subr_vmem.c revision 1.42 1 /* $NetBSD: subr_vmem.c,v 1.42 2008/03/17 08:27:50 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.42 2008/03/17 08:27:50 yamt Exp $");
42
43 #define VMEM_DEBUG
44 #if defined(_KERNEL)
45 #include "opt_ddb.h"
46 #define QCACHE
47 #endif /* defined(_KERNEL) */
48
49 #include <sys/param.h>
50 #include <sys/hash.h>
51 #include <sys/queue.h>
52
53 #if defined(_KERNEL)
54 #include <sys/systm.h>
55 #include <sys/kernel.h> /* hz */
56 #include <sys/callout.h>
57 #include <sys/malloc.h>
58 #include <sys/once.h>
59 #include <sys/pool.h>
60 #include <sys/vmem.h>
61 #include <sys/workqueue.h>
62 #else /* defined(_KERNEL) */
63 #include "../sys/vmem.h"
64 #endif /* defined(_KERNEL) */
65
66 #if defined(_KERNEL)
67 #define LOCK_DECL(name) kmutex_t name
68 #else /* defined(_KERNEL) */
69 #include <errno.h>
70 #include <assert.h>
71 #include <stdlib.h>
72
73 #define KASSERT(a) assert(a)
74 #define LOCK_DECL(name) /* nothing */
75 #define mutex_init(a, b, c) /* nothing */
76 #define mutex_destroy(a) /* nothing */
77 #define mutex_enter(a) /* nothing */
78 #define mutex_exit(a) /* nothing */
79 #define mutex_owned(a) /* nothing */
80 #define ASSERT_SLEEPABLE() /* nothing */
81 #define IPL_VM 0
82 #endif /* defined(_KERNEL) */
83
84 struct vmem;
85 struct vmem_btag;
86
87 #if defined(VMEM_DEBUG)
88 void vmem_dump(const vmem_t *);
89 #endif /* defined(VMEM_DEBUG) */
90
91 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
92
93 #define VMEM_HASHSIZE_MIN 1 /* XXX */
94 #define VMEM_HASHSIZE_MAX 8192 /* XXX */
95 #define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
96
97 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
98
99 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
100 LIST_HEAD(vmem_freelist, vmem_btag);
101 LIST_HEAD(vmem_hashlist, vmem_btag);
102
103 #if defined(QCACHE)
104 #define VMEM_QCACHE_IDX_MAX 32
105
106 #define QC_NAME_MAX 16
107
108 struct qcache {
109 pool_cache_t qc_cache;
110 vmem_t *qc_vmem;
111 char qc_name[QC_NAME_MAX];
112 };
113 typedef struct qcache qcache_t;
114 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
115 #endif /* defined(QCACHE) */
116
117 /* vmem arena */
118 struct vmem {
119 LOCK_DECL(vm_lock);
120 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
121 vm_flag_t);
122 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
123 vmem_t *vm_source;
124 struct vmem_seglist vm_seglist;
125 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
126 size_t vm_hashsize;
127 size_t vm_nbusytag;
128 struct vmem_hashlist *vm_hashlist;
129 size_t vm_quantum_mask;
130 int vm_quantum_shift;
131 const char *vm_name;
132 LIST_ENTRY(vmem) vm_alllist;
133
134 #if defined(QCACHE)
135 /* quantum cache */
136 size_t vm_qcache_max;
137 struct pool_allocator vm_qcache_allocator;
138 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
139 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
140 #endif /* defined(QCACHE) */
141 };
142
143 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
144 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
145 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
146 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
147 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
148 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
149
150 /* boundary tag */
151 struct vmem_btag {
152 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
153 union {
154 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
155 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
156 } bt_u;
157 #define bt_hashlist bt_u.u_hashlist
158 #define bt_freelist bt_u.u_freelist
159 vmem_addr_t bt_start;
160 vmem_size_t bt_size;
161 int bt_type;
162 };
163
164 #define BT_TYPE_SPAN 1
165 #define BT_TYPE_SPAN_STATIC 2
166 #define BT_TYPE_FREE 3
167 #define BT_TYPE_BUSY 4
168 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
169
170 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
171
172 typedef struct vmem_btag bt_t;
173
174 /* ---- misc */
175
176 #define VMEM_ALIGNUP(addr, align) \
177 (-(-(addr) & -(align)))
178 #define VMEM_CROSS_P(addr1, addr2, boundary) \
179 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
180
181 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
182
183 static int
184 calc_order(vmem_size_t size)
185 {
186 vmem_size_t target;
187 int i;
188
189 KASSERT(size != 0);
190
191 i = 0;
192 target = size >> 1;
193 while (ORDER2SIZE(i) <= target) {
194 i++;
195 }
196
197 KASSERT(ORDER2SIZE(i) <= size);
198 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
199
200 return i;
201 }
202
203 #if defined(_KERNEL)
204 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
205 #endif /* defined(_KERNEL) */
206
207 static void *
208 xmalloc(size_t sz, vm_flag_t flags)
209 {
210
211 #if defined(_KERNEL)
212 return malloc(sz, M_VMEM,
213 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
214 #else /* defined(_KERNEL) */
215 return malloc(sz);
216 #endif /* defined(_KERNEL) */
217 }
218
219 static void
220 xfree(void *p)
221 {
222
223 #if defined(_KERNEL)
224 return free(p, M_VMEM);
225 #else /* defined(_KERNEL) */
226 return free(p);
227 #endif /* defined(_KERNEL) */
228 }
229
230 /* ---- boundary tag */
231
232 #if defined(_KERNEL)
233 static struct pool_cache bt_cache;
234 #endif /* defined(_KERNEL) */
235
236 static bt_t *
237 bt_alloc(vmem_t *vm, vm_flag_t flags)
238 {
239 bt_t *bt;
240
241 #if defined(_KERNEL)
242 bt = pool_cache_get(&bt_cache,
243 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
244 #else /* defined(_KERNEL) */
245 bt = malloc(sizeof *bt);
246 #endif /* defined(_KERNEL) */
247
248 return bt;
249 }
250
251 static void
252 bt_free(vmem_t *vm, bt_t *bt)
253 {
254
255 #if defined(_KERNEL)
256 pool_cache_put(&bt_cache, bt);
257 #else /* defined(_KERNEL) */
258 free(bt);
259 #endif /* defined(_KERNEL) */
260 }
261
262 /*
263 * freelist[0] ... [1, 1]
264 * freelist[1] ... [2, 3]
265 * freelist[2] ... [4, 7]
266 * freelist[3] ... [8, 15]
267 * :
268 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
269 * :
270 */
271
272 static struct vmem_freelist *
273 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
274 {
275 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
276 int idx;
277
278 KASSERT((size & vm->vm_quantum_mask) == 0);
279 KASSERT(size != 0);
280
281 idx = calc_order(qsize);
282 KASSERT(idx >= 0);
283 KASSERT(idx < VMEM_MAXORDER);
284
285 return &vm->vm_freelist[idx];
286 }
287
288 static struct vmem_freelist *
289 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
290 {
291 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
292 int idx;
293
294 KASSERT((size & vm->vm_quantum_mask) == 0);
295 KASSERT(size != 0);
296
297 idx = calc_order(qsize);
298 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
299 idx++;
300 /* check too large request? */
301 }
302 KASSERT(idx >= 0);
303 KASSERT(idx < VMEM_MAXORDER);
304
305 return &vm->vm_freelist[idx];
306 }
307
308 /* ---- boundary tag hash */
309
310 static struct vmem_hashlist *
311 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
312 {
313 struct vmem_hashlist *list;
314 unsigned int hash;
315
316 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
317 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
318
319 return list;
320 }
321
322 static bt_t *
323 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
324 {
325 struct vmem_hashlist *list;
326 bt_t *bt;
327
328 list = bt_hashhead(vm, addr);
329 LIST_FOREACH(bt, list, bt_hashlist) {
330 if (bt->bt_start == addr) {
331 break;
332 }
333 }
334
335 return bt;
336 }
337
338 static void
339 bt_rembusy(vmem_t *vm, bt_t *bt)
340 {
341
342 KASSERT(vm->vm_nbusytag > 0);
343 vm->vm_nbusytag--;
344 LIST_REMOVE(bt, bt_hashlist);
345 }
346
347 static void
348 bt_insbusy(vmem_t *vm, bt_t *bt)
349 {
350 struct vmem_hashlist *list;
351
352 KASSERT(bt->bt_type == BT_TYPE_BUSY);
353
354 list = bt_hashhead(vm, bt->bt_start);
355 LIST_INSERT_HEAD(list, bt, bt_hashlist);
356 vm->vm_nbusytag++;
357 }
358
359 /* ---- boundary tag list */
360
361 static void
362 bt_remseg(vmem_t *vm, bt_t *bt)
363 {
364
365 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
366 }
367
368 static void
369 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
370 {
371
372 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
373 }
374
375 static void
376 bt_insseg_tail(vmem_t *vm, bt_t *bt)
377 {
378
379 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
380 }
381
382 static void
383 bt_remfree(vmem_t *vm, bt_t *bt)
384 {
385
386 KASSERT(bt->bt_type == BT_TYPE_FREE);
387
388 LIST_REMOVE(bt, bt_freelist);
389 }
390
391 static void
392 bt_insfree(vmem_t *vm, bt_t *bt)
393 {
394 struct vmem_freelist *list;
395
396 list = bt_freehead_tofree(vm, bt->bt_size);
397 LIST_INSERT_HEAD(list, bt, bt_freelist);
398 }
399
400 /* ---- vmem internal functions */
401
402 #if defined(_KERNEL)
403 static kmutex_t vmem_list_lock;
404 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
405 #endif /* defined(_KERNEL) */
406
407 #if defined(QCACHE)
408 static inline vm_flag_t
409 prf_to_vmf(int prflags)
410 {
411 vm_flag_t vmflags;
412
413 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
414 if ((prflags & PR_WAITOK) != 0) {
415 vmflags = VM_SLEEP;
416 } else {
417 vmflags = VM_NOSLEEP;
418 }
419 return vmflags;
420 }
421
422 static inline int
423 vmf_to_prf(vm_flag_t vmflags)
424 {
425 int prflags;
426
427 if ((vmflags & VM_SLEEP) != 0) {
428 prflags = PR_WAITOK;
429 } else {
430 prflags = PR_NOWAIT;
431 }
432 return prflags;
433 }
434
435 static size_t
436 qc_poolpage_size(size_t qcache_max)
437 {
438 int i;
439
440 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
441 /* nothing */
442 }
443 return ORDER2SIZE(i);
444 }
445
446 static void *
447 qc_poolpage_alloc(struct pool *pool, int prflags)
448 {
449 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
450 vmem_t *vm = qc->qc_vmem;
451
452 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
453 prf_to_vmf(prflags) | VM_INSTANTFIT);
454 }
455
456 static void
457 qc_poolpage_free(struct pool *pool, void *addr)
458 {
459 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
460 vmem_t *vm = qc->qc_vmem;
461
462 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
463 }
464
465 static void
466 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
467 {
468 qcache_t *prevqc;
469 struct pool_allocator *pa;
470 int qcache_idx_max;
471 int i;
472
473 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
474 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
475 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
476 }
477 vm->vm_qcache_max = qcache_max;
478 pa = &vm->vm_qcache_allocator;
479 memset(pa, 0, sizeof(*pa));
480 pa->pa_alloc = qc_poolpage_alloc;
481 pa->pa_free = qc_poolpage_free;
482 pa->pa_pagesz = qc_poolpage_size(qcache_max);
483
484 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
485 prevqc = NULL;
486 for (i = qcache_idx_max; i > 0; i--) {
487 qcache_t *qc = &vm->vm_qcache_store[i - 1];
488 size_t size = i << vm->vm_quantum_shift;
489
490 qc->qc_vmem = vm;
491 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
492 vm->vm_name, size);
493 qc->qc_cache = pool_cache_init(size,
494 ORDER2SIZE(vm->vm_quantum_shift), 0,
495 PR_NOALIGN | PR_NOTOUCH /* XXX */,
496 qc->qc_name, pa, ipl, NULL, NULL, NULL);
497 KASSERT(qc->qc_cache != NULL); /* XXX */
498 if (prevqc != NULL &&
499 qc->qc_cache->pc_pool.pr_itemsperpage ==
500 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
501 pool_cache_destroy(qc->qc_cache);
502 vm->vm_qcache[i - 1] = prevqc;
503 continue;
504 }
505 qc->qc_cache->pc_pool.pr_qcache = qc;
506 vm->vm_qcache[i - 1] = qc;
507 prevqc = qc;
508 }
509 }
510
511 static void
512 qc_destroy(vmem_t *vm)
513 {
514 const qcache_t *prevqc;
515 int i;
516 int qcache_idx_max;
517
518 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
519 prevqc = NULL;
520 for (i = 0; i < qcache_idx_max; i++) {
521 qcache_t *qc = vm->vm_qcache[i];
522
523 if (prevqc == qc) {
524 continue;
525 }
526 pool_cache_destroy(qc->qc_cache);
527 prevqc = qc;
528 }
529 }
530
531 static bool
532 qc_reap(vmem_t *vm)
533 {
534 const qcache_t *prevqc;
535 int i;
536 int qcache_idx_max;
537 bool didsomething = false;
538
539 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
540 prevqc = NULL;
541 for (i = 0; i < qcache_idx_max; i++) {
542 qcache_t *qc = vm->vm_qcache[i];
543
544 if (prevqc == qc) {
545 continue;
546 }
547 if (pool_cache_reclaim(qc->qc_cache) != 0) {
548 didsomething = true;
549 }
550 prevqc = qc;
551 }
552
553 return didsomething;
554 }
555 #endif /* defined(QCACHE) */
556
557 #if defined(_KERNEL)
558 static int
559 vmem_init(void)
560 {
561
562 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
563 pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
564 NULL, IPL_VM, NULL, NULL, NULL);
565 return 0;
566 }
567 #endif /* defined(_KERNEL) */
568
569 static vmem_addr_t
570 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
571 int spanbttype)
572 {
573 bt_t *btspan;
574 bt_t *btfree;
575
576 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
577 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
578
579 btspan = bt_alloc(vm, flags);
580 if (btspan == NULL) {
581 return VMEM_ADDR_NULL;
582 }
583 btfree = bt_alloc(vm, flags);
584 if (btfree == NULL) {
585 bt_free(vm, btspan);
586 return VMEM_ADDR_NULL;
587 }
588
589 btspan->bt_type = spanbttype;
590 btspan->bt_start = addr;
591 btspan->bt_size = size;
592
593 btfree->bt_type = BT_TYPE_FREE;
594 btfree->bt_start = addr;
595 btfree->bt_size = size;
596
597 VMEM_LOCK(vm);
598 bt_insseg_tail(vm, btspan);
599 bt_insseg(vm, btfree, btspan);
600 bt_insfree(vm, btfree);
601 VMEM_UNLOCK(vm);
602
603 return addr;
604 }
605
606 static void
607 vmem_destroy1(vmem_t *vm)
608 {
609
610 #if defined(QCACHE)
611 qc_destroy(vm);
612 #endif /* defined(QCACHE) */
613 if (vm->vm_hashlist != NULL) {
614 int i;
615
616 for (i = 0; i < vm->vm_hashsize; i++) {
617 bt_t *bt;
618
619 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
620 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
621 bt_free(vm, bt);
622 }
623 }
624 xfree(vm->vm_hashlist);
625 }
626 VMEM_LOCK_DESTROY(vm);
627 xfree(vm);
628 }
629
630 static int
631 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
632 {
633 vmem_addr_t addr;
634
635 if (vm->vm_allocfn == NULL) {
636 return EINVAL;
637 }
638
639 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
640 if (addr == VMEM_ADDR_NULL) {
641 return ENOMEM;
642 }
643
644 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
645 (*vm->vm_freefn)(vm->vm_source, addr, size);
646 return ENOMEM;
647 }
648
649 return 0;
650 }
651
652 static int
653 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
654 {
655 bt_t *bt;
656 int i;
657 struct vmem_hashlist *newhashlist;
658 struct vmem_hashlist *oldhashlist;
659 size_t oldhashsize;
660
661 KASSERT(newhashsize > 0);
662
663 newhashlist =
664 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
665 if (newhashlist == NULL) {
666 return ENOMEM;
667 }
668 for (i = 0; i < newhashsize; i++) {
669 LIST_INIT(&newhashlist[i]);
670 }
671
672 if (!VMEM_TRYLOCK(vm)) {
673 xfree(newhashlist);
674 return EBUSY;
675 }
676 oldhashlist = vm->vm_hashlist;
677 oldhashsize = vm->vm_hashsize;
678 vm->vm_hashlist = newhashlist;
679 vm->vm_hashsize = newhashsize;
680 if (oldhashlist == NULL) {
681 VMEM_UNLOCK(vm);
682 return 0;
683 }
684 for (i = 0; i < oldhashsize; i++) {
685 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
686 bt_rembusy(vm, bt); /* XXX */
687 bt_insbusy(vm, bt);
688 }
689 }
690 VMEM_UNLOCK(vm);
691
692 xfree(oldhashlist);
693
694 return 0;
695 }
696
697 /*
698 * vmem_fit: check if a bt can satisfy the given restrictions.
699 */
700
701 static vmem_addr_t
702 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
703 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
704 {
705 vmem_addr_t start;
706 vmem_addr_t end;
707
708 KASSERT(bt->bt_size >= size);
709
710 /*
711 * XXX assumption: vmem_addr_t and vmem_size_t are
712 * unsigned integer of the same size.
713 */
714
715 start = bt->bt_start;
716 if (start < minaddr) {
717 start = minaddr;
718 }
719 end = BT_END(bt);
720 if (end > maxaddr - 1) {
721 end = maxaddr - 1;
722 }
723 if (start >= end) {
724 return VMEM_ADDR_NULL;
725 }
726
727 start = VMEM_ALIGNUP(start - phase, align) + phase;
728 if (start < bt->bt_start) {
729 start += align;
730 }
731 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
732 KASSERT(align < nocross);
733 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
734 }
735 if (start < end && end - start >= size) {
736 KASSERT((start & (align - 1)) == phase);
737 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
738 KASSERT(minaddr <= start);
739 KASSERT(maxaddr == 0 || start + size <= maxaddr);
740 KASSERT(bt->bt_start <= start);
741 KASSERT(start + size <= BT_END(bt));
742 return start;
743 }
744 return VMEM_ADDR_NULL;
745 }
746
747 /* ---- vmem API */
748
749 /*
750 * vmem_create: create an arena.
751 *
752 * => must not be called from interrupt context.
753 */
754
755 vmem_t *
756 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
757 vmem_size_t quantum,
758 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
759 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
760 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
761 int ipl)
762 {
763 vmem_t *vm;
764 int i;
765 #if defined(_KERNEL)
766 static ONCE_DECL(control);
767 #endif /* defined(_KERNEL) */
768
769 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
770 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
771
772 #if defined(_KERNEL)
773 if (RUN_ONCE(&control, vmem_init)) {
774 return NULL;
775 }
776 #endif /* defined(_KERNEL) */
777 vm = xmalloc(sizeof(*vm), flags);
778 if (vm == NULL) {
779 return NULL;
780 }
781
782 VMEM_LOCK_INIT(vm, ipl);
783 vm->vm_name = name;
784 vm->vm_quantum_mask = quantum - 1;
785 vm->vm_quantum_shift = calc_order(quantum);
786 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
787 vm->vm_allocfn = allocfn;
788 vm->vm_freefn = freefn;
789 vm->vm_source = source;
790 vm->vm_nbusytag = 0;
791 #if defined(QCACHE)
792 qc_init(vm, qcache_max, ipl);
793 #endif /* defined(QCACHE) */
794
795 CIRCLEQ_INIT(&vm->vm_seglist);
796 for (i = 0; i < VMEM_MAXORDER; i++) {
797 LIST_INIT(&vm->vm_freelist[i]);
798 }
799 vm->vm_hashlist = NULL;
800 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
801 vmem_destroy1(vm);
802 return NULL;
803 }
804
805 if (size != 0) {
806 if (vmem_add(vm, base, size, flags) == 0) {
807 vmem_destroy1(vm);
808 return NULL;
809 }
810 }
811
812 #if defined(_KERNEL)
813 mutex_enter(&vmem_list_lock);
814 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
815 mutex_exit(&vmem_list_lock);
816 #endif /* defined(_KERNEL) */
817
818 return vm;
819 }
820
821 void
822 vmem_destroy(vmem_t *vm)
823 {
824
825 #if defined(_KERNEL)
826 mutex_enter(&vmem_list_lock);
827 LIST_REMOVE(vm, vm_alllist);
828 mutex_exit(&vmem_list_lock);
829 #endif /* defined(_KERNEL) */
830
831 vmem_destroy1(vm);
832 }
833
834 vmem_size_t
835 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
836 {
837
838 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
839 }
840
841 /*
842 * vmem_alloc:
843 *
844 * => caller must ensure appropriate spl,
845 * if the arena can be accessed from interrupt context.
846 */
847
848 vmem_addr_t
849 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
850 {
851 const vm_flag_t strat __unused = flags & VM_FITMASK;
852
853 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
854 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
855
856 KASSERT(size > 0);
857 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
858 if ((flags & VM_SLEEP) != 0) {
859 ASSERT_SLEEPABLE();
860 }
861
862 #if defined(QCACHE)
863 if (size <= vm->vm_qcache_max) {
864 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
865 qcache_t *qc = vm->vm_qcache[qidx - 1];
866
867 return (vmem_addr_t)pool_cache_get(qc->qc_cache,
868 vmf_to_prf(flags));
869 }
870 #endif /* defined(QCACHE) */
871
872 return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
873 }
874
875 vmem_addr_t
876 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
877 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
878 vm_flag_t flags)
879 {
880 struct vmem_freelist *list;
881 struct vmem_freelist *first;
882 struct vmem_freelist *end;
883 bt_t *bt;
884 bt_t *btnew;
885 bt_t *btnew2;
886 const vmem_size_t size = vmem_roundup_size(vm, size0);
887 vm_flag_t strat = flags & VM_FITMASK;
888 vmem_addr_t start;
889
890 KASSERT(size0 > 0);
891 KASSERT(size > 0);
892 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
893 if ((flags & VM_SLEEP) != 0) {
894 ASSERT_SLEEPABLE();
895 }
896 KASSERT((align & vm->vm_quantum_mask) == 0);
897 KASSERT((align & (align - 1)) == 0);
898 KASSERT((phase & vm->vm_quantum_mask) == 0);
899 KASSERT((nocross & vm->vm_quantum_mask) == 0);
900 KASSERT((nocross & (nocross - 1)) == 0);
901 KASSERT((align == 0 && phase == 0) || phase < align);
902 KASSERT(nocross == 0 || nocross >= size);
903 KASSERT(maxaddr == 0 || minaddr < maxaddr);
904 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
905
906 if (align == 0) {
907 align = vm->vm_quantum_mask + 1;
908 }
909 btnew = bt_alloc(vm, flags);
910 if (btnew == NULL) {
911 return VMEM_ADDR_NULL;
912 }
913 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
914 if (btnew2 == NULL) {
915 bt_free(vm, btnew);
916 return VMEM_ADDR_NULL;
917 }
918
919 retry_strat:
920 first = bt_freehead_toalloc(vm, size, strat);
921 end = &vm->vm_freelist[VMEM_MAXORDER];
922 retry:
923 bt = NULL;
924 VMEM_LOCK(vm);
925 if (strat == VM_INSTANTFIT) {
926 for (list = first; list < end; list++) {
927 bt = LIST_FIRST(list);
928 if (bt != NULL) {
929 start = vmem_fit(bt, size, align, phase,
930 nocross, minaddr, maxaddr);
931 if (start != VMEM_ADDR_NULL) {
932 goto gotit;
933 }
934 }
935 }
936 } else { /* VM_BESTFIT */
937 for (list = first; list < end; list++) {
938 LIST_FOREACH(bt, list, bt_freelist) {
939 if (bt->bt_size >= size) {
940 start = vmem_fit(bt, size, align, phase,
941 nocross, minaddr, maxaddr);
942 if (start != VMEM_ADDR_NULL) {
943 goto gotit;
944 }
945 }
946 }
947 }
948 }
949 VMEM_UNLOCK(vm);
950 #if 1
951 if (strat == VM_INSTANTFIT) {
952 strat = VM_BESTFIT;
953 goto retry_strat;
954 }
955 #endif
956 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
957 nocross != 0 || minaddr != 0 || maxaddr != 0) {
958
959 /*
960 * XXX should try to import a region large enough to
961 * satisfy restrictions?
962 */
963
964 goto fail;
965 }
966 if (vmem_import(vm, size, flags) == 0) {
967 goto retry;
968 }
969 /* XXX */
970 fail:
971 bt_free(vm, btnew);
972 bt_free(vm, btnew2);
973 return VMEM_ADDR_NULL;
974
975 gotit:
976 KASSERT(bt->bt_type == BT_TYPE_FREE);
977 KASSERT(bt->bt_size >= size);
978 bt_remfree(vm, bt);
979 if (bt->bt_start != start) {
980 btnew2->bt_type = BT_TYPE_FREE;
981 btnew2->bt_start = bt->bt_start;
982 btnew2->bt_size = start - bt->bt_start;
983 bt->bt_start = start;
984 bt->bt_size -= btnew2->bt_size;
985 bt_insfree(vm, btnew2);
986 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
987 btnew2 = NULL;
988 }
989 KASSERT(bt->bt_start == start);
990 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
991 /* split */
992 btnew->bt_type = BT_TYPE_BUSY;
993 btnew->bt_start = bt->bt_start;
994 btnew->bt_size = size;
995 bt->bt_start = bt->bt_start + size;
996 bt->bt_size -= size;
997 bt_insfree(vm, bt);
998 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
999 bt_insbusy(vm, btnew);
1000 VMEM_UNLOCK(vm);
1001 } else {
1002 bt->bt_type = BT_TYPE_BUSY;
1003 bt_insbusy(vm, bt);
1004 VMEM_UNLOCK(vm);
1005 bt_free(vm, btnew);
1006 btnew = bt;
1007 }
1008 if (btnew2 != NULL) {
1009 bt_free(vm, btnew2);
1010 }
1011 KASSERT(btnew->bt_size >= size);
1012 btnew->bt_type = BT_TYPE_BUSY;
1013
1014 return btnew->bt_start;
1015 }
1016
1017 /*
1018 * vmem_free:
1019 *
1020 * => caller must ensure appropriate spl,
1021 * if the arena can be accessed from interrupt context.
1022 */
1023
1024 void
1025 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1026 {
1027
1028 KASSERT(addr != VMEM_ADDR_NULL);
1029 KASSERT(size > 0);
1030
1031 #if defined(QCACHE)
1032 if (size <= vm->vm_qcache_max) {
1033 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1034 qcache_t *qc = vm->vm_qcache[qidx - 1];
1035
1036 return pool_cache_put(qc->qc_cache, (void *)addr);
1037 }
1038 #endif /* defined(QCACHE) */
1039
1040 vmem_xfree(vm, addr, size);
1041 }
1042
1043 void
1044 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1045 {
1046 bt_t *bt;
1047 bt_t *t;
1048
1049 KASSERT(addr != VMEM_ADDR_NULL);
1050 KASSERT(size > 0);
1051
1052 VMEM_LOCK(vm);
1053
1054 bt = bt_lookupbusy(vm, addr);
1055 KASSERT(bt != NULL);
1056 KASSERT(bt->bt_start == addr);
1057 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1058 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1059 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1060 bt_rembusy(vm, bt);
1061 bt->bt_type = BT_TYPE_FREE;
1062
1063 /* coalesce */
1064 t = CIRCLEQ_NEXT(bt, bt_seglist);
1065 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1066 KASSERT(BT_END(bt) == t->bt_start);
1067 bt_remfree(vm, t);
1068 bt_remseg(vm, t);
1069 bt->bt_size += t->bt_size;
1070 bt_free(vm, t);
1071 }
1072 t = CIRCLEQ_PREV(bt, bt_seglist);
1073 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1074 KASSERT(BT_END(t) == bt->bt_start);
1075 bt_remfree(vm, t);
1076 bt_remseg(vm, t);
1077 bt->bt_size += t->bt_size;
1078 bt->bt_start = t->bt_start;
1079 bt_free(vm, t);
1080 }
1081
1082 t = CIRCLEQ_PREV(bt, bt_seglist);
1083 KASSERT(t != NULL);
1084 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1085 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1086 t->bt_size == bt->bt_size) {
1087 vmem_addr_t spanaddr;
1088 vmem_size_t spansize;
1089
1090 KASSERT(t->bt_start == bt->bt_start);
1091 spanaddr = bt->bt_start;
1092 spansize = bt->bt_size;
1093 bt_remseg(vm, bt);
1094 bt_free(vm, bt);
1095 bt_remseg(vm, t);
1096 bt_free(vm, t);
1097 VMEM_UNLOCK(vm);
1098 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1099 } else {
1100 bt_insfree(vm, bt);
1101 VMEM_UNLOCK(vm);
1102 }
1103 }
1104
1105 /*
1106 * vmem_add:
1107 *
1108 * => caller must ensure appropriate spl,
1109 * if the arena can be accessed from interrupt context.
1110 */
1111
1112 vmem_addr_t
1113 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1114 {
1115
1116 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1117 }
1118
1119 /*
1120 * vmem_reap: reap unused resources.
1121 *
1122 * => return true if we successfully reaped something.
1123 */
1124
1125 bool
1126 vmem_reap(vmem_t *vm)
1127 {
1128 bool didsomething = false;
1129
1130 #if defined(QCACHE)
1131 didsomething = qc_reap(vm);
1132 #endif /* defined(QCACHE) */
1133 return didsomething;
1134 }
1135
1136 /* ---- rehash */
1137
1138 #if defined(_KERNEL)
1139 static struct callout vmem_rehash_ch;
1140 static int vmem_rehash_interval;
1141 static struct workqueue *vmem_rehash_wq;
1142 static struct work vmem_rehash_wk;
1143
1144 static void
1145 vmem_rehash_all(struct work *wk, void *dummy)
1146 {
1147 vmem_t *vm;
1148
1149 KASSERT(wk == &vmem_rehash_wk);
1150 mutex_enter(&vmem_list_lock);
1151 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1152 size_t desired;
1153 size_t current;
1154
1155 if (!VMEM_TRYLOCK(vm)) {
1156 continue;
1157 }
1158 desired = vm->vm_nbusytag;
1159 current = vm->vm_hashsize;
1160 VMEM_UNLOCK(vm);
1161
1162 if (desired > VMEM_HASHSIZE_MAX) {
1163 desired = VMEM_HASHSIZE_MAX;
1164 } else if (desired < VMEM_HASHSIZE_MIN) {
1165 desired = VMEM_HASHSIZE_MIN;
1166 }
1167 if (desired > current * 2 || desired * 2 < current) {
1168 vmem_rehash(vm, desired, VM_NOSLEEP);
1169 }
1170 }
1171 mutex_exit(&vmem_list_lock);
1172
1173 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1174 }
1175
1176 static void
1177 vmem_rehash_all_kick(void *dummy)
1178 {
1179
1180 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1181 }
1182
1183 void
1184 vmem_rehash_start(void)
1185 {
1186 int error;
1187
1188 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1189 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1190 if (error) {
1191 panic("%s: workqueue_create %d\n", __func__, error);
1192 }
1193 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1194 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1195
1196 vmem_rehash_interval = hz * 10;
1197 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1198 }
1199 #endif /* defined(_KERNEL) */
1200
1201 /* ---- debug */
1202
1203 #if defined(DDB)
1204 static bt_t *
1205 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1206 {
1207 bt_t *bt;
1208
1209 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1210 if (BT_ISSPAN_P(bt)) {
1211 continue;
1212 }
1213 if (bt->bt_start <= addr && addr < BT_END(bt)) {
1214 return bt;
1215 }
1216 }
1217
1218 return NULL;
1219 }
1220
1221 void
1222 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1223 {
1224 vmem_t *vm;
1225
1226 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1227 bt_t *bt;
1228
1229 bt = vmem_whatis_lookup(vm, addr);
1230 if (bt == NULL) {
1231 continue;
1232 }
1233 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1234 (void *)addr, (void *)bt->bt_start,
1235 (size_t)(addr - bt->bt_start), vm->vm_name,
1236 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1237 }
1238 }
1239 #endif /* defined(DDB) */
1240
1241 #if defined(VMEM_DEBUG)
1242
1243 #if !defined(_KERNEL)
1244 #include <stdio.h>
1245 #endif /* !defined(_KERNEL) */
1246
1247 void bt_dump(const bt_t *);
1248
1249 void
1250 bt_dump(const bt_t *bt)
1251 {
1252
1253 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1254 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1255 bt->bt_type);
1256 }
1257
1258 void
1259 vmem_dump(const vmem_t *vm)
1260 {
1261 const bt_t *bt;
1262 int i;
1263
1264 printf("vmem %p '%s'\n", vm, vm->vm_name);
1265 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1266 bt_dump(bt);
1267 }
1268
1269 for (i = 0; i < VMEM_MAXORDER; i++) {
1270 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1271
1272 if (LIST_EMPTY(fl)) {
1273 continue;
1274 }
1275
1276 printf("freelist[%d]\n", i);
1277 LIST_FOREACH(bt, fl, bt_freelist) {
1278 bt_dump(bt);
1279 if (bt->bt_size) {
1280 }
1281 }
1282 }
1283 }
1284
1285 #if !defined(_KERNEL)
1286
1287 int
1288 main()
1289 {
1290 vmem_t *vm;
1291 vmem_addr_t p;
1292 struct reg {
1293 vmem_addr_t p;
1294 vmem_size_t sz;
1295 bool x;
1296 } *reg = NULL;
1297 int nreg = 0;
1298 int nalloc = 0;
1299 int nfree = 0;
1300 vmem_size_t total = 0;
1301 #if 1
1302 vm_flag_t strat = VM_INSTANTFIT;
1303 #else
1304 vm_flag_t strat = VM_BESTFIT;
1305 #endif
1306
1307 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1308 NULL, NULL, NULL, 0, VM_SLEEP);
1309 if (vm == NULL) {
1310 printf("vmem_create\n");
1311 exit(EXIT_FAILURE);
1312 }
1313 vmem_dump(vm);
1314
1315 p = vmem_add(vm, 100, 200, VM_SLEEP);
1316 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1317 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1318 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1319 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1320 vmem_dump(vm);
1321 for (;;) {
1322 struct reg *r;
1323 int t = rand() % 100;
1324
1325 if (t > 45) {
1326 /* alloc */
1327 vmem_size_t sz = rand() % 500 + 1;
1328 bool x;
1329 vmem_size_t align, phase, nocross;
1330 vmem_addr_t minaddr, maxaddr;
1331
1332 if (t > 70) {
1333 x = true;
1334 /* XXX */
1335 align = 1 << (rand() % 15);
1336 phase = rand() % 65536;
1337 nocross = 1 << (rand() % 15);
1338 if (align <= phase) {
1339 phase = 0;
1340 }
1341 if (VMEM_CROSS_P(phase, phase + sz - 1,
1342 nocross)) {
1343 nocross = 0;
1344 }
1345 minaddr = rand() % 50000;
1346 maxaddr = rand() % 70000;
1347 if (minaddr > maxaddr) {
1348 minaddr = 0;
1349 maxaddr = 0;
1350 }
1351 printf("=== xalloc %" PRIu64
1352 " align=%" PRIu64 ", phase=%" PRIu64
1353 ", nocross=%" PRIu64 ", min=%" PRIu64
1354 ", max=%" PRIu64 "\n",
1355 (uint64_t)sz,
1356 (uint64_t)align,
1357 (uint64_t)phase,
1358 (uint64_t)nocross,
1359 (uint64_t)minaddr,
1360 (uint64_t)maxaddr);
1361 p = vmem_xalloc(vm, sz, align, phase, nocross,
1362 minaddr, maxaddr, strat|VM_SLEEP);
1363 } else {
1364 x = false;
1365 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1366 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1367 }
1368 printf("-> %" PRIu64 "\n", (uint64_t)p);
1369 vmem_dump(vm);
1370 if (p == VMEM_ADDR_NULL) {
1371 if (x) {
1372 continue;
1373 }
1374 break;
1375 }
1376 nreg++;
1377 reg = realloc(reg, sizeof(*reg) * nreg);
1378 r = ®[nreg - 1];
1379 r->p = p;
1380 r->sz = sz;
1381 r->x = x;
1382 total += sz;
1383 nalloc++;
1384 } else if (nreg != 0) {
1385 /* free */
1386 r = ®[rand() % nreg];
1387 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1388 (uint64_t)r->p, (uint64_t)r->sz);
1389 if (r->x) {
1390 vmem_xfree(vm, r->p, r->sz);
1391 } else {
1392 vmem_free(vm, r->p, r->sz);
1393 }
1394 total -= r->sz;
1395 vmem_dump(vm);
1396 *r = reg[nreg - 1];
1397 nreg--;
1398 nfree++;
1399 }
1400 printf("total=%" PRIu64 "\n", (uint64_t)total);
1401 }
1402 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1403 (uint64_t)total, nalloc, nfree);
1404 exit(EXIT_SUCCESS);
1405 }
1406 #endif /* !defined(_KERNEL) */
1407 #endif /* defined(VMEM_DEBUG) */
1408