm, 0);
770 if (vm->vm_hashlist != &vm->vm_hash0) {
771 xfree(vm->vm_hashlist,
772 sizeof(struct vmem_hashlist) * vm->vm_hashsize);
773 }
774
775 VMEM_CONDVAR_DESTROY(vm);
776 VMEM_LOCK_DESTROY(vm);
777 xfree(vm, sizeof(*vm));
778 }
779
780 static int
781 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
782 {
783 vmem_addr_t addr;
784 int rc;
785
786 VMEM_ASSERT_LOCKED(vm);
787
788 if (vm->vm_importfn == NULL) {
789 return EINVAL;
790 }
791
792 if (vm->vm_flags & VM_LARGEIMPORT) {
793 size *= 16;
794 }
795
796 VMEM_UNLOCK(vm);
797 if (vm->vm_flags & VM_XIMPORT) {
798 rc = __FPTRCAST(vmem_ximport_t *, vm->vm_importfn)(vm->vm_arg,
799 size, &size, flags, &addr);
800 } else {
801 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
802 }
803 VMEM_LOCK(vm);
804
805 if (rc) {
806 return ENOMEM;
807 }
808
809 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
810 VMEM_UNLOCK(vm);
811 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
812 VMEM_LOCK(vm);
813 return ENOMEM;
814 }
815
816 return 0;
817 }
818
819 #if defined(_KERNEL)
820 static int
821 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
822 {
823 bt_t *bt;
824 int i;
825 struct vmem_hashlist *newhashlist;
826 struct vmem_hashlist *oldhashlist;
827 size_t oldhashsize;
828
829 KASSERT(newhashsize > 0);
830
831 /* Round hash size up to a power of 2. */
832 newhashsize = 1 << (ilog2(newhashsize) + 1);
833
834 newhashlist =
835 xmalloc(sizeof(struct vmem_hashlist) * newhashsize, flags);
836 if (newhashlist == NULL) {
837 return ENOMEM;
838 }
839 for (i = 0; i < newhashsize; i++) {
840 LIST_INIT(&newhashlist[i]);
841 }
842
843 VMEM_LOCK(vm);
844 /* Decay back to a small hash slowly. */
845 if (vm->vm_maxbusytag >= 2) {
846 vm->vm_maxbusytag = vm->vm_maxbusytag / 2 - 1;
847 if (vm->vm_nbusytag > vm->vm_maxbusytag) {
848 vm->vm_maxbusytag = vm->vm_nbusytag;
849 }
850 } else {
851 vm->vm_maxbusytag = vm->vm_nbusytag;
852 }
853 oldhashlist = vm->vm_hashlist;
854 oldhashsize = vm->vm_hashsize;
855 vm->vm_hashlist = newhashlist;
856 vm->vm_hashsize = newhashsize;
857 vm->vm_hashmask = newhashsize - 1;
858 if (oldhashlist == NULL) {
859 VMEM_UNLOCK(vm);
860 return 0;
861 }
862 for (i = 0; i < oldhashsize; i++) {
863 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
864 bt_rembusy(vm, bt); /* XXX */
865 bt_insbusy(vm, bt);
866 }
867 }
868 VMEM_UNLOCK(vm);
869
870 if (oldhashlist != &vm->vm_hash0) {
871 xfree(oldhashlist,
872 sizeof(struct vmem_hashlist) * oldhashsize);
873 }
874
875 return 0;
876 }
877 #endif /* _KERNEL */
878
879 /*
880 * vmem_fit: check if a bt can satisfy the given restrictions.
881 *
882 * it's a caller's responsibility to ensure the region is big enough
883 * before calling us.
884 */
885
886 static int
887 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
888 vmem_size_t phase, vmem_size_t nocross,
889 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
890 {
891 vmem_addr_t start;
892 vmem_addr_t end;
893
894 KASSERT(size > 0);
895 KASSERT(bt->bt_size >= size); /* caller's responsibility */
896
897 /*
898 * XXX assumption: vmem_addr_t and vmem_size_t are
899 * unsigned integer of the same size.
900 */
901
902 start = bt->bt_start;
903 if (start < minaddr) {
904 start = minaddr;
905 }
906 end = BT_END(bt);
907 if (end > maxaddr) {
908 end = maxaddr;
909 }
910 if (start > end) {
911 return ENOMEM;
912 }
913
914 start = VMEM_ALIGNUP(start - phase, align) + phase;
915 if (start < bt->bt_start) {
916 start += align;
917 }
918 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
919 KASSERT(align < nocross);
920 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
921 }
922 if (start <= end && end - start >= size - 1) {
923 KASSERT((start & (align - 1)) == phase);
924 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
925 KASSERT(minaddr <= start);
926 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
927 KASSERT(bt->bt_start <= start);
928 KASSERT(BT_END(bt) - start >= size - 1);
929 *addrp = start;
930 return 0;
931 }
932 return ENOMEM;
933 }
934
935 /* ---- vmem API */
936
937 /*
938 * vmem_init: creates a vmem arena.
939 */
940
941 vmem_t *
942 vmem_init(vmem_t *vm, const char *name,
943 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
944 vmem_import_t *importfn, vmem_release_t *releasefn,
945 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
946 {
947 int i;
948
949 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
950 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
951 KASSERT(quantum > 0);
952
953 #if defined(_KERNEL)
954 /* XXX: SMP, we get called early... */
955 if (!vmem_bootstrapped) {
956 vmem_bootstrap();
957 }
958 #endif /* defined(_KERNEL) */
959
960 if (vm == NULL) {
961 vm = xmalloc(sizeof(*vm), flags);
962 }
963 if (vm == NULL) {
964 return NULL;
965 }
966
967 VMEM_CONDVAR_INIT(vm, "vmem");
968 VMEM_LOCK_INIT(vm, ipl);
969 vm->vm_flags = flags;
970 vm->vm_nfreetags = 0;
971 LIST_INIT(&vm->vm_freetags);
972 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
973 vm->vm_quantum_mask = quantum - 1;
974 vm->vm_quantum_shift = SIZE2ORDER(quantum);
975 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
976 vm->vm_importfn = importfn;
977 vm->vm_releasefn = releasefn;
978 vm->vm_arg = arg;
979 vm->vm_nbusytag = 0;
980 vm->vm_maxbusytag = 0;
981 vm->vm_size = 0;
982 vm->vm_inuse = 0;
983 #if defined(QCACHE)
984 qc_init(vm, qcache_max, ipl);
985 #endif /* defined(QCACHE) */
986
987 TAILQ_INIT(&vm->vm_seglist);
988 for (i = 0; i < VMEM_MAXORDER; i++) {
989 LIST_INIT(&vm->vm_freelist[i]);
990 }
991 memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
992 vm->vm_hashsize = 1;
993 vm->vm_hashmask = vm->vm_hashsize - 1;
994 vm->vm_hashlist = &vm->vm_hash0;
995
996 if (size != 0) {
997 if (vmem_add(vm, base, size, flags) != 0) {
998 vmem_destroy1(vm);
999 return NULL;
1000 }
1001 }
1002
1003 #if defined(_KERNEL)
1004 if (flags & VM_BOOTSTRAP) {
1005 bt_refill(vm);
1006 }
1007
1008 mutex_enter(&vmem_list_lock);
1009 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1010 mutex_exit(&vmem_list_lock);
1011 #endif /* defined(_KERNEL) */
1012
1013 return vm;
1014 }
1015
1016
1017
1018 /*
1019 * vmem_create: create an arena.
1020 *
1021 * => must not be called from interrupt context.
1022 */
1023
1024 vmem_t *
1025 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1026 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1027 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1028 {
1029
1030 KASSERT((flags & (VM_XIMPORT)) == 0);
1031
1032 return vmem_init(NULL, name, base, size, quantum,
1033 importfn, releasefn, source, qcache_max, flags, ipl);
1034 }
1035
1036 /*
1037 * vmem_xcreate: create an arena takes alternative import func.
1038 *
1039 * => must not be called from interrupt context.
1040 */
1041
1042 vmem_t *
1043 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1044 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1045 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1046 {
1047
1048 KASSERT((flags & (VM_XIMPORT)) == 0);
1049
1050 return vmem_init(NULL, name, base, size, quantum,
1051 __FPTRCAST(vmem_import_t *, importfn), releasefn, source,
1052 qcache_max, flags | VM_XIMPORT, ipl);
1053 }
1054
1055 void
1056 vmem_destroy(vmem_t *vm)
1057 {
1058
1059 #if defined(_KERNEL)
1060 mutex_enter(&vmem_list_lock);
1061 LIST_REMOVE(vm, vm_alllist);
1062 mutex_exit(&vmem_list_lock);
1063 #endif /* defined(_KERNEL) */
1064
1065 vmem_destroy1(vm);
1066 }
1067
1068 vmem_size_t
1069 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1070 {
1071
1072 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1073 }
1074
1075 /*
1076 * vmem_alloc: allocate resource from the arena.
1077 */
1078
1079 int
1080 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1081 {
1082 const vm_flag_t strat __diagused = flags & VM_FITMASK;
1083 int error;
1084
1085 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1086 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1087
1088 KASSERT(size > 0);
1089 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1090 if ((flags & VM_SLEEP) != 0) {
1091 ASSERT_SLEEPABLE();
1092 }
1093
1094 #if defined(QCACHE)
1095 if (size <= vm->vm_qcache_max) {
1096 void *p;
1097 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1098 qcache_t *qc = vm->vm_qcache[qidx - 1];
1099
1100 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1101 if (addrp != NULL)
1102 *addrp = (vmem_addr_t)p;
1103 error = (p == NULL) ? ENOMEM : 0;
1104 goto out;
1105 }
1106 #endif /* defined(QCACHE) */
1107
1108 error = vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1109 flags, addrp);
1110 #if defined(QCACHE)
1111 out:
1112 #endif /* defined(QCACHE) */
1113 KASSERTMSG(error || addrp == NULL ||
1114 (*addrp & vm->vm_quantum_mask) == 0,
1115 "vmem %s mask=0x%jx addr=0x%jx",
1116 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1117 KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1118 return error;
1119 }
1120
1121 int
1122 vmem_xalloc_addr(vmem_t *vm, const vmem_addr_t addr, const vmem_size_t size,
1123 vm_flag_t flags)
1124 {
1125 vmem_addr_t result;
1126 int error;
1127
1128 KASSERT((addr & vm->vm_quantum_mask) == 0);
1129 KASSERT(size != 0);
1130
1131 flags = (flags & ~VM_INSTANTFIT) | VM_BESTFIT;
1132
1133 error = vmem_xalloc(vm, size, 0, 0, 0, addr, addr + size - 1,
1134 flags, &result);
1135
1136 KASSERT(error || result == addr);
1137 KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1138 return error;
1139 }
1140
1141 int
1142 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1143 const vmem_size_t phase, const vmem_size_t nocross,
1144 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1145 vmem_addr_t *addrp)
1146 {
1147 struct vmem_freelist *list;
1148 struct vmem_freelist *first;
1149 struct vmem_freelist *end;
1150 bt_t *bt;
1151 bt_t *btnew;
1152 bt_t *btnew2;
1153 const vmem_size_t size = vmem_roundup_size(vm, size0);
1154 vm_flag_t strat = flags & VM_FITMASK;
1155 vmem_addr_t start;
1156 int rc;
1157
1158 KASSERT(size0 > 0);
1159 KASSERT(size > 0);
1160 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1161 if ((flags & VM_SLEEP) != 0) {
1162 ASSERT_SLEEPABLE();
1163 }
1164 KASSERT((align & vm->vm_quantum_mask) == 0);
1165 KASSERT((align & (align - 1)) == 0);
1166 KASSERT((phase & vm->vm_quantum_mask) == 0);
1167 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1168 KASSERT((nocross & (nocross - 1)) == 0);
1169 KASSERT(align == 0 || phase < align);
1170 KASSERT(phase == 0 || phase < align);
1171 KASSERT(nocross == 0 || nocross >= size);
1172 KASSERT(minaddr <= maxaddr);
1173 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1174
1175 if (align == 0) {
1176 align = vm->vm_quantum_mask + 1;
1177 }
1178
1179 /*
1180 * allocate boundary tags before acquiring the vmem lock.
1181 */
1182 VMEM_LOCK(vm);
1183 btnew = bt_alloc(vm, flags);
1184 if (btnew == NULL) {
1185 VMEM_UNLOCK(vm);
1186 return ENOMEM;
1187 }
1188 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1189 if (btnew2 == NULL) {
1190 bt_free(vm, btnew);
1191 VMEM_UNLOCK(vm);
1192 return ENOMEM;
1193 }
1194
1195 /*
1196 * choose a free block from which we allocate.
1197 */
1198 retry_strat:
1199 first = bt_freehead_toalloc(vm, size, strat);
1200 end = &vm->vm_freelist[VMEM_MAXORDER];
1201 retry:
1202 bt = NULL;
1203 vmem_check(vm);
1204 if (strat == VM_INSTANTFIT) {
1205 /*
1206 * just choose the first block which satisfies our restrictions.
1207 *
1208 * note that we don't need to check the size of the blocks
1209 * because any blocks found on these list should be larger than
1210 * the given size.
1211 */
1212 for (list = first; list < end; list++) {
1213 bt = LIST_FIRST(list);
1214 if (bt != NULL) {
1215 rc = vmem_fit(bt, size, align, phase,
1216 nocross, minaddr, maxaddr, &start);
1217 if (rc == 0) {
1218 goto gotit;
1219 }
1220 /*
1221 * don't bother to follow the bt_freelist link
1222 * here. the list can be very long and we are
1223 * told to run fast. blocks from the later free
1224 * lists are larger and have better chances to
1225 * satisfy our restrictions.
1226 */
1227 }
1228 }
1229 } else { /* VM_BESTFIT */
1230 /*
1231 * we assume that, for space efficiency, it's better to
1232 * allocate from a smaller block. thus we will start searching
1233 * from the lower-order list than VM_INSTANTFIT.
1234 * however, don't bother to find the smallest block in a free
1235 * list because the list can be very long. we can revisit it
1236 * if/when it turns out to be a problem.
1237 *
1238 * note that the 'first' list can contain blocks smaller than
1239 * the requested size. thus we need to check bt_size.
1240 */
1241 for (list = first; list < end; list++) {
1242 LIST_FOREACH(bt, list, bt_freelist) {
1243 if (bt->bt_size >= size) {
1244 rc = vmem_fit(bt, size, align, phase,
1245 nocross, minaddr, maxaddr, &start);
1246 if (rc == 0) {
1247 goto gotit;
1248 }
1249 }
1250 }
1251 }
1252 }
1253 #if 1
1254 if (strat == VM_INSTANTFIT) {
1255 strat = VM_BESTFIT;
1256 goto retry_strat;
1257 }
1258 #endif
1259 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1260
1261 /*
1262 * XXX should try to import a region large enough to
1263 * satisfy restrictions?
1264 */
1265
1266 goto fail;
1267 }
1268 /* XXX eeek, minaddr & maxaddr not respected */
1269 if (vmem_import(vm, size, flags) == 0) {
1270 goto retry;
1271 }
1272 /* XXX */
1273
1274 if ((flags & VM_SLEEP) != 0) {
1275 vmem_kick_pdaemon();
1276 VMEM_CONDVAR_WAIT(vm);
1277 goto retry;
1278 }
1279 fail:
1280 bt_free(vm, btnew);
1281 bt_free(vm, btnew2);
1282 VMEM_UNLOCK(vm);
1283 return ENOMEM;
1284
1285 gotit:
1286 KASSERT(bt->bt_type == BT_TYPE_FREE);
1287 KASSERT(bt->bt_size >= size);
1288 bt_remfree(vm, bt);
1289 vmem_check(vm);
1290 if (bt->bt_start != start) {
1291 btnew2->bt_type = BT_TYPE_FREE;
1292 btnew2->bt_start = bt->bt_start;
1293 btnew2->bt_size = start - bt->bt_start;
1294 bt->bt_start = start;
1295 bt->bt_size -= btnew2->bt_size;
1296 bt_insfree(vm, btnew2);
1297 bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1298 btnew2 = NULL;
1299 vmem_check(vm);
1300 }
1301 KASSERT(bt->bt_start == start);
1302 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1303 /* split */
1304 btnew->bt_type = BT_TYPE_BUSY;
1305 btnew->bt_start = bt->bt_start;
1306 btnew->bt_size = size;
1307 bt->bt_start = bt->bt_start + size;
1308 bt->bt_size -= size;
1309 bt_insfree(vm, bt);
1310 bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1311 bt_insbusy(vm, btnew);
1312 vmem_check(vm);
1313 } else {
1314 bt->bt_type = BT_TYPE_BUSY;
1315 bt_insbusy(vm, bt);
1316 vmem_check(vm);
1317 bt_free(vm, btnew);
1318 btnew = bt;
1319 }
1320 if (btnew2 != NULL) {
1321 bt_free(vm, btnew2);
1322 }
1323 KASSERT(btnew->bt_size >= size);
1324 btnew->bt_type = BT_TYPE_BUSY;
1325 if (addrp != NULL)
1326 *addrp = btnew->bt_start;
1327 VMEM_UNLOCK(vm);
1328 KASSERTMSG(addrp == NULL ||
1329 (*addrp & vm->vm_quantum_mask) == 0,
1330 "vmem %s mask=0x%jx addr=0x%jx",
1331 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1332 return 0;
1333 }
1334
1335 /*
1336 * vmem_free: free the resource to the arena.
1337 */
1338
1339 void
1340 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1341 {
1342
1343 KASSERT(size > 0);
1344 KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1345 "vmem %s mask=0x%jx addr=0x%jx",
1346 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1347
1348 #if defined(QCACHE)
1349 if (size <= vm->vm_qcache_max) {
1350 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1351 qcache_t *qc = vm->vm_qcache[qidx - 1];
1352
1353 pool_cache_put(qc->qc_cache, (void *)addr);
1354 return;
1355 }
1356 #endif /* defined(QCACHE) */
1357
1358 vmem_xfree(vm, addr, size);
1359 }
1360
1361 void
1362 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1363 {
1364 bt_t *bt;
1365
1366 KASSERT(size > 0);
1367 KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1368 "vmem %s mask=0x%jx addr=0x%jx",
1369 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1370
1371 VMEM_LOCK(vm);
1372
1373 bt = bt_lookupbusy(vm, addr);
1374 KASSERTMSG(bt != NULL, "vmem %s addr 0x%jx size 0x%jx",
1375 vm->vm_name, (uintmax_t)addr, (uintmax_t)size);
1376 KASSERT(bt->bt_start == addr);
1377 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1378 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1379
1380 /* vmem_xfree_bt() drops the lock. */
1381 vmem_xfree_bt(vm, bt);
1382 }
1383
1384 void
1385 vmem_xfreeall(vmem_t *vm)
1386 {
1387 bt_t *bt;
1388
1389 #if defined(QCACHE)
1390 /* This can't be used if the arena has a quantum cache. */
1391 KASSERT(vm->vm_qcache_max == 0);
1392 #endif /* defined(QCACHE) */
1393
1394 for (;;) {
1395 VMEM_LOCK(vm);
1396 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1397 if (bt->bt_type == BT_TYPE_BUSY)
1398 break;
1399 }
1400 if (bt != NULL) {
1401 /* vmem_xfree_bt() drops the lock. */
1402 vmem_xfree_bt(vm, bt);
1403 } else {
1404 VMEM_UNLOCK(vm);
1405 return;
1406 }
1407 }
1408 }
1409
1410 static void
1411 vmem_xfree_bt(vmem_t *vm, bt_t *bt)
1412 {
1413 bt_t *t;
1414
1415 VMEM_ASSERT_LOCKED(vm);
1416
1417 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1418 bt_rembusy(vm, bt);
1419 bt->bt_type = BT_TYPE_FREE;
1420
1421 /* coalesce */
1422 t = TAILQ_NEXT(bt, bt_seglist);
1423 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1424 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1425 bt_remfree(vm, t);
1426 bt_remseg(vm, t);
1427 bt->bt_size += t->bt_size;
1428 bt_free(vm, t);
1429 }
1430 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1431 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1432 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1433 bt_remfree(vm, t);
1434 bt_remseg(vm, t);
1435 bt->bt_size += t->bt_size;
1436 bt->bt_start = t->bt_start;
1437 bt_free(vm, t);
1438 }
1439
1440 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1441 KASSERT(t != NULL);
1442 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1443 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1444 t->bt_size == bt->bt_size) {
1445 vmem_addr_t spanaddr;
1446 vmem_size_t spansize;
1447
1448 KASSERT(t->bt_start == bt->bt_start);
1449 spanaddr = bt->bt_start;
1450 spansize = bt->bt_size;
1451 bt_remseg(vm, bt);
1452 bt_free(vm, bt);
1453 bt_remseg(vm, t);
1454 bt_free(vm, t);
1455 vm->vm_size -= spansize;
1456 VMEM_CONDVAR_BROADCAST(vm);
1457 /* bt_freetrim() drops the lock. */
1458 bt_freetrim(vm, BT_MAXFREE);
1459 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1460 } else {
1461 bt_insfree(vm, bt);
1462 VMEM_CONDVAR_BROADCAST(vm);
1463 /* bt_freetrim() drops the lock. */
1464 bt_freetrim(vm, BT_MAXFREE);
1465 }
1466 }
1467
1468 /*
1469 * vmem_add:
1470 *
1471 * => caller must ensure appropriate spl,
1472 * if the arena can be accessed from interrupt context.
1473 */
1474
1475 int
1476 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1477 {
1478 int rv;
1479
1480 VMEM_LOCK(vm);
1481 rv = vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1482 VMEM_UNLOCK(vm);
1483
1484 return rv;
1485 }
1486
1487 /*
1488 * vmem_size: information about arenas size
1489 *
1490 * => return free/allocated size in arena
1491 */
1492 vmem_size_t
1493 vmem_size(vmem_t *vm, int typemask)
1494 {
1495
1496 switch (typemask) {
1497 case VMEM_ALLOC:
1498 return vm->vm_inuse;
1499 case VMEM_FREE:
1500 return vm->vm_size - vm->vm_inuse;
1501 case VMEM_FREE|VMEM_ALLOC:
1502 return vm->vm_size;
1503 default:
1504 panic("vmem_size");
1505 }
1506 }
1507
1508 /* ---- rehash */
1509
1510 #if defined(_KERNEL)
1511 static struct callout vmem_rehash_ch;
1512 static int vmem_rehash_interval;
1513 static struct workqueue *vmem_rehash_wq;
1514 static struct work vmem_rehash_wk;
1515
1516 static void
1517 vmem_rehash_all(struct work *wk, void *dummy)
1518 {
1519 vmem_t *vm;
1520
1521 KASSERT(wk == &vmem_rehash_wk);
1522 mutex_enter(&vmem_list_lock);
1523 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1524 size_t desired;
1525 size_t current;
1526
1527 desired = atomic_load_relaxed(&vm->vm_maxbusytag);
1528 current = atomic_load_relaxed(&vm->vm_hashsize);
1529
1530 if (desired > VMEM_HASHSIZE_MAX) {
1531 desired = VMEM_HASHSIZE_MAX;
1532 } else if (desired < VMEM_HASHSIZE_MIN) {
1533 desired = VMEM_HASHSIZE_MIN;
1534 }
1535 if (desired > current * 2 || desired * 2 < current) {
1536 vmem_rehash(vm, desired, VM_NOSLEEP);
1537 }
1538 }
1539 mutex_exit(&vmem_list_lock);
1540
1541 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1542 }
1543
1544 static void
1545 vmem_rehash_all_kick(void *dummy)
1546 {
1547
1548 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1549 }
1550
1551 void
1552 vmem_rehash_start(void)
1553 {
1554 int error;
1555
1556 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1557 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1558 if (error) {
1559 panic("%s: workqueue_create %d\n", __func__, error);
1560 }
1561 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1562 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1563
1564 vmem_rehash_interval = hz * 10;
1565 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1566 }
1567 #endif /* defined(_KERNEL) */
1568
1569 /* ---- debug */
1570
1571 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1572
1573 static void bt_dump(const bt_t *, void (*)(const char *, ...)
1574 __printflike(1, 2));
1575
1576 static const char *
1577 bt_type_string(int type)
1578 {
1579 static const char * const table[] = {
1580 [BT_TYPE_BUSY] = "busy",
1581 [BT_TYPE_FREE] = "free",
1582 [BT_TYPE_SPAN] = "span",
1583 [BT_TYPE_SPAN_STATIC] = "static span",
1584 };
1585
1586 if (type >= __arraycount(table)) {
1587 return "BOGUS";
1588 }
1589 return table[type];
1590 }
1591
1592 static void
1593 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1594 {
1595
1596 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1597 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1598 bt->bt_type, bt_type_string(bt->bt_type));
1599 }
1600
1601 static void
1602 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1603 {
1604 const bt_t *bt;
1605 int i;
1606
1607 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1608 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1609 bt_dump(bt, pr);
1610 }
1611
1612 for (i = 0; i < VMEM_MAXORDER; i++) {
1613 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1614
1615 if (LIST_EMPTY(fl)) {
1616 continue;
1617 }
1618
1619 (*pr)("freelist[%d]\n", i);
1620 LIST_FOREACH(bt, fl, bt_freelist) {
1621 bt_dump(bt, pr);
1622 }
1623 }
1624 }
1625
1626 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1627
1628 #if defined(DDB)
1629 static bt_t *
1630 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1631 {
1632 bt_t *bt;
1633
1634 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1635 if (BT_ISSPAN_P(bt)) {
1636 continue;
1637 }
1638 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1639 return bt;
1640 }
1641 }
1642
1643 return NULL;
1644 }
1645
1646 void
1647 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1648 {
1649 vmem_t *vm;
1650
1651 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1652 bt_t *bt;
1653
1654 bt = vmem_whatis_lookup(vm, addr);
1655 if (bt == NULL) {
1656 continue;
1657 }
1658 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1659 (void *)addr, (void *)bt->bt_start,
1660 (size_t)(addr - bt->bt_start), vm->vm_name,
1661 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1662 }
1663 }
1664
1665 void
1666 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1667 {
1668 const vmem_t *vm;
1669
1670 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1671 vmem_dump(vm, pr);
1672 }
1673 }
1674
1675 void
1676 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1677 {
1678 const vmem_t *vm = (const void *)addr;
1679
1680 vmem_dump(vm, pr);
1681 }
1682 #endif /* defined(DDB) */
1683
1684 #if defined(_KERNEL)
1685 #define vmem_printf printf
1686 #else
1687 #include <stdio.h>
1688 #include <stdarg.h>
1689
1690 static void
1691 vmem_printf(const char *fmt, ...)
1692 {
1693 va_list ap;
1694 va_start(ap, fmt);
1695 vprintf(fmt, ap);
1696 va_end(ap);
1697 }
1698 #endif
1699
1700 #if defined(VMEM_SANITY)
1701
1702 static bool
1703 vmem_check_sanity(vmem_t *vm)
1704 {
1705 const bt_t *bt, *bt2;
1706
1707 KASSERT(vm != NULL);
1708
1709 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1710 if (bt->bt_start > BT_END(bt)) {
1711 printf("corrupted tag\n");
1712 bt_dump(bt, vmem_printf);
1713 return false;
1714 }
1715 }
1716 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1717 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1718 if (bt == bt2) {
1719 continue;
1720 }
1721 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1722 continue;
1723 }
1724 if (bt->bt_start <= BT_END(bt2) &&
1725 bt2->bt_start <= BT_END(bt)) {
1726 printf("overwrapped tags\n");
1727 bt_dump(bt, vmem_printf);
1728 bt_dump(bt2, vmem_printf);
1729 return false;
1730 }
1731 }
1732 }
1733
1734 return true;
1735 }
1736
1737 static void
1738 vmem_check(vmem_t *vm)
1739 {
1740
1741 if (!vmem_check_sanity(vm)) {
1742 panic("insanity vmem %p", vm);
1743 }
1744 }
1745
1746 #endif /* defined(VMEM_SANITY) */
1747
1748 #if defined(UNITTEST)
1749 int
1750 main(void)
1751 {
1752 int rc;
1753 vmem_t *vm;
1754 vmem_addr_t p;
1755 struct reg {
1756 vmem_addr_t p;
1757 vmem_size_t sz;
1758 bool x;
1759 } *reg = NULL;
1760 int nreg = 0;
1761 int nalloc = 0;
1762 int nfree = 0;
1763 vmem_size_t total = 0;
1764 #if 1
1765 vm_flag_t strat = VM_INSTANTFIT;
1766 #else
1767 vm_flag_t strat = VM_BESTFIT;
1768 #endif
1769
1770 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1771 #ifdef _KERNEL
1772 IPL_NONE
1773 #else
1774 0
1775 #endif
1776 );
1777 if (vm == NULL) {
1778 printf("vmem_create\n");
1779 exit(EXIT_FAILURE);
1780 }
1781 vmem_dump(vm, vmem_printf);
1782
1783 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1784 assert(rc == 0);
1785 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1786 assert(rc == 0);
1787 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1788 assert(rc == 0);
1789 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1790 assert(rc == 0);
1791 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1792 assert(rc == 0);
1793 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1794 assert(rc == 0);
1795 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1796 assert(rc == 0);
1797 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1798 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1799 assert(rc != 0);
1800 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1801 assert(rc == 0 && p == 0);
1802 vmem_xfree(vm, p, 50);
1803 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1804 assert(rc == 0 && p == 0);
1805 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1806 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1807 assert(rc != 0);
1808 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1809 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1810 assert(rc != 0);
1811 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1812 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1813 assert(rc == 0);
1814 vmem_dump(vm, vmem_printf);
1815 for (;;) {
1816 struct reg *r;
1817 int t = rand() % 100;
1818
1819 if (t > 45) {
1820 /* alloc */
1821 vmem_size_t sz = rand() % 500 + 1;
1822 bool x;
1823 vmem_size_t align, phase, nocross;
1824 vmem_addr_t minaddr, maxaddr;
1825
1826 if (t > 70) {
1827 x = true;
1828 /* XXX */
1829 align = 1 << (rand() % 15);
1830 phase = rand() % 65536;
1831 nocross = 1 << (rand() % 15);
1832 if (align <= phase) {
1833 phase = 0;
1834 }
1835 if (VMEM_CROSS_P(phase, phase + sz - 1,
1836 nocross)) {
1837 nocross = 0;
1838 }
1839 do {
1840 minaddr = rand() % 50000;
1841 maxaddr = rand() % 70000;
1842 } while (minaddr > maxaddr);
1843 printf("=== xalloc %" PRIu64
1844 " align=%" PRIu64 ", phase=%" PRIu64
1845 ", nocross=%" PRIu64 ", min=%" PRIu64
1846 ", max=%" PRIu64 "\n",
1847 (uint64_t)sz,
1848 (uint64_t)align,
1849 (uint64_t)phase,
1850 (uint64_t)nocross,
1851 (uint64_t)minaddr,
1852 (uint64_t)maxaddr);
1853 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1854 minaddr, maxaddr, strat|VM_SLEEP, &p);
1855 } else {
1856 x = false;
1857 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1858 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1859 }
1860 printf("-> %" PRIu64 "\n", (uint64_t)p);
1861 vmem_dump(vm, vmem_printf);
1862 if (rc != 0) {
1863 if (x) {
1864 continue;
1865 }
1866 break;
1867 }
1868 nreg++;
1869 reg = realloc(reg, sizeof(*reg) * nreg);
1870 r = ®[nreg - 1];
1871 r->p = p;
1872 r->sz = sz;
1873 r->x = x;
1874 total += sz;
1875 nalloc++;
1876 } else if (nreg != 0) {
1877 /* free */
1878 r = ®[rand() % nreg];
1879 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1880 (uint64_t)r->p, (uint64_t)r->sz);
1881 if (r->x) {
1882 vmem_xfree(vm, r->p, r->sz);
1883 } else {
1884 vmem_free(vm, r->p, r->sz);
1885 }
1886 total -= r->sz;
1887 vmem_dump(vm, vmem_printf);
1888 *r = reg[nreg - 1];
1889 nreg--;
1890 nfree++;
1891 }
1892 printf("total=%" PRIu64 "\n", (uint64_t)total);
1893 }
1894 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1895 (uint64_t)total, nalloc, nfree);
1896 exit(EXIT_SUCCESS);
1897 }
1898 #endif /* defined(UNITTEST) */
1899