subr_vmem.c revision 1.27.2.6 1 /* $NetBSD: subr_vmem.c,v 1.27.2.6 2007/09/01 12:56:48 ad Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.27.2.6 2007/09/01 12:56:48 ad Exp $");
42
43 #define VMEM_DEBUG
44 #if defined(_KERNEL)
45 #define QCACHE
46 #endif /* defined(_KERNEL) */
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/queue.h>
51
52 #if defined(_KERNEL)
53 #include <sys/systm.h>
54 #include <sys/kernel.h> /* hz */
55 #include <sys/callout.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/once.h>
59 #include <sys/pool.h>
60 #include <sys/proc.h>
61 #include <sys/vmem.h>
62 #include <sys/workqueue.h>
63 #else /* defined(_KERNEL) */
64 #include "../sys/vmem.h"
65 #endif /* defined(_KERNEL) */
66
67 #if defined(_KERNEL)
68 #define LOCK_DECL(name) kmutex_t name
69 #else /* defined(_KERNEL) */
70 #include <errno.h>
71 #include <assert.h>
72 #include <stdlib.h>
73
74 #define KASSERT(a) assert(a)
75 #define LOCK_DECL(name) /* nothing */
76 #define mutex_init(a, b, c) /* nothing */
77 #define mutex_destroy(a) /* nothing */
78 #define mutex_enter(a) /* nothing */
79 #define mutex_exit(a) /* nothing */
80 #define mutex_owned(a) /* nothing */
81 #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
82 #define IPL_VM 0
83 #endif /* defined(_KERNEL) */
84
85 struct vmem;
86 struct vmem_btag;
87
88 #if defined(VMEM_DEBUG)
89 void vmem_dump(const vmem_t *);
90 #endif /* defined(VMEM_DEBUG) */
91
92 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
93
94 #define VMEM_HASHSIZE_MIN 1 /* XXX */
95 #define VMEM_HASHSIZE_MAX 8192 /* XXX */
96 #define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
97
98 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
99
100 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
101 LIST_HEAD(vmem_freelist, vmem_btag);
102 LIST_HEAD(vmem_hashlist, vmem_btag);
103
104 #if defined(QCACHE)
105 #define VMEM_QCACHE_IDX_MAX 32
106
107 #define QC_NAME_MAX 16
108
109 struct qcache {
110 pool_cache_t qc_cache;
111 vmem_t *qc_vmem;
112 char qc_name[QC_NAME_MAX];
113 };
114 typedef struct qcache qcache_t;
115 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
116 #endif /* defined(QCACHE) */
117
118 /* vmem arena */
119 struct vmem {
120 LOCK_DECL(vm_lock);
121 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
122 vm_flag_t);
123 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
124 vmem_t *vm_source;
125 struct vmem_seglist vm_seglist;
126 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
127 size_t vm_hashsize;
128 size_t vm_nbusytag;
129 struct vmem_hashlist *vm_hashlist;
130 size_t vm_quantum_mask;
131 int vm_quantum_shift;
132 const char *vm_name;
133 LIST_ENTRY(vmem) vm_alllist;
134
135 #if defined(QCACHE)
136 /* quantum cache */
137 size_t vm_qcache_max;
138 struct pool_allocator vm_qcache_allocator;
139 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
140 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
141 #endif /* defined(QCACHE) */
142 };
143
144 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
145 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
146 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
147 #ifdef notyet /* XXX needs vmlocking branch changes */
148 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DRIVER, ipl)
149 #else
150 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DRIVER, IPL_VM)
151 #endif
152 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
153 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
154
155 /* boundary tag */
156 struct vmem_btag {
157 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
158 union {
159 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
160 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
161 } bt_u;
162 #define bt_hashlist bt_u.u_hashlist
163 #define bt_freelist bt_u.u_freelist
164 vmem_addr_t bt_start;
165 vmem_size_t bt_size;
166 int bt_type;
167 };
168
169 #define BT_TYPE_SPAN 1
170 #define BT_TYPE_SPAN_STATIC 2
171 #define BT_TYPE_FREE 3
172 #define BT_TYPE_BUSY 4
173 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
174
175 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
176
177 typedef struct vmem_btag bt_t;
178
179 /* ---- misc */
180
181 #define VMEM_ALIGNUP(addr, align) \
182 (-(-(addr) & -(align)))
183 #define VMEM_CROSS_P(addr1, addr2, boundary) \
184 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
185
186 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
187
188 static int
189 calc_order(vmem_size_t size)
190 {
191 vmem_size_t target;
192 int i;
193
194 KASSERT(size != 0);
195
196 i = 0;
197 target = size >> 1;
198 while (ORDER2SIZE(i) <= target) {
199 i++;
200 }
201
202 KASSERT(ORDER2SIZE(i) <= size);
203 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
204
205 return i;
206 }
207
208 #if defined(_KERNEL)
209 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
210 #endif /* defined(_KERNEL) */
211
212 static void *
213 xmalloc(size_t sz, vm_flag_t flags)
214 {
215
216 #if defined(_KERNEL)
217 return malloc(sz, M_VMEM,
218 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
219 #else /* defined(_KERNEL) */
220 return malloc(sz);
221 #endif /* defined(_KERNEL) */
222 }
223
224 static void
225 xfree(void *p)
226 {
227
228 #if defined(_KERNEL)
229 return free(p, M_VMEM);
230 #else /* defined(_KERNEL) */
231 return free(p);
232 #endif /* defined(_KERNEL) */
233 }
234
235 /* ---- boundary tag */
236
237 #if defined(_KERNEL)
238 static struct pool_cache bt_cache;
239 #endif /* defined(_KERNEL) */
240
241 static bt_t *
242 bt_alloc(vmem_t *vm, vm_flag_t flags)
243 {
244 bt_t *bt;
245
246 #if defined(_KERNEL)
247 bt = pool_cache_get(&bt_cache,
248 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
249 #else /* defined(_KERNEL) */
250 bt = malloc(sizeof *bt);
251 #endif /* defined(_KERNEL) */
252
253 return bt;
254 }
255
256 static void
257 bt_free(vmem_t *vm, bt_t *bt)
258 {
259
260 #if defined(_KERNEL)
261 pool_cache_put(&bt_cache, bt);
262 #else /* defined(_KERNEL) */
263 free(bt);
264 #endif /* defined(_KERNEL) */
265 }
266
267 /*
268 * freelist[0] ... [1, 1]
269 * freelist[1] ... [2, 3]
270 * freelist[2] ... [4, 7]
271 * freelist[3] ... [8, 15]
272 * :
273 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
274 * :
275 */
276
277 static struct vmem_freelist *
278 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
279 {
280 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
281 int idx;
282
283 KASSERT((size & vm->vm_quantum_mask) == 0);
284 KASSERT(size != 0);
285
286 idx = calc_order(qsize);
287 KASSERT(idx >= 0);
288 KASSERT(idx < VMEM_MAXORDER);
289
290 return &vm->vm_freelist[idx];
291 }
292
293 static struct vmem_freelist *
294 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
295 {
296 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
297 int idx;
298
299 KASSERT((size & vm->vm_quantum_mask) == 0);
300 KASSERT(size != 0);
301
302 idx = calc_order(qsize);
303 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
304 idx++;
305 /* check too large request? */
306 }
307 KASSERT(idx >= 0);
308 KASSERT(idx < VMEM_MAXORDER);
309
310 return &vm->vm_freelist[idx];
311 }
312
313 /* ---- boundary tag hash */
314
315 static struct vmem_hashlist *
316 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
317 {
318 struct vmem_hashlist *list;
319 unsigned int hash;
320
321 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
322 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
323
324 return list;
325 }
326
327 static bt_t *
328 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
329 {
330 struct vmem_hashlist *list;
331 bt_t *bt;
332
333 list = bt_hashhead(vm, addr);
334 LIST_FOREACH(bt, list, bt_hashlist) {
335 if (bt->bt_start == addr) {
336 break;
337 }
338 }
339
340 return bt;
341 }
342
343 static void
344 bt_rembusy(vmem_t *vm, bt_t *bt)
345 {
346
347 KASSERT(vm->vm_nbusytag > 0);
348 vm->vm_nbusytag--;
349 LIST_REMOVE(bt, bt_hashlist);
350 }
351
352 static void
353 bt_insbusy(vmem_t *vm, bt_t *bt)
354 {
355 struct vmem_hashlist *list;
356
357 KASSERT(bt->bt_type == BT_TYPE_BUSY);
358
359 list = bt_hashhead(vm, bt->bt_start);
360 LIST_INSERT_HEAD(list, bt, bt_hashlist);
361 vm->vm_nbusytag++;
362 }
363
364 /* ---- boundary tag list */
365
366 static void
367 bt_remseg(vmem_t *vm, bt_t *bt)
368 {
369
370 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
371 }
372
373 static void
374 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
375 {
376
377 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
378 }
379
380 static void
381 bt_insseg_tail(vmem_t *vm, bt_t *bt)
382 {
383
384 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
385 }
386
387 static void
388 bt_remfree(vmem_t *vm, bt_t *bt)
389 {
390
391 KASSERT(bt->bt_type == BT_TYPE_FREE);
392
393 LIST_REMOVE(bt, bt_freelist);
394 }
395
396 static void
397 bt_insfree(vmem_t *vm, bt_t *bt)
398 {
399 struct vmem_freelist *list;
400
401 list = bt_freehead_tofree(vm, bt->bt_size);
402 LIST_INSERT_HEAD(list, bt, bt_freelist);
403 }
404
405 /* ---- vmem internal functions */
406
407 #if defined(_KERNEL)
408 static kmutex_t vmem_list_lock;
409 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
410 #endif /* defined(_KERNEL) */
411
412 #if defined(QCACHE)
413 static inline vm_flag_t
414 prf_to_vmf(int prflags)
415 {
416 vm_flag_t vmflags;
417
418 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
419 if ((prflags & PR_WAITOK) != 0) {
420 vmflags = VM_SLEEP;
421 } else {
422 vmflags = VM_NOSLEEP;
423 }
424 return vmflags;
425 }
426
427 static inline int
428 vmf_to_prf(vm_flag_t vmflags)
429 {
430 int prflags;
431
432 if ((vmflags & VM_SLEEP) != 0) {
433 prflags = PR_WAITOK;
434 } else {
435 prflags = PR_NOWAIT;
436 }
437 return prflags;
438 }
439
440 static size_t
441 qc_poolpage_size(size_t qcache_max)
442 {
443 int i;
444
445 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
446 /* nothing */
447 }
448 return ORDER2SIZE(i);
449 }
450
451 static void *
452 qc_poolpage_alloc(struct pool *pool, int prflags)
453 {
454 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
455 vmem_t *vm = qc->qc_vmem;
456
457 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
458 prf_to_vmf(prflags) | VM_INSTANTFIT);
459 }
460
461 static void
462 qc_poolpage_free(struct pool *pool, void *addr)
463 {
464 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
465 vmem_t *vm = qc->qc_vmem;
466
467 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
468 }
469
470 static void
471 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
472 {
473 qcache_t *prevqc;
474 struct pool_allocator *pa;
475 int qcache_idx_max;
476 int i;
477
478 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
479 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
480 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
481 }
482 vm->vm_qcache_max = qcache_max;
483 pa = &vm->vm_qcache_allocator;
484 memset(pa, 0, sizeof(*pa));
485 pa->pa_alloc = qc_poolpage_alloc;
486 pa->pa_free = qc_poolpage_free;
487 pa->pa_pagesz = qc_poolpage_size(qcache_max);
488
489 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
490 prevqc = NULL;
491 for (i = qcache_idx_max; i > 0; i--) {
492 qcache_t *qc = &vm->vm_qcache_store[i - 1];
493 size_t size = i << vm->vm_quantum_shift;
494
495 qc->qc_vmem = vm;
496 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
497 vm->vm_name, size);
498 qc->qc_cache = pool_cache_init(size,
499 ORDER2SIZE(vm->vm_quantum_shift), 0,
500 PR_NOALIGN | PR_NOTOUCH /* XXX */,
501 qc->qc_name, pa, ipl, NULL, NULL, NULL);
502 KASSERT(qc->qc_cache != NULL); /* XXX */
503 if (prevqc != NULL &&
504 qc->qc_cache->pc_pool.pr_itemsperpage ==
505 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
506 pool_cache_destroy(qc->qc_cache);
507 vm->vm_qcache[i - 1] = prevqc;
508 continue;
509 }
510 qc->qc_cache->pc_pool.pr_qcache = qc;
511 vm->vm_qcache[i - 1] = qc;
512 prevqc = qc;
513 }
514 }
515
516 static void
517 qc_destroy(vmem_t *vm)
518 {
519 const qcache_t *prevqc;
520 int i;
521 int qcache_idx_max;
522
523 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
524 prevqc = NULL;
525 for (i = 0; i < qcache_idx_max; i++) {
526 qcache_t *qc = vm->vm_qcache[i];
527
528 if (prevqc == qc) {
529 continue;
530 }
531 pool_cache_destroy(qc->qc_cache);
532 prevqc = qc;
533 }
534 }
535
536 static bool
537 qc_reap(vmem_t *vm)
538 {
539 const qcache_t *prevqc;
540 int i;
541 int qcache_idx_max;
542 bool didsomething = false;
543
544 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
545 prevqc = NULL;
546 for (i = 0; i < qcache_idx_max; i++) {
547 qcache_t *qc = vm->vm_qcache[i];
548
549 if (prevqc == qc) {
550 continue;
551 }
552 if (pool_cache_reclaim(qc->qc_cache) != 0) {
553 didsomething = true;
554 }
555 prevqc = qc;
556 }
557
558 return didsomething;
559 }
560 #endif /* defined(QCACHE) */
561
562 #if defined(_KERNEL)
563 static int
564 vmem_init(void)
565 {
566
567 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
568 pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
569 NULL, IPL_VM, NULL, NULL, NULL);
570 return 0;
571 }
572 #endif /* defined(_KERNEL) */
573
574 static vmem_addr_t
575 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
576 int spanbttype)
577 {
578 bt_t *btspan;
579 bt_t *btfree;
580
581 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
582 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
583
584 btspan = bt_alloc(vm, flags);
585 if (btspan == NULL) {
586 return VMEM_ADDR_NULL;
587 }
588 btfree = bt_alloc(vm, flags);
589 if (btfree == NULL) {
590 bt_free(vm, btspan);
591 return VMEM_ADDR_NULL;
592 }
593
594 btspan->bt_type = spanbttype;
595 btspan->bt_start = addr;
596 btspan->bt_size = size;
597
598 btfree->bt_type = BT_TYPE_FREE;
599 btfree->bt_start = addr;
600 btfree->bt_size = size;
601
602 VMEM_LOCK(vm);
603 bt_insseg_tail(vm, btspan);
604 bt_insseg(vm, btfree, btspan);
605 bt_insfree(vm, btfree);
606 VMEM_UNLOCK(vm);
607
608 return addr;
609 }
610
611 static void
612 vmem_destroy1(vmem_t *vm)
613 {
614
615 #if defined(QCACHE)
616 qc_destroy(vm);
617 #endif /* defined(QCACHE) */
618 if (vm->vm_hashlist != NULL) {
619 int i;
620
621 for (i = 0; i < vm->vm_hashsize; i++) {
622 bt_t *bt;
623
624 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
625 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
626 bt_free(vm, bt);
627 }
628 }
629 xfree(vm->vm_hashlist);
630 }
631 VMEM_LOCK_DESTROY(vm);
632 xfree(vm);
633 }
634
635 static int
636 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
637 {
638 vmem_addr_t addr;
639
640 if (vm->vm_allocfn == NULL) {
641 return EINVAL;
642 }
643
644 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
645 if (addr == VMEM_ADDR_NULL) {
646 return ENOMEM;
647 }
648
649 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
650 (*vm->vm_freefn)(vm->vm_source, addr, size);
651 return ENOMEM;
652 }
653
654 return 0;
655 }
656
657 static int
658 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
659 {
660 bt_t *bt;
661 int i;
662 struct vmem_hashlist *newhashlist;
663 struct vmem_hashlist *oldhashlist;
664 size_t oldhashsize;
665
666 KASSERT(newhashsize > 0);
667
668 newhashlist =
669 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
670 if (newhashlist == NULL) {
671 return ENOMEM;
672 }
673 for (i = 0; i < newhashsize; i++) {
674 LIST_INIT(&newhashlist[i]);
675 }
676
677 if (!VMEM_TRYLOCK(vm)) {
678 xfree(newhashlist);
679 return EBUSY;
680 }
681 oldhashlist = vm->vm_hashlist;
682 oldhashsize = vm->vm_hashsize;
683 vm->vm_hashlist = newhashlist;
684 vm->vm_hashsize = newhashsize;
685 if (oldhashlist == NULL) {
686 VMEM_UNLOCK(vm);
687 return 0;
688 }
689 for (i = 0; i < oldhashsize; i++) {
690 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
691 bt_rembusy(vm, bt); /* XXX */
692 bt_insbusy(vm, bt);
693 }
694 }
695 VMEM_UNLOCK(vm);
696
697 xfree(oldhashlist);
698
699 return 0;
700 }
701
702 /*
703 * vmem_fit: check if a bt can satisfy the given restrictions.
704 */
705
706 static vmem_addr_t
707 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
708 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
709 {
710 vmem_addr_t start;
711 vmem_addr_t end;
712
713 KASSERT(bt->bt_size >= size);
714
715 /*
716 * XXX assumption: vmem_addr_t and vmem_size_t are
717 * unsigned integer of the same size.
718 */
719
720 start = bt->bt_start;
721 if (start < minaddr) {
722 start = minaddr;
723 }
724 end = BT_END(bt);
725 if (end > maxaddr - 1) {
726 end = maxaddr - 1;
727 }
728 if (start >= end) {
729 return VMEM_ADDR_NULL;
730 }
731
732 start = VMEM_ALIGNUP(start - phase, align) + phase;
733 if (start < bt->bt_start) {
734 start += align;
735 }
736 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
737 KASSERT(align < nocross);
738 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
739 }
740 if (start < end && end - start >= size) {
741 KASSERT((start & (align - 1)) == phase);
742 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
743 KASSERT(minaddr <= start);
744 KASSERT(maxaddr == 0 || start + size <= maxaddr);
745 KASSERT(bt->bt_start <= start);
746 KASSERT(start + size <= BT_END(bt));
747 return start;
748 }
749 return VMEM_ADDR_NULL;
750 }
751
752 /* ---- vmem API */
753
754 /*
755 * vmem_create: create an arena.
756 *
757 * => must not be called from interrupt context.
758 */
759
760 vmem_t *
761 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
762 vmem_size_t quantum,
763 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
764 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
765 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
766 int ipl)
767 {
768 vmem_t *vm;
769 int i;
770 #if defined(_KERNEL)
771 static ONCE_DECL(control);
772 #endif /* defined(_KERNEL) */
773
774 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
775 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
776
777 #if defined(_KERNEL)
778 if (RUN_ONCE(&control, vmem_init)) {
779 return NULL;
780 }
781 #endif /* defined(_KERNEL) */
782 vm = xmalloc(sizeof(*vm), flags);
783 if (vm == NULL) {
784 return NULL;
785 }
786
787 VMEM_LOCK_INIT(vm, ipl);
788 vm->vm_name = name;
789 vm->vm_quantum_mask = quantum - 1;
790 vm->vm_quantum_shift = calc_order(quantum);
791 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
792 vm->vm_allocfn = allocfn;
793 vm->vm_freefn = freefn;
794 vm->vm_source = source;
795 vm->vm_nbusytag = 0;
796 #if defined(QCACHE)
797 qc_init(vm, qcache_max, ipl);
798 #endif /* defined(QCACHE) */
799
800 CIRCLEQ_INIT(&vm->vm_seglist);
801 for (i = 0; i < VMEM_MAXORDER; i++) {
802 LIST_INIT(&vm->vm_freelist[i]);
803 }
804 vm->vm_hashlist = NULL;
805 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
806 vmem_destroy1(vm);
807 return NULL;
808 }
809
810 if (size != 0) {
811 if (vmem_add(vm, base, size, flags) == 0) {
812 vmem_destroy1(vm);
813 return NULL;
814 }
815 }
816
817 #if defined(_KERNEL)
818 mutex_enter(&vmem_list_lock);
819 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
820 mutex_exit(&vmem_list_lock);
821 #endif /* defined(_KERNEL) */
822
823 return vm;
824 }
825
826 void
827 vmem_destroy(vmem_t *vm)
828 {
829
830 #if defined(_KERNEL)
831 mutex_enter(&vmem_list_lock);
832 LIST_REMOVE(vm, vm_alllist);
833 mutex_exit(&vmem_list_lock);
834 #endif /* defined(_KERNEL) */
835
836 vmem_destroy1(vm);
837 }
838
839 vmem_size_t
840 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
841 {
842
843 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
844 }
845
846 /*
847 * vmem_alloc:
848 *
849 * => caller must ensure appropriate spl,
850 * if the arena can be accessed from interrupt context.
851 */
852
853 vmem_addr_t
854 vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
855 {
856 const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
857 const vm_flag_t strat __unused = flags & VM_FITMASK;
858
859 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
860 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
861
862 KASSERT(size0 > 0);
863 KASSERT(size > 0);
864 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
865 if ((flags & VM_SLEEP) != 0) {
866 ASSERT_SLEEPABLE(NULL, __func__);
867 }
868
869 #if defined(QCACHE)
870 if (size <= vm->vm_qcache_max) {
871 int qidx = size >> vm->vm_quantum_shift;
872 qcache_t *qc = vm->vm_qcache[qidx - 1];
873
874 return (vmem_addr_t)pool_cache_get(qc->qc_cache,
875 vmf_to_prf(flags));
876 }
877 #endif /* defined(QCACHE) */
878
879 return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
880 }
881
882 vmem_addr_t
883 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
884 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
885 vm_flag_t flags)
886 {
887 struct vmem_freelist *list;
888 struct vmem_freelist *first;
889 struct vmem_freelist *end;
890 bt_t *bt;
891 bt_t *btnew;
892 bt_t *btnew2;
893 const vmem_size_t size = vmem_roundup_size(vm, size0);
894 vm_flag_t strat = flags & VM_FITMASK;
895 vmem_addr_t start;
896
897 KASSERT(size0 > 0);
898 KASSERT(size > 0);
899 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
900 if ((flags & VM_SLEEP) != 0) {
901 ASSERT_SLEEPABLE(NULL, __func__);
902 }
903 KASSERT((align & vm->vm_quantum_mask) == 0);
904 KASSERT((align & (align - 1)) == 0);
905 KASSERT((phase & vm->vm_quantum_mask) == 0);
906 KASSERT((nocross & vm->vm_quantum_mask) == 0);
907 KASSERT((nocross & (nocross - 1)) == 0);
908 KASSERT((align == 0 && phase == 0) || phase < align);
909 KASSERT(nocross == 0 || nocross >= size);
910 KASSERT(maxaddr == 0 || minaddr < maxaddr);
911 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
912
913 if (align == 0) {
914 align = vm->vm_quantum_mask + 1;
915 }
916 btnew = bt_alloc(vm, flags);
917 if (btnew == NULL) {
918 return VMEM_ADDR_NULL;
919 }
920 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
921 if (btnew2 == NULL) {
922 bt_free(vm, btnew);
923 return VMEM_ADDR_NULL;
924 }
925
926 retry_strat:
927 first = bt_freehead_toalloc(vm, size, strat);
928 end = &vm->vm_freelist[VMEM_MAXORDER];
929 retry:
930 bt = NULL;
931 VMEM_LOCK(vm);
932 if (strat == VM_INSTANTFIT) {
933 for (list = first; list < end; list++) {
934 bt = LIST_FIRST(list);
935 if (bt != NULL) {
936 start = vmem_fit(bt, size, align, phase,
937 nocross, minaddr, maxaddr);
938 if (start != VMEM_ADDR_NULL) {
939 goto gotit;
940 }
941 }
942 }
943 } else { /* VM_BESTFIT */
944 for (list = first; list < end; list++) {
945 LIST_FOREACH(bt, list, bt_freelist) {
946 if (bt->bt_size >= size) {
947 start = vmem_fit(bt, size, align, phase,
948 nocross, minaddr, maxaddr);
949 if (start != VMEM_ADDR_NULL) {
950 goto gotit;
951 }
952 }
953 }
954 }
955 }
956 VMEM_UNLOCK(vm);
957 #if 1
958 if (strat == VM_INSTANTFIT) {
959 strat = VM_BESTFIT;
960 goto retry_strat;
961 }
962 #endif
963 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
964 nocross != 0 || minaddr != 0 || maxaddr != 0) {
965
966 /*
967 * XXX should try to import a region large enough to
968 * satisfy restrictions?
969 */
970
971 goto fail;
972 }
973 if (vmem_import(vm, size, flags) == 0) {
974 goto retry;
975 }
976 /* XXX */
977 fail:
978 bt_free(vm, btnew);
979 bt_free(vm, btnew2);
980 return VMEM_ADDR_NULL;
981
982 gotit:
983 KASSERT(bt->bt_type == BT_TYPE_FREE);
984 KASSERT(bt->bt_size >= size);
985 bt_remfree(vm, bt);
986 if (bt->bt_start != start) {
987 btnew2->bt_type = BT_TYPE_FREE;
988 btnew2->bt_start = bt->bt_start;
989 btnew2->bt_size = start - bt->bt_start;
990 bt->bt_start = start;
991 bt->bt_size -= btnew2->bt_size;
992 bt_insfree(vm, btnew2);
993 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
994 btnew2 = NULL;
995 }
996 KASSERT(bt->bt_start == start);
997 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
998 /* split */
999 btnew->bt_type = BT_TYPE_BUSY;
1000 btnew->bt_start = bt->bt_start;
1001 btnew->bt_size = size;
1002 bt->bt_start = bt->bt_start + size;
1003 bt->bt_size -= size;
1004 bt_insfree(vm, bt);
1005 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1006 bt_insbusy(vm, btnew);
1007 VMEM_UNLOCK(vm);
1008 } else {
1009 bt->bt_type = BT_TYPE_BUSY;
1010 bt_insbusy(vm, bt);
1011 VMEM_UNLOCK(vm);
1012 bt_free(vm, btnew);
1013 btnew = bt;
1014 }
1015 if (btnew2 != NULL) {
1016 bt_free(vm, btnew2);
1017 }
1018 KASSERT(btnew->bt_size >= size);
1019 btnew->bt_type = BT_TYPE_BUSY;
1020
1021 return btnew->bt_start;
1022 }
1023
1024 /*
1025 * vmem_free:
1026 *
1027 * => caller must ensure appropriate spl,
1028 * if the arena can be accessed from interrupt context.
1029 */
1030
1031 void
1032 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1033 {
1034
1035 KASSERT(addr != VMEM_ADDR_NULL);
1036 KASSERT(size > 0);
1037
1038 #if defined(QCACHE)
1039 if (size <= vm->vm_qcache_max) {
1040 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1041 qcache_t *qc = vm->vm_qcache[qidx - 1];
1042
1043 return pool_cache_put(qc->qc_cache, (void *)addr);
1044 }
1045 #endif /* defined(QCACHE) */
1046
1047 vmem_xfree(vm, addr, size);
1048 }
1049
1050 void
1051 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1052 {
1053 bt_t *bt;
1054 bt_t *t;
1055
1056 KASSERT(addr != VMEM_ADDR_NULL);
1057 KASSERT(size > 0);
1058
1059 VMEM_LOCK(vm);
1060
1061 bt = bt_lookupbusy(vm, addr);
1062 KASSERT(bt != NULL);
1063 KASSERT(bt->bt_start == addr);
1064 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1065 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1066 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1067 bt_rembusy(vm, bt);
1068 bt->bt_type = BT_TYPE_FREE;
1069
1070 /* coalesce */
1071 t = CIRCLEQ_NEXT(bt, bt_seglist);
1072 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1073 KASSERT(BT_END(bt) == t->bt_start);
1074 bt_remfree(vm, t);
1075 bt_remseg(vm, t);
1076 bt->bt_size += t->bt_size;
1077 bt_free(vm, t);
1078 }
1079 t = CIRCLEQ_PREV(bt, bt_seglist);
1080 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1081 KASSERT(BT_END(t) == bt->bt_start);
1082 bt_remfree(vm, t);
1083 bt_remseg(vm, t);
1084 bt->bt_size += t->bt_size;
1085 bt->bt_start = t->bt_start;
1086 bt_free(vm, t);
1087 }
1088
1089 t = CIRCLEQ_PREV(bt, bt_seglist);
1090 KASSERT(t != NULL);
1091 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1092 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1093 t->bt_size == bt->bt_size) {
1094 vmem_addr_t spanaddr;
1095 vmem_size_t spansize;
1096
1097 KASSERT(t->bt_start == bt->bt_start);
1098 spanaddr = bt->bt_start;
1099 spansize = bt->bt_size;
1100 bt_remseg(vm, bt);
1101 bt_free(vm, bt);
1102 bt_remseg(vm, t);
1103 bt_free(vm, t);
1104 VMEM_UNLOCK(vm);
1105 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1106 } else {
1107 bt_insfree(vm, bt);
1108 VMEM_UNLOCK(vm);
1109 }
1110 }
1111
1112 /*
1113 * vmem_add:
1114 *
1115 * => caller must ensure appropriate spl,
1116 * if the arena can be accessed from interrupt context.
1117 */
1118
1119 vmem_addr_t
1120 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1121 {
1122
1123 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1124 }
1125
1126 /*
1127 * vmem_reap: reap unused resources.
1128 *
1129 * => return true if we successfully reaped something.
1130 */
1131
1132 bool
1133 vmem_reap(vmem_t *vm)
1134 {
1135 bool didsomething = false;
1136
1137 #if defined(QCACHE)
1138 didsomething = qc_reap(vm);
1139 #endif /* defined(QCACHE) */
1140 return didsomething;
1141 }
1142
1143 /* ---- rehash */
1144
1145 #if defined(_KERNEL)
1146 static struct callout vmem_rehash_ch;
1147 static int vmem_rehash_interval;
1148 static struct workqueue *vmem_rehash_wq;
1149 static struct work vmem_rehash_wk;
1150
1151 static void
1152 vmem_rehash_all(struct work *wk, void *dummy)
1153 {
1154 vmem_t *vm;
1155
1156 KASSERT(wk == &vmem_rehash_wk);
1157 mutex_enter(&vmem_list_lock);
1158 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1159 size_t desired;
1160 size_t current;
1161 int s;
1162
1163 s = splvm();
1164 if (!VMEM_TRYLOCK(vm)) {
1165 splx(s);
1166 continue;
1167 }
1168 desired = vm->vm_nbusytag;
1169 current = vm->vm_hashsize;
1170 VMEM_UNLOCK(vm);
1171 splx(s);
1172
1173 if (desired > VMEM_HASHSIZE_MAX) {
1174 desired = VMEM_HASHSIZE_MAX;
1175 } else if (desired < VMEM_HASHSIZE_MIN) {
1176 desired = VMEM_HASHSIZE_MIN;
1177 }
1178 if (desired > current * 2 || desired * 2 < current) {
1179 s = splvm();
1180 vmem_rehash(vm, desired, VM_NOSLEEP);
1181 splx(s);
1182 }
1183 }
1184 mutex_exit(&vmem_list_lock);
1185
1186 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1187 }
1188
1189 static void
1190 vmem_rehash_all_kick(void *dummy)
1191 {
1192
1193 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1194 }
1195
1196 void
1197 vmem_rehash_start(void)
1198 {
1199 int error;
1200
1201 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1202 vmem_rehash_all, NULL, PVM, IPL_SOFTCLOCK, 0);
1203 if (error) {
1204 panic("%s: workqueue_create %d\n", __func__, error);
1205 }
1206 callout_init(&vmem_rehash_ch, 0);
1207 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1208
1209 vmem_rehash_interval = hz * 10;
1210 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1211 }
1212 #endif /* defined(_KERNEL) */
1213
1214 /* ---- debug */
1215
1216 #if defined(VMEM_DEBUG)
1217
1218 #if !defined(_KERNEL)
1219 #include <stdio.h>
1220 #endif /* !defined(_KERNEL) */
1221
1222 void bt_dump(const bt_t *);
1223
1224 void
1225 bt_dump(const bt_t *bt)
1226 {
1227
1228 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1229 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1230 bt->bt_type);
1231 }
1232
1233 void
1234 vmem_dump(const vmem_t *vm)
1235 {
1236 const bt_t *bt;
1237 int i;
1238
1239 printf("vmem %p '%s'\n", vm, vm->vm_name);
1240 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1241 bt_dump(bt);
1242 }
1243
1244 for (i = 0; i < VMEM_MAXORDER; i++) {
1245 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1246
1247 if (LIST_EMPTY(fl)) {
1248 continue;
1249 }
1250
1251 printf("freelist[%d]\n", i);
1252 LIST_FOREACH(bt, fl, bt_freelist) {
1253 bt_dump(bt);
1254 if (bt->bt_size) {
1255 }
1256 }
1257 }
1258 }
1259
1260 #if !defined(_KERNEL)
1261
1262 int
1263 main()
1264 {
1265 vmem_t *vm;
1266 vmem_addr_t p;
1267 struct reg {
1268 vmem_addr_t p;
1269 vmem_size_t sz;
1270 bool x;
1271 } *reg = NULL;
1272 int nreg = 0;
1273 int nalloc = 0;
1274 int nfree = 0;
1275 vmem_size_t total = 0;
1276 #if 1
1277 vm_flag_t strat = VM_INSTANTFIT;
1278 #else
1279 vm_flag_t strat = VM_BESTFIT;
1280 #endif
1281
1282 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1283 NULL, NULL, NULL, 0, VM_SLEEP);
1284 if (vm == NULL) {
1285 printf("vmem_create\n");
1286 exit(EXIT_FAILURE);
1287 }
1288 vmem_dump(vm);
1289
1290 p = vmem_add(vm, 100, 200, VM_SLEEP);
1291 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1292 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1293 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1294 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1295 vmem_dump(vm);
1296 for (;;) {
1297 struct reg *r;
1298 int t = rand() % 100;
1299
1300 if (t > 45) {
1301 /* alloc */
1302 vmem_size_t sz = rand() % 500 + 1;
1303 bool x;
1304 vmem_size_t align, phase, nocross;
1305 vmem_addr_t minaddr, maxaddr;
1306
1307 if (t > 70) {
1308 x = true;
1309 /* XXX */
1310 align = 1 << (rand() % 15);
1311 phase = rand() % 65536;
1312 nocross = 1 << (rand() % 15);
1313 if (align <= phase) {
1314 phase = 0;
1315 }
1316 if (VMEM_CROSS_P(phase, phase + sz - 1,
1317 nocross)) {
1318 nocross = 0;
1319 }
1320 minaddr = rand() % 50000;
1321 maxaddr = rand() % 70000;
1322 if (minaddr > maxaddr) {
1323 minaddr = 0;
1324 maxaddr = 0;
1325 }
1326 printf("=== xalloc %" PRIu64
1327 " align=%" PRIu64 ", phase=%" PRIu64
1328 ", nocross=%" PRIu64 ", min=%" PRIu64
1329 ", max=%" PRIu64 "\n",
1330 (uint64_t)sz,
1331 (uint64_t)align,
1332 (uint64_t)phase,
1333 (uint64_t)nocross,
1334 (uint64_t)minaddr,
1335 (uint64_t)maxaddr);
1336 p = vmem_xalloc(vm, sz, align, phase, nocross,
1337 minaddr, maxaddr, strat|VM_SLEEP);
1338 } else {
1339 x = false;
1340 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1341 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1342 }
1343 printf("-> %" PRIu64 "\n", (uint64_t)p);
1344 vmem_dump(vm);
1345 if (p == VMEM_ADDR_NULL) {
1346 if (x) {
1347 continue;
1348 }
1349 break;
1350 }
1351 nreg++;
1352 reg = realloc(reg, sizeof(*reg) * nreg);
1353 r = ®[nreg - 1];
1354 r->p = p;
1355 r->sz = sz;
1356 r->x = x;
1357 total += sz;
1358 nalloc++;
1359 } else if (nreg != 0) {
1360 /* free */
1361 r = ®[rand() % nreg];
1362 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1363 (uint64_t)r->p, (uint64_t)r->sz);
1364 if (r->x) {
1365 vmem_xfree(vm, r->p, r->sz);
1366 } else {
1367 vmem_free(vm, r->p, r->sz);
1368 }
1369 total -= r->sz;
1370 vmem_dump(vm);
1371 *r = reg[nreg - 1];
1372 nreg--;
1373 nfree++;
1374 }
1375 printf("total=%" PRIu64 "\n", (uint64_t)total);
1376 }
1377 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1378 (uint64_t)total, nalloc, nfree);
1379 exit(EXIT_SUCCESS);
1380 }
1381 #endif /* !defined(_KERNEL) */
1382 #endif /* defined(VMEM_DEBUG) */
1383