subr_vmem.c revision 1.37 1 /* $NetBSD: subr_vmem.c,v 1.37 2007/12/13 02:45:10 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.37 2007/12/13 02:45:10 yamt Exp $");
42
43 #define VMEM_DEBUG
44 #if defined(_KERNEL)
45 #include "opt_ddb.h"
46 #define QCACHE
47 #endif /* defined(_KERNEL) */
48
49 #include <sys/param.h>
50 #include <sys/hash.h>
51 #include <sys/queue.h>
52
53 #if defined(_KERNEL)
54 #include <sys/systm.h>
55 #include <sys/kernel.h> /* hz */
56 #include <sys/callout.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/once.h>
60 #include <sys/pool.h>
61 #include <sys/proc.h>
62 #include <sys/vmem.h>
63 #include <sys/workqueue.h>
64 #else /* defined(_KERNEL) */
65 #include "../sys/vmem.h"
66 #endif /* defined(_KERNEL) */
67
68 #if defined(_KERNEL)
69 #define LOCK_DECL(name) kmutex_t name
70 #else /* defined(_KERNEL) */
71 #include <errno.h>
72 #include <assert.h>
73 #include <stdlib.h>
74
75 #define KASSERT(a) assert(a)
76 #define LOCK_DECL(name) /* nothing */
77 #define mutex_init(a, b, c) /* nothing */
78 #define mutex_destroy(a) /* nothing */
79 #define mutex_enter(a) /* nothing */
80 #define mutex_exit(a) /* nothing */
81 #define mutex_owned(a) /* nothing */
82 #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
83 #define IPL_VM 0
84 #endif /* defined(_KERNEL) */
85
86 struct vmem;
87 struct vmem_btag;
88
89 #if defined(VMEM_DEBUG)
90 void vmem_dump(const vmem_t *);
91 #endif /* defined(VMEM_DEBUG) */
92
93 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
94
95 #define VMEM_HASHSIZE_MIN 1 /* XXX */
96 #define VMEM_HASHSIZE_MAX 8192 /* XXX */
97 #define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
98
99 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
100
101 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
102 LIST_HEAD(vmem_freelist, vmem_btag);
103 LIST_HEAD(vmem_hashlist, vmem_btag);
104
105 #if defined(QCACHE)
106 #define VMEM_QCACHE_IDX_MAX 32
107
108 #define QC_NAME_MAX 16
109
110 struct qcache {
111 pool_cache_t qc_cache;
112 vmem_t *qc_vmem;
113 char qc_name[QC_NAME_MAX];
114 };
115 typedef struct qcache qcache_t;
116 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
117 #endif /* defined(QCACHE) */
118
119 /* vmem arena */
120 struct vmem {
121 LOCK_DECL(vm_lock);
122 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
123 vm_flag_t);
124 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
125 vmem_t *vm_source;
126 struct vmem_seglist vm_seglist;
127 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
128 size_t vm_hashsize;
129 size_t vm_nbusytag;
130 struct vmem_hashlist *vm_hashlist;
131 size_t vm_quantum_mask;
132 int vm_quantum_shift;
133 const char *vm_name;
134 LIST_ENTRY(vmem) vm_alllist;
135
136 #if defined(QCACHE)
137 /* quantum cache */
138 size_t vm_qcache_max;
139 struct pool_allocator vm_qcache_allocator;
140 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
141 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
142 #endif /* defined(QCACHE) */
143 };
144
145 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
146 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
147 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
148 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
149 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
150 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
151
152 /* boundary tag */
153 struct vmem_btag {
154 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
155 union {
156 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
157 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
158 } bt_u;
159 #define bt_hashlist bt_u.u_hashlist
160 #define bt_freelist bt_u.u_freelist
161 vmem_addr_t bt_start;
162 vmem_size_t bt_size;
163 int bt_type;
164 };
165
166 #define BT_TYPE_SPAN 1
167 #define BT_TYPE_SPAN_STATIC 2
168 #define BT_TYPE_FREE 3
169 #define BT_TYPE_BUSY 4
170 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
171
172 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
173
174 typedef struct vmem_btag bt_t;
175
176 /* ---- misc */
177
178 #define VMEM_ALIGNUP(addr, align) \
179 (-(-(addr) & -(align)))
180 #define VMEM_CROSS_P(addr1, addr2, boundary) \
181 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
182
183 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
184
185 static int
186 calc_order(vmem_size_t size)
187 {
188 vmem_size_t target;
189 int i;
190
191 KASSERT(size != 0);
192
193 i = 0;
194 target = size >> 1;
195 while (ORDER2SIZE(i) <= target) {
196 i++;
197 }
198
199 KASSERT(ORDER2SIZE(i) <= size);
200 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
201
202 return i;
203 }
204
205 #if defined(_KERNEL)
206 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
207 #endif /* defined(_KERNEL) */
208
209 static void *
210 xmalloc(size_t sz, vm_flag_t flags)
211 {
212
213 #if defined(_KERNEL)
214 return malloc(sz, M_VMEM,
215 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
216 #else /* defined(_KERNEL) */
217 return malloc(sz);
218 #endif /* defined(_KERNEL) */
219 }
220
221 static void
222 xfree(void *p)
223 {
224
225 #if defined(_KERNEL)
226 return free(p, M_VMEM);
227 #else /* defined(_KERNEL) */
228 return free(p);
229 #endif /* defined(_KERNEL) */
230 }
231
232 /* ---- boundary tag */
233
234 #if defined(_KERNEL)
235 static struct pool_cache bt_cache;
236 #endif /* defined(_KERNEL) */
237
238 static bt_t *
239 bt_alloc(vmem_t *vm, vm_flag_t flags)
240 {
241 bt_t *bt;
242
243 #if defined(_KERNEL)
244 bt = pool_cache_get(&bt_cache,
245 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
246 #else /* defined(_KERNEL) */
247 bt = malloc(sizeof *bt);
248 #endif /* defined(_KERNEL) */
249
250 return bt;
251 }
252
253 static void
254 bt_free(vmem_t *vm, bt_t *bt)
255 {
256
257 #if defined(_KERNEL)
258 pool_cache_put(&bt_cache, bt);
259 #else /* defined(_KERNEL) */
260 free(bt);
261 #endif /* defined(_KERNEL) */
262 }
263
264 /*
265 * freelist[0] ... [1, 1]
266 * freelist[1] ... [2, 3]
267 * freelist[2] ... [4, 7]
268 * freelist[3] ... [8, 15]
269 * :
270 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
271 * :
272 */
273
274 static struct vmem_freelist *
275 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
276 {
277 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
278 int idx;
279
280 KASSERT((size & vm->vm_quantum_mask) == 0);
281 KASSERT(size != 0);
282
283 idx = calc_order(qsize);
284 KASSERT(idx >= 0);
285 KASSERT(idx < VMEM_MAXORDER);
286
287 return &vm->vm_freelist[idx];
288 }
289
290 static struct vmem_freelist *
291 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
292 {
293 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
294 int idx;
295
296 KASSERT((size & vm->vm_quantum_mask) == 0);
297 KASSERT(size != 0);
298
299 idx = calc_order(qsize);
300 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
301 idx++;
302 /* check too large request? */
303 }
304 KASSERT(idx >= 0);
305 KASSERT(idx < VMEM_MAXORDER);
306
307 return &vm->vm_freelist[idx];
308 }
309
310 /* ---- boundary tag hash */
311
312 static struct vmem_hashlist *
313 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
314 {
315 struct vmem_hashlist *list;
316 unsigned int hash;
317
318 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
319 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
320
321 return list;
322 }
323
324 static bt_t *
325 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
326 {
327 struct vmem_hashlist *list;
328 bt_t *bt;
329
330 list = bt_hashhead(vm, addr);
331 LIST_FOREACH(bt, list, bt_hashlist) {
332 if (bt->bt_start == addr) {
333 break;
334 }
335 }
336
337 return bt;
338 }
339
340 static void
341 bt_rembusy(vmem_t *vm, bt_t *bt)
342 {
343
344 KASSERT(vm->vm_nbusytag > 0);
345 vm->vm_nbusytag--;
346 LIST_REMOVE(bt, bt_hashlist);
347 }
348
349 static void
350 bt_insbusy(vmem_t *vm, bt_t *bt)
351 {
352 struct vmem_hashlist *list;
353
354 KASSERT(bt->bt_type == BT_TYPE_BUSY);
355
356 list = bt_hashhead(vm, bt->bt_start);
357 LIST_INSERT_HEAD(list, bt, bt_hashlist);
358 vm->vm_nbusytag++;
359 }
360
361 /* ---- boundary tag list */
362
363 static void
364 bt_remseg(vmem_t *vm, bt_t *bt)
365 {
366
367 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
368 }
369
370 static void
371 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
372 {
373
374 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
375 }
376
377 static void
378 bt_insseg_tail(vmem_t *vm, bt_t *bt)
379 {
380
381 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
382 }
383
384 static void
385 bt_remfree(vmem_t *vm, bt_t *bt)
386 {
387
388 KASSERT(bt->bt_type == BT_TYPE_FREE);
389
390 LIST_REMOVE(bt, bt_freelist);
391 }
392
393 static void
394 bt_insfree(vmem_t *vm, bt_t *bt)
395 {
396 struct vmem_freelist *list;
397
398 list = bt_freehead_tofree(vm, bt->bt_size);
399 LIST_INSERT_HEAD(list, bt, bt_freelist);
400 }
401
402 /* ---- vmem internal functions */
403
404 #if defined(_KERNEL)
405 static kmutex_t vmem_list_lock;
406 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
407 #endif /* defined(_KERNEL) */
408
409 #if defined(QCACHE)
410 static inline vm_flag_t
411 prf_to_vmf(int prflags)
412 {
413 vm_flag_t vmflags;
414
415 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
416 if ((prflags & PR_WAITOK) != 0) {
417 vmflags = VM_SLEEP;
418 } else {
419 vmflags = VM_NOSLEEP;
420 }
421 return vmflags;
422 }
423
424 static inline int
425 vmf_to_prf(vm_flag_t vmflags)
426 {
427 int prflags;
428
429 if ((vmflags & VM_SLEEP) != 0) {
430 prflags = PR_WAITOK;
431 } else {
432 prflags = PR_NOWAIT;
433 }
434 return prflags;
435 }
436
437 static size_t
438 qc_poolpage_size(size_t qcache_max)
439 {
440 int i;
441
442 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
443 /* nothing */
444 }
445 return ORDER2SIZE(i);
446 }
447
448 static void *
449 qc_poolpage_alloc(struct pool *pool, int prflags)
450 {
451 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
452 vmem_t *vm = qc->qc_vmem;
453
454 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
455 prf_to_vmf(prflags) | VM_INSTANTFIT);
456 }
457
458 static void
459 qc_poolpage_free(struct pool *pool, void *addr)
460 {
461 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
462 vmem_t *vm = qc->qc_vmem;
463
464 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
465 }
466
467 static void
468 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
469 {
470 qcache_t *prevqc;
471 struct pool_allocator *pa;
472 int qcache_idx_max;
473 int i;
474
475 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
476 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
477 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
478 }
479 vm->vm_qcache_max = qcache_max;
480 pa = &vm->vm_qcache_allocator;
481 memset(pa, 0, sizeof(*pa));
482 pa->pa_alloc = qc_poolpage_alloc;
483 pa->pa_free = qc_poolpage_free;
484 pa->pa_pagesz = qc_poolpage_size(qcache_max);
485
486 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
487 prevqc = NULL;
488 for (i = qcache_idx_max; i > 0; i--) {
489 qcache_t *qc = &vm->vm_qcache_store[i - 1];
490 size_t size = i << vm->vm_quantum_shift;
491
492 qc->qc_vmem = vm;
493 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
494 vm->vm_name, size);
495 qc->qc_cache = pool_cache_init(size,
496 ORDER2SIZE(vm->vm_quantum_shift), 0,
497 PR_NOALIGN | PR_NOTOUCH /* XXX */,
498 qc->qc_name, pa, ipl, NULL, NULL, NULL);
499 KASSERT(qc->qc_cache != NULL); /* XXX */
500 if (prevqc != NULL &&
501 qc->qc_cache->pc_pool.pr_itemsperpage ==
502 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
503 pool_cache_destroy(qc->qc_cache);
504 vm->vm_qcache[i - 1] = prevqc;
505 continue;
506 }
507 qc->qc_cache->pc_pool.pr_qcache = qc;
508 vm->vm_qcache[i - 1] = qc;
509 prevqc = qc;
510 }
511 }
512
513 static void
514 qc_destroy(vmem_t *vm)
515 {
516 const qcache_t *prevqc;
517 int i;
518 int qcache_idx_max;
519
520 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
521 prevqc = NULL;
522 for (i = 0; i < qcache_idx_max; i++) {
523 qcache_t *qc = vm->vm_qcache[i];
524
525 if (prevqc == qc) {
526 continue;
527 }
528 pool_cache_destroy(qc->qc_cache);
529 prevqc = qc;
530 }
531 }
532
533 static bool
534 qc_reap(vmem_t *vm)
535 {
536 const qcache_t *prevqc;
537 int i;
538 int qcache_idx_max;
539 bool didsomething = false;
540
541 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
542 prevqc = NULL;
543 for (i = 0; i < qcache_idx_max; i++) {
544 qcache_t *qc = vm->vm_qcache[i];
545
546 if (prevqc == qc) {
547 continue;
548 }
549 if (pool_cache_reclaim(qc->qc_cache) != 0) {
550 didsomething = true;
551 }
552 prevqc = qc;
553 }
554
555 return didsomething;
556 }
557 #endif /* defined(QCACHE) */
558
559 #if defined(_KERNEL)
560 static int
561 vmem_init(void)
562 {
563
564 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
565 pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
566 NULL, IPL_VM, NULL, NULL, NULL);
567 return 0;
568 }
569 #endif /* defined(_KERNEL) */
570
571 static vmem_addr_t
572 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
573 int spanbttype)
574 {
575 bt_t *btspan;
576 bt_t *btfree;
577
578 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
579 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
580
581 btspan = bt_alloc(vm, flags);
582 if (btspan == NULL) {
583 return VMEM_ADDR_NULL;
584 }
585 btfree = bt_alloc(vm, flags);
586 if (btfree == NULL) {
587 bt_free(vm, btspan);
588 return VMEM_ADDR_NULL;
589 }
590
591 btspan->bt_type = spanbttype;
592 btspan->bt_start = addr;
593 btspan->bt_size = size;
594
595 btfree->bt_type = BT_TYPE_FREE;
596 btfree->bt_start = addr;
597 btfree->bt_size = size;
598
599 VMEM_LOCK(vm);
600 bt_insseg_tail(vm, btspan);
601 bt_insseg(vm, btfree, btspan);
602 bt_insfree(vm, btfree);
603 VMEM_UNLOCK(vm);
604
605 return addr;
606 }
607
608 static void
609 vmem_destroy1(vmem_t *vm)
610 {
611
612 #if defined(QCACHE)
613 qc_destroy(vm);
614 #endif /* defined(QCACHE) */
615 if (vm->vm_hashlist != NULL) {
616 int i;
617
618 for (i = 0; i < vm->vm_hashsize; i++) {
619 bt_t *bt;
620
621 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
622 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
623 bt_free(vm, bt);
624 }
625 }
626 xfree(vm->vm_hashlist);
627 }
628 VMEM_LOCK_DESTROY(vm);
629 xfree(vm);
630 }
631
632 static int
633 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
634 {
635 vmem_addr_t addr;
636
637 if (vm->vm_allocfn == NULL) {
638 return EINVAL;
639 }
640
641 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
642 if (addr == VMEM_ADDR_NULL) {
643 return ENOMEM;
644 }
645
646 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
647 (*vm->vm_freefn)(vm->vm_source, addr, size);
648 return ENOMEM;
649 }
650
651 return 0;
652 }
653
654 static int
655 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
656 {
657 bt_t *bt;
658 int i;
659 struct vmem_hashlist *newhashlist;
660 struct vmem_hashlist *oldhashlist;
661 size_t oldhashsize;
662
663 KASSERT(newhashsize > 0);
664
665 newhashlist =
666 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
667 if (newhashlist == NULL) {
668 return ENOMEM;
669 }
670 for (i = 0; i < newhashsize; i++) {
671 LIST_INIT(&newhashlist[i]);
672 }
673
674 if (!VMEM_TRYLOCK(vm)) {
675 xfree(newhashlist);
676 return EBUSY;
677 }
678 oldhashlist = vm->vm_hashlist;
679 oldhashsize = vm->vm_hashsize;
680 vm->vm_hashlist = newhashlist;
681 vm->vm_hashsize = newhashsize;
682 if (oldhashlist == NULL) {
683 VMEM_UNLOCK(vm);
684 return 0;
685 }
686 for (i = 0; i < oldhashsize; i++) {
687 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
688 bt_rembusy(vm, bt); /* XXX */
689 bt_insbusy(vm, bt);
690 }
691 }
692 VMEM_UNLOCK(vm);
693
694 xfree(oldhashlist);
695
696 return 0;
697 }
698
699 /*
700 * vmem_fit: check if a bt can satisfy the given restrictions.
701 */
702
703 static vmem_addr_t
704 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
705 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
706 {
707 vmem_addr_t start;
708 vmem_addr_t end;
709
710 KASSERT(bt->bt_size >= size);
711
712 /*
713 * XXX assumption: vmem_addr_t and vmem_size_t are
714 * unsigned integer of the same size.
715 */
716
717 start = bt->bt_start;
718 if (start < minaddr) {
719 start = minaddr;
720 }
721 end = BT_END(bt);
722 if (end > maxaddr - 1) {
723 end = maxaddr - 1;
724 }
725 if (start >= end) {
726 return VMEM_ADDR_NULL;
727 }
728
729 start = VMEM_ALIGNUP(start - phase, align) + phase;
730 if (start < bt->bt_start) {
731 start += align;
732 }
733 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
734 KASSERT(align < nocross);
735 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
736 }
737 if (start < end && end - start >= size) {
738 KASSERT((start & (align - 1)) == phase);
739 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
740 KASSERT(minaddr <= start);
741 KASSERT(maxaddr == 0 || start + size <= maxaddr);
742 KASSERT(bt->bt_start <= start);
743 KASSERT(start + size <= BT_END(bt));
744 return start;
745 }
746 return VMEM_ADDR_NULL;
747 }
748
749 /* ---- vmem API */
750
751 /*
752 * vmem_create: create an arena.
753 *
754 * => must not be called from interrupt context.
755 */
756
757 vmem_t *
758 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
759 vmem_size_t quantum,
760 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
761 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
762 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
763 int ipl)
764 {
765 vmem_t *vm;
766 int i;
767 #if defined(_KERNEL)
768 static ONCE_DECL(control);
769 #endif /* defined(_KERNEL) */
770
771 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
772 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
773
774 #if defined(_KERNEL)
775 if (RUN_ONCE(&control, vmem_init)) {
776 return NULL;
777 }
778 #endif /* defined(_KERNEL) */
779 vm = xmalloc(sizeof(*vm), flags);
780 if (vm == NULL) {
781 return NULL;
782 }
783
784 VMEM_LOCK_INIT(vm, ipl);
785 vm->vm_name = name;
786 vm->vm_quantum_mask = quantum - 1;
787 vm->vm_quantum_shift = calc_order(quantum);
788 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
789 vm->vm_allocfn = allocfn;
790 vm->vm_freefn = freefn;
791 vm->vm_source = source;
792 vm->vm_nbusytag = 0;
793 #if defined(QCACHE)
794 qc_init(vm, qcache_max, ipl);
795 #endif /* defined(QCACHE) */
796
797 CIRCLEQ_INIT(&vm->vm_seglist);
798 for (i = 0; i < VMEM_MAXORDER; i++) {
799 LIST_INIT(&vm->vm_freelist[i]);
800 }
801 vm->vm_hashlist = NULL;
802 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
803 vmem_destroy1(vm);
804 return NULL;
805 }
806
807 if (size != 0) {
808 if (vmem_add(vm, base, size, flags) == 0) {
809 vmem_destroy1(vm);
810 return NULL;
811 }
812 }
813
814 #if defined(_KERNEL)
815 mutex_enter(&vmem_list_lock);
816 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
817 mutex_exit(&vmem_list_lock);
818 #endif /* defined(_KERNEL) */
819
820 return vm;
821 }
822
823 void
824 vmem_destroy(vmem_t *vm)
825 {
826
827 #if defined(_KERNEL)
828 mutex_enter(&vmem_list_lock);
829 LIST_REMOVE(vm, vm_alllist);
830 mutex_exit(&vmem_list_lock);
831 #endif /* defined(_KERNEL) */
832
833 vmem_destroy1(vm);
834 }
835
836 vmem_size_t
837 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
838 {
839
840 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
841 }
842
843 /*
844 * vmem_alloc:
845 *
846 * => caller must ensure appropriate spl,
847 * if the arena can be accessed from interrupt context.
848 */
849
850 vmem_addr_t
851 vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
852 {
853 const vmem_size_t size __unused = vmem_roundup_size(vm, size0);
854 const vm_flag_t strat __unused = flags & VM_FITMASK;
855
856 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
857 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
858
859 KASSERT(size0 > 0);
860 KASSERT(size > 0);
861 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
862 if ((flags & VM_SLEEP) != 0) {
863 ASSERT_SLEEPABLE(NULL, __func__);
864 }
865
866 #if defined(QCACHE)
867 if (size <= vm->vm_qcache_max) {
868 int qidx = size >> vm->vm_quantum_shift;
869 qcache_t *qc = vm->vm_qcache[qidx - 1];
870
871 return (vmem_addr_t)pool_cache_get(qc->qc_cache,
872 vmf_to_prf(flags));
873 }
874 #endif /* defined(QCACHE) */
875
876 return vmem_xalloc(vm, size0, 0, 0, 0, 0, 0, flags);
877 }
878
879 vmem_addr_t
880 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
881 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
882 vm_flag_t flags)
883 {
884 struct vmem_freelist *list;
885 struct vmem_freelist *first;
886 struct vmem_freelist *end;
887 bt_t *bt;
888 bt_t *btnew;
889 bt_t *btnew2;
890 const vmem_size_t size = vmem_roundup_size(vm, size0);
891 vm_flag_t strat = flags & VM_FITMASK;
892 vmem_addr_t start;
893
894 KASSERT(size0 > 0);
895 KASSERT(size > 0);
896 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
897 if ((flags & VM_SLEEP) != 0) {
898 ASSERT_SLEEPABLE(NULL, __func__);
899 }
900 KASSERT((align & vm->vm_quantum_mask) == 0);
901 KASSERT((align & (align - 1)) == 0);
902 KASSERT((phase & vm->vm_quantum_mask) == 0);
903 KASSERT((nocross & vm->vm_quantum_mask) == 0);
904 KASSERT((nocross & (nocross - 1)) == 0);
905 KASSERT((align == 0 && phase == 0) || phase < align);
906 KASSERT(nocross == 0 || nocross >= size);
907 KASSERT(maxaddr == 0 || minaddr < maxaddr);
908 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
909
910 if (align == 0) {
911 align = vm->vm_quantum_mask + 1;
912 }
913 btnew = bt_alloc(vm, flags);
914 if (btnew == NULL) {
915 return VMEM_ADDR_NULL;
916 }
917 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
918 if (btnew2 == NULL) {
919 bt_free(vm, btnew);
920 return VMEM_ADDR_NULL;
921 }
922
923 retry_strat:
924 first = bt_freehead_toalloc(vm, size, strat);
925 end = &vm->vm_freelist[VMEM_MAXORDER];
926 retry:
927 bt = NULL;
928 VMEM_LOCK(vm);
929 if (strat == VM_INSTANTFIT) {
930 for (list = first; list < end; list++) {
931 bt = LIST_FIRST(list);
932 if (bt != NULL) {
933 start = vmem_fit(bt, size, align, phase,
934 nocross, minaddr, maxaddr);
935 if (start != VMEM_ADDR_NULL) {
936 goto gotit;
937 }
938 }
939 }
940 } else { /* VM_BESTFIT */
941 for (list = first; list < end; list++) {
942 LIST_FOREACH(bt, list, bt_freelist) {
943 if (bt->bt_size >= size) {
944 start = vmem_fit(bt, size, align, phase,
945 nocross, minaddr, maxaddr);
946 if (start != VMEM_ADDR_NULL) {
947 goto gotit;
948 }
949 }
950 }
951 }
952 }
953 VMEM_UNLOCK(vm);
954 #if 1
955 if (strat == VM_INSTANTFIT) {
956 strat = VM_BESTFIT;
957 goto retry_strat;
958 }
959 #endif
960 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
961 nocross != 0 || minaddr != 0 || maxaddr != 0) {
962
963 /*
964 * XXX should try to import a region large enough to
965 * satisfy restrictions?
966 */
967
968 goto fail;
969 }
970 if (vmem_import(vm, size, flags) == 0) {
971 goto retry;
972 }
973 /* XXX */
974 fail:
975 bt_free(vm, btnew);
976 bt_free(vm, btnew2);
977 return VMEM_ADDR_NULL;
978
979 gotit:
980 KASSERT(bt->bt_type == BT_TYPE_FREE);
981 KASSERT(bt->bt_size >= size);
982 bt_remfree(vm, bt);
983 if (bt->bt_start != start) {
984 btnew2->bt_type = BT_TYPE_FREE;
985 btnew2->bt_start = bt->bt_start;
986 btnew2->bt_size = start - bt->bt_start;
987 bt->bt_start = start;
988 bt->bt_size -= btnew2->bt_size;
989 bt_insfree(vm, btnew2);
990 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
991 btnew2 = NULL;
992 }
993 KASSERT(bt->bt_start == start);
994 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
995 /* split */
996 btnew->bt_type = BT_TYPE_BUSY;
997 btnew->bt_start = bt->bt_start;
998 btnew->bt_size = size;
999 bt->bt_start = bt->bt_start + size;
1000 bt->bt_size -= size;
1001 bt_insfree(vm, bt);
1002 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1003 bt_insbusy(vm, btnew);
1004 VMEM_UNLOCK(vm);
1005 } else {
1006 bt->bt_type = BT_TYPE_BUSY;
1007 bt_insbusy(vm, bt);
1008 VMEM_UNLOCK(vm);
1009 bt_free(vm, btnew);
1010 btnew = bt;
1011 }
1012 if (btnew2 != NULL) {
1013 bt_free(vm, btnew2);
1014 }
1015 KASSERT(btnew->bt_size >= size);
1016 btnew->bt_type = BT_TYPE_BUSY;
1017
1018 return btnew->bt_start;
1019 }
1020
1021 /*
1022 * vmem_free:
1023 *
1024 * => caller must ensure appropriate spl,
1025 * if the arena can be accessed from interrupt context.
1026 */
1027
1028 void
1029 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1030 {
1031
1032 KASSERT(addr != VMEM_ADDR_NULL);
1033 KASSERT(size > 0);
1034
1035 #if defined(QCACHE)
1036 if (size <= vm->vm_qcache_max) {
1037 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1038 qcache_t *qc = vm->vm_qcache[qidx - 1];
1039
1040 return pool_cache_put(qc->qc_cache, (void *)addr);
1041 }
1042 #endif /* defined(QCACHE) */
1043
1044 vmem_xfree(vm, addr, size);
1045 }
1046
1047 void
1048 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1049 {
1050 bt_t *bt;
1051 bt_t *t;
1052
1053 KASSERT(addr != VMEM_ADDR_NULL);
1054 KASSERT(size > 0);
1055
1056 VMEM_LOCK(vm);
1057
1058 bt = bt_lookupbusy(vm, addr);
1059 KASSERT(bt != NULL);
1060 KASSERT(bt->bt_start == addr);
1061 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1062 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1063 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1064 bt_rembusy(vm, bt);
1065 bt->bt_type = BT_TYPE_FREE;
1066
1067 /* coalesce */
1068 t = CIRCLEQ_NEXT(bt, bt_seglist);
1069 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1070 KASSERT(BT_END(bt) == t->bt_start);
1071 bt_remfree(vm, t);
1072 bt_remseg(vm, t);
1073 bt->bt_size += t->bt_size;
1074 bt_free(vm, t);
1075 }
1076 t = CIRCLEQ_PREV(bt, bt_seglist);
1077 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1078 KASSERT(BT_END(t) == bt->bt_start);
1079 bt_remfree(vm, t);
1080 bt_remseg(vm, t);
1081 bt->bt_size += t->bt_size;
1082 bt->bt_start = t->bt_start;
1083 bt_free(vm, t);
1084 }
1085
1086 t = CIRCLEQ_PREV(bt, bt_seglist);
1087 KASSERT(t != NULL);
1088 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1089 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1090 t->bt_size == bt->bt_size) {
1091 vmem_addr_t spanaddr;
1092 vmem_size_t spansize;
1093
1094 KASSERT(t->bt_start == bt->bt_start);
1095 spanaddr = bt->bt_start;
1096 spansize = bt->bt_size;
1097 bt_remseg(vm, bt);
1098 bt_free(vm, bt);
1099 bt_remseg(vm, t);
1100 bt_free(vm, t);
1101 VMEM_UNLOCK(vm);
1102 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1103 } else {
1104 bt_insfree(vm, bt);
1105 VMEM_UNLOCK(vm);
1106 }
1107 }
1108
1109 /*
1110 * vmem_add:
1111 *
1112 * => caller must ensure appropriate spl,
1113 * if the arena can be accessed from interrupt context.
1114 */
1115
1116 vmem_addr_t
1117 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1118 {
1119
1120 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1121 }
1122
1123 /*
1124 * vmem_reap: reap unused resources.
1125 *
1126 * => return true if we successfully reaped something.
1127 */
1128
1129 bool
1130 vmem_reap(vmem_t *vm)
1131 {
1132 bool didsomething = false;
1133
1134 #if defined(QCACHE)
1135 didsomething = qc_reap(vm);
1136 #endif /* defined(QCACHE) */
1137 return didsomething;
1138 }
1139
1140 /* ---- rehash */
1141
1142 #if defined(_KERNEL)
1143 static struct callout vmem_rehash_ch;
1144 static int vmem_rehash_interval;
1145 static struct workqueue *vmem_rehash_wq;
1146 static struct work vmem_rehash_wk;
1147
1148 static void
1149 vmem_rehash_all(struct work *wk, void *dummy)
1150 {
1151 vmem_t *vm;
1152
1153 KASSERT(wk == &vmem_rehash_wk);
1154 mutex_enter(&vmem_list_lock);
1155 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1156 size_t desired;
1157 size_t current;
1158
1159 if (!VMEM_TRYLOCK(vm)) {
1160 continue;
1161 }
1162 desired = vm->vm_nbusytag;
1163 current = vm->vm_hashsize;
1164 VMEM_UNLOCK(vm);
1165
1166 if (desired > VMEM_HASHSIZE_MAX) {
1167 desired = VMEM_HASHSIZE_MAX;
1168 } else if (desired < VMEM_HASHSIZE_MIN) {
1169 desired = VMEM_HASHSIZE_MIN;
1170 }
1171 if (desired > current * 2 || desired * 2 < current) {
1172 vmem_rehash(vm, desired, VM_NOSLEEP);
1173 }
1174 }
1175 mutex_exit(&vmem_list_lock);
1176
1177 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1178 }
1179
1180 static void
1181 vmem_rehash_all_kick(void *dummy)
1182 {
1183
1184 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1185 }
1186
1187 void
1188 vmem_rehash_start(void)
1189 {
1190 int error;
1191
1192 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1193 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, 0);
1194 if (error) {
1195 panic("%s: workqueue_create %d\n", __func__, error);
1196 }
1197 callout_init(&vmem_rehash_ch, 0);
1198 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1199
1200 vmem_rehash_interval = hz * 10;
1201 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1202 }
1203 #endif /* defined(_KERNEL) */
1204
1205 /* ---- debug */
1206
1207 #if defined(DDB)
1208 static bt_t *
1209 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1210 {
1211 int i;
1212
1213 for (i = 0; i < vm->vm_hashsize; i++) {
1214 bt_t *bt;
1215
1216 LIST_FOREACH(bt, &vm->vm_hashlist[i], bt_hashlist) {
1217 if (bt->bt_start <= addr && addr < BT_END(bt)) {
1218 return bt;
1219 }
1220 }
1221 }
1222
1223 return NULL;
1224 }
1225
1226 void
1227 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1228 {
1229 vmem_t *vm;
1230
1231 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1232 bt_t *bt;
1233
1234 bt = vmem_whatis_lookup(vm, addr);
1235 if (bt == NULL) {
1236 continue;
1237 }
1238 (*pr)("%p is %p+%zu from VMEM '%s'\n",
1239 (void *)addr, (void *)bt->bt_start,
1240 (size_t)(addr - bt->bt_start), vm->vm_name);
1241 }
1242 }
1243 #endif /* defined(DDB) */
1244
1245 #if defined(VMEM_DEBUG)
1246
1247 #if !defined(_KERNEL)
1248 #include <stdio.h>
1249 #endif /* !defined(_KERNEL) */
1250
1251 void bt_dump(const bt_t *);
1252
1253 void
1254 bt_dump(const bt_t *bt)
1255 {
1256
1257 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1258 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1259 bt->bt_type);
1260 }
1261
1262 void
1263 vmem_dump(const vmem_t *vm)
1264 {
1265 const bt_t *bt;
1266 int i;
1267
1268 printf("vmem %p '%s'\n", vm, vm->vm_name);
1269 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1270 bt_dump(bt);
1271 }
1272
1273 for (i = 0; i < VMEM_MAXORDER; i++) {
1274 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1275
1276 if (LIST_EMPTY(fl)) {
1277 continue;
1278 }
1279
1280 printf("freelist[%d]\n", i);
1281 LIST_FOREACH(bt, fl, bt_freelist) {
1282 bt_dump(bt);
1283 if (bt->bt_size) {
1284 }
1285 }
1286 }
1287 }
1288
1289 #if !defined(_KERNEL)
1290
1291 int
1292 main()
1293 {
1294 vmem_t *vm;
1295 vmem_addr_t p;
1296 struct reg {
1297 vmem_addr_t p;
1298 vmem_size_t sz;
1299 bool x;
1300 } *reg = NULL;
1301 int nreg = 0;
1302 int nalloc = 0;
1303 int nfree = 0;
1304 vmem_size_t total = 0;
1305 #if 1
1306 vm_flag_t strat = VM_INSTANTFIT;
1307 #else
1308 vm_flag_t strat = VM_BESTFIT;
1309 #endif
1310
1311 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1312 NULL, NULL, NULL, 0, VM_SLEEP);
1313 if (vm == NULL) {
1314 printf("vmem_create\n");
1315 exit(EXIT_FAILURE);
1316 }
1317 vmem_dump(vm);
1318
1319 p = vmem_add(vm, 100, 200, VM_SLEEP);
1320 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1321 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1322 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1323 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1324 vmem_dump(vm);
1325 for (;;) {
1326 struct reg *r;
1327 int t = rand() % 100;
1328
1329 if (t > 45) {
1330 /* alloc */
1331 vmem_size_t sz = rand() % 500 + 1;
1332 bool x;
1333 vmem_size_t align, phase, nocross;
1334 vmem_addr_t minaddr, maxaddr;
1335
1336 if (t > 70) {
1337 x = true;
1338 /* XXX */
1339 align = 1 << (rand() % 15);
1340 phase = rand() % 65536;
1341 nocross = 1 << (rand() % 15);
1342 if (align <= phase) {
1343 phase = 0;
1344 }
1345 if (VMEM_CROSS_P(phase, phase + sz - 1,
1346 nocross)) {
1347 nocross = 0;
1348 }
1349 minaddr = rand() % 50000;
1350 maxaddr = rand() % 70000;
1351 if (minaddr > maxaddr) {
1352 minaddr = 0;
1353 maxaddr = 0;
1354 }
1355 printf("=== xalloc %" PRIu64
1356 " align=%" PRIu64 ", phase=%" PRIu64
1357 ", nocross=%" PRIu64 ", min=%" PRIu64
1358 ", max=%" PRIu64 "\n",
1359 (uint64_t)sz,
1360 (uint64_t)align,
1361 (uint64_t)phase,
1362 (uint64_t)nocross,
1363 (uint64_t)minaddr,
1364 (uint64_t)maxaddr);
1365 p = vmem_xalloc(vm, sz, align, phase, nocross,
1366 minaddr, maxaddr, strat|VM_SLEEP);
1367 } else {
1368 x = false;
1369 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1370 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1371 }
1372 printf("-> %" PRIu64 "\n", (uint64_t)p);
1373 vmem_dump(vm);
1374 if (p == VMEM_ADDR_NULL) {
1375 if (x) {
1376 continue;
1377 }
1378 break;
1379 }
1380 nreg++;
1381 reg = realloc(reg, sizeof(*reg) * nreg);
1382 r = ®[nreg - 1];
1383 r->p = p;
1384 r->sz = sz;
1385 r->x = x;
1386 total += sz;
1387 nalloc++;
1388 } else if (nreg != 0) {
1389 /* free */
1390 r = ®[rand() % nreg];
1391 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1392 (uint64_t)r->p, (uint64_t)r->sz);
1393 if (r->x) {
1394 vmem_xfree(vm, r->p, r->sz);
1395 } else {
1396 vmem_free(vm, r->p, r->sz);
1397 }
1398 total -= r->sz;
1399 vmem_dump(vm);
1400 *r = reg[nreg - 1];
1401 nreg--;
1402 nfree++;
1403 }
1404 printf("total=%" PRIu64 "\n", (uint64_t)total);
1405 }
1406 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1407 (uint64_t)total, nalloc, nfree);
1408 exit(EXIT_SUCCESS);
1409 }
1410 #endif /* !defined(_KERNEL) */
1411 #endif /* defined(VMEM_DEBUG) */
1412