subr_vmem.c revision 1.27 1 /* $NetBSD: subr_vmem.c,v 1.27 2007/03/10 15:54:14 ad Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.27 2007/03/10 15:54:14 ad Exp $");
42
43 #define VMEM_DEBUG
44 #if defined(_KERNEL)
45 #define QCACHE
46 #endif /* defined(_KERNEL) */
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/queue.h>
51
52 #if defined(_KERNEL)
53 #include <sys/systm.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/once.h>
57 #include <sys/pool.h>
58 #include <sys/proc.h>
59 #include <sys/vmem.h>
60 #else /* defined(_KERNEL) */
61 #include "../sys/vmem.h"
62 #endif /* defined(_KERNEL) */
63
64 #if defined(_KERNEL)
65 #define SIMPLELOCK_DECL(name) struct simplelock name
66 #else /* defined(_KERNEL) */
67 #include <errno.h>
68 #include <assert.h>
69 #include <stdlib.h>
70
71 #define KASSERT(a) assert(a)
72 #define SIMPLELOCK_DECL(name) /* nothing */
73 #define LOCK_ASSERT(a) /* nothing */
74 #define simple_lock_init(a) /* nothing */
75 #define simple_lock(a) /* nothing */
76 #define simple_unlock(a) /* nothing */
77 #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
78 #endif /* defined(_KERNEL) */
79
80 struct vmem;
81 struct vmem_btag;
82
83 #if defined(VMEM_DEBUG)
84 void vmem_dump(const vmem_t *);
85 #endif /* defined(VMEM_DEBUG) */
86
87 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
88 #define VMEM_HASHSIZE_INIT 4096 /* XXX */
89
90 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
91
92 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
93 LIST_HEAD(vmem_freelist, vmem_btag);
94 LIST_HEAD(vmem_hashlist, vmem_btag);
95
96 #if defined(QCACHE)
97 #define VMEM_QCACHE_IDX_MAX 32
98
99 #define QC_NAME_MAX 16
100
101 struct qcache {
102 struct pool qc_pool;
103 struct pool_cache qc_cache;
104 vmem_t *qc_vmem;
105 char qc_name[QC_NAME_MAX];
106 };
107 typedef struct qcache qcache_t;
108 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
109 #endif /* defined(QCACHE) */
110
111 /* vmem arena */
112 struct vmem {
113 SIMPLELOCK_DECL(vm_lock);
114 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
115 vm_flag_t);
116 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
117 vmem_t *vm_source;
118 struct vmem_seglist vm_seglist;
119 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
120 size_t vm_hashsize;
121 size_t vm_nbusytag;
122 struct vmem_hashlist *vm_hashlist;
123 size_t vm_quantum_mask;
124 int vm_quantum_shift;
125 const char *vm_name;
126
127 #if defined(QCACHE)
128 /* quantum cache */
129 size_t vm_qcache_max;
130 struct pool_allocator vm_qcache_allocator;
131 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
132 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
133 #endif /* defined(QCACHE) */
134 };
135
136 #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
137 #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
138 #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
139 #define VMEM_ASSERT_LOCKED(vm) \
140 LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
141 #define VMEM_ASSERT_UNLOCKED(vm) \
142 LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
143
144 /* boundary tag */
145 struct vmem_btag {
146 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
147 union {
148 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
149 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
150 } bt_u;
151 #define bt_hashlist bt_u.u_hashlist
152 #define bt_freelist bt_u.u_freelist
153 vmem_addr_t bt_start;
154 vmem_size_t bt_size;
155 int bt_type;
156 };
157
158 #define BT_TYPE_SPAN 1
159 #define BT_TYPE_SPAN_STATIC 2
160 #define BT_TYPE_FREE 3
161 #define BT_TYPE_BUSY 4
162 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
163
164 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
165
166 typedef struct vmem_btag bt_t;
167
168 /* ---- misc */
169
170 #define VMEM_ALIGNUP(addr, align) \
171 (-(-(addr) & -(align)))
172 #define VMEM_CROSS_P(addr1, addr2, boundary) \
173 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
174
175 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
176
177 static int
178 calc_order(vmem_size_t size)
179 {
180 vmem_size_t target;
181 int i;
182
183 KASSERT(size != 0);
184
185 i = 0;
186 target = size >> 1;
187 while (ORDER2SIZE(i) <= target) {
188 i++;
189 }
190
191 KASSERT(ORDER2SIZE(i) <= size);
192 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
193
194 return i;
195 }
196
197 #if defined(_KERNEL)
198 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
199 #endif /* defined(_KERNEL) */
200
201 static void *
202 xmalloc(size_t sz, vm_flag_t flags)
203 {
204
205 #if defined(_KERNEL)
206 return malloc(sz, M_VMEM,
207 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
208 #else /* defined(_KERNEL) */
209 return malloc(sz);
210 #endif /* defined(_KERNEL) */
211 }
212
213 static void
214 xfree(void *p)
215 {
216
217 #if defined(_KERNEL)
218 return free(p, M_VMEM);
219 #else /* defined(_KERNEL) */
220 return free(p);
221 #endif /* defined(_KERNEL) */
222 }
223
224 /* ---- boundary tag */
225
226 #if defined(_KERNEL)
227 static struct pool_cache bt_poolcache;
228 static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
229 #endif /* defined(_KERNEL) */
230
231 static bt_t *
232 bt_alloc(vmem_t *vm, vm_flag_t flags)
233 {
234 bt_t *bt;
235
236 #if defined(_KERNEL)
237 int s;
238
239 /* XXX bootstrap */
240 s = splvm();
241 bt = pool_cache_get(&bt_poolcache,
242 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
243 splx(s);
244 #else /* defined(_KERNEL) */
245 bt = malloc(sizeof *bt);
246 #endif /* defined(_KERNEL) */
247
248 return bt;
249 }
250
251 static void
252 bt_free(vmem_t *vm, bt_t *bt)
253 {
254
255 #if defined(_KERNEL)
256 int s;
257
258 /* XXX bootstrap */
259 s = splvm();
260 pool_cache_put(&bt_poolcache, bt);
261 splx(s);
262 #else /* defined(_KERNEL) */
263 free(bt);
264 #endif /* defined(_KERNEL) */
265 }
266
267 /*
268 * freelist[0] ... [1, 1]
269 * freelist[1] ... [2, 3]
270 * freelist[2] ... [4, 7]
271 * freelist[3] ... [8, 15]
272 * :
273 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
274 * :
275 */
276
277 static struct vmem_freelist *
278 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
279 {
280 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
281 int idx;
282
283 KASSERT((size & vm->vm_quantum_mask) == 0);
284 KASSERT(size != 0);
285
286 idx = calc_order(qsize);
287 KASSERT(idx >= 0);
288 KASSERT(idx < VMEM_MAXORDER);
289
290 return &vm->vm_freelist[idx];
291 }
292
293 static struct vmem_freelist *
294 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
295 {
296 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
297 int idx;
298
299 KASSERT((size & vm->vm_quantum_mask) == 0);
300 KASSERT(size != 0);
301
302 idx = calc_order(qsize);
303 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
304 idx++;
305 /* check too large request? */
306 }
307 KASSERT(idx >= 0);
308 KASSERT(idx < VMEM_MAXORDER);
309
310 return &vm->vm_freelist[idx];
311 }
312
313 /* ---- boundary tag hash */
314
315 static struct vmem_hashlist *
316 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
317 {
318 struct vmem_hashlist *list;
319 unsigned int hash;
320
321 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
322 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
323
324 return list;
325 }
326
327 static bt_t *
328 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
329 {
330 struct vmem_hashlist *list;
331 bt_t *bt;
332
333 list = bt_hashhead(vm, addr);
334 LIST_FOREACH(bt, list, bt_hashlist) {
335 if (bt->bt_start == addr) {
336 break;
337 }
338 }
339
340 return bt;
341 }
342
343 static void
344 bt_rembusy(vmem_t *vm, bt_t *bt)
345 {
346
347 KASSERT(vm->vm_nbusytag > 0);
348 vm->vm_nbusytag--;
349 LIST_REMOVE(bt, bt_hashlist);
350 }
351
352 static void
353 bt_insbusy(vmem_t *vm, bt_t *bt)
354 {
355 struct vmem_hashlist *list;
356
357 KASSERT(bt->bt_type == BT_TYPE_BUSY);
358
359 list = bt_hashhead(vm, bt->bt_start);
360 LIST_INSERT_HEAD(list, bt, bt_hashlist);
361 vm->vm_nbusytag++;
362 }
363
364 /* ---- boundary tag list */
365
366 static void
367 bt_remseg(vmem_t *vm, bt_t *bt)
368 {
369
370 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
371 }
372
373 static void
374 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
375 {
376
377 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
378 }
379
380 static void
381 bt_insseg_tail(vmem_t *vm, bt_t *bt)
382 {
383
384 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
385 }
386
387 static void
388 bt_remfree(vmem_t *vm, bt_t *bt)
389 {
390
391 KASSERT(bt->bt_type == BT_TYPE_FREE);
392
393 LIST_REMOVE(bt, bt_freelist);
394 }
395
396 static void
397 bt_insfree(vmem_t *vm, bt_t *bt)
398 {
399 struct vmem_freelist *list;
400
401 list = bt_freehead_tofree(vm, bt->bt_size);
402 LIST_INSERT_HEAD(list, bt, bt_freelist);
403 }
404
405 /* ---- vmem internal functions */
406
407 #if defined(QCACHE)
408 static inline vm_flag_t
409 prf_to_vmf(int prflags)
410 {
411 vm_flag_t vmflags;
412
413 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
414 if ((prflags & PR_WAITOK) != 0) {
415 vmflags = VM_SLEEP;
416 } else {
417 vmflags = VM_NOSLEEP;
418 }
419 return vmflags;
420 }
421
422 static inline int
423 vmf_to_prf(vm_flag_t vmflags)
424 {
425 int prflags;
426
427 if ((vmflags & VM_SLEEP) != 0) {
428 prflags = PR_WAITOK;
429 } else {
430 prflags = PR_NOWAIT;
431 }
432 return prflags;
433 }
434
435 static size_t
436 qc_poolpage_size(size_t qcache_max)
437 {
438 int i;
439
440 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
441 /* nothing */
442 }
443 return ORDER2SIZE(i);
444 }
445
446 static void *
447 qc_poolpage_alloc(struct pool *pool, int prflags)
448 {
449 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
450 vmem_t *vm = qc->qc_vmem;
451
452 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
453 prf_to_vmf(prflags) | VM_INSTANTFIT);
454 }
455
456 static void
457 qc_poolpage_free(struct pool *pool, void *addr)
458 {
459 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
460 vmem_t *vm = qc->qc_vmem;
461
462 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
463 }
464
465 static void
466 qc_init(vmem_t *vm, size_t qcache_max)
467 {
468 qcache_t *prevqc;
469 struct pool_allocator *pa;
470 int qcache_idx_max;
471 int i;
472
473 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
474 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
475 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
476 }
477 vm->vm_qcache_max = qcache_max;
478 pa = &vm->vm_qcache_allocator;
479 memset(pa, 0, sizeof(*pa));
480 pa->pa_alloc = qc_poolpage_alloc;
481 pa->pa_free = qc_poolpage_free;
482 pa->pa_pagesz = qc_poolpage_size(qcache_max);
483
484 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
485 prevqc = NULL;
486 for (i = qcache_idx_max; i > 0; i--) {
487 qcache_t *qc = &vm->vm_qcache_store[i - 1];
488 size_t size = i << vm->vm_quantum_shift;
489
490 qc->qc_vmem = vm;
491 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
492 vm->vm_name, size);
493 pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
494 0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
495 if (prevqc != NULL &&
496 qc->qc_pool.pr_itemsperpage ==
497 prevqc->qc_pool.pr_itemsperpage) {
498 pool_destroy(&qc->qc_pool);
499 vm->vm_qcache[i - 1] = prevqc;
500 continue;
501 }
502 pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
503 vm->vm_qcache[i - 1] = qc;
504 prevqc = qc;
505 }
506 }
507
508 static void
509 qc_destroy(vmem_t *vm)
510 {
511 const qcache_t *prevqc;
512 int i;
513 int qcache_idx_max;
514
515 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
516 prevqc = NULL;
517 for (i = 0; i < qcache_idx_max; i++) {
518 qcache_t *qc = vm->vm_qcache[i];
519
520 if (prevqc == qc) {
521 continue;
522 }
523 pool_cache_destroy(&qc->qc_cache);
524 pool_destroy(&qc->qc_pool);
525 prevqc = qc;
526 }
527 }
528
529 static bool
530 qc_reap(vmem_t *vm)
531 {
532 const qcache_t *prevqc;
533 int i;
534 int qcache_idx_max;
535 bool didsomething = false;
536
537 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
538 prevqc = NULL;
539 for (i = 0; i < qcache_idx_max; i++) {
540 qcache_t *qc = vm->vm_qcache[i];
541
542 if (prevqc == qc) {
543 continue;
544 }
545 if (pool_reclaim(&qc->qc_pool) != 0) {
546 didsomething = true;
547 }
548 prevqc = qc;
549 }
550
551 return didsomething;
552 }
553 #endif /* defined(QCACHE) */
554
555 #if defined(_KERNEL)
556 static int
557 vmem_init(void)
558 {
559
560 pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
561 return 0;
562 }
563 #endif /* defined(_KERNEL) */
564
565 static vmem_addr_t
566 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
567 int spanbttype)
568 {
569 bt_t *btspan;
570 bt_t *btfree;
571
572 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
573 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
574 VMEM_ASSERT_UNLOCKED(vm);
575
576 btspan = bt_alloc(vm, flags);
577 if (btspan == NULL) {
578 return VMEM_ADDR_NULL;
579 }
580 btfree = bt_alloc(vm, flags);
581 if (btfree == NULL) {
582 bt_free(vm, btspan);
583 return VMEM_ADDR_NULL;
584 }
585
586 btspan->bt_type = spanbttype;
587 btspan->bt_start = addr;
588 btspan->bt_size = size;
589
590 btfree->bt_type = BT_TYPE_FREE;
591 btfree->bt_start = addr;
592 btfree->bt_size = size;
593
594 VMEM_LOCK(vm);
595 bt_insseg_tail(vm, btspan);
596 bt_insseg(vm, btfree, btspan);
597 bt_insfree(vm, btfree);
598 VMEM_UNLOCK(vm);
599
600 return addr;
601 }
602
603 static int
604 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
605 {
606 vmem_addr_t addr;
607
608 VMEM_ASSERT_UNLOCKED(vm);
609
610 if (vm->vm_allocfn == NULL) {
611 return EINVAL;
612 }
613
614 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
615 if (addr == VMEM_ADDR_NULL) {
616 return ENOMEM;
617 }
618
619 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
620 (*vm->vm_freefn)(vm->vm_source, addr, size);
621 return ENOMEM;
622 }
623
624 return 0;
625 }
626
627 static int
628 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
629 {
630 bt_t *bt;
631 int i;
632 struct vmem_hashlist *newhashlist;
633 struct vmem_hashlist *oldhashlist;
634 size_t oldhashsize;
635
636 KASSERT(newhashsize > 0);
637 VMEM_ASSERT_UNLOCKED(vm);
638
639 newhashlist =
640 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
641 if (newhashlist == NULL) {
642 return ENOMEM;
643 }
644 for (i = 0; i < newhashsize; i++) {
645 LIST_INIT(&newhashlist[i]);
646 }
647
648 VMEM_LOCK(vm);
649 oldhashlist = vm->vm_hashlist;
650 oldhashsize = vm->vm_hashsize;
651 vm->vm_hashlist = newhashlist;
652 vm->vm_hashsize = newhashsize;
653 if (oldhashlist == NULL) {
654 VMEM_UNLOCK(vm);
655 return 0;
656 }
657 for (i = 0; i < oldhashsize; i++) {
658 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
659 bt_rembusy(vm, bt); /* XXX */
660 bt_insbusy(vm, bt);
661 }
662 }
663 VMEM_UNLOCK(vm);
664
665 xfree(oldhashlist);
666
667 return 0;
668 }
669
670 /*
671 * vmem_fit: check if a bt can satisfy the given restrictions.
672 */
673
674 static vmem_addr_t
675 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
676 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
677 {
678 vmem_addr_t start;
679 vmem_addr_t end;
680
681 KASSERT(bt->bt_size >= size);
682
683 /*
684 * XXX assumption: vmem_addr_t and vmem_size_t are
685 * unsigned integer of the same size.
686 */
687
688 start = bt->bt_start;
689 if (start < minaddr) {
690 start = minaddr;
691 }
692 end = BT_END(bt);
693 if (end > maxaddr - 1) {
694 end = maxaddr - 1;
695 }
696 if (start >= end) {
697 return VMEM_ADDR_NULL;
698 }
699
700 start = VMEM_ALIGNUP(start - phase, align) + phase;
701 if (start < bt->bt_start) {
702 start += align;
703 }
704 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
705 KASSERT(align < nocross);
706 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
707 }
708 if (start < end && end - start >= size) {
709 KASSERT((start & (align - 1)) == phase);
710 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
711 KASSERT(minaddr <= start);
712 KASSERT(maxaddr == 0 || start + size <= maxaddr);
713 KASSERT(bt->bt_start <= start);
714 KASSERT(start + size <= BT_END(bt));
715 return start;
716 }
717 return VMEM_ADDR_NULL;
718 }
719
720 /* ---- vmem API */
721
722 /*
723 * vmem_create: create an arena.
724 *
725 * => must not be called from interrupt context.
726 */
727
728 vmem_t *
729 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
730 vmem_size_t quantum,
731 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
732 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
733 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
734 {
735 vmem_t *vm;
736 int i;
737 #if defined(_KERNEL)
738 static ONCE_DECL(control);
739 #endif /* defined(_KERNEL) */
740
741 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
742 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
743
744 #if defined(_KERNEL)
745 if (RUN_ONCE(&control, vmem_init)) {
746 return NULL;
747 }
748 #endif /* defined(_KERNEL) */
749 vm = xmalloc(sizeof(*vm), flags);
750 if (vm == NULL) {
751 return NULL;
752 }
753
754 VMEM_LOCK_INIT(vm);
755 vm->vm_name = name;
756 vm->vm_quantum_mask = quantum - 1;
757 vm->vm_quantum_shift = calc_order(quantum);
758 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
759 vm->vm_allocfn = allocfn;
760 vm->vm_freefn = freefn;
761 vm->vm_source = source;
762 vm->vm_nbusytag = 0;
763 #if defined(QCACHE)
764 qc_init(vm, qcache_max);
765 #endif /* defined(QCACHE) */
766
767 CIRCLEQ_INIT(&vm->vm_seglist);
768 for (i = 0; i < VMEM_MAXORDER; i++) {
769 LIST_INIT(&vm->vm_freelist[i]);
770 }
771 vm->vm_hashlist = NULL;
772 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
773 vmem_destroy(vm);
774 return NULL;
775 }
776
777 if (size != 0) {
778 if (vmem_add(vm, base, size, flags) == 0) {
779 vmem_destroy(vm);
780 return NULL;
781 }
782 }
783
784 return vm;
785 }
786
787 void
788 vmem_destroy(vmem_t *vm)
789 {
790
791 VMEM_ASSERT_UNLOCKED(vm);
792
793 #if defined(QCACHE)
794 qc_destroy(vm);
795 #endif /* defined(QCACHE) */
796 if (vm->vm_hashlist != NULL) {
797 int i;
798
799 for (i = 0; i < vm->vm_hashsize; i++) {
800 bt_t *bt;
801
802 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
803 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
804 bt_free(vm, bt);
805 }
806 }
807 xfree(vm->vm_hashlist);
808 }
809 xfree(vm);
810 }
811
812 vmem_size_t
813 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
814 {
815
816 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
817 }
818
819 /*
820 * vmem_alloc:
821 *
822 * => caller must ensure appropriate spl,
823 * if the arena can be accessed from interrupt context.
824 */
825
826 vmem_addr_t
827 vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
828 {
829 const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
830 const vm_flag_t strat __unused = flags & VM_FITMASK;
831
832 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
833 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
834 VMEM_ASSERT_UNLOCKED(vm);
835
836 KASSERT(size0 > 0);
837 KASSERT(size > 0);
838 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
839 if ((flags & VM_SLEEP) != 0) {
840 ASSERT_SLEEPABLE(NULL, __func__);
841 }
842
843 #if defined(QCACHE)
844 if (size <= vm->vm_qcache_max) {
845 int qidx = size >> vm->vm_quantum_shift;
846 qcache_t *qc = vm->vm_qcache[qidx - 1];
847
848 return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
849 vmf_to_prf(flags));
850 }
851 #endif /* defined(QCACHE) */
852
853 return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
854 }
855
856 vmem_addr_t
857 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
858 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
859 vm_flag_t flags)
860 {
861 struct vmem_freelist *list;
862 struct vmem_freelist *first;
863 struct vmem_freelist *end;
864 bt_t *bt;
865 bt_t *btnew;
866 bt_t *btnew2;
867 const vmem_size_t size = vmem_roundup_size(vm, size0);
868 vm_flag_t strat = flags & VM_FITMASK;
869 vmem_addr_t start;
870
871 KASSERT(size0 > 0);
872 KASSERT(size > 0);
873 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
874 if ((flags & VM_SLEEP) != 0) {
875 ASSERT_SLEEPABLE(NULL, __func__);
876 }
877 KASSERT((align & vm->vm_quantum_mask) == 0);
878 KASSERT((align & (align - 1)) == 0);
879 KASSERT((phase & vm->vm_quantum_mask) == 0);
880 KASSERT((nocross & vm->vm_quantum_mask) == 0);
881 KASSERT((nocross & (nocross - 1)) == 0);
882 KASSERT((align == 0 && phase == 0) || phase < align);
883 KASSERT(nocross == 0 || nocross >= size);
884 KASSERT(maxaddr == 0 || minaddr < maxaddr);
885 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
886
887 if (align == 0) {
888 align = vm->vm_quantum_mask + 1;
889 }
890 btnew = bt_alloc(vm, flags);
891 if (btnew == NULL) {
892 return VMEM_ADDR_NULL;
893 }
894 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
895 if (btnew2 == NULL) {
896 bt_free(vm, btnew);
897 return VMEM_ADDR_NULL;
898 }
899
900 retry_strat:
901 first = bt_freehead_toalloc(vm, size, strat);
902 end = &vm->vm_freelist[VMEM_MAXORDER];
903 retry:
904 bt = NULL;
905 VMEM_LOCK(vm);
906 if (strat == VM_INSTANTFIT) {
907 for (list = first; list < end; list++) {
908 bt = LIST_FIRST(list);
909 if (bt != NULL) {
910 start = vmem_fit(bt, size, align, phase,
911 nocross, minaddr, maxaddr);
912 if (start != VMEM_ADDR_NULL) {
913 goto gotit;
914 }
915 }
916 }
917 } else { /* VM_BESTFIT */
918 for (list = first; list < end; list++) {
919 LIST_FOREACH(bt, list, bt_freelist) {
920 if (bt->bt_size >= size) {
921 start = vmem_fit(bt, size, align, phase,
922 nocross, minaddr, maxaddr);
923 if (start != VMEM_ADDR_NULL) {
924 goto gotit;
925 }
926 }
927 }
928 }
929 }
930 VMEM_UNLOCK(vm);
931 #if 1
932 if (strat == VM_INSTANTFIT) {
933 strat = VM_BESTFIT;
934 goto retry_strat;
935 }
936 #endif
937 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
938 nocross != 0 || minaddr != 0 || maxaddr != 0) {
939
940 /*
941 * XXX should try to import a region large enough to
942 * satisfy restrictions?
943 */
944
945 goto fail;
946 }
947 if (vmem_import(vm, size, flags) == 0) {
948 goto retry;
949 }
950 /* XXX */
951 fail:
952 bt_free(vm, btnew);
953 bt_free(vm, btnew2);
954 return VMEM_ADDR_NULL;
955
956 gotit:
957 KASSERT(bt->bt_type == BT_TYPE_FREE);
958 KASSERT(bt->bt_size >= size);
959 bt_remfree(vm, bt);
960 if (bt->bt_start != start) {
961 btnew2->bt_type = BT_TYPE_FREE;
962 btnew2->bt_start = bt->bt_start;
963 btnew2->bt_size = start - bt->bt_start;
964 bt->bt_start = start;
965 bt->bt_size -= btnew2->bt_size;
966 bt_insfree(vm, btnew2);
967 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
968 btnew2 = NULL;
969 }
970 KASSERT(bt->bt_start == start);
971 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
972 /* split */
973 btnew->bt_type = BT_TYPE_BUSY;
974 btnew->bt_start = bt->bt_start;
975 btnew->bt_size = size;
976 bt->bt_start = bt->bt_start + size;
977 bt->bt_size -= size;
978 bt_insfree(vm, bt);
979 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
980 bt_insbusy(vm, btnew);
981 VMEM_UNLOCK(vm);
982 } else {
983 bt->bt_type = BT_TYPE_BUSY;
984 bt_insbusy(vm, bt);
985 VMEM_UNLOCK(vm);
986 bt_free(vm, btnew);
987 btnew = bt;
988 }
989 if (btnew2 != NULL) {
990 bt_free(vm, btnew2);
991 }
992 KASSERT(btnew->bt_size >= size);
993 btnew->bt_type = BT_TYPE_BUSY;
994
995 return btnew->bt_start;
996 }
997
998 /*
999 * vmem_free:
1000 *
1001 * => caller must ensure appropriate spl,
1002 * if the arena can be accessed from interrupt context.
1003 */
1004
1005 void
1006 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1007 {
1008
1009 VMEM_ASSERT_UNLOCKED(vm);
1010 KASSERT(addr != VMEM_ADDR_NULL);
1011 KASSERT(size > 0);
1012
1013 #if defined(QCACHE)
1014 if (size <= vm->vm_qcache_max) {
1015 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1016 qcache_t *qc = vm->vm_qcache[qidx - 1];
1017
1018 return pool_cache_put(&qc->qc_cache, (void *)addr);
1019 }
1020 #endif /* defined(QCACHE) */
1021
1022 vmem_xfree(vm, addr, size);
1023 }
1024
1025 void
1026 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1027 {
1028 bt_t *bt;
1029 bt_t *t;
1030
1031 VMEM_ASSERT_UNLOCKED(vm);
1032 KASSERT(addr != VMEM_ADDR_NULL);
1033 KASSERT(size > 0);
1034
1035 VMEM_LOCK(vm);
1036
1037 bt = bt_lookupbusy(vm, addr);
1038 KASSERT(bt != NULL);
1039 KASSERT(bt->bt_start == addr);
1040 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1041 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1042 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1043 bt_rembusy(vm, bt);
1044 bt->bt_type = BT_TYPE_FREE;
1045
1046 /* coalesce */
1047 t = CIRCLEQ_NEXT(bt, bt_seglist);
1048 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1049 KASSERT(BT_END(bt) == t->bt_start);
1050 bt_remfree(vm, t);
1051 bt_remseg(vm, t);
1052 bt->bt_size += t->bt_size;
1053 bt_free(vm, t);
1054 }
1055 t = CIRCLEQ_PREV(bt, bt_seglist);
1056 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1057 KASSERT(BT_END(t) == bt->bt_start);
1058 bt_remfree(vm, t);
1059 bt_remseg(vm, t);
1060 bt->bt_size += t->bt_size;
1061 bt->bt_start = t->bt_start;
1062 bt_free(vm, t);
1063 }
1064
1065 t = CIRCLEQ_PREV(bt, bt_seglist);
1066 KASSERT(t != NULL);
1067 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1068 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1069 t->bt_size == bt->bt_size) {
1070 vmem_addr_t spanaddr;
1071 vmem_size_t spansize;
1072
1073 KASSERT(t->bt_start == bt->bt_start);
1074 spanaddr = bt->bt_start;
1075 spansize = bt->bt_size;
1076 bt_remseg(vm, bt);
1077 bt_free(vm, bt);
1078 bt_remseg(vm, t);
1079 bt_free(vm, t);
1080 VMEM_UNLOCK(vm);
1081 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1082 } else {
1083 bt_insfree(vm, bt);
1084 VMEM_UNLOCK(vm);
1085 }
1086 }
1087
1088 /*
1089 * vmem_add:
1090 *
1091 * => caller must ensure appropriate spl,
1092 * if the arena can be accessed from interrupt context.
1093 */
1094
1095 vmem_addr_t
1096 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1097 {
1098
1099 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1100 }
1101
1102 /*
1103 * vmem_reap: reap unused resources.
1104 *
1105 * => return true if we successfully reaped something.
1106 */
1107
1108 bool
1109 vmem_reap(vmem_t *vm)
1110 {
1111 bool didsomething = false;
1112
1113 VMEM_ASSERT_UNLOCKED(vm);
1114
1115 #if defined(QCACHE)
1116 didsomething = qc_reap(vm);
1117 #endif /* defined(QCACHE) */
1118 return didsomething;
1119 }
1120
1121 /* ---- debug */
1122
1123 #if defined(VMEM_DEBUG)
1124
1125 #if !defined(_KERNEL)
1126 #include <stdio.h>
1127 #endif /* !defined(_KERNEL) */
1128
1129 void bt_dump(const bt_t *);
1130
1131 void
1132 bt_dump(const bt_t *bt)
1133 {
1134
1135 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1136 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1137 bt->bt_type);
1138 }
1139
1140 void
1141 vmem_dump(const vmem_t *vm)
1142 {
1143 const bt_t *bt;
1144 int i;
1145
1146 printf("vmem %p '%s'\n", vm, vm->vm_name);
1147 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1148 bt_dump(bt);
1149 }
1150
1151 for (i = 0; i < VMEM_MAXORDER; i++) {
1152 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1153
1154 if (LIST_EMPTY(fl)) {
1155 continue;
1156 }
1157
1158 printf("freelist[%d]\n", i);
1159 LIST_FOREACH(bt, fl, bt_freelist) {
1160 bt_dump(bt);
1161 if (bt->bt_size) {
1162 }
1163 }
1164 }
1165 }
1166
1167 #if !defined(_KERNEL)
1168
1169 #include <stdlib.h>
1170
1171 int
1172 main()
1173 {
1174 vmem_t *vm;
1175 vmem_addr_t p;
1176 struct reg {
1177 vmem_addr_t p;
1178 vmem_size_t sz;
1179 bool x;
1180 } *reg = NULL;
1181 int nreg = 0;
1182 int nalloc = 0;
1183 int nfree = 0;
1184 vmem_size_t total = 0;
1185 #if 1
1186 vm_flag_t strat = VM_INSTANTFIT;
1187 #else
1188 vm_flag_t strat = VM_BESTFIT;
1189 #endif
1190
1191 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1192 NULL, NULL, NULL, 0, VM_NOSLEEP);
1193 if (vm == NULL) {
1194 printf("vmem_create\n");
1195 exit(EXIT_FAILURE);
1196 }
1197 vmem_dump(vm);
1198
1199 p = vmem_add(vm, 100, 200, VM_SLEEP);
1200 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1201 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1202 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1203 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1204 vmem_dump(vm);
1205 for (;;) {
1206 struct reg *r;
1207 int t = rand() % 100;
1208
1209 if (t > 45) {
1210 /* alloc */
1211 vmem_size_t sz = rand() % 500 + 1;
1212 bool x;
1213 vmem_size_t align, phase, nocross;
1214 vmem_addr_t minaddr, maxaddr;
1215
1216 if (t > 70) {
1217 x = true;
1218 /* XXX */
1219 align = 1 << (rand() % 15);
1220 phase = rand() % 65536;
1221 nocross = 1 << (rand() % 15);
1222 if (align <= phase) {
1223 phase = 0;
1224 }
1225 if (VMEM_CROSS_P(phase, phase + sz - 1,
1226 nocross)) {
1227 nocross = 0;
1228 }
1229 minaddr = rand() % 50000;
1230 maxaddr = rand() % 70000;
1231 if (minaddr > maxaddr) {
1232 minaddr = 0;
1233 maxaddr = 0;
1234 }
1235 printf("=== xalloc %" PRIu64
1236 " align=%" PRIu64 ", phase=%" PRIu64
1237 ", nocross=%" PRIu64 ", min=%" PRIu64
1238 ", max=%" PRIu64 "\n",
1239 (uint64_t)sz,
1240 (uint64_t)align,
1241 (uint64_t)phase,
1242 (uint64_t)nocross,
1243 (uint64_t)minaddr,
1244 (uint64_t)maxaddr);
1245 p = vmem_xalloc(vm, sz, align, phase, nocross,
1246 minaddr, maxaddr, strat|VM_SLEEP);
1247 } else {
1248 x = false;
1249 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1250 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1251 }
1252 printf("-> %" PRIu64 "\n", (uint64_t)p);
1253 vmem_dump(vm);
1254 if (p == VMEM_ADDR_NULL) {
1255 if (x) {
1256 continue;
1257 }
1258 break;
1259 }
1260 nreg++;
1261 reg = realloc(reg, sizeof(*reg) * nreg);
1262 r = ®[nreg - 1];
1263 r->p = p;
1264 r->sz = sz;
1265 r->x = x;
1266 total += sz;
1267 nalloc++;
1268 } else if (nreg != 0) {
1269 /* free */
1270 r = ®[rand() % nreg];
1271 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1272 (uint64_t)r->p, (uint64_t)r->sz);
1273 if (r->x) {
1274 vmem_xfree(vm, r->p, r->sz);
1275 } else {
1276 vmem_free(vm, r->p, r->sz);
1277 }
1278 total -= r->sz;
1279 vmem_dump(vm);
1280 *r = reg[nreg - 1];
1281 nreg--;
1282 nfree++;
1283 }
1284 printf("total=%" PRIu64 "\n", (uint64_t)total);
1285 }
1286 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1287 (uint64_t)total, nalloc, nfree);
1288 exit(EXIT_SUCCESS);
1289 }
1290 #endif /* !defined(_KERNEL) */
1291 #endif /* defined(VMEM_DEBUG) */
1292