subr_vmem.c revision 1.32 1 /* $NetBSD: subr_vmem.c,v 1.32 2007/07/12 20:39:56 rmind Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.32 2007/07/12 20:39:56 rmind Exp $");
42
43 #define VMEM_DEBUG
44 #if defined(_KERNEL)
45 #define QCACHE
46 #endif /* defined(_KERNEL) */
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/queue.h>
51
52 #if defined(_KERNEL)
53 #include <sys/systm.h>
54 #include <sys/kernel.h> /* hz */
55 #include <sys/callout.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/once.h>
59 #include <sys/pool.h>
60 #include <sys/proc.h>
61 #include <sys/vmem.h>
62 #include <sys/workqueue.h>
63 #else /* defined(_KERNEL) */
64 #include "../sys/vmem.h"
65 #endif /* defined(_KERNEL) */
66
67 #if defined(_KERNEL)
68 #define LOCK_DECL(name) kmutex_t name
69 #else /* defined(_KERNEL) */
70 #include <errno.h>
71 #include <assert.h>
72 #include <stdlib.h>
73
74 #define KASSERT(a) assert(a)
75 #define LOCK_DECL(name) /* nothing */
76 #define mutex_init(a, b, c) /* nothing */
77 #define mutex_destroy(a) /* nothing */
78 #define mutex_enter(a) /* nothing */
79 #define mutex_exit(a) /* nothing */
80 #define mutex_owned(a) /* nothing */
81 #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
82 #define IPL_VM 0
83 #endif /* defined(_KERNEL) */
84
85 struct vmem;
86 struct vmem_btag;
87
88 #if defined(VMEM_DEBUG)
89 void vmem_dump(const vmem_t *);
90 #endif /* defined(VMEM_DEBUG) */
91
92 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
93
94 #define VMEM_HASHSIZE_MIN 1 /* XXX */
95 #define VMEM_HASHSIZE_MAX 8192 /* XXX */
96 #define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
97
98 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
99
100 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
101 LIST_HEAD(vmem_freelist, vmem_btag);
102 LIST_HEAD(vmem_hashlist, vmem_btag);
103
104 #if defined(QCACHE)
105 #define VMEM_QCACHE_IDX_MAX 32
106
107 #define QC_NAME_MAX 16
108
109 struct qcache {
110 struct pool qc_pool;
111 struct pool_cache qc_cache;
112 vmem_t *qc_vmem;
113 char qc_name[QC_NAME_MAX];
114 };
115 typedef struct qcache qcache_t;
116 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
117 #endif /* defined(QCACHE) */
118
119 /* vmem arena */
120 struct vmem {
121 LOCK_DECL(vm_lock);
122 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
123 vm_flag_t);
124 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
125 vmem_t *vm_source;
126 struct vmem_seglist vm_seglist;
127 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
128 size_t vm_hashsize;
129 size_t vm_nbusytag;
130 struct vmem_hashlist *vm_hashlist;
131 size_t vm_quantum_mask;
132 int vm_quantum_shift;
133 const char *vm_name;
134 LIST_ENTRY(vmem) vm_alllist;
135
136 #if defined(QCACHE)
137 /* quantum cache */
138 size_t vm_qcache_max;
139 struct pool_allocator vm_qcache_allocator;
140 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
141 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
142 #endif /* defined(QCACHE) */
143 };
144
145 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
146 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
147 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
148 #ifdef notyet /* XXX needs vmlocking branch changes */
149 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DRIVER, ipl)
150 #else
151 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DRIVER, IPL_VM)
152 #endif
153 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
154 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
155
156 /* boundary tag */
157 struct vmem_btag {
158 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
159 union {
160 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
161 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
162 } bt_u;
163 #define bt_hashlist bt_u.u_hashlist
164 #define bt_freelist bt_u.u_freelist
165 vmem_addr_t bt_start;
166 vmem_size_t bt_size;
167 int bt_type;
168 };
169
170 #define BT_TYPE_SPAN 1
171 #define BT_TYPE_SPAN_STATIC 2
172 #define BT_TYPE_FREE 3
173 #define BT_TYPE_BUSY 4
174 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
175
176 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
177
178 typedef struct vmem_btag bt_t;
179
180 /* ---- misc */
181
182 #define VMEM_ALIGNUP(addr, align) \
183 (-(-(addr) & -(align)))
184 #define VMEM_CROSS_P(addr1, addr2, boundary) \
185 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
186
187 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
188
189 static int
190 calc_order(vmem_size_t size)
191 {
192 vmem_size_t target;
193 int i;
194
195 KASSERT(size != 0);
196
197 i = 0;
198 target = size >> 1;
199 while (ORDER2SIZE(i) <= target) {
200 i++;
201 }
202
203 KASSERT(ORDER2SIZE(i) <= size);
204 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
205
206 return i;
207 }
208
209 #if defined(_KERNEL)
210 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
211 #endif /* defined(_KERNEL) */
212
213 static void *
214 xmalloc(size_t sz, vm_flag_t flags)
215 {
216
217 #if defined(_KERNEL)
218 return malloc(sz, M_VMEM,
219 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
220 #else /* defined(_KERNEL) */
221 return malloc(sz);
222 #endif /* defined(_KERNEL) */
223 }
224
225 static void
226 xfree(void *p)
227 {
228
229 #if defined(_KERNEL)
230 return free(p, M_VMEM);
231 #else /* defined(_KERNEL) */
232 return free(p);
233 #endif /* defined(_KERNEL) */
234 }
235
236 /* ---- boundary tag */
237
238 #if defined(_KERNEL)
239 static struct pool_cache bt_poolcache;
240 static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL, IPL_VM);
241 #endif /* defined(_KERNEL) */
242
243 static bt_t *
244 bt_alloc(vmem_t *vm, vm_flag_t flags)
245 {
246 bt_t *bt;
247
248 #if defined(_KERNEL)
249 int s;
250
251 /* XXX bootstrap */
252 s = splvm();
253 bt = pool_cache_get(&bt_poolcache,
254 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
255 splx(s);
256 #else /* defined(_KERNEL) */
257 bt = malloc(sizeof *bt);
258 #endif /* defined(_KERNEL) */
259
260 return bt;
261 }
262
263 static void
264 bt_free(vmem_t *vm, bt_t *bt)
265 {
266
267 #if defined(_KERNEL)
268 int s;
269
270 /* XXX bootstrap */
271 s = splvm();
272 pool_cache_put(&bt_poolcache, bt);
273 splx(s);
274 #else /* defined(_KERNEL) */
275 free(bt);
276 #endif /* defined(_KERNEL) */
277 }
278
279 /*
280 * freelist[0] ... [1, 1]
281 * freelist[1] ... [2, 3]
282 * freelist[2] ... [4, 7]
283 * freelist[3] ... [8, 15]
284 * :
285 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
286 * :
287 */
288
289 static struct vmem_freelist *
290 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
291 {
292 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
293 int idx;
294
295 KASSERT((size & vm->vm_quantum_mask) == 0);
296 KASSERT(size != 0);
297
298 idx = calc_order(qsize);
299 KASSERT(idx >= 0);
300 KASSERT(idx < VMEM_MAXORDER);
301
302 return &vm->vm_freelist[idx];
303 }
304
305 static struct vmem_freelist *
306 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
307 {
308 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
309 int idx;
310
311 KASSERT((size & vm->vm_quantum_mask) == 0);
312 KASSERT(size != 0);
313
314 idx = calc_order(qsize);
315 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
316 idx++;
317 /* check too large request? */
318 }
319 KASSERT(idx >= 0);
320 KASSERT(idx < VMEM_MAXORDER);
321
322 return &vm->vm_freelist[idx];
323 }
324
325 /* ---- boundary tag hash */
326
327 static struct vmem_hashlist *
328 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
329 {
330 struct vmem_hashlist *list;
331 unsigned int hash;
332
333 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
334 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
335
336 return list;
337 }
338
339 static bt_t *
340 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
341 {
342 struct vmem_hashlist *list;
343 bt_t *bt;
344
345 list = bt_hashhead(vm, addr);
346 LIST_FOREACH(bt, list, bt_hashlist) {
347 if (bt->bt_start == addr) {
348 break;
349 }
350 }
351
352 return bt;
353 }
354
355 static void
356 bt_rembusy(vmem_t *vm, bt_t *bt)
357 {
358
359 KASSERT(vm->vm_nbusytag > 0);
360 vm->vm_nbusytag--;
361 LIST_REMOVE(bt, bt_hashlist);
362 }
363
364 static void
365 bt_insbusy(vmem_t *vm, bt_t *bt)
366 {
367 struct vmem_hashlist *list;
368
369 KASSERT(bt->bt_type == BT_TYPE_BUSY);
370
371 list = bt_hashhead(vm, bt->bt_start);
372 LIST_INSERT_HEAD(list, bt, bt_hashlist);
373 vm->vm_nbusytag++;
374 }
375
376 /* ---- boundary tag list */
377
378 static void
379 bt_remseg(vmem_t *vm, bt_t *bt)
380 {
381
382 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
383 }
384
385 static void
386 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
387 {
388
389 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
390 }
391
392 static void
393 bt_insseg_tail(vmem_t *vm, bt_t *bt)
394 {
395
396 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
397 }
398
399 static void
400 bt_remfree(vmem_t *vm, bt_t *bt)
401 {
402
403 KASSERT(bt->bt_type == BT_TYPE_FREE);
404
405 LIST_REMOVE(bt, bt_freelist);
406 }
407
408 static void
409 bt_insfree(vmem_t *vm, bt_t *bt)
410 {
411 struct vmem_freelist *list;
412
413 list = bt_freehead_tofree(vm, bt->bt_size);
414 LIST_INSERT_HEAD(list, bt, bt_freelist);
415 }
416
417 /* ---- vmem internal functions */
418
419 #if defined(_KERNEL)
420 static kmutex_t vmem_list_lock;
421 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
422 #endif /* defined(_KERNEL) */
423
424 #if defined(QCACHE)
425 static inline vm_flag_t
426 prf_to_vmf(int prflags)
427 {
428 vm_flag_t vmflags;
429
430 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
431 if ((prflags & PR_WAITOK) != 0) {
432 vmflags = VM_SLEEP;
433 } else {
434 vmflags = VM_NOSLEEP;
435 }
436 return vmflags;
437 }
438
439 static inline int
440 vmf_to_prf(vm_flag_t vmflags)
441 {
442 int prflags;
443
444 if ((vmflags & VM_SLEEP) != 0) {
445 prflags = PR_WAITOK;
446 } else {
447 prflags = PR_NOWAIT;
448 }
449 return prflags;
450 }
451
452 static size_t
453 qc_poolpage_size(size_t qcache_max)
454 {
455 int i;
456
457 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
458 /* nothing */
459 }
460 return ORDER2SIZE(i);
461 }
462
463 static void *
464 qc_poolpage_alloc(struct pool *pool, int prflags)
465 {
466 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
467 vmem_t *vm = qc->qc_vmem;
468
469 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
470 prf_to_vmf(prflags) | VM_INSTANTFIT);
471 }
472
473 static void
474 qc_poolpage_free(struct pool *pool, void *addr)
475 {
476 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
477 vmem_t *vm = qc->qc_vmem;
478
479 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
480 }
481
482 static void
483 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
484 {
485 qcache_t *prevqc;
486 struct pool_allocator *pa;
487 int qcache_idx_max;
488 int i;
489
490 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
491 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
492 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
493 }
494 vm->vm_qcache_max = qcache_max;
495 pa = &vm->vm_qcache_allocator;
496 memset(pa, 0, sizeof(*pa));
497 pa->pa_alloc = qc_poolpage_alloc;
498 pa->pa_free = qc_poolpage_free;
499 pa->pa_pagesz = qc_poolpage_size(qcache_max);
500
501 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
502 prevqc = NULL;
503 for (i = qcache_idx_max; i > 0; i--) {
504 qcache_t *qc = &vm->vm_qcache_store[i - 1];
505 size_t size = i << vm->vm_quantum_shift;
506
507 qc->qc_vmem = vm;
508 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
509 vm->vm_name, size);
510 pool_init(&qc->qc_pool, size, ORDER2SIZE(vm->vm_quantum_shift),
511 0, PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa,
512 ipl);
513 if (prevqc != NULL &&
514 qc->qc_pool.pr_itemsperpage ==
515 prevqc->qc_pool.pr_itemsperpage) {
516 pool_destroy(&qc->qc_pool);
517 vm->vm_qcache[i - 1] = prevqc;
518 continue;
519 }
520 pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
521 vm->vm_qcache[i - 1] = qc;
522 prevqc = qc;
523 }
524 }
525
526 static void
527 qc_destroy(vmem_t *vm)
528 {
529 const qcache_t *prevqc;
530 int i;
531 int qcache_idx_max;
532
533 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
534 prevqc = NULL;
535 for (i = 0; i < qcache_idx_max; i++) {
536 qcache_t *qc = vm->vm_qcache[i];
537
538 if (prevqc == qc) {
539 continue;
540 }
541 pool_cache_destroy(&qc->qc_cache);
542 pool_destroy(&qc->qc_pool);
543 prevqc = qc;
544 }
545 }
546
547 static bool
548 qc_reap(vmem_t *vm)
549 {
550 const qcache_t *prevqc;
551 int i;
552 int qcache_idx_max;
553 bool didsomething = false;
554
555 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
556 prevqc = NULL;
557 for (i = 0; i < qcache_idx_max; i++) {
558 qcache_t *qc = vm->vm_qcache[i];
559
560 if (prevqc == qc) {
561 continue;
562 }
563 if (pool_reclaim(&qc->qc_pool) != 0) {
564 didsomething = true;
565 }
566 prevqc = qc;
567 }
568
569 return didsomething;
570 }
571 #endif /* defined(QCACHE) */
572
573 #if defined(_KERNEL)
574 static int
575 vmem_init(void)
576 {
577
578 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
579 pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
580 return 0;
581 }
582 #endif /* defined(_KERNEL) */
583
584 static vmem_addr_t
585 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
586 int spanbttype)
587 {
588 bt_t *btspan;
589 bt_t *btfree;
590
591 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
592 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
593
594 btspan = bt_alloc(vm, flags);
595 if (btspan == NULL) {
596 return VMEM_ADDR_NULL;
597 }
598 btfree = bt_alloc(vm, flags);
599 if (btfree == NULL) {
600 bt_free(vm, btspan);
601 return VMEM_ADDR_NULL;
602 }
603
604 btspan->bt_type = spanbttype;
605 btspan->bt_start = addr;
606 btspan->bt_size = size;
607
608 btfree->bt_type = BT_TYPE_FREE;
609 btfree->bt_start = addr;
610 btfree->bt_size = size;
611
612 VMEM_LOCK(vm);
613 bt_insseg_tail(vm, btspan);
614 bt_insseg(vm, btfree, btspan);
615 bt_insfree(vm, btfree);
616 VMEM_UNLOCK(vm);
617
618 return addr;
619 }
620
621 static void
622 vmem_destroy1(vmem_t *vm)
623 {
624
625 #if defined(QCACHE)
626 qc_destroy(vm);
627 #endif /* defined(QCACHE) */
628 if (vm->vm_hashlist != NULL) {
629 int i;
630
631 for (i = 0; i < vm->vm_hashsize; i++) {
632 bt_t *bt;
633
634 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
635 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
636 bt_free(vm, bt);
637 }
638 }
639 xfree(vm->vm_hashlist);
640 }
641 VMEM_LOCK_DESTROY(vm);
642 xfree(vm);
643 }
644
645 static int
646 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
647 {
648 vmem_addr_t addr;
649
650 if (vm->vm_allocfn == NULL) {
651 return EINVAL;
652 }
653
654 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
655 if (addr == VMEM_ADDR_NULL) {
656 return ENOMEM;
657 }
658
659 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
660 (*vm->vm_freefn)(vm->vm_source, addr, size);
661 return ENOMEM;
662 }
663
664 return 0;
665 }
666
667 static int
668 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
669 {
670 bt_t *bt;
671 int i;
672 struct vmem_hashlist *newhashlist;
673 struct vmem_hashlist *oldhashlist;
674 size_t oldhashsize;
675
676 KASSERT(newhashsize > 0);
677
678 newhashlist =
679 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
680 if (newhashlist == NULL) {
681 return ENOMEM;
682 }
683 for (i = 0; i < newhashsize; i++) {
684 LIST_INIT(&newhashlist[i]);
685 }
686
687 if (!VMEM_TRYLOCK(vm)) {
688 xfree(newhashlist);
689 return EBUSY;
690 }
691 oldhashlist = vm->vm_hashlist;
692 oldhashsize = vm->vm_hashsize;
693 vm->vm_hashlist = newhashlist;
694 vm->vm_hashsize = newhashsize;
695 if (oldhashlist == NULL) {
696 VMEM_UNLOCK(vm);
697 return 0;
698 }
699 for (i = 0; i < oldhashsize; i++) {
700 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
701 bt_rembusy(vm, bt); /* XXX */
702 bt_insbusy(vm, bt);
703 }
704 }
705 VMEM_UNLOCK(vm);
706
707 xfree(oldhashlist);
708
709 return 0;
710 }
711
712 /*
713 * vmem_fit: check if a bt can satisfy the given restrictions.
714 */
715
716 static vmem_addr_t
717 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
718 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
719 {
720 vmem_addr_t start;
721 vmem_addr_t end;
722
723 KASSERT(bt->bt_size >= size);
724
725 /*
726 * XXX assumption: vmem_addr_t and vmem_size_t are
727 * unsigned integer of the same size.
728 */
729
730 start = bt->bt_start;
731 if (start < minaddr) {
732 start = minaddr;
733 }
734 end = BT_END(bt);
735 if (end > maxaddr - 1) {
736 end = maxaddr - 1;
737 }
738 if (start >= end) {
739 return VMEM_ADDR_NULL;
740 }
741
742 start = VMEM_ALIGNUP(start - phase, align) + phase;
743 if (start < bt->bt_start) {
744 start += align;
745 }
746 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
747 KASSERT(align < nocross);
748 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
749 }
750 if (start < end && end - start >= size) {
751 KASSERT((start & (align - 1)) == phase);
752 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
753 KASSERT(minaddr <= start);
754 KASSERT(maxaddr == 0 || start + size <= maxaddr);
755 KASSERT(bt->bt_start <= start);
756 KASSERT(start + size <= BT_END(bt));
757 return start;
758 }
759 return VMEM_ADDR_NULL;
760 }
761
762 /* ---- vmem API */
763
764 /*
765 * vmem_create: create an arena.
766 *
767 * => must not be called from interrupt context.
768 */
769
770 vmem_t *
771 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
772 vmem_size_t quantum,
773 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
774 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
775 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
776 int ipl)
777 {
778 vmem_t *vm;
779 int i;
780 #if defined(_KERNEL)
781 static ONCE_DECL(control);
782 #endif /* defined(_KERNEL) */
783
784 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
785 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
786
787 #if defined(_KERNEL)
788 if (RUN_ONCE(&control, vmem_init)) {
789 return NULL;
790 }
791 #endif /* defined(_KERNEL) */
792 vm = xmalloc(sizeof(*vm), flags);
793 if (vm == NULL) {
794 return NULL;
795 }
796
797 VMEM_LOCK_INIT(vm, ipl);
798 vm->vm_name = name;
799 vm->vm_quantum_mask = quantum - 1;
800 vm->vm_quantum_shift = calc_order(quantum);
801 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
802 vm->vm_allocfn = allocfn;
803 vm->vm_freefn = freefn;
804 vm->vm_source = source;
805 vm->vm_nbusytag = 0;
806 #if defined(QCACHE)
807 qc_init(vm, qcache_max, ipl);
808 #endif /* defined(QCACHE) */
809
810 CIRCLEQ_INIT(&vm->vm_seglist);
811 for (i = 0; i < VMEM_MAXORDER; i++) {
812 LIST_INIT(&vm->vm_freelist[i]);
813 }
814 vm->vm_hashlist = NULL;
815 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
816 vmem_destroy1(vm);
817 return NULL;
818 }
819
820 if (size != 0) {
821 if (vmem_add(vm, base, size, flags) == 0) {
822 vmem_destroy1(vm);
823 return NULL;
824 }
825 }
826
827 #if defined(_KERNEL)
828 mutex_enter(&vmem_list_lock);
829 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
830 mutex_exit(&vmem_list_lock);
831 #endif /* defined(_KERNEL) */
832
833 return vm;
834 }
835
836 void
837 vmem_destroy(vmem_t *vm)
838 {
839
840 #if defined(_KERNEL)
841 mutex_enter(&vmem_list_lock);
842 LIST_REMOVE(vm, vm_alllist);
843 mutex_exit(&vmem_list_lock);
844 #endif /* defined(_KERNEL) */
845
846 vmem_destroy1(vm);
847 }
848
849 vmem_size_t
850 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
851 {
852
853 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
854 }
855
856 /*
857 * vmem_alloc:
858 *
859 * => caller must ensure appropriate spl,
860 * if the arena can be accessed from interrupt context.
861 */
862
863 vmem_addr_t
864 vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
865 {
866 const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
867 const vm_flag_t strat __unused = flags & VM_FITMASK;
868
869 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
870 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
871
872 KASSERT(size0 > 0);
873 KASSERT(size > 0);
874 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
875 if ((flags & VM_SLEEP) != 0) {
876 ASSERT_SLEEPABLE(NULL, __func__);
877 }
878
879 #if defined(QCACHE)
880 if (size <= vm->vm_qcache_max) {
881 int qidx = size >> vm->vm_quantum_shift;
882 qcache_t *qc = vm->vm_qcache[qidx - 1];
883
884 return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
885 vmf_to_prf(flags));
886 }
887 #endif /* defined(QCACHE) */
888
889 return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
890 }
891
892 vmem_addr_t
893 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
894 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
895 vm_flag_t flags)
896 {
897 struct vmem_freelist *list;
898 struct vmem_freelist *first;
899 struct vmem_freelist *end;
900 bt_t *bt;
901 bt_t *btnew;
902 bt_t *btnew2;
903 const vmem_size_t size = vmem_roundup_size(vm, size0);
904 vm_flag_t strat = flags & VM_FITMASK;
905 vmem_addr_t start;
906
907 KASSERT(size0 > 0);
908 KASSERT(size > 0);
909 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
910 if ((flags & VM_SLEEP) != 0) {
911 ASSERT_SLEEPABLE(NULL, __func__);
912 }
913 KASSERT((align & vm->vm_quantum_mask) == 0);
914 KASSERT((align & (align - 1)) == 0);
915 KASSERT((phase & vm->vm_quantum_mask) == 0);
916 KASSERT((nocross & vm->vm_quantum_mask) == 0);
917 KASSERT((nocross & (nocross - 1)) == 0);
918 KASSERT((align == 0 && phase == 0) || phase < align);
919 KASSERT(nocross == 0 || nocross >= size);
920 KASSERT(maxaddr == 0 || minaddr < maxaddr);
921 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
922
923 if (align == 0) {
924 align = vm->vm_quantum_mask + 1;
925 }
926 btnew = bt_alloc(vm, flags);
927 if (btnew == NULL) {
928 return VMEM_ADDR_NULL;
929 }
930 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
931 if (btnew2 == NULL) {
932 bt_free(vm, btnew);
933 return VMEM_ADDR_NULL;
934 }
935
936 retry_strat:
937 first = bt_freehead_toalloc(vm, size, strat);
938 end = &vm->vm_freelist[VMEM_MAXORDER];
939 retry:
940 bt = NULL;
941 VMEM_LOCK(vm);
942 if (strat == VM_INSTANTFIT) {
943 for (list = first; list < end; list++) {
944 bt = LIST_FIRST(list);
945 if (bt != NULL) {
946 start = vmem_fit(bt, size, align, phase,
947 nocross, minaddr, maxaddr);
948 if (start != VMEM_ADDR_NULL) {
949 goto gotit;
950 }
951 }
952 }
953 } else { /* VM_BESTFIT */
954 for (list = first; list < end; list++) {
955 LIST_FOREACH(bt, list, bt_freelist) {
956 if (bt->bt_size >= size) {
957 start = vmem_fit(bt, size, align, phase,
958 nocross, minaddr, maxaddr);
959 if (start != VMEM_ADDR_NULL) {
960 goto gotit;
961 }
962 }
963 }
964 }
965 }
966 VMEM_UNLOCK(vm);
967 #if 1
968 if (strat == VM_INSTANTFIT) {
969 strat = VM_BESTFIT;
970 goto retry_strat;
971 }
972 #endif
973 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
974 nocross != 0 || minaddr != 0 || maxaddr != 0) {
975
976 /*
977 * XXX should try to import a region large enough to
978 * satisfy restrictions?
979 */
980
981 goto fail;
982 }
983 if (vmem_import(vm, size, flags) == 0) {
984 goto retry;
985 }
986 /* XXX */
987 fail:
988 bt_free(vm, btnew);
989 bt_free(vm, btnew2);
990 return VMEM_ADDR_NULL;
991
992 gotit:
993 KASSERT(bt->bt_type == BT_TYPE_FREE);
994 KASSERT(bt->bt_size >= size);
995 bt_remfree(vm, bt);
996 if (bt->bt_start != start) {
997 btnew2->bt_type = BT_TYPE_FREE;
998 btnew2->bt_start = bt->bt_start;
999 btnew2->bt_size = start - bt->bt_start;
1000 bt->bt_start = start;
1001 bt->bt_size -= btnew2->bt_size;
1002 bt_insfree(vm, btnew2);
1003 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1004 btnew2 = NULL;
1005 }
1006 KASSERT(bt->bt_start == start);
1007 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1008 /* split */
1009 btnew->bt_type = BT_TYPE_BUSY;
1010 btnew->bt_start = bt->bt_start;
1011 btnew->bt_size = size;
1012 bt->bt_start = bt->bt_start + size;
1013 bt->bt_size -= size;
1014 bt_insfree(vm, bt);
1015 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1016 bt_insbusy(vm, btnew);
1017 VMEM_UNLOCK(vm);
1018 } else {
1019 bt->bt_type = BT_TYPE_BUSY;
1020 bt_insbusy(vm, bt);
1021 VMEM_UNLOCK(vm);
1022 bt_free(vm, btnew);
1023 btnew = bt;
1024 }
1025 if (btnew2 != NULL) {
1026 bt_free(vm, btnew2);
1027 }
1028 KASSERT(btnew->bt_size >= size);
1029 btnew->bt_type = BT_TYPE_BUSY;
1030
1031 return btnew->bt_start;
1032 }
1033
1034 /*
1035 * vmem_free:
1036 *
1037 * => caller must ensure appropriate spl,
1038 * if the arena can be accessed from interrupt context.
1039 */
1040
1041 void
1042 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1043 {
1044
1045 KASSERT(addr != VMEM_ADDR_NULL);
1046 KASSERT(size > 0);
1047
1048 #if defined(QCACHE)
1049 if (size <= vm->vm_qcache_max) {
1050 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1051 qcache_t *qc = vm->vm_qcache[qidx - 1];
1052
1053 return pool_cache_put(&qc->qc_cache, (void *)addr);
1054 }
1055 #endif /* defined(QCACHE) */
1056
1057 vmem_xfree(vm, addr, size);
1058 }
1059
1060 void
1061 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1062 {
1063 bt_t *bt;
1064 bt_t *t;
1065
1066 KASSERT(addr != VMEM_ADDR_NULL);
1067 KASSERT(size > 0);
1068
1069 VMEM_LOCK(vm);
1070
1071 bt = bt_lookupbusy(vm, addr);
1072 KASSERT(bt != NULL);
1073 KASSERT(bt->bt_start == addr);
1074 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1075 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1076 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1077 bt_rembusy(vm, bt);
1078 bt->bt_type = BT_TYPE_FREE;
1079
1080 /* coalesce */
1081 t = CIRCLEQ_NEXT(bt, bt_seglist);
1082 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1083 KASSERT(BT_END(bt) == t->bt_start);
1084 bt_remfree(vm, t);
1085 bt_remseg(vm, t);
1086 bt->bt_size += t->bt_size;
1087 bt_free(vm, t);
1088 }
1089 t = CIRCLEQ_PREV(bt, bt_seglist);
1090 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1091 KASSERT(BT_END(t) == bt->bt_start);
1092 bt_remfree(vm, t);
1093 bt_remseg(vm, t);
1094 bt->bt_size += t->bt_size;
1095 bt->bt_start = t->bt_start;
1096 bt_free(vm, t);
1097 }
1098
1099 t = CIRCLEQ_PREV(bt, bt_seglist);
1100 KASSERT(t != NULL);
1101 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1102 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1103 t->bt_size == bt->bt_size) {
1104 vmem_addr_t spanaddr;
1105 vmem_size_t spansize;
1106
1107 KASSERT(t->bt_start == bt->bt_start);
1108 spanaddr = bt->bt_start;
1109 spansize = bt->bt_size;
1110 bt_remseg(vm, bt);
1111 bt_free(vm, bt);
1112 bt_remseg(vm, t);
1113 bt_free(vm, t);
1114 VMEM_UNLOCK(vm);
1115 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1116 } else {
1117 bt_insfree(vm, bt);
1118 VMEM_UNLOCK(vm);
1119 }
1120 }
1121
1122 /*
1123 * vmem_add:
1124 *
1125 * => caller must ensure appropriate spl,
1126 * if the arena can be accessed from interrupt context.
1127 */
1128
1129 vmem_addr_t
1130 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1131 {
1132
1133 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1134 }
1135
1136 /*
1137 * vmem_reap: reap unused resources.
1138 *
1139 * => return true if we successfully reaped something.
1140 */
1141
1142 bool
1143 vmem_reap(vmem_t *vm)
1144 {
1145 bool didsomething = false;
1146
1147 #if defined(QCACHE)
1148 didsomething = qc_reap(vm);
1149 #endif /* defined(QCACHE) */
1150 return didsomething;
1151 }
1152
1153 /* ---- rehash */
1154
1155 #if defined(_KERNEL)
1156 static struct callout vmem_rehash_ch;
1157 static int vmem_rehash_interval;
1158 static struct workqueue *vmem_rehash_wq;
1159 static struct work vmem_rehash_wk;
1160
1161 static void
1162 vmem_rehash_all(struct work *wk, void *dummy)
1163 {
1164 vmem_t *vm;
1165
1166 KASSERT(wk == &vmem_rehash_wk);
1167 mutex_enter(&vmem_list_lock);
1168 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1169 size_t desired;
1170 size_t current;
1171 int s;
1172
1173 s = splvm();
1174 if (!VMEM_TRYLOCK(vm)) {
1175 splx(s);
1176 continue;
1177 }
1178 desired = vm->vm_nbusytag;
1179 current = vm->vm_hashsize;
1180 VMEM_UNLOCK(vm);
1181 splx(s);
1182
1183 if (desired > VMEM_HASHSIZE_MAX) {
1184 desired = VMEM_HASHSIZE_MAX;
1185 } else if (desired < VMEM_HASHSIZE_MIN) {
1186 desired = VMEM_HASHSIZE_MIN;
1187 }
1188 if (desired > current * 2 || desired * 2 < current) {
1189 s = splvm();
1190 vmem_rehash(vm, desired, VM_NOSLEEP);
1191 splx(s);
1192 }
1193 }
1194 mutex_exit(&vmem_list_lock);
1195
1196 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1197 }
1198
1199 static void
1200 vmem_rehash_all_kick(void *dummy)
1201 {
1202
1203 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1204 }
1205
1206 void
1207 vmem_rehash_start(void)
1208 {
1209 int error;
1210
1211 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1212 vmem_rehash_all, NULL, PVM, IPL_SOFTCLOCK, 0);
1213 if (error) {
1214 panic("%s: workqueue_create %d\n", __func__, error);
1215 }
1216 callout_init(&vmem_rehash_ch, 0);
1217 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1218
1219 vmem_rehash_interval = hz * 10;
1220 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1221 }
1222 #endif /* defined(_KERNEL) */
1223
1224 /* ---- debug */
1225
1226 #if defined(VMEM_DEBUG)
1227
1228 #if !defined(_KERNEL)
1229 #include <stdio.h>
1230 #endif /* !defined(_KERNEL) */
1231
1232 void bt_dump(const bt_t *);
1233
1234 void
1235 bt_dump(const bt_t *bt)
1236 {
1237
1238 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1239 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1240 bt->bt_type);
1241 }
1242
1243 void
1244 vmem_dump(const vmem_t *vm)
1245 {
1246 const bt_t *bt;
1247 int i;
1248
1249 printf("vmem %p '%s'\n", vm, vm->vm_name);
1250 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1251 bt_dump(bt);
1252 }
1253
1254 for (i = 0; i < VMEM_MAXORDER; i++) {
1255 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1256
1257 if (LIST_EMPTY(fl)) {
1258 continue;
1259 }
1260
1261 printf("freelist[%d]\n", i);
1262 LIST_FOREACH(bt, fl, bt_freelist) {
1263 bt_dump(bt);
1264 if (bt->bt_size) {
1265 }
1266 }
1267 }
1268 }
1269
1270 #if !defined(_KERNEL)
1271
1272 int
1273 main()
1274 {
1275 vmem_t *vm;
1276 vmem_addr_t p;
1277 struct reg {
1278 vmem_addr_t p;
1279 vmem_size_t sz;
1280 bool x;
1281 } *reg = NULL;
1282 int nreg = 0;
1283 int nalloc = 0;
1284 int nfree = 0;
1285 vmem_size_t total = 0;
1286 #if 1
1287 vm_flag_t strat = VM_INSTANTFIT;
1288 #else
1289 vm_flag_t strat = VM_BESTFIT;
1290 #endif
1291
1292 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1293 NULL, NULL, NULL, 0, VM_SLEEP);
1294 if (vm == NULL) {
1295 printf("vmem_create\n");
1296 exit(EXIT_FAILURE);
1297 }
1298 vmem_dump(vm);
1299
1300 p = vmem_add(vm, 100, 200, VM_SLEEP);
1301 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1302 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1303 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1304 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1305 vmem_dump(vm);
1306 for (;;) {
1307 struct reg *r;
1308 int t = rand() % 100;
1309
1310 if (t > 45) {
1311 /* alloc */
1312 vmem_size_t sz = rand() % 500 + 1;
1313 bool x;
1314 vmem_size_t align, phase, nocross;
1315 vmem_addr_t minaddr, maxaddr;
1316
1317 if (t > 70) {
1318 x = true;
1319 /* XXX */
1320 align = 1 << (rand() % 15);
1321 phase = rand() % 65536;
1322 nocross = 1 << (rand() % 15);
1323 if (align <= phase) {
1324 phase = 0;
1325 }
1326 if (VMEM_CROSS_P(phase, phase + sz - 1,
1327 nocross)) {
1328 nocross = 0;
1329 }
1330 minaddr = rand() % 50000;
1331 maxaddr = rand() % 70000;
1332 if (minaddr > maxaddr) {
1333 minaddr = 0;
1334 maxaddr = 0;
1335 }
1336 printf("=== xalloc %" PRIu64
1337 " align=%" PRIu64 ", phase=%" PRIu64
1338 ", nocross=%" PRIu64 ", min=%" PRIu64
1339 ", max=%" PRIu64 "\n",
1340 (uint64_t)sz,
1341 (uint64_t)align,
1342 (uint64_t)phase,
1343 (uint64_t)nocross,
1344 (uint64_t)minaddr,
1345 (uint64_t)maxaddr);
1346 p = vmem_xalloc(vm, sz, align, phase, nocross,
1347 minaddr, maxaddr, strat|VM_SLEEP);
1348 } else {
1349 x = false;
1350 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1351 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1352 }
1353 printf("-> %" PRIu64 "\n", (uint64_t)p);
1354 vmem_dump(vm);
1355 if (p == VMEM_ADDR_NULL) {
1356 if (x) {
1357 continue;
1358 }
1359 break;
1360 }
1361 nreg++;
1362 reg = realloc(reg, sizeof(*reg) * nreg);
1363 r = ®[nreg - 1];
1364 r->p = p;
1365 r->sz = sz;
1366 r->x = x;
1367 total += sz;
1368 nalloc++;
1369 } else if (nreg != 0) {
1370 /* free */
1371 r = ®[rand() % nreg];
1372 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1373 (uint64_t)r->p, (uint64_t)r->sz);
1374 if (r->x) {
1375 vmem_xfree(vm, r->p, r->sz);
1376 } else {
1377 vmem_free(vm, r->p, r->sz);
1378 }
1379 total -= r->sz;
1380 vmem_dump(vm);
1381 *r = reg[nreg - 1];
1382 nreg--;
1383 nfree++;
1384 }
1385 printf("total=%" PRIu64 "\n", (uint64_t)total);
1386 }
1387 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1388 (uint64_t)total, nalloc, nfree);
1389 exit(EXIT_SUCCESS);
1390 }
1391 #endif /* !defined(_KERNEL) */
1392 #endif /* defined(VMEM_DEBUG) */
1393