subr_vmem.c revision 1.118 1 /* $NetBSD: subr_vmem.c,v 1.118 2024/12/06 19:17:59 riastradh Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * locking & the boundary tag pool:
36 * - A pool(9) is used for vmem boundary tags
37 * - During a pool get call the global vmem_btag_refill_lock is taken,
38 * to serialize access to the allocation reserve, but no other
39 * vmem arena locks.
40 * - During pool_put calls no vmem mutexes are locked.
41 * - pool_drain doesn't hold the pool's mutex while releasing memory to
42 * its backing therefore no interference with any vmem mutexes.
43 * - The boundary tag pool is forced to put page headers into pool pages
44 * (PR_PHINPAGE) and not off page to avoid pool recursion.
45 * (due to sizeof(bt_t) it should be the case anyway)
46 */
47
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.118 2024/12/06 19:17:59 riastradh Exp $");
50
51 #if defined(_KERNEL) && defined(_KERNEL_OPT)
52 #include "opt_ddb.h"
53 #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
54
55 #include <sys/param.h>
56 #include <sys/types.h>
57
58 #include <sys/bitops.h>
59 #include <sys/hash.h>
60 #include <sys/queue.h>
61
62 #if defined(_KERNEL)
63
64 #include <sys/atomic.h>
65 #include <sys/callout.h>
66 #include <sys/kernel.h> /* hz */
67 #include <sys/kmem.h>
68 #include <sys/pool.h>
69 #include <sys/sdt.h>
70 #include <sys/systm.h>
71 #include <sys/vmem.h>
72 #include <sys/vmem_impl.h>
73 #include <sys/workqueue.h>
74
75 #include <uvm/uvm.h>
76 #include <uvm/uvm_extern.h>
77 #include <uvm/uvm_km.h>
78 #include <uvm/uvm_page.h>
79 #include <uvm/uvm_pdaemon.h>
80
81 #else /* defined(_KERNEL) */
82
83 #include <assert.h>
84 #include <errno.h>
85 #include <stdio.h>
86 #include <stdlib.h>
87 #include <string.h>
88
89 #include "../sys/vmem.h"
90 #include "../sys/vmem_impl.h"
91
92 #define SET_ERROR(E) (E)
93
94 #endif /* defined(_KERNEL) */
95
96 #if defined(_KERNEL)
97
98 #include <sys/evcnt.h>
99
100 #define VMEM_EVCNT_DEFINE(name) \
101 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
102 "vmem", #name); \
103 EVCNT_ATTACH_STATIC(vmem_evcnt_##name)
104 #define VMEM_EVCNT_INCR(ev) (vmem_evcnt_##ev.ev_count++)
105 #define VMEM_EVCNT_DECR(ev) (vmem_evcnt_##ev.ev_count--)
106
107 VMEM_EVCNT_DEFINE(static_bt_count);
108 VMEM_EVCNT_DEFINE(static_bt_inuse);
109
110 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
111 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
112 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
113 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
114
115 #else /* defined(_KERNEL) */
116
117 #define VMEM_EVCNT_INCR(ev) __nothing
118 #define VMEM_EVCNT_DECR(ev) __nothing
119
120 #define VMEM_CONDVAR_INIT(vm, wchan) __nothing
121 #define VMEM_CONDVAR_DESTROY(vm) __nothing
122 #define VMEM_CONDVAR_WAIT(vm) __nothing
123 #define VMEM_CONDVAR_BROADCAST(vm) __nothing
124
125 #define UNITTEST
126 #define KASSERT(a) assert(a)
127 #define KASSERTMSG(a, m, ...) assert(a)
128 #define mutex_init(a, b, c) __nothing
129 #define mutex_destroy(a) __nothing
130 #define mutex_enter(a) __nothing
131 #define mutex_tryenter(a) true
132 #define mutex_exit(a) __nothing
133 #define mutex_owned(a) true
134 #define ASSERT_SLEEPABLE() __nothing
135 #define panic(...) (printf(__VA_ARGS__), abort())
136
137 #endif /* defined(_KERNEL) */
138
139 #if defined(VMEM_SANITY)
140 static void vmem_check(vmem_t *);
141 #else /* defined(VMEM_SANITY) */
142 #define vmem_check(vm) __nothing
143 #endif /* defined(VMEM_SANITY) */
144
145 #define VMEM_HASHSIZE_MIN 1 /* XXX */
146 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
147 #define VMEM_HASHSIZE_INIT 1
148
149 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
150
151 #if defined(_KERNEL)
152 static bool vmem_bootstrapped = false;
153 static kmutex_t vmem_list_lock;
154 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
155 #endif /* defined(_KERNEL) */
156
157 /* ---- misc */
158
159 #define VMEM_LOCK(vm) mutex_enter(&(vm)->vm_lock)
160 #define VMEM_TRYLOCK(vm) mutex_tryenter(&(vm)->vm_lock)
161 #define VMEM_UNLOCK(vm) mutex_exit(&(vm)->vm_lock)
162 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&(vm)->vm_lock, MUTEX_DEFAULT, (ipl))
163 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&(vm)->vm_lock)
164 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&(vm)->vm_lock))
165
166 #define VMEM_ALIGNUP(addr, align) \
167 (-(-(addr) & -(align)))
168
169 #define VMEM_CROSS_P(addr1, addr2, boundary) \
170 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
171
172 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
173 #define SIZE2ORDER(size) ((int)ilog2(size))
174
175 static void
176 vmem_kick_pdaemon(void)
177 {
178 #if defined(_KERNEL)
179 uvm_kick_pdaemon();
180 #endif
181 }
182
183 static void vmem_xfree_bt(vmem_t *, bt_t *);
184
185 #if !defined(_KERNEL)
186 #define xmalloc(sz, flags) malloc(sz)
187 #define xfree(p, sz) free(p)
188 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
189 #define bt_free(vm, bt) free(bt)
190 #define bt_freetrim(vm, l) __nothing
191 #else /* defined(_KERNEL) */
192
193 #define xmalloc(sz, flags) \
194 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
195 #define xfree(p, sz) kmem_free(p, sz);
196
197 /*
198 * BT_RESERVE calculation:
199 * we allocate memory for boundary tags with vmem; therefore we have
200 * to keep a reserve of bts used to allocated memory for bts.
201 * This reserve is 4 for each arena involved in allocating vmems memory.
202 * BT_MAXFREE: don't cache excessive counts of bts in arenas
203 */
204 #define STATIC_BT_COUNT 200
205 #define BT_MINRESERVE 4
206 #define BT_MAXFREE 64
207
208 static struct vmem_btag static_bts[STATIC_BT_COUNT];
209 static int static_bt_count = STATIC_BT_COUNT;
210
211 static struct vmem kmem_va_meta_arena_store;
212 vmem_t *kmem_va_meta_arena;
213 static struct vmem kmem_meta_arena_store;
214 vmem_t *kmem_meta_arena = NULL;
215
216 static kmutex_t vmem_btag_refill_lock;
217 static kmutex_t vmem_btag_lock;
218 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
219 static size_t vmem_btag_freelist_count = 0;
220 static struct pool vmem_btag_pool;
221 static bool vmem_btag_pool_initialized __read_mostly;
222
223 /* ---- boundary tag */
224
225 static int bt_refill(vmem_t *vm);
226 static int bt_refill_locked(vmem_t *vm);
227
228 static void *
229 pool_page_alloc_vmem_meta(struct pool *pp, int flags)
230 {
231 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
232 vmem_addr_t va;
233 int ret;
234
235 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
236 (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
237
238 return ret ? NULL : (void *)va;
239 }
240
241 static void
242 pool_page_free_vmem_meta(struct pool *pp, void *v)
243 {
244
245 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
246 }
247
248 /* allocator for vmem-pool metadata */
249 struct pool_allocator pool_allocator_vmem_meta = {
250 .pa_alloc = pool_page_alloc_vmem_meta,
251 .pa_free = pool_page_free_vmem_meta,
252 .pa_pagesz = 0
253 };
254
255 static int
256 bt_refill_locked(vmem_t *vm)
257 {
258 bt_t *bt;
259
260 VMEM_ASSERT_LOCKED(vm);
261
262 if (vm->vm_nfreetags > BT_MINRESERVE) {
263 return 0;
264 }
265
266 mutex_enter(&vmem_btag_lock);
267 while (!LIST_EMPTY(&vmem_btag_freelist) &&
268 vm->vm_nfreetags <= BT_MINRESERVE &&
269 (vm->vm_flags & VM_PRIVTAGS) == 0) {
270 bt = LIST_FIRST(&vmem_btag_freelist);
271 LIST_REMOVE(bt, bt_freelist);
272 bt->bt_flags = 0;
273 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
274 vm->vm_nfreetags++;
275 vmem_btag_freelist_count--;
276 VMEM_EVCNT_INCR(static_bt_inuse);
277 }
278 mutex_exit(&vmem_btag_lock);
279
280 while (vm->vm_nfreetags <= BT_MINRESERVE) {
281 VMEM_UNLOCK(vm);
282 KASSERT(vmem_btag_pool_initialized);
283 mutex_enter(&vmem_btag_refill_lock);
284 bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
285 mutex_exit(&vmem_btag_refill_lock);
286 VMEM_LOCK(vm);
287 if (bt == NULL)
288 break;
289 bt->bt_flags = 0;
290 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
291 vm->vm_nfreetags++;
292 }
293
294 if (vm->vm_nfreetags <= BT_MINRESERVE) {
295 return SET_ERROR(ENOMEM);
296 }
297
298 if (kmem_meta_arena != NULL) {
299 VMEM_UNLOCK(vm);
300 (void)bt_refill(kmem_arena);
301 (void)bt_refill(kmem_va_meta_arena);
302 (void)bt_refill(kmem_meta_arena);
303 VMEM_LOCK(vm);
304 }
305
306 return 0;
307 }
308
309 static int
310 bt_refill(vmem_t *vm)
311 {
312 int rv;
313
314 VMEM_LOCK(vm);
315 rv = bt_refill_locked(vm);
316 VMEM_UNLOCK(vm);
317 return rv;
318 }
319
320 static bt_t *
321 bt_alloc(vmem_t *vm, vm_flag_t flags)
322 {
323 bt_t *bt;
324
325 VMEM_ASSERT_LOCKED(vm);
326
327 while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
328 if (bt_refill_locked(vm)) {
329 if ((flags & VM_NOSLEEP) != 0) {
330 return NULL;
331 }
332
333 /*
334 * It would be nice to wait for something specific here
335 * but there are multiple ways that a retry could
336 * succeed and we can't wait for multiple things
337 * simultaneously. So we'll just sleep for an arbitrary
338 * short period of time and retry regardless.
339 * This should be a very rare case.
340 */
341
342 vmem_kick_pdaemon();
343 kpause("btalloc", false, 1, &vm->vm_lock);
344 }
345 }
346 bt = LIST_FIRST(&vm->vm_freetags);
347 LIST_REMOVE(bt, bt_freelist);
348 vm->vm_nfreetags--;
349
350 return bt;
351 }
352
353 static void
354 bt_free(vmem_t *vm, bt_t *bt)
355 {
356
357 VMEM_ASSERT_LOCKED(vm);
358
359 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
360 vm->vm_nfreetags++;
361 }
362
363 static void
364 bt_freetrim(vmem_t *vm, int freelimit)
365 {
366 bt_t *bt, *next_bt;
367 LIST_HEAD(, vmem_btag) tofree;
368
369 VMEM_ASSERT_LOCKED(vm);
370
371 LIST_INIT(&tofree);
372
373 LIST_FOREACH_SAFE(bt, &vm->vm_freetags, bt_freelist, next_bt) {
374 if (vm->vm_nfreetags <= freelimit) {
375 break;
376 }
377 if (bt->bt_flags & BT_F_PRIVATE) {
378 continue;
379 }
380 LIST_REMOVE(bt, bt_freelist);
381 vm->vm_nfreetags--;
382 if (bt >= static_bts
383 && bt < &static_bts[STATIC_BT_COUNT]) {
384 mutex_enter(&vmem_btag_lock);
385 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
386 vmem_btag_freelist_count++;
387 mutex_exit(&vmem_btag_lock);
388 VMEM_EVCNT_DECR(static_bt_inuse);
389 } else {
390 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
391 }
392 }
393
394 VMEM_UNLOCK(vm);
395 while (!LIST_EMPTY(&tofree)) {
396 bt = LIST_FIRST(&tofree);
397 LIST_REMOVE(bt, bt_freelist);
398 pool_put(&vmem_btag_pool, bt);
399 }
400 }
401
402 /*
403 * Add private boundary tags (statically-allocated by the caller)
404 * to a vmem arena's free tag list.
405 */
406 void
407 vmem_add_bts(vmem_t *vm, struct vmem_btag *bts, unsigned int nbts)
408 {
409 VMEM_LOCK(vm);
410 while (nbts != 0) {
411 bts->bt_flags = BT_F_PRIVATE;
412 LIST_INSERT_HEAD(&vm->vm_freetags, bts, bt_freelist);
413 vm->vm_nfreetags++;
414 bts++;
415 nbts--;
416 }
417 VMEM_UNLOCK(vm);
418 }
419 #endif /* defined(_KERNEL) */
420
421 /*
422 * freelist[0] ... [1, 1]
423 * freelist[1] ... [2, 3]
424 * freelist[2] ... [4, 7]
425 * freelist[3] ... [8, 15]
426 * :
427 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
428 * :
429 */
430
431 static struct vmem_freelist *
432 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
433 {
434 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
435 const int idx = SIZE2ORDER(qsize);
436
437 KASSERT(size != 0);
438 KASSERT(qsize != 0);
439 KASSERT((size & vm->vm_quantum_mask) == 0);
440 KASSERT(idx >= 0);
441 KASSERT(idx < VMEM_MAXORDER);
442
443 return &vm->vm_freelist[idx];
444 }
445
446 /*
447 * bt_freehead_toalloc: return the freelist for the given size and allocation
448 * strategy.
449 *
450 * for VM_INSTANTFIT, return the list in which any blocks are large enough
451 * for the requested size. otherwise, return the list which can have blocks
452 * large enough for the requested size.
453 */
454
455 static struct vmem_freelist *
456 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
457 {
458 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
459 int idx = SIZE2ORDER(qsize);
460
461 KASSERT(size != 0);
462 KASSERT(qsize != 0);
463 KASSERT((size & vm->vm_quantum_mask) == 0);
464
465 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
466 idx++;
467 /* check too large request? */
468 }
469 KASSERT(idx >= 0);
470 KASSERT(idx < VMEM_MAXORDER);
471
472 return &vm->vm_freelist[idx];
473 }
474
475 /* ---- boundary tag hash */
476
477 static struct vmem_hashlist *
478 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
479 {
480 struct vmem_hashlist *list;
481 unsigned int hash;
482
483 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
484 list = &vm->vm_hashlist[hash & vm->vm_hashmask];
485
486 return list;
487 }
488
489 static bt_t *
490 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
491 {
492 struct vmem_hashlist *list;
493 bt_t *bt;
494
495 list = bt_hashhead(vm, addr);
496 LIST_FOREACH(bt, list, bt_hashlist) {
497 if (bt->bt_start == addr) {
498 break;
499 }
500 }
501
502 return bt;
503 }
504
505 static void
506 bt_rembusy(vmem_t *vm, bt_t *bt)
507 {
508
509 KASSERT(vm->vm_nbusytag > 0);
510 vm->vm_inuse -= bt->bt_size;
511 vm->vm_nbusytag--;
512 LIST_REMOVE(bt, bt_hashlist);
513 }
514
515 static void
516 bt_insbusy(vmem_t *vm, bt_t *bt)
517 {
518 struct vmem_hashlist *list;
519
520 KASSERT(bt->bt_type == BT_TYPE_BUSY);
521
522 list = bt_hashhead(vm, bt->bt_start);
523 LIST_INSERT_HEAD(list, bt, bt_hashlist);
524 if (++vm->vm_nbusytag > vm->vm_maxbusytag) {
525 vm->vm_maxbusytag = vm->vm_nbusytag;
526 }
527 vm->vm_inuse += bt->bt_size;
528 }
529
530 /* ---- boundary tag list */
531
532 static void
533 bt_remseg(vmem_t *vm, bt_t *bt)
534 {
535
536 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
537 }
538
539 static void
540 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
541 {
542
543 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
544 }
545
546 static void
547 bt_insseg_tail(vmem_t *vm, bt_t *bt)
548 {
549
550 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
551 }
552
553 static void
554 bt_remfree(vmem_t *vm, bt_t *bt)
555 {
556
557 KASSERT(bt->bt_type == BT_TYPE_FREE);
558
559 LIST_REMOVE(bt, bt_freelist);
560 }
561
562 static void
563 bt_insfree(vmem_t *vm, bt_t *bt)
564 {
565 struct vmem_freelist *list;
566
567 list = bt_freehead_tofree(vm, bt->bt_size);
568 LIST_INSERT_HEAD(list, bt, bt_freelist);
569 }
570
571 /* ---- vmem internal functions */
572
573 #if defined(QCACHE)
574 static inline vm_flag_t
575 prf_to_vmf(int prflags)
576 {
577 vm_flag_t vmflags;
578
579 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
580 if ((prflags & PR_WAITOK) != 0) {
581 vmflags = VM_SLEEP;
582 } else {
583 vmflags = VM_NOSLEEP;
584 }
585 return vmflags;
586 }
587
588 static inline int
589 vmf_to_prf(vm_flag_t vmflags)
590 {
591 int prflags;
592
593 if ((vmflags & VM_SLEEP) != 0) {
594 prflags = PR_WAITOK;
595 } else {
596 prflags = PR_NOWAIT;
597 }
598 return prflags;
599 }
600
601 static size_t
602 qc_poolpage_size(size_t qcache_max)
603 {
604 int i;
605
606 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
607 /* nothing */
608 }
609 return ORDER2SIZE(i);
610 }
611
612 static void *
613 qc_poolpage_alloc(struct pool *pool, int prflags)
614 {
615 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
616 vmem_t *vm = qc->qc_vmem;
617 vmem_addr_t addr;
618
619 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
620 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
621 return NULL;
622 return (void *)addr;
623 }
624
625 static void
626 qc_poolpage_free(struct pool *pool, void *addr)
627 {
628 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
629 vmem_t *vm = qc->qc_vmem;
630
631 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
632 }
633
634 static void
635 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
636 {
637 qcache_t *prevqc;
638 struct pool_allocator *pa;
639 int qcache_idx_max;
640 int i;
641
642 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
643 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
644 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
645 }
646 vm->vm_qcache_max = qcache_max;
647 pa = &vm->vm_qcache_allocator;
648 memset(pa, 0, sizeof(*pa));
649 pa->pa_alloc = qc_poolpage_alloc;
650 pa->pa_free = qc_poolpage_free;
651 pa->pa_pagesz = qc_poolpage_size(qcache_max);
652
653 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
654 prevqc = NULL;
655 for (i = qcache_idx_max; i > 0; i--) {
656 qcache_t *qc = &vm->vm_qcache_store[i - 1];
657 size_t size = i << vm->vm_quantum_shift;
658 pool_cache_t pc;
659
660 qc->qc_vmem = vm;
661 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
662 vm->vm_name, size);
663
664 pc = pool_cache_init(size,
665 ORDER2SIZE(vm->vm_quantum_shift), 0,
666 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
667 qc->qc_name, pa, ipl, NULL, NULL, NULL);
668
669 KASSERT(pc);
670
671 qc->qc_cache = pc;
672 KASSERT(qc->qc_cache != NULL); /* XXX */
673 if (prevqc != NULL &&
674 qc->qc_cache->pc_pool.pr_itemsperpage ==
675 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
676 pool_cache_destroy(qc->qc_cache);
677 vm->vm_qcache[i - 1] = prevqc;
678 continue;
679 }
680 qc->qc_cache->pc_pool.pr_qcache = qc;
681 vm->vm_qcache[i - 1] = qc;
682 prevqc = qc;
683 }
684 }
685
686 static void
687 qc_destroy(vmem_t *vm)
688 {
689 const qcache_t *prevqc;
690 int i;
691 int qcache_idx_max;
692
693 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
694 prevqc = NULL;
695 for (i = 0; i < qcache_idx_max; i++) {
696 qcache_t *qc = vm->vm_qcache[i];
697
698 if (prevqc == qc) {
699 continue;
700 }
701 pool_cache_destroy(qc->qc_cache);
702 prevqc = qc;
703 }
704 }
705 #endif
706
707 #if defined(_KERNEL)
708 static void
709 vmem_bootstrap(void)
710 {
711
712 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
713 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
714 mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
715
716 while (static_bt_count-- > 0) {
717 bt_t *bt = &static_bts[static_bt_count];
718 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
719 VMEM_EVCNT_INCR(static_bt_count);
720 vmem_btag_freelist_count++;
721 }
722 vmem_bootstrapped = TRUE;
723 }
724
725 void
726 vmem_subsystem_init(vmem_t *vm)
727 {
728
729 kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
730 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
731 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
732 IPL_VM);
733
734 kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
735 0, 0, PAGE_SIZE,
736 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
737 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
738
739 pool_init(&vmem_btag_pool, sizeof(bt_t), coherency_unit, 0,
740 PR_PHINPAGE, "vmembt", &pool_allocator_vmem_meta, IPL_VM);
741 vmem_btag_pool_initialized = true;
742 }
743 #endif /* defined(_KERNEL) */
744
745 static int
746 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
747 int spanbttype)
748 {
749 bt_t *btspan;
750 bt_t *btfree;
751
752 VMEM_ASSERT_LOCKED(vm);
753 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
754 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
755 KASSERT(spanbttype == BT_TYPE_SPAN ||
756 spanbttype == BT_TYPE_SPAN_STATIC);
757
758 btspan = bt_alloc(vm, flags);
759 if (btspan == NULL) {
760 return SET_ERROR(ENOMEM);
761 }
762 btfree = bt_alloc(vm, flags);
763 if (btfree == NULL) {
764 bt_free(vm, btspan);
765 return SET_ERROR(ENOMEM);
766 }
767
768 btspan->bt_type = spanbttype;
769 btspan->bt_start = addr;
770 btspan->bt_size = size;
771
772 btfree->bt_type = BT_TYPE_FREE;
773 btfree->bt_start = addr;
774 btfree->bt_size = size;
775
776 bt_insseg_tail(vm, btspan);
777 bt_insseg(vm, btfree, btspan);
778 bt_insfree(vm, btfree);
779 vm->vm_size += size;
780
781 return 0;
782 }
783
784 static void
785 vmem_destroy1(vmem_t *vm)
786 {
787
788 #if defined(QCACHE)
789 qc_destroy(vm);
790 #endif /* defined(QCACHE) */
791 VMEM_LOCK(vm);
792
793 for (int i = 0; i < vm->vm_hashsize; i++) {
794 bt_t *bt;
795
796 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
797 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
798 LIST_REMOVE(bt, bt_hashlist);
799 bt_free(vm, bt);
800 }
801 }
802
803 /* bt_freetrim() drops the lock. */
804 bt_freetrim(vm, 0);
805 if (vm->vm_hashlist != &vm->vm_hash0) {
806 xfree(vm->vm_hashlist,
807 sizeof(struct vmem_hashlist) * vm->vm_hashsize);
808 }
809
810 VMEM_CONDVAR_DESTROY(vm);
811 VMEM_LOCK_DESTROY(vm);
812 xfree(vm, sizeof(*vm));
813 }
814
815 static int
816 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
817 {
818 vmem_addr_t addr;
819 int rc;
820
821 VMEM_ASSERT_LOCKED(vm);
822
823 if (vm->vm_importfn == NULL) {
824 return SET_ERROR(EINVAL);
825 }
826
827 if (vm->vm_flags & VM_LARGEIMPORT) {
828 size *= 16;
829 }
830
831 VMEM_UNLOCK(vm);
832 if (vm->vm_flags & VM_XIMPORT) {
833 rc = __FPTRCAST(vmem_ximport_t *, vm->vm_importfn)(vm->vm_arg,
834 size, &size, flags, &addr);
835 } else {
836 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
837 }
838 VMEM_LOCK(vm);
839
840 if (rc) {
841 return SET_ERROR(ENOMEM);
842 }
843
844 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
845 VMEM_UNLOCK(vm);
846 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
847 VMEM_LOCK(vm);
848 return SET_ERROR(ENOMEM);
849 }
850
851 return 0;
852 }
853
854 #if defined(_KERNEL)
855 static int
856 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
857 {
858 bt_t *bt;
859 int i;
860 struct vmem_hashlist *newhashlist;
861 struct vmem_hashlist *oldhashlist;
862 size_t oldhashsize;
863
864 KASSERT(newhashsize > 0);
865
866 /* Round hash size up to a power of 2. */
867 newhashsize = 1 << (ilog2(newhashsize) + 1);
868
869 newhashlist =
870 xmalloc(sizeof(struct vmem_hashlist) * newhashsize, flags);
871 if (newhashlist == NULL) {
872 return SET_ERROR(ENOMEM);
873 }
874 for (i = 0; i < newhashsize; i++) {
875 LIST_INIT(&newhashlist[i]);
876 }
877
878 VMEM_LOCK(vm);
879 /* Decay back to a small hash slowly. */
880 if (vm->vm_maxbusytag >= 2) {
881 vm->vm_maxbusytag = vm->vm_maxbusytag / 2 - 1;
882 if (vm->vm_nbusytag > vm->vm_maxbusytag) {
883 vm->vm_maxbusytag = vm->vm_nbusytag;
884 }
885 } else {
886 vm->vm_maxbusytag = vm->vm_nbusytag;
887 }
888 oldhashlist = vm->vm_hashlist;
889 oldhashsize = vm->vm_hashsize;
890 vm->vm_hashlist = newhashlist;
891 vm->vm_hashsize = newhashsize;
892 vm->vm_hashmask = newhashsize - 1;
893 if (oldhashlist == NULL) {
894 VMEM_UNLOCK(vm);
895 return 0;
896 }
897 for (i = 0; i < oldhashsize; i++) {
898 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
899 bt_rembusy(vm, bt); /* XXX */
900 bt_insbusy(vm, bt);
901 }
902 }
903 VMEM_UNLOCK(vm);
904
905 if (oldhashlist != &vm->vm_hash0) {
906 xfree(oldhashlist,
907 sizeof(struct vmem_hashlist) * oldhashsize);
908 }
909
910 return 0;
911 }
912 #endif /* _KERNEL */
913
914 /*
915 * vmem_fit: check if a bt can satisfy the given restrictions.
916 *
917 * it's a caller's responsibility to ensure the region is big enough
918 * before calling us.
919 */
920
921 static int
922 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
923 vmem_size_t phase, vmem_size_t nocross,
924 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
925 {
926 vmem_addr_t start;
927 vmem_addr_t end;
928
929 KASSERT(size > 0);
930 KASSERT(bt->bt_size >= size); /* caller's responsibility */
931
932 /*
933 * XXX assumption: vmem_addr_t and vmem_size_t are
934 * unsigned integer of the same size.
935 */
936
937 start = bt->bt_start;
938 if (start < minaddr) {
939 start = minaddr;
940 }
941 end = BT_END(bt);
942 if (end > maxaddr) {
943 end = maxaddr;
944 }
945 if (start > end) {
946 return SET_ERROR(ENOMEM);
947 }
948
949 start = VMEM_ALIGNUP(start - phase, align) + phase;
950 if (start < bt->bt_start) {
951 start += align;
952 }
953 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
954 KASSERT(align < nocross);
955 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
956 }
957 if (start <= end && end - start >= size - 1) {
958 KASSERT((start & (align - 1)) == phase);
959 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
960 KASSERT(minaddr <= start);
961 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
962 KASSERT(bt->bt_start <= start);
963 KASSERT(BT_END(bt) - start >= size - 1);
964 *addrp = start;
965 return 0;
966 }
967 return SET_ERROR(ENOMEM);
968 }
969
970 /* ---- vmem API */
971
972 /*
973 * vmem_init: creates a vmem arena.
974 */
975
976 vmem_t *
977 vmem_init(vmem_t *vm, const char *name,
978 vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
979 vmem_import_t *importfn, vmem_release_t *releasefn,
980 vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
981 {
982 int i;
983
984 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
985 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
986 KASSERT(quantum > 0);
987 KASSERT(powerof2(quantum));
988
989 /*
990 * If private tags are going to be used, they must
991 * be added to the arena before the first span is
992 * added.
993 */
994 KASSERT((flags & VM_PRIVTAGS) == 0 || size == 0);
995
996 #if defined(_KERNEL)
997 /* XXX: SMP, we get called early... */
998 if (!vmem_bootstrapped) {
999 vmem_bootstrap();
1000 }
1001 #endif /* defined(_KERNEL) */
1002
1003 if (vm == NULL) {
1004 vm = xmalloc(sizeof(*vm), flags);
1005 }
1006 if (vm == NULL) {
1007 return NULL;
1008 }
1009
1010 VMEM_CONDVAR_INIT(vm, "vmem");
1011 VMEM_LOCK_INIT(vm, ipl);
1012 vm->vm_flags = flags;
1013 vm->vm_nfreetags = 0;
1014 LIST_INIT(&vm->vm_freetags);
1015 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
1016 vm->vm_quantum_mask = quantum - 1;
1017 vm->vm_quantum_shift = SIZE2ORDER(quantum);
1018 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
1019 vm->vm_importfn = importfn;
1020 vm->vm_releasefn = releasefn;
1021 vm->vm_arg = arg;
1022 vm->vm_nbusytag = 0;
1023 vm->vm_maxbusytag = 0;
1024 vm->vm_size = 0;
1025 vm->vm_inuse = 0;
1026 #if defined(QCACHE)
1027 qc_init(vm, qcache_max, ipl);
1028 #endif /* defined(QCACHE) */
1029
1030 TAILQ_INIT(&vm->vm_seglist);
1031 for (i = 0; i < VMEM_MAXORDER; i++) {
1032 LIST_INIT(&vm->vm_freelist[i]);
1033 }
1034 memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
1035 vm->vm_hashsize = 1;
1036 vm->vm_hashmask = vm->vm_hashsize - 1;
1037 vm->vm_hashlist = &vm->vm_hash0;
1038
1039 if (size != 0) {
1040 if (vmem_add(vm, base, size, flags) != 0) {
1041 vmem_destroy1(vm);
1042 return NULL;
1043 }
1044 }
1045
1046 #if defined(_KERNEL)
1047 if (flags & VM_BOOTSTRAP) {
1048 bt_refill(vm);
1049 }
1050
1051 mutex_enter(&vmem_list_lock);
1052 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1053 mutex_exit(&vmem_list_lock);
1054 #endif /* defined(_KERNEL) */
1055
1056 return vm;
1057 }
1058
1059
1060
1061 /*
1062 * vmem_create: create an arena.
1063 *
1064 * => must not be called from interrupt context.
1065 */
1066
1067 vmem_t *
1068 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1069 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1070 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1071 {
1072
1073 KASSERT((flags & (VM_XIMPORT)) == 0);
1074
1075 return vmem_init(NULL, name, base, size, quantum,
1076 importfn, releasefn, source, qcache_max, flags, ipl);
1077 }
1078
1079 /*
1080 * vmem_xcreate: create an arena takes alternative import func.
1081 *
1082 * => must not be called from interrupt context.
1083 */
1084
1085 vmem_t *
1086 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1087 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1088 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1089 {
1090
1091 KASSERT((flags & (VM_XIMPORT)) == 0);
1092
1093 return vmem_init(NULL, name, base, size, quantum,
1094 __FPTRCAST(vmem_import_t *, importfn), releasefn, source,
1095 qcache_max, flags | VM_XIMPORT, ipl);
1096 }
1097
1098 void
1099 vmem_destroy(vmem_t *vm)
1100 {
1101
1102 #if defined(_KERNEL)
1103 mutex_enter(&vmem_list_lock);
1104 LIST_REMOVE(vm, vm_alllist);
1105 mutex_exit(&vmem_list_lock);
1106 #endif /* defined(_KERNEL) */
1107
1108 vmem_destroy1(vm);
1109 }
1110
1111 vmem_size_t
1112 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1113 {
1114
1115 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1116 }
1117
1118 /*
1119 * vmem_alloc: allocate resource from the arena.
1120 */
1121
1122 int
1123 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1124 {
1125 const vm_flag_t strat __diagused = flags & VM_FITMASK;
1126 int error;
1127
1128 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1129 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1130
1131 KASSERT(size > 0);
1132 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1133 if ((flags & VM_SLEEP) != 0) {
1134 ASSERT_SLEEPABLE();
1135 }
1136
1137 #if defined(QCACHE)
1138 if (size <= vm->vm_qcache_max) {
1139 void *p;
1140 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1141 qcache_t *qc = vm->vm_qcache[qidx - 1];
1142
1143 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1144 if (addrp != NULL)
1145 *addrp = (vmem_addr_t)p;
1146 error = (p == NULL) ? SET_ERROR(ENOMEM) : 0;
1147 goto out;
1148 }
1149 #endif /* defined(QCACHE) */
1150
1151 error = vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1152 flags, addrp);
1153 #if defined(QCACHE)
1154 out:
1155 #endif /* defined(QCACHE) */
1156 KASSERTMSG(error || addrp == NULL ||
1157 (*addrp & vm->vm_quantum_mask) == 0,
1158 "vmem %s mask=0x%jx addr=0x%jx",
1159 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1160 KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1161 return error;
1162 }
1163
1164 int
1165 vmem_xalloc_addr(vmem_t *vm, const vmem_addr_t addr, const vmem_size_t size,
1166 vm_flag_t flags)
1167 {
1168 vmem_addr_t result;
1169 int error;
1170
1171 KASSERT((addr & vm->vm_quantum_mask) == 0);
1172 KASSERT(size != 0);
1173
1174 flags = (flags & ~VM_INSTANTFIT) | VM_BESTFIT;
1175
1176 error = vmem_xalloc(vm, size, 0, 0, 0, addr, addr + size - 1,
1177 flags, &result);
1178
1179 KASSERT(error || result == addr);
1180 KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1181 return error;
1182 }
1183
1184 int
1185 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1186 const vmem_size_t phase, const vmem_size_t nocross,
1187 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1188 vmem_addr_t *addrp)
1189 {
1190 struct vmem_freelist *list;
1191 struct vmem_freelist *first;
1192 struct vmem_freelist *end;
1193 bt_t *bt;
1194 bt_t *btnew;
1195 bt_t *btnew2;
1196 const vmem_size_t size = vmem_roundup_size(vm, size0);
1197 vm_flag_t strat = flags & VM_FITMASK;
1198 vmem_addr_t start;
1199 int rc;
1200
1201 KASSERT(size0 > 0);
1202 KASSERT(size > 0);
1203 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1204 if ((flags & VM_SLEEP) != 0) {
1205 ASSERT_SLEEPABLE();
1206 }
1207 KASSERT((align & vm->vm_quantum_mask) == 0);
1208 KASSERT((align & (align - 1)) == 0);
1209 KASSERT((phase & vm->vm_quantum_mask) == 0);
1210 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1211 KASSERT((nocross & (nocross - 1)) == 0);
1212 KASSERT(align == 0 || phase < align);
1213 KASSERT(phase == 0 || phase < align);
1214 KASSERT(nocross == 0 || nocross >= size);
1215 KASSERT(minaddr <= maxaddr);
1216 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1217
1218 if (align == 0) {
1219 align = vm->vm_quantum_mask + 1;
1220 }
1221
1222 /*
1223 * allocate boundary tags before acquiring the vmem lock.
1224 */
1225 VMEM_LOCK(vm);
1226 btnew = bt_alloc(vm, flags);
1227 if (btnew == NULL) {
1228 VMEM_UNLOCK(vm);
1229 return SET_ERROR(ENOMEM);
1230 }
1231 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1232 if (btnew2 == NULL) {
1233 bt_free(vm, btnew);
1234 VMEM_UNLOCK(vm);
1235 return SET_ERROR(ENOMEM);
1236 }
1237
1238 /*
1239 * choose a free block from which we allocate.
1240 */
1241 retry_strat:
1242 first = bt_freehead_toalloc(vm, size, strat);
1243 end = &vm->vm_freelist[VMEM_MAXORDER];
1244 retry:
1245 bt = NULL;
1246 vmem_check(vm);
1247 if (strat == VM_INSTANTFIT) {
1248 /*
1249 * just choose the first block which satisfies our restrictions.
1250 *
1251 * note that we don't need to check the size of the blocks
1252 * because any blocks found on these list should be larger than
1253 * the given size.
1254 */
1255 for (list = first; list < end; list++) {
1256 bt = LIST_FIRST(list);
1257 if (bt != NULL) {
1258 rc = vmem_fit(bt, size, align, phase,
1259 nocross, minaddr, maxaddr, &start);
1260 if (rc == 0) {
1261 goto gotit;
1262 }
1263 /*
1264 * don't bother to follow the bt_freelist link
1265 * here. the list can be very long and we are
1266 * told to run fast. blocks from the later free
1267 * lists are larger and have better chances to
1268 * satisfy our restrictions.
1269 */
1270 }
1271 }
1272 } else { /* VM_BESTFIT */
1273 /*
1274 * we assume that, for space efficiency, it's better to
1275 * allocate from a smaller block. thus we will start searching
1276 * from the lower-order list than VM_INSTANTFIT.
1277 * however, don't bother to find the smallest block in a free
1278 * list because the list can be very long. we can revisit it
1279 * if/when it turns out to be a problem.
1280 *
1281 * note that the 'first' list can contain blocks smaller than
1282 * the requested size. thus we need to check bt_size.
1283 */
1284 for (list = first; list < end; list++) {
1285 LIST_FOREACH(bt, list, bt_freelist) {
1286 if (bt->bt_size >= size) {
1287 rc = vmem_fit(bt, size, align, phase,
1288 nocross, minaddr, maxaddr, &start);
1289 if (rc == 0) {
1290 goto gotit;
1291 }
1292 }
1293 }
1294 }
1295 }
1296 #if 1
1297 if (strat == VM_INSTANTFIT) {
1298 strat = VM_BESTFIT;
1299 goto retry_strat;
1300 }
1301 #endif
1302 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1303
1304 /*
1305 * XXX should try to import a region large enough to
1306 * satisfy restrictions?
1307 */
1308
1309 goto fail;
1310 }
1311 /* XXX eeek, minaddr & maxaddr not respected */
1312 if (vmem_import(vm, size, flags) == 0) {
1313 goto retry;
1314 }
1315 /* XXX */
1316
1317 if ((flags & VM_SLEEP) != 0) {
1318 vmem_kick_pdaemon();
1319 VMEM_CONDVAR_WAIT(vm);
1320 goto retry;
1321 }
1322 fail:
1323 bt_free(vm, btnew);
1324 bt_free(vm, btnew2);
1325 VMEM_UNLOCK(vm);
1326 return SET_ERROR(ENOMEM);
1327
1328 gotit:
1329 KASSERT(bt->bt_type == BT_TYPE_FREE);
1330 KASSERT(bt->bt_size >= size);
1331 bt_remfree(vm, bt);
1332 vmem_check(vm);
1333 if (bt->bt_start != start) {
1334 btnew2->bt_type = BT_TYPE_FREE;
1335 btnew2->bt_start = bt->bt_start;
1336 btnew2->bt_size = start - bt->bt_start;
1337 bt->bt_start = start;
1338 bt->bt_size -= btnew2->bt_size;
1339 bt_insfree(vm, btnew2);
1340 bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1341 btnew2 = NULL;
1342 vmem_check(vm);
1343 }
1344 KASSERT(bt->bt_start == start);
1345 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1346 /* split */
1347 btnew->bt_type = BT_TYPE_BUSY;
1348 btnew->bt_start = bt->bt_start;
1349 btnew->bt_size = size;
1350 bt->bt_start = bt->bt_start + size;
1351 bt->bt_size -= size;
1352 bt_insfree(vm, bt);
1353 bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1354 bt_insbusy(vm, btnew);
1355 vmem_check(vm);
1356 } else {
1357 bt->bt_type = BT_TYPE_BUSY;
1358 bt_insbusy(vm, bt);
1359 vmem_check(vm);
1360 bt_free(vm, btnew);
1361 btnew = bt;
1362 }
1363 if (btnew2 != NULL) {
1364 bt_free(vm, btnew2);
1365 }
1366 KASSERT(btnew->bt_size >= size);
1367 btnew->bt_type = BT_TYPE_BUSY;
1368 if (addrp != NULL)
1369 *addrp = btnew->bt_start;
1370 VMEM_UNLOCK(vm);
1371 KASSERTMSG(addrp == NULL ||
1372 (*addrp & vm->vm_quantum_mask) == 0,
1373 "vmem %s mask=0x%jx addr=0x%jx",
1374 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1375 return 0;
1376 }
1377
1378 /*
1379 * vmem_free: free the resource to the arena.
1380 */
1381
1382 void
1383 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1384 {
1385
1386 KASSERT(size > 0);
1387 KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1388 "vmem %s mask=0x%jx addr=0x%jx",
1389 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1390
1391 #if defined(QCACHE)
1392 if (size <= vm->vm_qcache_max) {
1393 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1394 qcache_t *qc = vm->vm_qcache[qidx - 1];
1395
1396 pool_cache_put(qc->qc_cache, (void *)addr);
1397 return;
1398 }
1399 #endif /* defined(QCACHE) */
1400
1401 vmem_xfree(vm, addr, size);
1402 }
1403
1404 void
1405 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1406 {
1407 bt_t *bt;
1408
1409 KASSERT(size > 0);
1410 KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1411 "vmem %s mask=0x%jx addr=0x%jx",
1412 vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1413
1414 VMEM_LOCK(vm);
1415
1416 bt = bt_lookupbusy(vm, addr);
1417 KASSERTMSG(bt != NULL, "vmem %s addr 0x%jx size 0x%jx",
1418 vm->vm_name, (uintmax_t)addr, (uintmax_t)size);
1419 KASSERT(bt->bt_start == addr);
1420 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1421 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1422
1423 /* vmem_xfree_bt() drops the lock. */
1424 vmem_xfree_bt(vm, bt);
1425 }
1426
1427 void
1428 vmem_xfreeall(vmem_t *vm)
1429 {
1430 bt_t *bt;
1431
1432 #if defined(QCACHE)
1433 /* This can't be used if the arena has a quantum cache. */
1434 KASSERT(vm->vm_qcache_max == 0);
1435 #endif /* defined(QCACHE) */
1436
1437 for (;;) {
1438 VMEM_LOCK(vm);
1439 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1440 if (bt->bt_type == BT_TYPE_BUSY)
1441 break;
1442 }
1443 if (bt != NULL) {
1444 /* vmem_xfree_bt() drops the lock. */
1445 vmem_xfree_bt(vm, bt);
1446 } else {
1447 VMEM_UNLOCK(vm);
1448 return;
1449 }
1450 }
1451 }
1452
1453 static void
1454 vmem_xfree_bt(vmem_t *vm, bt_t *bt)
1455 {
1456 bt_t *t;
1457
1458 VMEM_ASSERT_LOCKED(vm);
1459
1460 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1461 bt_rembusy(vm, bt);
1462 bt->bt_type = BT_TYPE_FREE;
1463
1464 /* coalesce */
1465 t = TAILQ_NEXT(bt, bt_seglist);
1466 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1467 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1468 bt_remfree(vm, t);
1469 bt_remseg(vm, t);
1470 bt->bt_size += t->bt_size;
1471 bt_free(vm, t);
1472 }
1473 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1474 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1475 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1476 bt_remfree(vm, t);
1477 bt_remseg(vm, t);
1478 bt->bt_size += t->bt_size;
1479 bt->bt_start = t->bt_start;
1480 bt_free(vm, t);
1481 }
1482
1483 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1484 KASSERT(t != NULL);
1485 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1486 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1487 t->bt_size == bt->bt_size) {
1488 vmem_addr_t spanaddr;
1489 vmem_size_t spansize;
1490
1491 KASSERT(t->bt_start == bt->bt_start);
1492 spanaddr = bt->bt_start;
1493 spansize = bt->bt_size;
1494 bt_remseg(vm, bt);
1495 bt_free(vm, bt);
1496 bt_remseg(vm, t);
1497 bt_free(vm, t);
1498 vm->vm_size -= spansize;
1499 VMEM_CONDVAR_BROADCAST(vm);
1500 /* bt_freetrim() drops the lock. */
1501 bt_freetrim(vm, BT_MAXFREE);
1502 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1503 } else {
1504 bt_insfree(vm, bt);
1505 VMEM_CONDVAR_BROADCAST(vm);
1506 /* bt_freetrim() drops the lock. */
1507 bt_freetrim(vm, BT_MAXFREE);
1508 }
1509 }
1510
1511 /*
1512 * vmem_add:
1513 *
1514 * => caller must ensure appropriate spl,
1515 * if the arena can be accessed from interrupt context.
1516 */
1517
1518 int
1519 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1520 {
1521 int rv;
1522
1523 VMEM_LOCK(vm);
1524 rv = vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1525 VMEM_UNLOCK(vm);
1526
1527 return rv;
1528 }
1529
1530 /*
1531 * vmem_size: information about arenas size
1532 *
1533 * => return free/allocated size in arena
1534 */
1535 vmem_size_t
1536 vmem_size(vmem_t *vm, int typemask)
1537 {
1538
1539 switch (typemask) {
1540 case VMEM_ALLOC:
1541 return vm->vm_inuse;
1542 case VMEM_FREE:
1543 return vm->vm_size - vm->vm_inuse;
1544 case VMEM_FREE|VMEM_ALLOC:
1545 return vm->vm_size;
1546 default:
1547 panic("vmem_size");
1548 }
1549 }
1550
1551 /* ---- rehash */
1552
1553 #if defined(_KERNEL)
1554 static struct callout vmem_rehash_ch;
1555 static int vmem_rehash_interval;
1556 static struct workqueue *vmem_rehash_wq;
1557 static struct work vmem_rehash_wk;
1558
1559 static void
1560 vmem_rehash_all(struct work *wk, void *dummy)
1561 {
1562 vmem_t *vm;
1563
1564 KASSERT(wk == &vmem_rehash_wk);
1565 mutex_enter(&vmem_list_lock);
1566 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1567 size_t desired;
1568 size_t current;
1569
1570 desired = atomic_load_relaxed(&vm->vm_maxbusytag);
1571 current = atomic_load_relaxed(&vm->vm_hashsize);
1572
1573 if (desired > VMEM_HASHSIZE_MAX) {
1574 desired = VMEM_HASHSIZE_MAX;
1575 } else if (desired < VMEM_HASHSIZE_MIN) {
1576 desired = VMEM_HASHSIZE_MIN;
1577 }
1578 if (desired > current * 2 || desired * 2 < current) {
1579 vmem_rehash(vm, desired, VM_NOSLEEP);
1580 }
1581 }
1582 mutex_exit(&vmem_list_lock);
1583
1584 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1585 }
1586
1587 static void
1588 vmem_rehash_all_kick(void *dummy)
1589 {
1590
1591 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1592 }
1593
1594 void
1595 vmem_rehash_start(void)
1596 {
1597 int error;
1598
1599 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1600 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1601 if (error) {
1602 panic("%s: workqueue_create %d\n", __func__, error);
1603 }
1604 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1605 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1606
1607 vmem_rehash_interval = hz * 10;
1608 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1609 }
1610 #endif /* defined(_KERNEL) */
1611
1612 /* ---- debug */
1613
1614 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1615
1616 static void bt_dump(const bt_t *, void (*)(const char *, ...)
1617 __printflike(1, 2));
1618
1619 static const char *
1620 bt_type_string(int type)
1621 {
1622 static const char * const table[] = {
1623 [BT_TYPE_BUSY] = "busy",
1624 [BT_TYPE_FREE] = "free",
1625 [BT_TYPE_SPAN] = "span",
1626 [BT_TYPE_SPAN_STATIC] = "static span",
1627 };
1628
1629 if (type >= __arraycount(table)) {
1630 return "BOGUS";
1631 }
1632 return table[type];
1633 }
1634
1635 static void
1636 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1637 {
1638
1639 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1640 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1641 bt->bt_type, bt_type_string(bt->bt_type));
1642 }
1643
1644 static void
1645 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1646 {
1647 const bt_t *bt;
1648 int i;
1649
1650 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1651 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1652 bt_dump(bt, pr);
1653 }
1654
1655 for (i = 0; i < VMEM_MAXORDER; i++) {
1656 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1657
1658 if (LIST_EMPTY(fl)) {
1659 continue;
1660 }
1661
1662 (*pr)("freelist[%d]\n", i);
1663 LIST_FOREACH(bt, fl, bt_freelist) {
1664 bt_dump(bt, pr);
1665 }
1666 }
1667 }
1668
1669 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1670
1671 #if defined(DDB)
1672 static bt_t *
1673 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1674 {
1675 bt_t *bt;
1676
1677 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1678 if (BT_ISSPAN_P(bt)) {
1679 continue;
1680 }
1681 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1682 return bt;
1683 }
1684 }
1685
1686 return NULL;
1687 }
1688
1689 void
1690 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1691 {
1692 vmem_t *vm;
1693
1694 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1695 bt_t *bt;
1696
1697 bt = vmem_whatis_lookup(vm, addr);
1698 if (bt == NULL) {
1699 continue;
1700 }
1701 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1702 (void *)addr, (void *)bt->bt_start,
1703 (size_t)(addr - bt->bt_start), vm->vm_name,
1704 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1705 }
1706 }
1707
1708 void
1709 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1710 {
1711 const vmem_t *vm;
1712
1713 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1714 vmem_dump(vm, pr);
1715 }
1716 }
1717
1718 void
1719 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1720 {
1721 const vmem_t *vm = (const void *)addr;
1722
1723 vmem_dump(vm, pr);
1724 }
1725 #endif /* defined(DDB) */
1726
1727 #if defined(_KERNEL)
1728 #define vmem_printf printf
1729 #else
1730 #include <stdio.h>
1731 #include <stdarg.h>
1732
1733 static void
1734 vmem_printf(const char *fmt, ...)
1735 {
1736 va_list ap;
1737 va_start(ap, fmt);
1738 vprintf(fmt, ap);
1739 va_end(ap);
1740 }
1741 #endif
1742
1743 #if defined(VMEM_SANITY)
1744
1745 static bool
1746 vmem_check_sanity(vmem_t *vm)
1747 {
1748 const bt_t *bt, *bt2;
1749
1750 KASSERT(vm != NULL);
1751
1752 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1753 if (bt->bt_start > BT_END(bt)) {
1754 printf("corrupted tag\n");
1755 bt_dump(bt, vmem_printf);
1756 return false;
1757 }
1758 }
1759 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1760 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1761 if (bt == bt2) {
1762 continue;
1763 }
1764 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1765 continue;
1766 }
1767 if (bt->bt_start <= BT_END(bt2) &&
1768 bt2->bt_start <= BT_END(bt)) {
1769 printf("overwrapped tags\n");
1770 bt_dump(bt, vmem_printf);
1771 bt_dump(bt2, vmem_printf);
1772 return false;
1773 }
1774 }
1775 }
1776
1777 return true;
1778 }
1779
1780 static void
1781 vmem_check(vmem_t *vm)
1782 {
1783
1784 if (!vmem_check_sanity(vm)) {
1785 panic("insanity vmem %p", vm);
1786 }
1787 }
1788
1789 #endif /* defined(VMEM_SANITY) */
1790
1791 #if defined(UNITTEST)
1792 int
1793 main(void)
1794 {
1795 int rc;
1796 vmem_t *vm;
1797 vmem_addr_t p;
1798 struct reg {
1799 vmem_addr_t p;
1800 vmem_size_t sz;
1801 bool x;
1802 } *reg = NULL;
1803 int nreg = 0;
1804 int nalloc = 0;
1805 int nfree = 0;
1806 vmem_size_t total = 0;
1807 #if 1
1808 vm_flag_t strat = VM_INSTANTFIT;
1809 #else
1810 vm_flag_t strat = VM_BESTFIT;
1811 #endif
1812
1813 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1814 #ifdef _KERNEL
1815 IPL_NONE
1816 #else
1817 0
1818 #endif
1819 );
1820 if (vm == NULL) {
1821 printf("vmem_create\n");
1822 exit(EXIT_FAILURE);
1823 }
1824 vmem_dump(vm, vmem_printf);
1825
1826 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1827 assert(rc == 0);
1828 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1829 assert(rc == 0);
1830 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1831 assert(rc == 0);
1832 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1833 assert(rc == 0);
1834 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1835 assert(rc == 0);
1836 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1837 assert(rc == 0);
1838 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1839 assert(rc == 0);
1840 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1841 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1842 assert(rc != 0);
1843 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1844 assert(rc == 0 && p == 0);
1845 vmem_xfree(vm, p, 50);
1846 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1847 assert(rc == 0 && p == 0);
1848 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1849 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1850 assert(rc != 0);
1851 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1852 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1853 assert(rc != 0);
1854 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1855 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1856 assert(rc == 0);
1857 vmem_dump(vm, vmem_printf);
1858 for (;;) {
1859 struct reg *r;
1860 int t = rand() % 100;
1861
1862 if (t > 45) {
1863 /* alloc */
1864 vmem_size_t sz = rand() % 500 + 1;
1865 bool x;
1866 vmem_size_t align, phase, nocross;
1867 vmem_addr_t minaddr, maxaddr;
1868
1869 if (t > 70) {
1870 x = true;
1871 /* XXX */
1872 align = 1 << (rand() % 15);
1873 phase = rand() % 65536;
1874 nocross = 1 << (rand() % 15);
1875 if (align <= phase) {
1876 phase = 0;
1877 }
1878 if (VMEM_CROSS_P(phase, phase + sz - 1,
1879 nocross)) {
1880 nocross = 0;
1881 }
1882 do {
1883 minaddr = rand() % 50000;
1884 maxaddr = rand() % 70000;
1885 } while (minaddr > maxaddr);
1886 printf("=== xalloc %" PRIu64
1887 " align=%" PRIu64 ", phase=%" PRIu64
1888 ", nocross=%" PRIu64 ", min=%" PRIu64
1889 ", max=%" PRIu64 "\n",
1890 (uint64_t)sz,
1891 (uint64_t)align,
1892 (uint64_t)phase,
1893 (uint64_t)nocross,
1894 (uint64_t)minaddr,
1895 (uint64_t)maxaddr);
1896 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1897 minaddr, maxaddr, strat|VM_SLEEP, &p);
1898 } else {
1899 x = false;
1900 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1901 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1902 }
1903 printf("-> %" PRIu64 "\n", (uint64_t)p);
1904 vmem_dump(vm, vmem_printf);
1905 if (rc != 0) {
1906 if (x) {
1907 continue;
1908 }
1909 break;
1910 }
1911 nreg++;
1912 reg = realloc(reg, sizeof(*reg) * nreg);
1913 r = ®[nreg - 1];
1914 r->p = p;
1915 r->sz = sz;
1916 r->x = x;
1917 total += sz;
1918 nalloc++;
1919 } else if (nreg != 0) {
1920 /* free */
1921 r = ®[rand() % nreg];
1922 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1923 (uint64_t)r->p, (uint64_t)r->sz);
1924 if (r->x) {
1925 vmem_xfree(vm, r->p, r->sz);
1926 } else {
1927 vmem_free(vm, r->p, r->sz);
1928 }
1929 total -= r->sz;
1930 vmem_dump(vm, vmem_printf);
1931 *r = reg[nreg - 1];
1932 nreg--;
1933 nfree++;
1934 }
1935 printf("total=%" PRIu64 "\n", (uint64_t)total);
1936 }
1937 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1938 (uint64_t)total, nalloc, nfree);
1939 exit(EXIT_SUCCESS);
1940 }
1941 #endif /* defined(UNITTEST) */
1942