subr_vmem.c revision 1.22 1 /* $NetBSD: subr_vmem.c,v 1.22 2006/11/18 07:51:06 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.22 2006/11/18 07:51:06 yamt Exp $");
42
43 #define VMEM_DEBUG
44 #if defined(_KERNEL)
45 #define QCACHE
46 #endif /* defined(_KERNEL) */
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/queue.h>
51
52 #if defined(_KERNEL)
53 #include <sys/systm.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/once.h>
57 #include <sys/pool.h>
58 #include <sys/proc.h>
59 #include <sys/vmem.h>
60 #else /* defined(_KERNEL) */
61 #include "../sys/vmem.h"
62 #endif /* defined(_KERNEL) */
63
64 #if defined(_KERNEL)
65 #define SIMPLELOCK_DECL(name) struct simplelock name
66 #else /* defined(_KERNEL) */
67 #include <errno.h>
68 #include <assert.h>
69 #include <stdlib.h>
70
71 #define KASSERT(a) assert(a)
72 #define SIMPLELOCK_DECL(name) /* nothing */
73 #define LOCK_ASSERT(a) /* nothing */
74 #define simple_lock_init(a) /* nothing */
75 #define simple_lock(a) /* nothing */
76 #define simple_unlock(a) /* nothing */
77 #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
78 #endif /* defined(_KERNEL) */
79
80 struct vmem;
81 struct vmem_btag;
82
83 #if defined(VMEM_DEBUG)
84 void vmem_dump(const vmem_t *);
85 #endif /* defined(VMEM_DEBUG) */
86
87 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
88 #define VMEM_HASHSIZE_INIT 4096 /* XXX */
89
90 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
91
92 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
93 LIST_HEAD(vmem_freelist, vmem_btag);
94 LIST_HEAD(vmem_hashlist, vmem_btag);
95
96 #if defined(QCACHE)
97 #define VMEM_QCACHE_IDX_MAX 32
98
99 #define QC_NAME_MAX 16
100
101 struct qcache {
102 struct pool qc_pool;
103 struct pool_cache qc_cache;
104 vmem_t *qc_vmem;
105 char qc_name[QC_NAME_MAX];
106 };
107 typedef struct qcache qcache_t;
108 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
109 #endif /* defined(QCACHE) */
110
111 /* vmem arena */
112 struct vmem {
113 SIMPLELOCK_DECL(vm_lock);
114 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
115 vm_flag_t);
116 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
117 vmem_t *vm_source;
118 struct vmem_seglist vm_seglist;
119 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
120 size_t vm_hashsize;
121 size_t vm_nbusytag;
122 struct vmem_hashlist *vm_hashlist;
123 size_t vm_quantum_mask;
124 int vm_quantum_shift;
125 const char *vm_name;
126
127 #if defined(QCACHE)
128 /* quantum cache */
129 size_t vm_qcache_max;
130 struct pool_allocator vm_qcache_allocator;
131 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
132 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
133 #endif /* defined(QCACHE) */
134 };
135
136 #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
137 #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
138 #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
139 #define VMEM_ASSERT_LOCKED(vm) \
140 LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
141 #define VMEM_ASSERT_UNLOCKED(vm) \
142 LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
143
144 /* boundary tag */
145 struct vmem_btag {
146 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
147 union {
148 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
149 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
150 } bt_u;
151 #define bt_hashlist bt_u.u_hashlist
152 #define bt_freelist bt_u.u_freelist
153 vmem_addr_t bt_start;
154 vmem_size_t bt_size;
155 int bt_type;
156 };
157
158 #define BT_TYPE_SPAN 1
159 #define BT_TYPE_SPAN_STATIC 2
160 #define BT_TYPE_FREE 3
161 #define BT_TYPE_BUSY 4
162 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
163
164 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
165
166 typedef struct vmem_btag bt_t;
167
168 /* ---- misc */
169
170 #define VMEM_ALIGNUP(addr, align) \
171 (-(-(addr) & -(align)))
172 #define VMEM_CROSS_P(addr1, addr2, boundary) \
173 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
174
175 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
176
177 static int
178 calc_order(vmem_size_t size)
179 {
180 vmem_size_t target;
181 int i;
182
183 KASSERT(size != 0);
184
185 i = 0;
186 target = size >> 1;
187 while (ORDER2SIZE(i) <= target) {
188 i++;
189 }
190
191 KASSERT(ORDER2SIZE(i) <= size);
192 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
193
194 return i;
195 }
196
197 #if defined(_KERNEL)
198 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
199 #endif /* defined(_KERNEL) */
200
201 static void *
202 xmalloc(size_t sz, vm_flag_t flags)
203 {
204
205 #if defined(_KERNEL)
206 return malloc(sz, M_VMEM,
207 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
208 #else /* defined(_KERNEL) */
209 return malloc(sz);
210 #endif /* defined(_KERNEL) */
211 }
212
213 static void
214 xfree(void *p)
215 {
216
217 #if defined(_KERNEL)
218 return free(p, M_VMEM);
219 #else /* defined(_KERNEL) */
220 return free(p);
221 #endif /* defined(_KERNEL) */
222 }
223
224 /* ---- boundary tag */
225
226 #if defined(_KERNEL)
227 static struct pool_cache bt_poolcache;
228 static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
229 #endif /* defined(_KERNEL) */
230
231 static bt_t *
232 bt_alloc(vmem_t *vm, vm_flag_t flags)
233 {
234 bt_t *bt;
235
236 #if defined(_KERNEL)
237 int s;
238
239 /* XXX bootstrap */
240 s = splvm();
241 bt = pool_cache_get(&bt_poolcache,
242 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
243 splx(s);
244 #else /* defined(_KERNEL) */
245 bt = malloc(sizeof *bt);
246 #endif /* defined(_KERNEL) */
247
248 return bt;
249 }
250
251 static void
252 bt_free(vmem_t *vm, bt_t *bt)
253 {
254
255 #if defined(_KERNEL)
256 int s;
257
258 /* XXX bootstrap */
259 s = splvm();
260 pool_cache_put(&bt_poolcache, bt);
261 splx(s);
262 #else /* defined(_KERNEL) */
263 free(bt);
264 #endif /* defined(_KERNEL) */
265 }
266
267 /*
268 * freelist[0] ... [1, 1]
269 * freelist[1] ... [2, 3]
270 * freelist[2] ... [4, 7]
271 * freelist[3] ... [8, 15]
272 * :
273 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
274 * :
275 */
276
277 static struct vmem_freelist *
278 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
279 {
280 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
281 int idx;
282
283 KASSERT((size & vm->vm_quantum_mask) == 0);
284 KASSERT(size != 0);
285
286 idx = calc_order(qsize);
287 KASSERT(idx >= 0);
288 KASSERT(idx < VMEM_MAXORDER);
289
290 return &vm->vm_freelist[idx];
291 }
292
293 static struct vmem_freelist *
294 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
295 {
296 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
297 int idx;
298
299 KASSERT((size & vm->vm_quantum_mask) == 0);
300 KASSERT(size != 0);
301
302 idx = calc_order(qsize);
303 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
304 idx++;
305 /* check too large request? */
306 }
307 KASSERT(idx >= 0);
308 KASSERT(idx < VMEM_MAXORDER);
309
310 return &vm->vm_freelist[idx];
311 }
312
313 /* ---- boundary tag hash */
314
315 static struct vmem_hashlist *
316 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
317 {
318 struct vmem_hashlist *list;
319 unsigned int hash;
320
321 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
322 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
323
324 return list;
325 }
326
327 static bt_t *
328 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
329 {
330 struct vmem_hashlist *list;
331 bt_t *bt;
332
333 list = bt_hashhead(vm, addr);
334 LIST_FOREACH(bt, list, bt_hashlist) {
335 if (bt->bt_start == addr) {
336 break;
337 }
338 }
339
340 return bt;
341 }
342
343 static void
344 bt_rembusy(vmem_t *vm, bt_t *bt)
345 {
346
347 KASSERT(vm->vm_nbusytag > 0);
348 vm->vm_nbusytag--;
349 LIST_REMOVE(bt, bt_hashlist);
350 }
351
352 static void
353 bt_insbusy(vmem_t *vm, bt_t *bt)
354 {
355 struct vmem_hashlist *list;
356
357 KASSERT(bt->bt_type == BT_TYPE_BUSY);
358
359 list = bt_hashhead(vm, bt->bt_start);
360 LIST_INSERT_HEAD(list, bt, bt_hashlist);
361 vm->vm_nbusytag++;
362 }
363
364 /* ---- boundary tag list */
365
366 static void
367 bt_remseg(vmem_t *vm, bt_t *bt)
368 {
369
370 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
371 }
372
373 static void
374 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
375 {
376
377 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
378 }
379
380 static void
381 bt_insseg_tail(vmem_t *vm, bt_t *bt)
382 {
383
384 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
385 }
386
387 static void
388 bt_remfree(vmem_t *vm, bt_t *bt)
389 {
390
391 KASSERT(bt->bt_type == BT_TYPE_FREE);
392
393 LIST_REMOVE(bt, bt_freelist);
394 }
395
396 static void
397 bt_insfree(vmem_t *vm, bt_t *bt)
398 {
399 struct vmem_freelist *list;
400
401 list = bt_freehead_tofree(vm, bt->bt_size);
402 LIST_INSERT_HEAD(list, bt, bt_freelist);
403 }
404
405 /* ---- vmem internal functions */
406
407 #if defined(QCACHE)
408 static inline vm_flag_t
409 prf_to_vmf(int prflags)
410 {
411 vm_flag_t vmflags;
412
413 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
414 if ((prflags & PR_WAITOK) != 0) {
415 vmflags = VM_SLEEP;
416 } else {
417 vmflags = VM_NOSLEEP;
418 }
419 return vmflags;
420 }
421
422 static inline int
423 vmf_to_prf(vm_flag_t vmflags)
424 {
425 int prflags;
426
427 if ((vmflags & VM_SLEEP) != 0) {
428 prflags = PR_WAITOK;
429 } else {
430 prflags = PR_NOWAIT;
431 }
432 return prflags;
433 }
434
435 static size_t
436 qc_poolpage_size(size_t qcache_max)
437 {
438 int i;
439
440 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
441 /* nothing */
442 }
443 return ORDER2SIZE(i);
444 }
445
446 static void *
447 qc_poolpage_alloc(struct pool *pool, int prflags)
448 {
449 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
450 vmem_t *vm = qc->qc_vmem;
451
452 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
453 prf_to_vmf(prflags) | VM_INSTANTFIT);
454 }
455
456 static void
457 qc_poolpage_free(struct pool *pool, void *addr)
458 {
459 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
460 vmem_t *vm = qc->qc_vmem;
461
462 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
463 }
464
465 static void
466 qc_init(vmem_t *vm, size_t qcache_max)
467 {
468 qcache_t *prevqc;
469 struct pool_allocator *pa;
470 int qcache_idx_max;
471 int i;
472
473 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
474 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
475 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
476 }
477 vm->vm_qcache_max = qcache_max;
478 pa = &vm->vm_qcache_allocator;
479 memset(pa, 0, sizeof(*pa));
480 pa->pa_alloc = qc_poolpage_alloc;
481 pa->pa_free = qc_poolpage_free;
482 pa->pa_pagesz = qc_poolpage_size(qcache_max);
483
484 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
485 prevqc = NULL;
486 for (i = qcache_idx_max; i > 0; i--) {
487 qcache_t *qc = &vm->vm_qcache_store[i - 1];
488 size_t size = i << vm->vm_quantum_shift;
489
490 qc->qc_vmem = vm;
491 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
492 vm->vm_name, size);
493 pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
494 0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
495 if (prevqc != NULL &&
496 qc->qc_pool.pr_itemsperpage ==
497 prevqc->qc_pool.pr_itemsperpage) {
498 pool_destroy(&qc->qc_pool);
499 vm->vm_qcache[i - 1] = prevqc;
500 }
501 pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
502 vm->vm_qcache[i - 1] = qc;
503 prevqc = qc;
504 }
505 }
506
507 static boolean_t
508 qc_reap(vmem_t *vm)
509 {
510 const qcache_t *prevqc;
511 int i;
512 int qcache_idx_max;
513 boolean_t didsomething = FALSE;
514
515 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
516 prevqc = NULL;
517 for (i = 1; i <= qcache_idx_max; i++) {
518 qcache_t *qc = vm->vm_qcache[i - 1];
519
520 if (prevqc == qc) {
521 continue;
522 }
523 if (pool_reclaim(&qc->qc_pool) != 0) {
524 didsomething = TRUE;
525 }
526 prevqc = qc;
527 }
528
529 return didsomething;
530 }
531 #endif /* defined(QCACHE) */
532
533 #if defined(_KERNEL)
534 static int
535 vmem_init(void)
536 {
537
538 pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
539 return 0;
540 }
541 #endif /* defined(_KERNEL) */
542
543 static vmem_addr_t
544 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
545 int spanbttype)
546 {
547 bt_t *btspan;
548 bt_t *btfree;
549
550 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
551 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
552 VMEM_ASSERT_UNLOCKED(vm);
553
554 btspan = bt_alloc(vm, flags);
555 if (btspan == NULL) {
556 return VMEM_ADDR_NULL;
557 }
558 btfree = bt_alloc(vm, flags);
559 if (btfree == NULL) {
560 bt_free(vm, btspan);
561 return VMEM_ADDR_NULL;
562 }
563
564 btspan->bt_type = spanbttype;
565 btspan->bt_start = addr;
566 btspan->bt_size = size;
567
568 btfree->bt_type = BT_TYPE_FREE;
569 btfree->bt_start = addr;
570 btfree->bt_size = size;
571
572 VMEM_LOCK(vm);
573 bt_insseg_tail(vm, btspan);
574 bt_insseg(vm, btfree, btspan);
575 bt_insfree(vm, btfree);
576 VMEM_UNLOCK(vm);
577
578 return addr;
579 }
580
581 static int
582 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
583 {
584 vmem_addr_t addr;
585
586 VMEM_ASSERT_UNLOCKED(vm);
587
588 if (vm->vm_allocfn == NULL) {
589 return EINVAL;
590 }
591
592 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
593 if (addr == VMEM_ADDR_NULL) {
594 return ENOMEM;
595 }
596
597 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
598 (*vm->vm_freefn)(vm->vm_source, addr, size);
599 return ENOMEM;
600 }
601
602 return 0;
603 }
604
605 static int
606 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
607 {
608 bt_t *bt;
609 int i;
610 struct vmem_hashlist *newhashlist;
611 struct vmem_hashlist *oldhashlist;
612 size_t oldhashsize;
613
614 KASSERT(newhashsize > 0);
615 VMEM_ASSERT_UNLOCKED(vm);
616
617 newhashlist =
618 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
619 if (newhashlist == NULL) {
620 return ENOMEM;
621 }
622 for (i = 0; i < newhashsize; i++) {
623 LIST_INIT(&newhashlist[i]);
624 }
625
626 VMEM_LOCK(vm);
627 oldhashlist = vm->vm_hashlist;
628 oldhashsize = vm->vm_hashsize;
629 vm->vm_hashlist = newhashlist;
630 vm->vm_hashsize = newhashsize;
631 if (oldhashlist == NULL) {
632 VMEM_UNLOCK(vm);
633 return 0;
634 }
635 for (i = 0; i < oldhashsize; i++) {
636 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
637 bt_rembusy(vm, bt); /* XXX */
638 bt_insbusy(vm, bt);
639 }
640 }
641 VMEM_UNLOCK(vm);
642
643 xfree(oldhashlist);
644
645 return 0;
646 }
647
648 /*
649 * vmem_fit: check if a bt can satisfy the given restrictions.
650 */
651
652 static vmem_addr_t
653 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
654 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
655 {
656 vmem_addr_t start;
657 vmem_addr_t end;
658
659 KASSERT(bt->bt_size >= size);
660
661 /*
662 * XXX assumption: vmem_addr_t and vmem_size_t are
663 * unsigned integer of the same size.
664 */
665
666 start = bt->bt_start;
667 if (start < minaddr) {
668 start = minaddr;
669 }
670 end = BT_END(bt);
671 if (end > maxaddr - 1) {
672 end = maxaddr - 1;
673 }
674 if (start >= end) {
675 return VMEM_ADDR_NULL;
676 }
677
678 start = VMEM_ALIGNUP(start - phase, align) + phase;
679 if (start < bt->bt_start) {
680 start += align;
681 }
682 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
683 KASSERT(align < nocross);
684 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
685 }
686 if (start < end && end - start >= size) {
687 KASSERT((start & (align - 1)) == phase);
688 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
689 KASSERT(minaddr <= start);
690 KASSERT(maxaddr == 0 || start + size <= maxaddr);
691 KASSERT(bt->bt_start <= start);
692 KASSERT(start + size <= BT_END(bt));
693 return start;
694 }
695 return VMEM_ADDR_NULL;
696 }
697
698 /* ---- vmem API */
699
700 /*
701 * vmem_create: create an arena.
702 *
703 * => must not be called from interrupt context.
704 */
705
706 vmem_t *
707 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
708 vmem_size_t quantum,
709 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
710 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
711 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
712 {
713 vmem_t *vm;
714 int i;
715 #if defined(_KERNEL)
716 static ONCE_DECL(control);
717 #endif /* defined(_KERNEL) */
718
719 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
720 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
721
722 #if defined(_KERNEL)
723 if (RUN_ONCE(&control, vmem_init)) {
724 return NULL;
725 }
726 #endif /* defined(_KERNEL) */
727 vm = xmalloc(sizeof(*vm), flags);
728 if (vm == NULL) {
729 return NULL;
730 }
731
732 VMEM_LOCK_INIT(vm);
733 vm->vm_name = name;
734 vm->vm_quantum_mask = quantum - 1;
735 vm->vm_quantum_shift = calc_order(quantum);
736 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
737 vm->vm_allocfn = allocfn;
738 vm->vm_freefn = freefn;
739 vm->vm_source = source;
740 vm->vm_nbusytag = 0;
741 #if defined(QCACHE)
742 qc_init(vm, qcache_max);
743 #endif /* defined(QCACHE) */
744
745 CIRCLEQ_INIT(&vm->vm_seglist);
746 for (i = 0; i < VMEM_MAXORDER; i++) {
747 LIST_INIT(&vm->vm_freelist[i]);
748 }
749 vm->vm_hashlist = NULL;
750 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
751 vmem_destroy(vm);
752 return NULL;
753 }
754
755 if (size != 0) {
756 if (vmem_add(vm, base, size, flags) == 0) {
757 vmem_destroy(vm);
758 return NULL;
759 }
760 }
761
762 return vm;
763 }
764
765 void
766 vmem_destroy(vmem_t *vm)
767 {
768
769 VMEM_ASSERT_UNLOCKED(vm);
770
771 if (vm->vm_hashlist != NULL) {
772 int i;
773
774 for (i = 0; i < vm->vm_hashsize; i++) {
775 bt_t *bt;
776
777 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
778 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
779 bt_free(vm, bt);
780 }
781 }
782 xfree(vm->vm_hashlist);
783 }
784 xfree(vm);
785 }
786
787 vmem_size_t
788 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
789 {
790
791 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
792 }
793
794 /*
795 * vmem_alloc:
796 *
797 * => caller must ensure appropriate spl,
798 * if the arena can be accessed from interrupt context.
799 */
800
801 vmem_addr_t
802 vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
803 {
804 const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
805 const vm_flag_t strat __unused = flags & VM_FITMASK;
806
807 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
808 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
809 VMEM_ASSERT_UNLOCKED(vm);
810
811 KASSERT(size0 > 0);
812 KASSERT(size > 0);
813 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
814 if ((flags & VM_SLEEP) != 0) {
815 ASSERT_SLEEPABLE(NULL, __func__);
816 }
817
818 #if defined(QCACHE)
819 if (size <= vm->vm_qcache_max) {
820 int qidx = size >> vm->vm_quantum_shift;
821 qcache_t *qc = vm->vm_qcache[qidx - 1];
822
823 return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
824 vmf_to_prf(flags));
825 }
826 #endif /* defined(QCACHE) */
827
828 return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
829 }
830
831 vmem_addr_t
832 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
833 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
834 vm_flag_t flags)
835 {
836 struct vmem_freelist *list;
837 struct vmem_freelist *first;
838 struct vmem_freelist *end;
839 bt_t *bt;
840 bt_t *btnew;
841 bt_t *btnew2;
842 const vmem_size_t size = vmem_roundup_size(vm, size0);
843 vm_flag_t strat = flags & VM_FITMASK;
844 vmem_addr_t start;
845
846 KASSERT(size0 > 0);
847 KASSERT(size > 0);
848 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
849 if ((flags & VM_SLEEP) != 0) {
850 ASSERT_SLEEPABLE(NULL, __func__);
851 }
852 KASSERT((align & vm->vm_quantum_mask) == 0);
853 KASSERT((align & (align - 1)) == 0);
854 KASSERT((phase & vm->vm_quantum_mask) == 0);
855 KASSERT((nocross & vm->vm_quantum_mask) == 0);
856 KASSERT((nocross & (nocross - 1)) == 0);
857 KASSERT((align == 0 && phase == 0) || phase < align);
858 KASSERT(nocross == 0 || nocross >= size);
859 KASSERT(maxaddr == 0 || minaddr < maxaddr);
860 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
861
862 if (align == 0) {
863 align = vm->vm_quantum_mask + 1;
864 }
865 btnew = bt_alloc(vm, flags);
866 if (btnew == NULL) {
867 return VMEM_ADDR_NULL;
868 }
869 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
870 if (btnew2 == NULL) {
871 bt_free(vm, btnew);
872 return VMEM_ADDR_NULL;
873 }
874
875 retry_strat:
876 first = bt_freehead_toalloc(vm, size, strat);
877 end = &vm->vm_freelist[VMEM_MAXORDER];
878 retry:
879 bt = NULL;
880 VMEM_LOCK(vm);
881 if (strat == VM_INSTANTFIT) {
882 for (list = first; list < end; list++) {
883 bt = LIST_FIRST(list);
884 if (bt != NULL) {
885 start = vmem_fit(bt, size, align, phase,
886 nocross, minaddr, maxaddr);
887 if (start != VMEM_ADDR_NULL) {
888 goto gotit;
889 }
890 }
891 }
892 } else { /* VM_BESTFIT */
893 for (list = first; list < end; list++) {
894 LIST_FOREACH(bt, list, bt_freelist) {
895 if (bt->bt_size >= size) {
896 start = vmem_fit(bt, size, align, phase,
897 nocross, minaddr, maxaddr);
898 if (start != VMEM_ADDR_NULL) {
899 goto gotit;
900 }
901 }
902 }
903 }
904 }
905 VMEM_UNLOCK(vm);
906 #if 1
907 if (strat == VM_INSTANTFIT) {
908 strat = VM_BESTFIT;
909 goto retry_strat;
910 }
911 #endif
912 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
913 nocross != 0 || minaddr != 0 || maxaddr != 0) {
914
915 /*
916 * XXX should try to import a region large enough to
917 * satisfy restrictions?
918 */
919
920 goto fail;
921 }
922 if (vmem_import(vm, size, flags) == 0) {
923 goto retry;
924 }
925 /* XXX */
926 fail:
927 bt_free(vm, btnew);
928 bt_free(vm, btnew2);
929 return VMEM_ADDR_NULL;
930
931 gotit:
932 KASSERT(bt->bt_type == BT_TYPE_FREE);
933 KASSERT(bt->bt_size >= size);
934 bt_remfree(vm, bt);
935 if (bt->bt_start != start) {
936 btnew2->bt_type = BT_TYPE_FREE;
937 btnew2->bt_start = bt->bt_start;
938 btnew2->bt_size = start - bt->bt_start;
939 bt->bt_start = start;
940 bt->bt_size -= btnew2->bt_size;
941 bt_insfree(vm, btnew2);
942 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
943 btnew2 = NULL;
944 }
945 KASSERT(bt->bt_start == start);
946 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
947 /* split */
948 btnew->bt_type = BT_TYPE_BUSY;
949 btnew->bt_start = bt->bt_start;
950 btnew->bt_size = size;
951 bt->bt_start = bt->bt_start + size;
952 bt->bt_size -= size;
953 bt_insfree(vm, bt);
954 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
955 bt_insbusy(vm, btnew);
956 VMEM_UNLOCK(vm);
957 } else {
958 bt->bt_type = BT_TYPE_BUSY;
959 bt_insbusy(vm, bt);
960 VMEM_UNLOCK(vm);
961 bt_free(vm, btnew);
962 btnew = bt;
963 }
964 if (btnew2 != NULL) {
965 bt_free(vm, btnew2);
966 }
967 KASSERT(btnew->bt_size >= size);
968 btnew->bt_type = BT_TYPE_BUSY;
969
970 return btnew->bt_start;
971 }
972
973 /*
974 * vmem_free:
975 *
976 * => caller must ensure appropriate spl,
977 * if the arena can be accessed from interrupt context.
978 */
979
980 void
981 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
982 {
983
984 VMEM_ASSERT_UNLOCKED(vm);
985 KASSERT(addr != VMEM_ADDR_NULL);
986 KASSERT(size > 0);
987
988 #if defined(QCACHE)
989 if (size <= vm->vm_qcache_max) {
990 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
991 qcache_t *qc = vm->vm_qcache[qidx - 1];
992
993 return pool_cache_put(&qc->qc_cache, (void *)addr);
994 }
995 #endif /* defined(QCACHE) */
996
997 vmem_xfree(vm, addr, size);
998 }
999
1000 void
1001 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1002 {
1003 bt_t *bt;
1004 bt_t *t;
1005
1006 VMEM_ASSERT_UNLOCKED(vm);
1007 KASSERT(addr != VMEM_ADDR_NULL);
1008 KASSERT(size > 0);
1009
1010 VMEM_LOCK(vm);
1011
1012 bt = bt_lookupbusy(vm, addr);
1013 KASSERT(bt != NULL);
1014 KASSERT(bt->bt_start == addr);
1015 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1016 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1017 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1018 bt_rembusy(vm, bt);
1019 bt->bt_type = BT_TYPE_FREE;
1020
1021 /* coalesce */
1022 t = CIRCLEQ_NEXT(bt, bt_seglist);
1023 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1024 KASSERT(BT_END(bt) == t->bt_start);
1025 bt_remfree(vm, t);
1026 bt_remseg(vm, t);
1027 bt->bt_size += t->bt_size;
1028 bt_free(vm, t);
1029 }
1030 t = CIRCLEQ_PREV(bt, bt_seglist);
1031 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1032 KASSERT(BT_END(t) == bt->bt_start);
1033 bt_remfree(vm, t);
1034 bt_remseg(vm, t);
1035 bt->bt_size += t->bt_size;
1036 bt->bt_start = t->bt_start;
1037 bt_free(vm, t);
1038 }
1039
1040 t = CIRCLEQ_PREV(bt, bt_seglist);
1041 KASSERT(t != NULL);
1042 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1043 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1044 t->bt_size == bt->bt_size) {
1045 vmem_addr_t spanaddr;
1046 vmem_size_t spansize;
1047
1048 KASSERT(t->bt_start == bt->bt_start);
1049 spanaddr = bt->bt_start;
1050 spansize = bt->bt_size;
1051 bt_remseg(vm, bt);
1052 bt_free(vm, bt);
1053 bt_remseg(vm, t);
1054 bt_free(vm, t);
1055 VMEM_UNLOCK(vm);
1056 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1057 } else {
1058 bt_insfree(vm, bt);
1059 VMEM_UNLOCK(vm);
1060 }
1061 }
1062
1063 /*
1064 * vmem_add:
1065 *
1066 * => caller must ensure appropriate spl,
1067 * if the arena can be accessed from interrupt context.
1068 */
1069
1070 vmem_addr_t
1071 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1072 {
1073
1074 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1075 }
1076
1077 /*
1078 * vmem_reap: reap unused resources.
1079 *
1080 * => return TRUE if we successfully reaped something.
1081 */
1082
1083 boolean_t
1084 vmem_reap(vmem_t *vm)
1085 {
1086 boolean_t didsomething = FALSE;
1087
1088 VMEM_ASSERT_UNLOCKED(vm);
1089
1090 #if defined(QCACHE)
1091 didsomething = qc_reap(vm);
1092 #endif /* defined(QCACHE) */
1093 return didsomething;
1094 }
1095
1096 /* ---- debug */
1097
1098 #if defined(VMEM_DEBUG)
1099
1100 #if !defined(_KERNEL)
1101 #include <stdio.h>
1102 #endif /* !defined(_KERNEL) */
1103
1104 void bt_dump(const bt_t *);
1105
1106 void
1107 bt_dump(const bt_t *bt)
1108 {
1109
1110 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1111 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1112 bt->bt_type);
1113 }
1114
1115 void
1116 vmem_dump(const vmem_t *vm)
1117 {
1118 const bt_t *bt;
1119 int i;
1120
1121 printf("vmem %p '%s'\n", vm, vm->vm_name);
1122 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1123 bt_dump(bt);
1124 }
1125
1126 for (i = 0; i < VMEM_MAXORDER; i++) {
1127 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1128
1129 if (LIST_EMPTY(fl)) {
1130 continue;
1131 }
1132
1133 printf("freelist[%d]\n", i);
1134 LIST_FOREACH(bt, fl, bt_freelist) {
1135 bt_dump(bt);
1136 if (bt->bt_size) {
1137 }
1138 }
1139 }
1140 }
1141
1142 #if !defined(_KERNEL)
1143
1144 #include <stdlib.h>
1145
1146 int
1147 main()
1148 {
1149 vmem_t *vm;
1150 vmem_addr_t p;
1151 struct reg {
1152 vmem_addr_t p;
1153 vmem_size_t sz;
1154 boolean_t x;
1155 } *reg = NULL;
1156 int nreg = 0;
1157 int nalloc = 0;
1158 int nfree = 0;
1159 vmem_size_t total = 0;
1160 #if 1
1161 vm_flag_t strat = VM_INSTANTFIT;
1162 #else
1163 vm_flag_t strat = VM_BESTFIT;
1164 #endif
1165
1166 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1167 NULL, NULL, NULL, 0, VM_NOSLEEP);
1168 if (vm == NULL) {
1169 printf("vmem_create\n");
1170 exit(EXIT_FAILURE);
1171 }
1172 vmem_dump(vm);
1173
1174 p = vmem_add(vm, 100, 200, VM_SLEEP);
1175 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1176 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1177 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1178 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1179 vmem_dump(vm);
1180 for (;;) {
1181 struct reg *r;
1182 int t = rand() % 100;
1183
1184 if (t > 45) {
1185 /* alloc */
1186 vmem_size_t sz = rand() % 500 + 1;
1187 boolean_t x;
1188 vmem_size_t align, phase, nocross;
1189 vmem_addr_t minaddr, maxaddr;
1190
1191 if (t > 70) {
1192 x = TRUE;
1193 /* XXX */
1194 align = 1 << (rand() % 15);
1195 phase = rand() % 65536;
1196 nocross = 1 << (rand() % 15);
1197 if (align <= phase) {
1198 phase = 0;
1199 }
1200 if (VMEM_CROSS_P(phase, phase + sz - 1,
1201 nocross)) {
1202 nocross = 0;
1203 }
1204 minaddr = rand() % 50000;
1205 maxaddr = rand() % 70000;
1206 if (minaddr > maxaddr) {
1207 minaddr = 0;
1208 maxaddr = 0;
1209 }
1210 printf("=== xalloc %" PRIu64
1211 " align=%" PRIu64 ", phase=%" PRIu64
1212 ", nocross=%" PRIu64 ", min=%" PRIu64
1213 ", max=%" PRIu64 "\n",
1214 (uint64_t)sz,
1215 (uint64_t)align,
1216 (uint64_t)phase,
1217 (uint64_t)nocross,
1218 (uint64_t)minaddr,
1219 (uint64_t)maxaddr);
1220 p = vmem_xalloc(vm, sz, align, phase, nocross,
1221 minaddr, maxaddr, strat|VM_SLEEP);
1222 } else {
1223 x = FALSE;
1224 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1225 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1226 }
1227 printf("-> %" PRIu64 "\n", (uint64_t)p);
1228 vmem_dump(vm);
1229 if (p == VMEM_ADDR_NULL) {
1230 if (x) {
1231 continue;
1232 }
1233 break;
1234 }
1235 nreg++;
1236 reg = realloc(reg, sizeof(*reg) * nreg);
1237 r = ®[nreg - 1];
1238 r->p = p;
1239 r->sz = sz;
1240 r->x = x;
1241 total += sz;
1242 nalloc++;
1243 } else if (nreg != 0) {
1244 /* free */
1245 r = ®[rand() % nreg];
1246 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1247 (uint64_t)r->p, (uint64_t)r->sz);
1248 if (r->x) {
1249 vmem_xfree(vm, r->p, r->sz);
1250 } else {
1251 vmem_free(vm, r->p, r->sz);
1252 }
1253 total -= r->sz;
1254 vmem_dump(vm);
1255 *r = reg[nreg - 1];
1256 nreg--;
1257 nfree++;
1258 }
1259 printf("total=%" PRIu64 "\n", (uint64_t)total);
1260 }
1261 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1262 (uint64_t)total, nalloc, nfree);
1263 exit(EXIT_SUCCESS);
1264 }
1265 #endif /* !defined(_KERNEL) */
1266 #endif /* defined(VMEM_DEBUG) */
1267