subr_vmem.c revision 1.2 1 /* $NetBSD: subr_vmem.c,v 1.2 2006/06/26 10:23:20 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * TODO:
36 * - implement quantum cache
37 * - implement vmem_xalloc/vmem_xfree
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.2 2006/06/26 10:23:20 yamt Exp $");
42
43 #define VMEM_DEBUG
44
45 #include <sys/param.h>
46 #include <sys/hash.h>
47 #include <sys/queue.h>
48
49 #if defined(_KERNEL)
50 #include <sys/systm.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/once.h>
54 #include <sys/pool.h>
55 #include <sys/vmem.h>
56 #else /* defined(_KERNEL) */
57 #include "../sys/vmem.h"
58 #endif /* defined(_KERNEL) */
59
60 #if defined(_KERNEL)
61 #define SIMPLELOCK_DECL(name) struct simplelock name
62 #else /* defined(_KERNEL) */
63 #include <errno.h>
64 #include <assert.h>
65 #include <stdlib.h>
66
67 #define KASSERT(a) assert(a)
68 #define SIMPLELOCK_DECL(name) /* nothing */
69 #define LOCK_ASSERT(a) /* nothing */
70 #define simple_lock_init(a) /* nothing */
71 #define simple_lock(a) /* nothing */
72 #define simple_unlock(a) /* nothing */
73 #endif /* defined(_KERNEL) */
74
75 struct vmem;
76 struct vmem_btag;
77
78 #if defined(VMEM_DEBUG)
79 void vmem_dump(const vmem_t *);
80 #endif /* defined(VMEM_DEBUG) */
81
82 #define VMEM_MAXORDER 20
83 #define VMEM_HASHSIZE_INIT 4096 /* XXX */
84
85 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
86
87 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
88 LIST_HEAD(vmem_freelist, vmem_btag);
89 LIST_HEAD(vmem_hashlist, vmem_btag);
90
91 /* vmem arena */
92 struct vmem {
93 SIMPLELOCK_DECL(vm_lock);
94 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
95 vm_flag_t);
96 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
97 vmem_t *vm_source;
98 struct vmem_seglist vm_seglist;
99 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
100 size_t vm_hashsize;
101 size_t vm_nbusytag;
102 struct vmem_hashlist *vm_hashlist;
103 size_t vm_qcache_max;
104 size_t vm_quantum_mask;
105 int vm_quantum_shift;
106 /* XXX qcache */
107 const char *vm_name;
108 };
109
110 #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
111 #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
112 #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
113 #define VMEM_ASSERT_LOCKED(vm) \
114 LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
115 #define VMEM_ASSERT_UNLOCKED(vm) \
116 LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
117
118 /* boundary tag */
119 struct vmem_btag {
120 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
121 union {
122 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
123 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
124 } bt_u;
125 #define bt_hashlist bt_u.u_hashlist
126 #define bt_freelist bt_u.u_freelist
127 vmem_addr_t bt_start;
128 vmem_size_t bt_size;
129 int bt_type;
130 };
131
132 #define BT_TYPE_SPAN 1
133 #define BT_TYPE_SPAN_STATIC 2
134 #define BT_TYPE_FREE 3
135 #define BT_TYPE_BUSY 4
136 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
137
138 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
139
140 typedef struct vmem_btag bt_t;
141
142 /* ---- misc */
143
144 static int
145 calc_order(vmem_size_t size)
146 {
147 int i;
148
149 KASSERT(size != 0);
150
151 i = 0;
152 while (1 << (i + 1) <= size) {
153 i++;
154 }
155
156 KASSERT(1 << i <= size);
157 KASSERT(size < 1 << (i + 1));
158
159 return i;
160 }
161
162 #if defined(_KERNEL)
163 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
164 #endif /* defined(_KERNEL) */
165
166 static void *
167 xmalloc(size_t sz, vm_flag_t flags)
168 {
169
170 #if defined(_KERNEL)
171 return malloc(sz, M_VMEM,
172 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
173 #else /* defined(_KERNEL) */
174 return malloc(sz);
175 #endif /* defined(_KERNEL) */
176 }
177
178 static void
179 xfree(void *p)
180 {
181
182 #if defined(_KERNEL)
183 return free(p, M_VMEM);
184 #else /* defined(_KERNEL) */
185 return free(p);
186 #endif /* defined(_KERNEL) */
187 }
188
189 /* ---- boundary tag */
190
191 #if defined(_KERNEL)
192 static struct pool_cache bt_poolcache;
193 static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
194 #endif /* defined(_KERNEL) */
195
196 static bt_t *
197 bt_alloc(vmem_t *vm, vm_flag_t flags)
198 {
199 bt_t *bt;
200
201 #if defined(_KERNEL)
202 /* XXX bootstrap */
203 bt = pool_cache_get(&bt_poolcache,
204 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
205 #else /* defined(_KERNEL) */
206 bt = malloc(sizeof *bt);
207 #endif /* defined(_KERNEL) */
208
209 return bt;
210 }
211
212 static void
213 bt_free(vmem_t *vm, bt_t *bt)
214 {
215
216 #if defined(_KERNEL)
217 /* XXX bootstrap */
218 pool_cache_put(&bt_poolcache, bt);
219 #else /* defined(_KERNEL) */
220 free(bt);
221 #endif /* defined(_KERNEL) */
222 }
223
224 /*
225 * freelist[0] ... [1, 1]
226 * freelist[1] ... [2, 3]
227 * freelist[2] ... [4, 7]
228 * freelist[3] ... [8, 15]
229 * :
230 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
231 * :
232 */
233
234 static struct vmem_freelist *
235 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
236 {
237 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
238 int idx;
239
240 KASSERT((size & vm->vm_quantum_mask) == 0);
241 KASSERT(size != 0);
242
243 idx = calc_order(qsize);
244 KASSERT(idx >= 0);
245 KASSERT(idx < VMEM_MAXORDER);
246
247 return &vm->vm_freelist[idx];
248 }
249
250 static struct vmem_freelist *
251 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
252 {
253 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
254 int idx;
255
256 KASSERT((size & vm->vm_quantum_mask) == 0);
257 KASSERT(size != 0);
258
259 idx = calc_order(qsize);
260 if (strat == VM_INSTANTFIT && 1 << idx != qsize) {
261 idx++;
262 /* check too large request? */
263 }
264 KASSERT(idx >= 0);
265 KASSERT(idx < VMEM_MAXORDER);
266
267 return &vm->vm_freelist[idx];
268 }
269
270 /* ---- boundary tag hash */
271
272 static struct vmem_hashlist *
273 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
274 {
275 struct vmem_hashlist *list;
276 unsigned int hash;
277
278 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
279 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
280
281 return list;
282 }
283
284 static bt_t *
285 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
286 {
287 struct vmem_hashlist *list;
288 bt_t *bt;
289
290 list = bt_hashhead(vm, addr);
291 LIST_FOREACH(bt, list, bt_hashlist) {
292 if (bt->bt_start == addr) {
293 break;
294 }
295 }
296
297 return bt;
298 }
299
300 static void
301 bt_rembusy(vmem_t *vm, bt_t *bt)
302 {
303
304 KASSERT(vm->vm_nbusytag > 0);
305 vm->vm_nbusytag--;
306 LIST_REMOVE(bt, bt_hashlist);
307 }
308
309 static void
310 bt_insbusy(vmem_t *vm, bt_t *bt)
311 {
312 struct vmem_hashlist *list;
313
314 KASSERT(bt->bt_type == BT_TYPE_BUSY);
315
316 list = bt_hashhead(vm, bt->bt_start);
317 LIST_INSERT_HEAD(list, bt, bt_hashlist);
318 vm->vm_nbusytag++;
319 }
320
321 /* ---- boundary tag list */
322
323 static void
324 bt_remseg(vmem_t *vm, bt_t *bt)
325 {
326
327 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
328 }
329
330 static void
331 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
332 {
333
334 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
335 }
336
337 static void
338 bt_insseg_tail(vmem_t *vm, bt_t *bt)
339 {
340
341 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
342 }
343
344 static void
345 bt_remfree(vmem_t *vm, bt_t *bt)
346 {
347
348 KASSERT(bt->bt_type == BT_TYPE_FREE);
349
350 LIST_REMOVE(bt, bt_freelist);
351 }
352
353 static void
354 bt_insfree(vmem_t *vm, bt_t *bt)
355 {
356 struct vmem_freelist *list;
357
358 list = bt_freehead_tofree(vm, bt->bt_size);
359 LIST_INSERT_HEAD(list, bt, bt_freelist);
360 }
361
362 /* ---- vmem internal functions */
363
364 #if defined(_KERNEL)
365 static int
366 vmem_init(void)
367 {
368
369 pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
370 return 0;
371 }
372 #endif /* defined(_KERNEL) */
373
374 static vmem_addr_t
375 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
376 int spanbttype)
377 {
378 bt_t *btspan;
379 bt_t *btfree;
380
381 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
382 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
383 VMEM_ASSERT_UNLOCKED(vm);
384
385 btspan = bt_alloc(vm, flags);
386 if (btspan == NULL) {
387 return VMEM_ADDR_NULL;
388 }
389 btfree = bt_alloc(vm, flags);
390 if (btfree == NULL) {
391 bt_free(vm, btspan);
392 return VMEM_ADDR_NULL;
393 }
394
395 btspan->bt_type = spanbttype;
396 btspan->bt_start = addr;
397 btspan->bt_size = size;
398
399 btfree->bt_type = BT_TYPE_FREE;
400 btfree->bt_start = addr;
401 btfree->bt_size = size;
402
403 VMEM_LOCK(vm);
404 bt_insseg_tail(vm, btspan);
405 bt_insseg(vm, btfree, btspan);
406 bt_insfree(vm, btfree);
407 VMEM_UNLOCK(vm);
408
409 return addr;
410 }
411
412 static int
413 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
414 {
415 vmem_addr_t addr;
416
417 VMEM_ASSERT_UNLOCKED(vm);
418
419 if (vm->vm_allocfn == NULL) {
420 return EINVAL;
421 }
422
423 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
424 if (addr == VMEM_ADDR_NULL) {
425 return ENOMEM;
426 }
427
428 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
429 (*vm->vm_freefn)(vm->vm_source, addr, size);
430 return ENOMEM;
431 }
432
433 return 0;
434 }
435
436 static int
437 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
438 {
439 bt_t *bt;
440 int i;
441 struct vmem_hashlist *newhashlist;
442 struct vmem_hashlist *oldhashlist;
443 size_t oldhashsize;
444
445 KASSERT(newhashsize > 0);
446 VMEM_ASSERT_UNLOCKED(vm);
447
448 newhashlist =
449 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
450 if (newhashlist == NULL) {
451 return ENOMEM;
452 }
453 for (i = 0; i < newhashsize; i++) {
454 LIST_INIT(&newhashlist[i]);
455 }
456
457 VMEM_LOCK(vm);
458 oldhashlist = vm->vm_hashlist;
459 oldhashsize = vm->vm_hashsize;
460 vm->vm_hashlist = newhashlist;
461 vm->vm_hashsize = newhashsize;
462 if (oldhashlist == NULL) {
463 VMEM_UNLOCK(vm);
464 return 0;
465 }
466 for (i = 0; i < oldhashsize; i++) {
467 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
468 bt_rembusy(vm, bt); /* XXX */
469 bt_insbusy(vm, bt);
470 }
471 }
472 VMEM_UNLOCK(vm);
473
474 xfree(oldhashlist);
475
476 return 0;
477 }
478
479 /* ---- vmem API */
480
481 /*
482 * vmem_create: create an arena.
483 *
484 * => must not be called from interrupt context.
485 */
486
487 vmem_t *
488 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
489 vmem_size_t quantum,
490 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
491 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
492 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
493 {
494 vmem_t *vm;
495 int i;
496 #if defined(_KERNEL)
497 static ONCE_DECL(control);
498 #endif /* defined(_KERNEL) */
499
500 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
501 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
502
503 #if defined(_KERNEL)
504 if (RUN_ONCE(&control, vmem_init)) {
505 return NULL;
506 }
507 #endif /* defined(_KERNEL) */
508 vm = xmalloc(sizeof(*vm), flags);
509 if (vm == NULL) {
510 return NULL;
511 }
512
513 VMEM_LOCK_INIT(vm);
514 vm->vm_name = name;
515 vm->vm_quantum_mask = quantum - 1;
516 vm->vm_quantum_shift = calc_order(quantum);
517 KASSERT((1 << vm->vm_quantum_shift) == quantum);
518 vm->vm_allocfn = allocfn;
519 vm->vm_freefn = freefn;
520 vm->vm_source = source;
521 vm->vm_qcache_max = qcache_max;
522 vm->vm_nbusytag = 0;
523
524 CIRCLEQ_INIT(&vm->vm_seglist);
525 for (i = 0; i < VMEM_MAXORDER; i++) {
526 LIST_INIT(&vm->vm_freelist[i]);
527 }
528 vm->vm_hashlist = NULL;
529 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
530 vmem_destroy(vm);
531 return NULL;
532 }
533
534 if (size != 0) {
535 if (vmem_add(vm, base, size, flags) == 0) {
536 vmem_destroy(vm);
537 return NULL;
538 }
539 }
540
541 return vm;
542 }
543
544 void
545 vmem_destroy(vmem_t *vm)
546 {
547
548 VMEM_ASSERT_UNLOCKED(vm);
549
550 if (vm->vm_hashlist != NULL) {
551 int i;
552
553 for (i = 0; i < vm->vm_hashsize; i++) {
554 bt_t *bt;
555
556 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
557 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
558 bt_free(vm, bt);
559 }
560 }
561 xfree(vm->vm_hashlist);
562 }
563 xfree(vm);
564 }
565
566 vmem_size_t
567 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
568 {
569
570 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
571 }
572
573 /*
574 * vmem_alloc:
575 *
576 * => caller must ensure appropriate spl,
577 * if the arena can be accessed from interrupt context.
578 */
579
580 vmem_addr_t
581 vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
582 {
583 struct vmem_freelist *list;
584 struct vmem_freelist *first;
585 struct vmem_freelist *end;
586 bt_t *bt;
587 bt_t *btnew;
588 const vmem_size_t size = vmem_roundup_size(vm, size0);
589 vm_flag_t strat = flags & VM_FITMASK;
590
591 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
592 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
593 VMEM_ASSERT_UNLOCKED(vm);
594
595 KASSERT(size0 > 0);
596 KASSERT(size > 0);
597 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
598
599 btnew = bt_alloc(vm, flags);
600 if (btnew == NULL) {
601 return VMEM_ADDR_NULL;
602 }
603
604 retry_strat:
605 first = bt_freehead_toalloc(vm, size, strat);
606 end = &vm->vm_freelist[VMEM_MAXORDER];
607 retry:
608 bt = NULL;
609 VMEM_LOCK(vm);
610 if (strat == VM_INSTANTFIT) {
611 for (list = first; list < end; list++) {
612 bt = LIST_FIRST(list);
613 if (bt != NULL) {
614 goto gotit;
615 }
616 }
617 } else { /* VM_BESTFIT */
618 for (list = first; list < end; list++) {
619 LIST_FOREACH(bt, list, bt_freelist) {
620 if (bt->bt_size >= size) {
621 goto gotit;
622 }
623 }
624 }
625 }
626 VMEM_UNLOCK(vm);
627 #if 1
628 if (strat == VM_INSTANTFIT) {
629 strat = VM_BESTFIT;
630 goto retry_strat;
631 }
632 #endif
633 if (vmem_import(vm, size, flags) == 0) {
634 goto retry;
635 }
636 /* XXX */
637 return VMEM_ADDR_NULL;
638
639 gotit:
640 KASSERT(bt->bt_type == BT_TYPE_FREE);
641 KASSERT(bt->bt_size >= size);
642 bt_remfree(vm, bt);
643 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
644 /* split */
645 btnew->bt_type = BT_TYPE_BUSY;
646 btnew->bt_start = bt->bt_start;
647 btnew->bt_size = size;
648 bt->bt_start = bt->bt_start + size;
649 bt->bt_size -= size;
650 bt_insfree(vm, bt);
651 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
652 bt_insbusy(vm, btnew);
653 VMEM_UNLOCK(vm);
654 } else {
655 bt->bt_type = BT_TYPE_BUSY;
656 bt_insbusy(vm, bt);
657 VMEM_UNLOCK(vm);
658 bt_free(vm, btnew);
659 btnew = bt;
660 }
661 KASSERT(btnew->bt_size >= size);
662 btnew->bt_type = BT_TYPE_BUSY;
663
664 return btnew->bt_start;
665 }
666
667 /*
668 * vmem_free:
669 *
670 * => caller must ensure appropriate spl,
671 * if the arena can be accessed from interrupt context.
672 */
673
674 void
675 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
676 {
677 bt_t *bt;
678 bt_t *t;
679
680 VMEM_ASSERT_UNLOCKED(vm);
681
682 KASSERT(addr != VMEM_ADDR_NULL);
683 KASSERT(size > 0);
684
685 VMEM_LOCK(vm);
686
687 bt = bt_lookupbusy(vm, addr);
688 KASSERT(bt != NULL);
689 KASSERT(bt->bt_start == addr);
690 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
691 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
692 KASSERT(bt->bt_type == BT_TYPE_BUSY);
693 bt_rembusy(vm, bt);
694 bt->bt_type = BT_TYPE_FREE;
695
696 /* coalesce */
697 t = CIRCLEQ_NEXT(bt, bt_seglist);
698 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
699 KASSERT(BT_END(bt) == t->bt_start);
700 bt_remfree(vm, t);
701 bt_remseg(vm, t);
702 bt->bt_size += t->bt_size;
703 bt_free(vm, t);
704 }
705 t = CIRCLEQ_PREV(bt, bt_seglist);
706 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
707 KASSERT(BT_END(t) == bt->bt_start);
708 bt_remfree(vm, t);
709 bt_remseg(vm, t);
710 bt->bt_size += t->bt_size;
711 bt->bt_start = t->bt_start;
712 bt_free(vm, t);
713 }
714
715 t = CIRCLEQ_PREV(bt, bt_seglist);
716 KASSERT(t != NULL);
717 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
718 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
719 t->bt_size == bt->bt_size) {
720 vmem_addr_t spanaddr;
721 vmem_size_t spansize;
722
723 KASSERT(t->bt_start == bt->bt_start);
724 spanaddr = bt->bt_start;
725 spansize = bt->bt_size;
726 bt_remseg(vm, bt);
727 bt_free(vm, bt);
728 bt_remseg(vm, t);
729 bt_free(vm, t);
730 VMEM_UNLOCK(vm);
731 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
732 } else {
733 bt_insfree(vm, bt);
734 VMEM_UNLOCK(vm);
735 }
736 }
737
738 /*
739 * vmem_add:
740 *
741 * => caller must ensure appropriate spl,
742 * if the arena can be accessed from interrupt context.
743 */
744
745 vmem_addr_t
746 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
747 {
748
749 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
750 }
751
752 /* ---- debug */
753
754 #if defined(VMEM_DEBUG)
755
756 #if !defined(_KERNEL)
757 #include <stdio.h>
758 #endif /* !defined(_KERNEL) */
759
760 void bt_dump(const bt_t *);
761
762 void
763 bt_dump(const bt_t *bt)
764 {
765
766 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
767 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
768 bt->bt_type);
769 }
770
771 void
772 vmem_dump(const vmem_t *vm)
773 {
774 const bt_t *bt;
775 int i;
776
777 printf("vmem %p '%s'\n", vm, vm->vm_name);
778 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
779 bt_dump(bt);
780 }
781
782 for (i = 0; i < VMEM_MAXORDER; i++) {
783 const struct vmem_freelist *fl = &vm->vm_freelist[i];
784
785 if (LIST_EMPTY(fl)) {
786 continue;
787 }
788
789 printf("freelist[%d]\n", i);
790 LIST_FOREACH(bt, fl, bt_freelist) {
791 bt_dump(bt);
792 if (bt->bt_size) {
793 }
794 }
795 }
796 }
797
798 #if !defined(_KERNEL)
799
800 #include <stdlib.h>
801
802 int
803 main()
804 {
805 vmem_t *vm;
806 vmem_addr_t p;
807 struct reg {
808 vmem_addr_t p;
809 vmem_size_t sz;
810 } *reg = NULL;
811 int nreg = 0;
812 int nalloc = 0;
813 int nfree = 0;
814 vmem_size_t total = 0;
815 #if 1
816 vm_flag_t strat = VM_INSTANTFIT;
817 #else
818 vm_flag_t strat = VM_BESTFIT;
819 #endif
820
821 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
822 NULL, NULL, NULL, 0, VM_NOSLEEP);
823 if (vm == NULL) {
824 printf("vmem_create\n");
825 exit(EXIT_FAILURE);
826 }
827 vmem_dump(vm);
828
829 p = vmem_add(vm, 100, 200, VM_SLEEP);
830 p = vmem_add(vm, 2000, 1, VM_SLEEP);
831 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
832 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
833 p = vmem_add(vm, 500, 1000, VM_SLEEP);
834 vmem_dump(vm);
835 for (;;) {
836 struct reg *r;
837
838 if (rand() % 100 > 40) {
839 vmem_size_t sz = rand() % 500 + 1;
840
841 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
842 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
843 printf("-> %" PRIu64 "\n", (uint64_t)p);
844 vmem_dump(vm);
845 if (p == VMEM_ADDR_NULL) {
846 break;
847 }
848 nreg++;
849 reg = realloc(reg, sizeof(*reg) * nreg);
850 r = ®[nreg - 1];
851 r->p = p;
852 r->sz = sz;
853 total += sz;
854 nalloc++;
855 } else if (nreg != 0) {
856 r = ®[rand() % nreg];
857 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
858 (uint64_t)r->p, (uint64_t)r->sz);
859 vmem_free(vm, r->p, r->sz);
860 total -= r->sz;
861 vmem_dump(vm);
862 *r = reg[nreg - 1];
863 nreg--;
864 nfree++;
865 }
866 printf("total=%" PRIu64 "\n", (uint64_t)total);
867 }
868 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
869 (uint64_t)total, nalloc, nfree);
870 exit(EXIT_SUCCESS);
871 }
872 #endif /* !defined(_KERNEL) */
873 #endif /* defined(VMEM_DEBUG) */
874