subr_vmem.c revision 1.29 1 /* $NetBSD: subr_vmem.c,v 1.29 2007/03/26 22:52:44 hubertf Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.29 2007/03/26 22:52:44 hubertf Exp $");
42
43 #define VMEM_DEBUG
44 #if defined(_KERNEL)
45 #define QCACHE
46 #endif /* defined(_KERNEL) */
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/queue.h>
51
52 #if defined(_KERNEL)
53 #include <sys/systm.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/once.h>
57 #include <sys/pool.h>
58 #include <sys/proc.h>
59 #include <sys/vmem.h>
60 #else /* defined(_KERNEL) */
61 #include "../sys/vmem.h"
62 #endif /* defined(_KERNEL) */
63
64 #if defined(_KERNEL)
65 #define SIMPLELOCK_DECL(name) struct simplelock name
66 #else /* defined(_KERNEL) */
67 #include <errno.h>
68 #include <assert.h>
69 #include <stdlib.h>
70
71 #define KASSERT(a) assert(a)
72 #define SIMPLELOCK_DECL(name) /* nothing */
73 #define LOCK_ASSERT(a) /* nothing */
74 #define simple_lock_init(a) /* nothing */
75 #define simple_lock(a) /* nothing */
76 #define simple_unlock(a) /* nothing */
77 #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
78 #endif /* defined(_KERNEL) */
79
80 struct vmem;
81 struct vmem_btag;
82
83 #if defined(VMEM_DEBUG)
84 void vmem_dump(const vmem_t *);
85 #endif /* defined(VMEM_DEBUG) */
86
87 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
88 #define VMEM_HASHSIZE_INIT 4096 /* XXX */
89
90 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
91
92 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
93 LIST_HEAD(vmem_freelist, vmem_btag);
94 LIST_HEAD(vmem_hashlist, vmem_btag);
95
96 #if defined(QCACHE)
97 #define VMEM_QCACHE_IDX_MAX 32
98
99 #define QC_NAME_MAX 16
100
101 struct qcache {
102 struct pool qc_pool;
103 struct pool_cache qc_cache;
104 vmem_t *qc_vmem;
105 char qc_name[QC_NAME_MAX];
106 };
107 typedef struct qcache qcache_t;
108 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
109 #endif /* defined(QCACHE) */
110
111 /* vmem arena */
112 struct vmem {
113 SIMPLELOCK_DECL(vm_lock);
114 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
115 vm_flag_t);
116 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
117 vmem_t *vm_source;
118 struct vmem_seglist vm_seglist;
119 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
120 size_t vm_hashsize;
121 size_t vm_nbusytag;
122 struct vmem_hashlist *vm_hashlist;
123 size_t vm_quantum_mask;
124 int vm_quantum_shift;
125 const char *vm_name;
126
127 #if defined(QCACHE)
128 /* quantum cache */
129 size_t vm_qcache_max;
130 struct pool_allocator vm_qcache_allocator;
131 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
132 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
133 #endif /* defined(QCACHE) */
134 };
135
136 #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
137 #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
138 #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
139 #define VMEM_ASSERT_LOCKED(vm) \
140 LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
141 #define VMEM_ASSERT_UNLOCKED(vm) \
142 LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
143
144 /* boundary tag */
145 struct vmem_btag {
146 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
147 union {
148 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
149 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
150 } bt_u;
151 #define bt_hashlist bt_u.u_hashlist
152 #define bt_freelist bt_u.u_freelist
153 vmem_addr_t bt_start;
154 vmem_size_t bt_size;
155 int bt_type;
156 };
157
158 #define BT_TYPE_SPAN 1
159 #define BT_TYPE_SPAN_STATIC 2
160 #define BT_TYPE_FREE 3
161 #define BT_TYPE_BUSY 4
162 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
163
164 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
165
166 typedef struct vmem_btag bt_t;
167
168 /* ---- misc */
169
170 #define VMEM_ALIGNUP(addr, align) \
171 (-(-(addr) & -(align)))
172 #define VMEM_CROSS_P(addr1, addr2, boundary) \
173 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
174
175 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
176
177 static int
178 calc_order(vmem_size_t size)
179 {
180 vmem_size_t target;
181 int i;
182
183 KASSERT(size != 0);
184
185 i = 0;
186 target = size >> 1;
187 while (ORDER2SIZE(i) <= target) {
188 i++;
189 }
190
191 KASSERT(ORDER2SIZE(i) <= size);
192 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
193
194 return i;
195 }
196
197 #if defined(_KERNEL)
198 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
199 #endif /* defined(_KERNEL) */
200
201 static void *
202 xmalloc(size_t sz, vm_flag_t flags)
203 {
204
205 #if defined(_KERNEL)
206 return malloc(sz, M_VMEM,
207 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
208 #else /* defined(_KERNEL) */
209 return malloc(sz);
210 #endif /* defined(_KERNEL) */
211 }
212
213 static void
214 xfree(void *p)
215 {
216
217 #if defined(_KERNEL)
218 return free(p, M_VMEM);
219 #else /* defined(_KERNEL) */
220 return free(p);
221 #endif /* defined(_KERNEL) */
222 }
223
224 /* ---- boundary tag */
225
226 #if defined(_KERNEL)
227 static struct pool_cache bt_poolcache;
228 static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL, IPL_VM);
229 #endif /* defined(_KERNEL) */
230
231 static bt_t *
232 bt_alloc(vmem_t *vm, vm_flag_t flags)
233 {
234 bt_t *bt;
235
236 #if defined(_KERNEL)
237 int s;
238
239 /* XXX bootstrap */
240 s = splvm();
241 bt = pool_cache_get(&bt_poolcache,
242 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
243 splx(s);
244 #else /* defined(_KERNEL) */
245 bt = malloc(sizeof *bt);
246 #endif /* defined(_KERNEL) */
247
248 return bt;
249 }
250
251 static void
252 bt_free(vmem_t *vm, bt_t *bt)
253 {
254
255 #if defined(_KERNEL)
256 int s;
257
258 /* XXX bootstrap */
259 s = splvm();
260 pool_cache_put(&bt_poolcache, bt);
261 splx(s);
262 #else /* defined(_KERNEL) */
263 free(bt);
264 #endif /* defined(_KERNEL) */
265 }
266
267 /*
268 * freelist[0] ... [1, 1]
269 * freelist[1] ... [2, 3]
270 * freelist[2] ... [4, 7]
271 * freelist[3] ... [8, 15]
272 * :
273 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
274 * :
275 */
276
277 static struct vmem_freelist *
278 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
279 {
280 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
281 int idx;
282
283 KASSERT((size & vm->vm_quantum_mask) == 0);
284 KASSERT(size != 0);
285
286 idx = calc_order(qsize);
287 KASSERT(idx >= 0);
288 KASSERT(idx < VMEM_MAXORDER);
289
290 return &vm->vm_freelist[idx];
291 }
292
293 static struct vmem_freelist *
294 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
295 {
296 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
297 int idx;
298
299 KASSERT((size & vm->vm_quantum_mask) == 0);
300 KASSERT(size != 0);
301
302 idx = calc_order(qsize);
303 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
304 idx++;
305 /* check too large request? */
306 }
307 KASSERT(idx >= 0);
308 KASSERT(idx < VMEM_MAXORDER);
309
310 return &vm->vm_freelist[idx];
311 }
312
313 /* ---- boundary tag hash */
314
315 static struct vmem_hashlist *
316 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
317 {
318 struct vmem_hashlist *list;
319 unsigned int hash;
320
321 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
322 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
323
324 return list;
325 }
326
327 static bt_t *
328 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
329 {
330 struct vmem_hashlist *list;
331 bt_t *bt;
332
333 list = bt_hashhead(vm, addr);
334 LIST_FOREACH(bt, list, bt_hashlist) {
335 if (bt->bt_start == addr) {
336 break;
337 }
338 }
339
340 return bt;
341 }
342
343 static void
344 bt_rembusy(vmem_t *vm, bt_t *bt)
345 {
346
347 KASSERT(vm->vm_nbusytag > 0);
348 vm->vm_nbusytag--;
349 LIST_REMOVE(bt, bt_hashlist);
350 }
351
352 static void
353 bt_insbusy(vmem_t *vm, bt_t *bt)
354 {
355 struct vmem_hashlist *list;
356
357 KASSERT(bt->bt_type == BT_TYPE_BUSY);
358
359 list = bt_hashhead(vm, bt->bt_start);
360 LIST_INSERT_HEAD(list, bt, bt_hashlist);
361 vm->vm_nbusytag++;
362 }
363
364 /* ---- boundary tag list */
365
366 static void
367 bt_remseg(vmem_t *vm, bt_t *bt)
368 {
369
370 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
371 }
372
373 static void
374 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
375 {
376
377 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
378 }
379
380 static void
381 bt_insseg_tail(vmem_t *vm, bt_t *bt)
382 {
383
384 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
385 }
386
387 static void
388 bt_remfree(vmem_t *vm, bt_t *bt)
389 {
390
391 KASSERT(bt->bt_type == BT_TYPE_FREE);
392
393 LIST_REMOVE(bt, bt_freelist);
394 }
395
396 static void
397 bt_insfree(vmem_t *vm, bt_t *bt)
398 {
399 struct vmem_freelist *list;
400
401 list = bt_freehead_tofree(vm, bt->bt_size);
402 LIST_INSERT_HEAD(list, bt, bt_freelist);
403 }
404
405 /* ---- vmem internal functions */
406
407 #if defined(QCACHE)
408 static inline vm_flag_t
409 prf_to_vmf(int prflags)
410 {
411 vm_flag_t vmflags;
412
413 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
414 if ((prflags & PR_WAITOK) != 0) {
415 vmflags = VM_SLEEP;
416 } else {
417 vmflags = VM_NOSLEEP;
418 }
419 return vmflags;
420 }
421
422 static inline int
423 vmf_to_prf(vm_flag_t vmflags)
424 {
425 int prflags;
426
427 if ((vmflags & VM_SLEEP) != 0) {
428 prflags = PR_WAITOK;
429 } else {
430 prflags = PR_NOWAIT;
431 }
432 return prflags;
433 }
434
435 static size_t
436 qc_poolpage_size(size_t qcache_max)
437 {
438 int i;
439
440 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
441 /* nothing */
442 }
443 return ORDER2SIZE(i);
444 }
445
446 static void *
447 qc_poolpage_alloc(struct pool *pool, int prflags)
448 {
449 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
450 vmem_t *vm = qc->qc_vmem;
451
452 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
453 prf_to_vmf(prflags) | VM_INSTANTFIT);
454 }
455
456 static void
457 qc_poolpage_free(struct pool *pool, void *addr)
458 {
459 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
460 vmem_t *vm = qc->qc_vmem;
461
462 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
463 }
464
465 static void
466 qc_init(vmem_t *vm, size_t qcache_max)
467 {
468 qcache_t *prevqc;
469 struct pool_allocator *pa;
470 int qcache_idx_max;
471 int i;
472
473 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
474 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
475 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
476 }
477 vm->vm_qcache_max = qcache_max;
478 pa = &vm->vm_qcache_allocator;
479 memset(pa, 0, sizeof(*pa));
480 pa->pa_alloc = qc_poolpage_alloc;
481 pa->pa_free = qc_poolpage_free;
482 pa->pa_pagesz = qc_poolpage_size(qcache_max);
483
484 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
485 prevqc = NULL;
486 for (i = qcache_idx_max; i > 0; i--) {
487 qcache_t *qc = &vm->vm_qcache_store[i - 1];
488 size_t size = i << vm->vm_quantum_shift;
489
490 qc->qc_vmem = vm;
491 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
492 vm->vm_name, size);
493 pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
494 0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa,
495 IPL_NONE);
496 if (prevqc != NULL &&
497 qc->qc_pool.pr_itemsperpage ==
498 prevqc->qc_pool.pr_itemsperpage) {
499 pool_destroy(&qc->qc_pool);
500 vm->vm_qcache[i - 1] = prevqc;
501 continue;
502 }
503 pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
504 vm->vm_qcache[i - 1] = qc;
505 prevqc = qc;
506 }
507 }
508
509 static void
510 qc_destroy(vmem_t *vm)
511 {
512 const qcache_t *prevqc;
513 int i;
514 int qcache_idx_max;
515
516 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
517 prevqc = NULL;
518 for (i = 0; i < qcache_idx_max; i++) {
519 qcache_t *qc = vm->vm_qcache[i];
520
521 if (prevqc == qc) {
522 continue;
523 }
524 pool_cache_destroy(&qc->qc_cache);
525 pool_destroy(&qc->qc_pool);
526 prevqc = qc;
527 }
528 }
529
530 static bool
531 qc_reap(vmem_t *vm)
532 {
533 const qcache_t *prevqc;
534 int i;
535 int qcache_idx_max;
536 bool didsomething = false;
537
538 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
539 prevqc = NULL;
540 for (i = 0; i < qcache_idx_max; i++) {
541 qcache_t *qc = vm->vm_qcache[i];
542
543 if (prevqc == qc) {
544 continue;
545 }
546 if (pool_reclaim(&qc->qc_pool) != 0) {
547 didsomething = true;
548 }
549 prevqc = qc;
550 }
551
552 return didsomething;
553 }
554 #endif /* defined(QCACHE) */
555
556 #if defined(_KERNEL)
557 static int
558 vmem_init(void)
559 {
560
561 pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
562 return 0;
563 }
564 #endif /* defined(_KERNEL) */
565
566 static vmem_addr_t
567 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
568 int spanbttype)
569 {
570 bt_t *btspan;
571 bt_t *btfree;
572
573 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
574 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
575 VMEM_ASSERT_UNLOCKED(vm);
576
577 btspan = bt_alloc(vm, flags);
578 if (btspan == NULL) {
579 return VMEM_ADDR_NULL;
580 }
581 btfree = bt_alloc(vm, flags);
582 if (btfree == NULL) {
583 bt_free(vm, btspan);
584 return VMEM_ADDR_NULL;
585 }
586
587 btspan->bt_type = spanbttype;
588 btspan->bt_start = addr;
589 btspan->bt_size = size;
590
591 btfree->bt_type = BT_TYPE_FREE;
592 btfree->bt_start = addr;
593 btfree->bt_size = size;
594
595 VMEM_LOCK(vm);
596 bt_insseg_tail(vm, btspan);
597 bt_insseg(vm, btfree, btspan);
598 bt_insfree(vm, btfree);
599 VMEM_UNLOCK(vm);
600
601 return addr;
602 }
603
604 static int
605 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
606 {
607 vmem_addr_t addr;
608
609 VMEM_ASSERT_UNLOCKED(vm);
610
611 if (vm->vm_allocfn == NULL) {
612 return EINVAL;
613 }
614
615 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
616 if (addr == VMEM_ADDR_NULL) {
617 return ENOMEM;
618 }
619
620 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
621 (*vm->vm_freefn)(vm->vm_source, addr, size);
622 return ENOMEM;
623 }
624
625 return 0;
626 }
627
628 static int
629 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
630 {
631 bt_t *bt;
632 int i;
633 struct vmem_hashlist *newhashlist;
634 struct vmem_hashlist *oldhashlist;
635 size_t oldhashsize;
636
637 KASSERT(newhashsize > 0);
638 VMEM_ASSERT_UNLOCKED(vm);
639
640 newhashlist =
641 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
642 if (newhashlist == NULL) {
643 return ENOMEM;
644 }
645 for (i = 0; i < newhashsize; i++) {
646 LIST_INIT(&newhashlist[i]);
647 }
648
649 VMEM_LOCK(vm);
650 oldhashlist = vm->vm_hashlist;
651 oldhashsize = vm->vm_hashsize;
652 vm->vm_hashlist = newhashlist;
653 vm->vm_hashsize = newhashsize;
654 if (oldhashlist == NULL) {
655 VMEM_UNLOCK(vm);
656 return 0;
657 }
658 for (i = 0; i < oldhashsize; i++) {
659 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
660 bt_rembusy(vm, bt); /* XXX */
661 bt_insbusy(vm, bt);
662 }
663 }
664 VMEM_UNLOCK(vm);
665
666 xfree(oldhashlist);
667
668 return 0;
669 }
670
671 /*
672 * vmem_fit: check if a bt can satisfy the given restrictions.
673 */
674
675 static vmem_addr_t
676 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
677 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
678 {
679 vmem_addr_t start;
680 vmem_addr_t end;
681
682 KASSERT(bt->bt_size >= size);
683
684 /*
685 * XXX assumption: vmem_addr_t and vmem_size_t are
686 * unsigned integer of the same size.
687 */
688
689 start = bt->bt_start;
690 if (start < minaddr) {
691 start = minaddr;
692 }
693 end = BT_END(bt);
694 if (end > maxaddr - 1) {
695 end = maxaddr - 1;
696 }
697 if (start >= end) {
698 return VMEM_ADDR_NULL;
699 }
700
701 start = VMEM_ALIGNUP(start - phase, align) + phase;
702 if (start < bt->bt_start) {
703 start += align;
704 }
705 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
706 KASSERT(align < nocross);
707 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
708 }
709 if (start < end && end - start >= size) {
710 KASSERT((start & (align - 1)) == phase);
711 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
712 KASSERT(minaddr <= start);
713 KASSERT(maxaddr == 0 || start + size <= maxaddr);
714 KASSERT(bt->bt_start <= start);
715 KASSERT(start + size <= BT_END(bt));
716 return start;
717 }
718 return VMEM_ADDR_NULL;
719 }
720
721 /* ---- vmem API */
722
723 /*
724 * vmem_create: create an arena.
725 *
726 * => must not be called from interrupt context.
727 */
728
729 vmem_t *
730 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
731 vmem_size_t quantum,
732 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
733 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
734 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
735 {
736 vmem_t *vm;
737 int i;
738 #if defined(_KERNEL)
739 static ONCE_DECL(control);
740 #endif /* defined(_KERNEL) */
741
742 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
743 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
744
745 #if defined(_KERNEL)
746 if (RUN_ONCE(&control, vmem_init)) {
747 return NULL;
748 }
749 #endif /* defined(_KERNEL) */
750 vm = xmalloc(sizeof(*vm), flags);
751 if (vm == NULL) {
752 return NULL;
753 }
754
755 VMEM_LOCK_INIT(vm);
756 vm->vm_name = name;
757 vm->vm_quantum_mask = quantum - 1;
758 vm->vm_quantum_shift = calc_order(quantum);
759 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
760 vm->vm_allocfn = allocfn;
761 vm->vm_freefn = freefn;
762 vm->vm_source = source;
763 vm->vm_nbusytag = 0;
764 #if defined(QCACHE)
765 qc_init(vm, qcache_max);
766 #endif /* defined(QCACHE) */
767
768 CIRCLEQ_INIT(&vm->vm_seglist);
769 for (i = 0; i < VMEM_MAXORDER; i++) {
770 LIST_INIT(&vm->vm_freelist[i]);
771 }
772 vm->vm_hashlist = NULL;
773 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
774 vmem_destroy(vm);
775 return NULL;
776 }
777
778 if (size != 0) {
779 if (vmem_add(vm, base, size, flags) == 0) {
780 vmem_destroy(vm);
781 return NULL;
782 }
783 }
784
785 return vm;
786 }
787
788 void
789 vmem_destroy(vmem_t *vm)
790 {
791
792 VMEM_ASSERT_UNLOCKED(vm);
793
794 #if defined(QCACHE)
795 qc_destroy(vm);
796 #endif /* defined(QCACHE) */
797 if (vm->vm_hashlist != NULL) {
798 int i;
799
800 for (i = 0; i < vm->vm_hashsize; i++) {
801 bt_t *bt;
802
803 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
804 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
805 bt_free(vm, bt);
806 }
807 }
808 xfree(vm->vm_hashlist);
809 }
810 xfree(vm);
811 }
812
813 vmem_size_t
814 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
815 {
816
817 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
818 }
819
820 /*
821 * vmem_alloc:
822 *
823 * => caller must ensure appropriate spl,
824 * if the arena can be accessed from interrupt context.
825 */
826
827 vmem_addr_t
828 vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
829 {
830 const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
831 const vm_flag_t strat __unused = flags & VM_FITMASK;
832
833 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
834 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
835 VMEM_ASSERT_UNLOCKED(vm);
836
837 KASSERT(size0 > 0);
838 KASSERT(size > 0);
839 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
840 if ((flags & VM_SLEEP) != 0) {
841 ASSERT_SLEEPABLE(NULL, __func__);
842 }
843
844 #if defined(QCACHE)
845 if (size <= vm->vm_qcache_max) {
846 int qidx = size >> vm->vm_quantum_shift;
847 qcache_t *qc = vm->vm_qcache[qidx - 1];
848
849 return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
850 vmf_to_prf(flags));
851 }
852 #endif /* defined(QCACHE) */
853
854 return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
855 }
856
857 vmem_addr_t
858 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
859 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
860 vm_flag_t flags)
861 {
862 struct vmem_freelist *list;
863 struct vmem_freelist *first;
864 struct vmem_freelist *end;
865 bt_t *bt;
866 bt_t *btnew;
867 bt_t *btnew2;
868 const vmem_size_t size = vmem_roundup_size(vm, size0);
869 vm_flag_t strat = flags & VM_FITMASK;
870 vmem_addr_t start;
871
872 KASSERT(size0 > 0);
873 KASSERT(size > 0);
874 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
875 if ((flags & VM_SLEEP) != 0) {
876 ASSERT_SLEEPABLE(NULL, __func__);
877 }
878 KASSERT((align & vm->vm_quantum_mask) == 0);
879 KASSERT((align & (align - 1)) == 0);
880 KASSERT((phase & vm->vm_quantum_mask) == 0);
881 KASSERT((nocross & vm->vm_quantum_mask) == 0);
882 KASSERT((nocross & (nocross - 1)) == 0);
883 KASSERT((align == 0 && phase == 0) || phase < align);
884 KASSERT(nocross == 0 || nocross >= size);
885 KASSERT(maxaddr == 0 || minaddr < maxaddr);
886 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
887
888 if (align == 0) {
889 align = vm->vm_quantum_mask + 1;
890 }
891 btnew = bt_alloc(vm, flags);
892 if (btnew == NULL) {
893 return VMEM_ADDR_NULL;
894 }
895 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
896 if (btnew2 == NULL) {
897 bt_free(vm, btnew);
898 return VMEM_ADDR_NULL;
899 }
900
901 retry_strat:
902 first = bt_freehead_toalloc(vm, size, strat);
903 end = &vm->vm_freelist[VMEM_MAXORDER];
904 retry:
905 bt = NULL;
906 VMEM_LOCK(vm);
907 if (strat == VM_INSTANTFIT) {
908 for (list = first; list < end; list++) {
909 bt = LIST_FIRST(list);
910 if (bt != NULL) {
911 start = vmem_fit(bt, size, align, phase,
912 nocross, minaddr, maxaddr);
913 if (start != VMEM_ADDR_NULL) {
914 goto gotit;
915 }
916 }
917 }
918 } else { /* VM_BESTFIT */
919 for (list = first; list < end; list++) {
920 LIST_FOREACH(bt, list, bt_freelist) {
921 if (bt->bt_size >= size) {
922 start = vmem_fit(bt, size, align, phase,
923 nocross, minaddr, maxaddr);
924 if (start != VMEM_ADDR_NULL) {
925 goto gotit;
926 }
927 }
928 }
929 }
930 }
931 VMEM_UNLOCK(vm);
932 #if 1
933 if (strat == VM_INSTANTFIT) {
934 strat = VM_BESTFIT;
935 goto retry_strat;
936 }
937 #endif
938 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
939 nocross != 0 || minaddr != 0 || maxaddr != 0) {
940
941 /*
942 * XXX should try to import a region large enough to
943 * satisfy restrictions?
944 */
945
946 goto fail;
947 }
948 if (vmem_import(vm, size, flags) == 0) {
949 goto retry;
950 }
951 /* XXX */
952 fail:
953 bt_free(vm, btnew);
954 bt_free(vm, btnew2);
955 return VMEM_ADDR_NULL;
956
957 gotit:
958 KASSERT(bt->bt_type == BT_TYPE_FREE);
959 KASSERT(bt->bt_size >= size);
960 bt_remfree(vm, bt);
961 if (bt->bt_start != start) {
962 btnew2->bt_type = BT_TYPE_FREE;
963 btnew2->bt_start = bt->bt_start;
964 btnew2->bt_size = start - bt->bt_start;
965 bt->bt_start = start;
966 bt->bt_size -= btnew2->bt_size;
967 bt_insfree(vm, btnew2);
968 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
969 btnew2 = NULL;
970 }
971 KASSERT(bt->bt_start == start);
972 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
973 /* split */
974 btnew->bt_type = BT_TYPE_BUSY;
975 btnew->bt_start = bt->bt_start;
976 btnew->bt_size = size;
977 bt->bt_start = bt->bt_start + size;
978 bt->bt_size -= size;
979 bt_insfree(vm, bt);
980 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
981 bt_insbusy(vm, btnew);
982 VMEM_UNLOCK(vm);
983 } else {
984 bt->bt_type = BT_TYPE_BUSY;
985 bt_insbusy(vm, bt);
986 VMEM_UNLOCK(vm);
987 bt_free(vm, btnew);
988 btnew = bt;
989 }
990 if (btnew2 != NULL) {
991 bt_free(vm, btnew2);
992 }
993 KASSERT(btnew->bt_size >= size);
994 btnew->bt_type = BT_TYPE_BUSY;
995
996 return btnew->bt_start;
997 }
998
999 /*
1000 * vmem_free:
1001 *
1002 * => caller must ensure appropriate spl,
1003 * if the arena can be accessed from interrupt context.
1004 */
1005
1006 void
1007 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1008 {
1009
1010 VMEM_ASSERT_UNLOCKED(vm);
1011 KASSERT(addr != VMEM_ADDR_NULL);
1012 KASSERT(size > 0);
1013
1014 #if defined(QCACHE)
1015 if (size <= vm->vm_qcache_max) {
1016 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1017 qcache_t *qc = vm->vm_qcache[qidx - 1];
1018
1019 return pool_cache_put(&qc->qc_cache, (void *)addr);
1020 }
1021 #endif /* defined(QCACHE) */
1022
1023 vmem_xfree(vm, addr, size);
1024 }
1025
1026 void
1027 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1028 {
1029 bt_t *bt;
1030 bt_t *t;
1031
1032 VMEM_ASSERT_UNLOCKED(vm);
1033 KASSERT(addr != VMEM_ADDR_NULL);
1034 KASSERT(size > 0);
1035
1036 VMEM_LOCK(vm);
1037
1038 bt = bt_lookupbusy(vm, addr);
1039 KASSERT(bt != NULL);
1040 KASSERT(bt->bt_start == addr);
1041 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1042 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1043 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1044 bt_rembusy(vm, bt);
1045 bt->bt_type = BT_TYPE_FREE;
1046
1047 /* coalesce */
1048 t = CIRCLEQ_NEXT(bt, bt_seglist);
1049 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1050 KASSERT(BT_END(bt) == t->bt_start);
1051 bt_remfree(vm, t);
1052 bt_remseg(vm, t);
1053 bt->bt_size += t->bt_size;
1054 bt_free(vm, t);
1055 }
1056 t = CIRCLEQ_PREV(bt, bt_seglist);
1057 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1058 KASSERT(BT_END(t) == bt->bt_start);
1059 bt_remfree(vm, t);
1060 bt_remseg(vm, t);
1061 bt->bt_size += t->bt_size;
1062 bt->bt_start = t->bt_start;
1063 bt_free(vm, t);
1064 }
1065
1066 t = CIRCLEQ_PREV(bt, bt_seglist);
1067 KASSERT(t != NULL);
1068 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1069 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1070 t->bt_size == bt->bt_size) {
1071 vmem_addr_t spanaddr;
1072 vmem_size_t spansize;
1073
1074 KASSERT(t->bt_start == bt->bt_start);
1075 spanaddr = bt->bt_start;
1076 spansize = bt->bt_size;
1077 bt_remseg(vm, bt);
1078 bt_free(vm, bt);
1079 bt_remseg(vm, t);
1080 bt_free(vm, t);
1081 VMEM_UNLOCK(vm);
1082 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1083 } else {
1084 bt_insfree(vm, bt);
1085 VMEM_UNLOCK(vm);
1086 }
1087 }
1088
1089 /*
1090 * vmem_add:
1091 *
1092 * => caller must ensure appropriate spl,
1093 * if the arena can be accessed from interrupt context.
1094 */
1095
1096 vmem_addr_t
1097 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1098 {
1099
1100 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1101 }
1102
1103 /*
1104 * vmem_reap: reap unused resources.
1105 *
1106 * => return true if we successfully reaped something.
1107 */
1108
1109 bool
1110 vmem_reap(vmem_t *vm)
1111 {
1112 bool didsomething = false;
1113
1114 VMEM_ASSERT_UNLOCKED(vm);
1115
1116 #if defined(QCACHE)
1117 didsomething = qc_reap(vm);
1118 #endif /* defined(QCACHE) */
1119 return didsomething;
1120 }
1121
1122 /* ---- debug */
1123
1124 #if defined(VMEM_DEBUG)
1125
1126 #if !defined(_KERNEL)
1127 #include <stdio.h>
1128 #endif /* !defined(_KERNEL) */
1129
1130 void bt_dump(const bt_t *);
1131
1132 void
1133 bt_dump(const bt_t *bt)
1134 {
1135
1136 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1137 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1138 bt->bt_type);
1139 }
1140
1141 void
1142 vmem_dump(const vmem_t *vm)
1143 {
1144 const bt_t *bt;
1145 int i;
1146
1147 printf("vmem %p '%s'\n", vm, vm->vm_name);
1148 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1149 bt_dump(bt);
1150 }
1151
1152 for (i = 0; i < VMEM_MAXORDER; i++) {
1153 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1154
1155 if (LIST_EMPTY(fl)) {
1156 continue;
1157 }
1158
1159 printf("freelist[%d]\n", i);
1160 LIST_FOREACH(bt, fl, bt_freelist) {
1161 bt_dump(bt);
1162 if (bt->bt_size) {
1163 }
1164 }
1165 }
1166 }
1167
1168 #if !defined(_KERNEL)
1169
1170 int
1171 main()
1172 {
1173 vmem_t *vm;
1174 vmem_addr_t p;
1175 struct reg {
1176 vmem_addr_t p;
1177 vmem_size_t sz;
1178 bool x;
1179 } *reg = NULL;
1180 int nreg = 0;
1181 int nalloc = 0;
1182 int nfree = 0;
1183 vmem_size_t total = 0;
1184 #if 1
1185 vm_flag_t strat = VM_INSTANTFIT;
1186 #else
1187 vm_flag_t strat = VM_BESTFIT;
1188 #endif
1189
1190 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1191 NULL, NULL, NULL, 0, VM_NOSLEEP);
1192 if (vm == NULL) {
1193 printf("vmem_create\n");
1194 exit(EXIT_FAILURE);
1195 }
1196 vmem_dump(vm);
1197
1198 p = vmem_add(vm, 100, 200, VM_SLEEP);
1199 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1200 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1201 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1202 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1203 vmem_dump(vm);
1204 for (;;) {
1205 struct reg *r;
1206 int t = rand() % 100;
1207
1208 if (t > 45) {
1209 /* alloc */
1210 vmem_size_t sz = rand() % 500 + 1;
1211 bool x;
1212 vmem_size_t align, phase, nocross;
1213 vmem_addr_t minaddr, maxaddr;
1214
1215 if (t > 70) {
1216 x = true;
1217 /* XXX */
1218 align = 1 << (rand() % 15);
1219 phase = rand() % 65536;
1220 nocross = 1 << (rand() % 15);
1221 if (align <= phase) {
1222 phase = 0;
1223 }
1224 if (VMEM_CROSS_P(phase, phase + sz - 1,
1225 nocross)) {
1226 nocross = 0;
1227 }
1228 minaddr = rand() % 50000;
1229 maxaddr = rand() % 70000;
1230 if (minaddr > maxaddr) {
1231 minaddr = 0;
1232 maxaddr = 0;
1233 }
1234 printf("=== xalloc %" PRIu64
1235 " align=%" PRIu64 ", phase=%" PRIu64
1236 ", nocross=%" PRIu64 ", min=%" PRIu64
1237 ", max=%" PRIu64 "\n",
1238 (uint64_t)sz,
1239 (uint64_t)align,
1240 (uint64_t)phase,
1241 (uint64_t)nocross,
1242 (uint64_t)minaddr,
1243 (uint64_t)maxaddr);
1244 p = vmem_xalloc(vm, sz, align, phase, nocross,
1245 minaddr, maxaddr, strat|VM_SLEEP);
1246 } else {
1247 x = false;
1248 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1249 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1250 }
1251 printf("-> %" PRIu64 "\n", (uint64_t)p);
1252 vmem_dump(vm);
1253 if (p == VMEM_ADDR_NULL) {
1254 if (x) {
1255 continue;
1256 }
1257 break;
1258 }
1259 nreg++;
1260 reg = realloc(reg, sizeof(*reg) * nreg);
1261 r = ®[nreg - 1];
1262 r->p = p;
1263 r->sz = sz;
1264 r->x = x;
1265 total += sz;
1266 nalloc++;
1267 } else if (nreg != 0) {
1268 /* free */
1269 r = ®[rand() % nreg];
1270 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1271 (uint64_t)r->p, (uint64_t)r->sz);
1272 if (r->x) {
1273 vmem_xfree(vm, r->p, r->sz);
1274 } else {
1275 vmem_free(vm, r->p, r->sz);
1276 }
1277 total -= r->sz;
1278 vmem_dump(vm);
1279 *r = reg[nreg - 1];
1280 nreg--;
1281 nfree++;
1282 }
1283 printf("total=%" PRIu64 "\n", (uint64_t)total);
1284 }
1285 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1286 (uint64_t)total, nalloc, nfree);
1287 exit(EXIT_SUCCESS);
1288 }
1289 #endif /* !defined(_KERNEL) */
1290 #endif /* defined(VMEM_DEBUG) */
1291