subr_vmem.c revision 1.42.12.1 1 /* $NetBSD: subr_vmem.c,v 1.42.12.1 2009/01/19 13:19:39 skrll Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.42.12.1 2009/01/19 13:19:39 skrll Exp $");
42
43 #if defined(_KERNEL)
44 #include "opt_ddb.h"
45 #define QCACHE
46 #endif /* defined(_KERNEL) */
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/queue.h>
51
52 #if defined(_KERNEL)
53 #include <sys/systm.h>
54 #include <sys/kernel.h> /* hz */
55 #include <sys/callout.h>
56 #include <sys/malloc.h>
57 #include <sys/once.h>
58 #include <sys/pool.h>
59 #include <sys/vmem.h>
60 #include <sys/workqueue.h>
61 #else /* defined(_KERNEL) */
62 #include "../sys/vmem.h"
63 #endif /* defined(_KERNEL) */
64
65 #if defined(_KERNEL)
66 #define LOCK_DECL(name) \
67 kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
68 #else /* defined(_KERNEL) */
69 #include <errno.h>
70 #include <assert.h>
71 #include <stdlib.h>
72
73 #define KASSERT(a) assert(a)
74 #define LOCK_DECL(name) /* nothing */
75 #define mutex_init(a, b, c) /* nothing */
76 #define mutex_destroy(a) /* nothing */
77 #define mutex_enter(a) /* nothing */
78 #define mutex_exit(a) /* nothing */
79 #define mutex_owned(a) /* nothing */
80 #define ASSERT_SLEEPABLE() /* nothing */
81 #define IPL_VM 0
82 #endif /* defined(_KERNEL) */
83
84 struct vmem;
85 struct vmem_btag;
86
87 #if defined(VMEM_DEBUG)
88 void vmem_dump(const vmem_t *);
89 #endif /* defined(VMEM_DEBUG) */
90
91 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
92
93 #define VMEM_HASHSIZE_MIN 1 /* XXX */
94 #define VMEM_HASHSIZE_MAX 8192 /* XXX */
95 #define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
96
97 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
98
99 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
100 LIST_HEAD(vmem_freelist, vmem_btag);
101 LIST_HEAD(vmem_hashlist, vmem_btag);
102
103 #if defined(QCACHE)
104 #define VMEM_QCACHE_IDX_MAX 32
105
106 #define QC_NAME_MAX 16
107
108 struct qcache {
109 pool_cache_t qc_cache;
110 vmem_t *qc_vmem;
111 char qc_name[QC_NAME_MAX];
112 };
113 typedef struct qcache qcache_t;
114 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
115 #endif /* defined(QCACHE) */
116
117 /* vmem arena */
118 struct vmem {
119 LOCK_DECL(vm_lock);
120 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
121 vm_flag_t);
122 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
123 vmem_t *vm_source;
124 struct vmem_seglist vm_seglist;
125 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
126 size_t vm_hashsize;
127 size_t vm_nbusytag;
128 struct vmem_hashlist *vm_hashlist;
129 size_t vm_quantum_mask;
130 int vm_quantum_shift;
131 const char *vm_name;
132 LIST_ENTRY(vmem) vm_alllist;
133
134 #if defined(QCACHE)
135 /* quantum cache */
136 size_t vm_qcache_max;
137 struct pool_allocator vm_qcache_allocator;
138 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
139 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
140 #endif /* defined(QCACHE) */
141 };
142
143 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
144 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
145 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
146 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
147 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
148 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
149
150 /* boundary tag */
151 struct vmem_btag {
152 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
153 union {
154 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
155 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
156 } bt_u;
157 #define bt_hashlist bt_u.u_hashlist
158 #define bt_freelist bt_u.u_freelist
159 vmem_addr_t bt_start;
160 vmem_size_t bt_size;
161 int bt_type;
162 };
163
164 #define BT_TYPE_SPAN 1
165 #define BT_TYPE_SPAN_STATIC 2
166 #define BT_TYPE_FREE 3
167 #define BT_TYPE_BUSY 4
168 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
169
170 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
171
172 typedef struct vmem_btag bt_t;
173
174 /* ---- misc */
175
176 #define VMEM_ALIGNUP(addr, align) \
177 (-(-(addr) & -(align)))
178 #define VMEM_CROSS_P(addr1, addr2, boundary) \
179 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
180
181 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
182
183 static int
184 calc_order(vmem_size_t size)
185 {
186 vmem_size_t target;
187 int i;
188
189 KASSERT(size != 0);
190
191 i = 0;
192 target = size >> 1;
193 while (ORDER2SIZE(i) <= target) {
194 i++;
195 }
196
197 KASSERT(ORDER2SIZE(i) <= size);
198 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
199
200 return i;
201 }
202
203 #if defined(_KERNEL)
204 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
205 #endif /* defined(_KERNEL) */
206
207 static void *
208 xmalloc(size_t sz, vm_flag_t flags)
209 {
210
211 #if defined(_KERNEL)
212 return malloc(sz, M_VMEM,
213 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
214 #else /* defined(_KERNEL) */
215 return malloc(sz);
216 #endif /* defined(_KERNEL) */
217 }
218
219 static void
220 xfree(void *p)
221 {
222
223 #if defined(_KERNEL)
224 return free(p, M_VMEM);
225 #else /* defined(_KERNEL) */
226 return free(p);
227 #endif /* defined(_KERNEL) */
228 }
229
230 /* ---- boundary tag */
231
232 #if defined(_KERNEL)
233 static struct pool_cache bt_cache;
234 #endif /* defined(_KERNEL) */
235
236 static bt_t *
237 bt_alloc(vmem_t *vm, vm_flag_t flags)
238 {
239 bt_t *bt;
240
241 #if defined(_KERNEL)
242 bt = pool_cache_get(&bt_cache,
243 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
244 #else /* defined(_KERNEL) */
245 bt = malloc(sizeof *bt);
246 #endif /* defined(_KERNEL) */
247
248 return bt;
249 }
250
251 static void
252 bt_free(vmem_t *vm, bt_t *bt)
253 {
254
255 #if defined(_KERNEL)
256 pool_cache_put(&bt_cache, bt);
257 #else /* defined(_KERNEL) */
258 free(bt);
259 #endif /* defined(_KERNEL) */
260 }
261
262 /*
263 * freelist[0] ... [1, 1]
264 * freelist[1] ... [2, 3]
265 * freelist[2] ... [4, 7]
266 * freelist[3] ... [8, 15]
267 * :
268 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
269 * :
270 */
271
272 static struct vmem_freelist *
273 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
274 {
275 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
276 int idx;
277
278 KASSERT((size & vm->vm_quantum_mask) == 0);
279 KASSERT(size != 0);
280
281 idx = calc_order(qsize);
282 KASSERT(idx >= 0);
283 KASSERT(idx < VMEM_MAXORDER);
284
285 return &vm->vm_freelist[idx];
286 }
287
288 static struct vmem_freelist *
289 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
290 {
291 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
292 int idx;
293
294 KASSERT((size & vm->vm_quantum_mask) == 0);
295 KASSERT(size != 0);
296
297 idx = calc_order(qsize);
298 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
299 idx++;
300 /* check too large request? */
301 }
302 KASSERT(idx >= 0);
303 KASSERT(idx < VMEM_MAXORDER);
304
305 return &vm->vm_freelist[idx];
306 }
307
308 /* ---- boundary tag hash */
309
310 static struct vmem_hashlist *
311 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
312 {
313 struct vmem_hashlist *list;
314 unsigned int hash;
315
316 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
317 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
318
319 return list;
320 }
321
322 static bt_t *
323 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
324 {
325 struct vmem_hashlist *list;
326 bt_t *bt;
327
328 list = bt_hashhead(vm, addr);
329 LIST_FOREACH(bt, list, bt_hashlist) {
330 if (bt->bt_start == addr) {
331 break;
332 }
333 }
334
335 return bt;
336 }
337
338 static void
339 bt_rembusy(vmem_t *vm, bt_t *bt)
340 {
341
342 KASSERT(vm->vm_nbusytag > 0);
343 vm->vm_nbusytag--;
344 LIST_REMOVE(bt, bt_hashlist);
345 }
346
347 static void
348 bt_insbusy(vmem_t *vm, bt_t *bt)
349 {
350 struct vmem_hashlist *list;
351
352 KASSERT(bt->bt_type == BT_TYPE_BUSY);
353
354 list = bt_hashhead(vm, bt->bt_start);
355 LIST_INSERT_HEAD(list, bt, bt_hashlist);
356 vm->vm_nbusytag++;
357 }
358
359 /* ---- boundary tag list */
360
361 static void
362 bt_remseg(vmem_t *vm, bt_t *bt)
363 {
364
365 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
366 }
367
368 static void
369 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
370 {
371
372 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
373 }
374
375 static void
376 bt_insseg_tail(vmem_t *vm, bt_t *bt)
377 {
378
379 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
380 }
381
382 static void
383 bt_remfree(vmem_t *vm, bt_t *bt)
384 {
385
386 KASSERT(bt->bt_type == BT_TYPE_FREE);
387
388 LIST_REMOVE(bt, bt_freelist);
389 }
390
391 static void
392 bt_insfree(vmem_t *vm, bt_t *bt)
393 {
394 struct vmem_freelist *list;
395
396 list = bt_freehead_tofree(vm, bt->bt_size);
397 LIST_INSERT_HEAD(list, bt, bt_freelist);
398 }
399
400 /* ---- vmem internal functions */
401
402 #if defined(_KERNEL)
403 static kmutex_t vmem_list_lock;
404 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
405 #endif /* defined(_KERNEL) */
406
407 #if defined(QCACHE)
408 static inline vm_flag_t
409 prf_to_vmf(int prflags)
410 {
411 vm_flag_t vmflags;
412
413 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
414 if ((prflags & PR_WAITOK) != 0) {
415 vmflags = VM_SLEEP;
416 } else {
417 vmflags = VM_NOSLEEP;
418 }
419 return vmflags;
420 }
421
422 static inline int
423 vmf_to_prf(vm_flag_t vmflags)
424 {
425 int prflags;
426
427 if ((vmflags & VM_SLEEP) != 0) {
428 prflags = PR_WAITOK;
429 } else {
430 prflags = PR_NOWAIT;
431 }
432 return prflags;
433 }
434
435 static size_t
436 qc_poolpage_size(size_t qcache_max)
437 {
438 int i;
439
440 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
441 /* nothing */
442 }
443 return ORDER2SIZE(i);
444 }
445
446 static void *
447 qc_poolpage_alloc(struct pool *pool, int prflags)
448 {
449 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
450 vmem_t *vm = qc->qc_vmem;
451
452 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
453 prf_to_vmf(prflags) | VM_INSTANTFIT);
454 }
455
456 static void
457 qc_poolpage_free(struct pool *pool, void *addr)
458 {
459 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
460 vmem_t *vm = qc->qc_vmem;
461
462 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
463 }
464
465 static void
466 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
467 {
468 qcache_t *prevqc;
469 struct pool_allocator *pa;
470 int qcache_idx_max;
471 int i;
472
473 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
474 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
475 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
476 }
477 vm->vm_qcache_max = qcache_max;
478 pa = &vm->vm_qcache_allocator;
479 memset(pa, 0, sizeof(*pa));
480 pa->pa_alloc = qc_poolpage_alloc;
481 pa->pa_free = qc_poolpage_free;
482 pa->pa_pagesz = qc_poolpage_size(qcache_max);
483
484 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
485 prevqc = NULL;
486 for (i = qcache_idx_max; i > 0; i--) {
487 qcache_t *qc = &vm->vm_qcache_store[i - 1];
488 size_t size = i << vm->vm_quantum_shift;
489
490 qc->qc_vmem = vm;
491 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
492 vm->vm_name, size);
493 qc->qc_cache = pool_cache_init(size,
494 ORDER2SIZE(vm->vm_quantum_shift), 0,
495 PR_NOALIGN | PR_NOTOUCH /* XXX */,
496 qc->qc_name, pa, ipl, NULL, NULL, NULL);
497 KASSERT(qc->qc_cache != NULL); /* XXX */
498 if (prevqc != NULL &&
499 qc->qc_cache->pc_pool.pr_itemsperpage ==
500 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
501 pool_cache_destroy(qc->qc_cache);
502 vm->vm_qcache[i - 1] = prevqc;
503 continue;
504 }
505 qc->qc_cache->pc_pool.pr_qcache = qc;
506 vm->vm_qcache[i - 1] = qc;
507 prevqc = qc;
508 }
509 }
510
511 static void
512 qc_destroy(vmem_t *vm)
513 {
514 const qcache_t *prevqc;
515 int i;
516 int qcache_idx_max;
517
518 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
519 prevqc = NULL;
520 for (i = 0; i < qcache_idx_max; i++) {
521 qcache_t *qc = vm->vm_qcache[i];
522
523 if (prevqc == qc) {
524 continue;
525 }
526 pool_cache_destroy(qc->qc_cache);
527 prevqc = qc;
528 }
529 }
530
531 static bool
532 qc_reap(vmem_t *vm)
533 {
534 const qcache_t *prevqc;
535 int i;
536 int qcache_idx_max;
537 bool didsomething = false;
538
539 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
540 prevqc = NULL;
541 for (i = 0; i < qcache_idx_max; i++) {
542 qcache_t *qc = vm->vm_qcache[i];
543
544 if (prevqc == qc) {
545 continue;
546 }
547 if (pool_cache_reclaim(qc->qc_cache) != 0) {
548 didsomething = true;
549 }
550 prevqc = qc;
551 }
552
553 return didsomething;
554 }
555 #endif /* defined(QCACHE) */
556
557 #if defined(_KERNEL)
558 static int
559 vmem_init(void)
560 {
561
562 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
563 pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
564 NULL, IPL_VM, NULL, NULL, NULL);
565 return 0;
566 }
567 #endif /* defined(_KERNEL) */
568
569 static vmem_addr_t
570 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
571 int spanbttype)
572 {
573 bt_t *btspan;
574 bt_t *btfree;
575
576 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
577 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
578 KASSERT(spanbttype == BT_TYPE_SPAN || spanbttype == BT_TYPE_SPAN_STATIC);
579
580 btspan = bt_alloc(vm, flags);
581 if (btspan == NULL) {
582 return VMEM_ADDR_NULL;
583 }
584 btfree = bt_alloc(vm, flags);
585 if (btfree == NULL) {
586 bt_free(vm, btspan);
587 return VMEM_ADDR_NULL;
588 }
589
590 btspan->bt_type = spanbttype;
591 btspan->bt_start = addr;
592 btspan->bt_size = size;
593
594 btfree->bt_type = BT_TYPE_FREE;
595 btfree->bt_start = addr;
596 btfree->bt_size = size;
597
598 VMEM_LOCK(vm);
599 bt_insseg_tail(vm, btspan);
600 bt_insseg(vm, btfree, btspan);
601 bt_insfree(vm, btfree);
602 VMEM_UNLOCK(vm);
603
604 return addr;
605 }
606
607 static void
608 vmem_destroy1(vmem_t *vm)
609 {
610
611 #if defined(QCACHE)
612 qc_destroy(vm);
613 #endif /* defined(QCACHE) */
614 if (vm->vm_hashlist != NULL) {
615 int i;
616
617 for (i = 0; i < vm->vm_hashsize; i++) {
618 bt_t *bt;
619
620 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
621 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
622 bt_free(vm, bt);
623 }
624 }
625 xfree(vm->vm_hashlist);
626 }
627 VMEM_LOCK_DESTROY(vm);
628 xfree(vm);
629 }
630
631 static int
632 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
633 {
634 vmem_addr_t addr;
635
636 if (vm->vm_allocfn == NULL) {
637 return EINVAL;
638 }
639
640 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
641 if (addr == VMEM_ADDR_NULL) {
642 return ENOMEM;
643 }
644
645 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
646 (*vm->vm_freefn)(vm->vm_source, addr, size);
647 return ENOMEM;
648 }
649
650 return 0;
651 }
652
653 static int
654 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
655 {
656 bt_t *bt;
657 int i;
658 struct vmem_hashlist *newhashlist;
659 struct vmem_hashlist *oldhashlist;
660 size_t oldhashsize;
661
662 KASSERT(newhashsize > 0);
663
664 newhashlist =
665 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
666 if (newhashlist == NULL) {
667 return ENOMEM;
668 }
669 for (i = 0; i < newhashsize; i++) {
670 LIST_INIT(&newhashlist[i]);
671 }
672
673 if (!VMEM_TRYLOCK(vm)) {
674 xfree(newhashlist);
675 return EBUSY;
676 }
677 oldhashlist = vm->vm_hashlist;
678 oldhashsize = vm->vm_hashsize;
679 vm->vm_hashlist = newhashlist;
680 vm->vm_hashsize = newhashsize;
681 if (oldhashlist == NULL) {
682 VMEM_UNLOCK(vm);
683 return 0;
684 }
685 for (i = 0; i < oldhashsize; i++) {
686 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
687 bt_rembusy(vm, bt); /* XXX */
688 bt_insbusy(vm, bt);
689 }
690 }
691 VMEM_UNLOCK(vm);
692
693 xfree(oldhashlist);
694
695 return 0;
696 }
697
698 /*
699 * vmem_fit: check if a bt can satisfy the given restrictions.
700 */
701
702 static vmem_addr_t
703 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
704 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
705 {
706 vmem_addr_t start;
707 vmem_addr_t end;
708
709 KASSERT(bt->bt_size >= size);
710
711 /*
712 * XXX assumption: vmem_addr_t and vmem_size_t are
713 * unsigned integer of the same size.
714 */
715
716 start = bt->bt_start;
717 if (start < minaddr) {
718 start = minaddr;
719 }
720 end = BT_END(bt);
721 if (end > maxaddr - 1) {
722 end = maxaddr - 1;
723 }
724 if (start >= end) {
725 return VMEM_ADDR_NULL;
726 }
727
728 start = VMEM_ALIGNUP(start - phase, align) + phase;
729 if (start < bt->bt_start) {
730 start += align;
731 }
732 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
733 KASSERT(align < nocross);
734 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
735 }
736 if (start < end && end - start >= size) {
737 KASSERT((start & (align - 1)) == phase);
738 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
739 KASSERT(minaddr <= start);
740 KASSERT(maxaddr == 0 || start + size <= maxaddr);
741 KASSERT(bt->bt_start <= start);
742 KASSERT(start + size <= BT_END(bt));
743 return start;
744 }
745 return VMEM_ADDR_NULL;
746 }
747
748 #if !defined(VMEM_DEBUG)
749 #define vmem_check_sanity(vm) true
750 #else
751
752 static bool
753 vmem_check_spanoverlap(const char *func, const vmem_t *vm,
754 const bt_t *bt, const bt_t *bt2)
755 {
756 switch (bt->bt_type) {
757 case BT_TYPE_BUSY:
758 case BT_TYPE_FREE:
759 if (BT_ISSPAN_P(bt2))
760 return true;
761 break;
762 case BT_TYPE_SPAN:
763 case BT_TYPE_SPAN_STATIC:
764 if (bt2->bt_type == BT_TYPE_BUSY
765 || bt2->bt_type == BT_TYPE_FREE)
766 return true;
767 break;
768 }
769
770 if (bt->bt_start > bt2->bt_start) {
771 if (bt->bt_start >= BT_END(bt2))
772 return true;
773
774 printf("%s: overlapping VMEM '%s' span 0x%"
775 PRIx64" - 0x%"PRIx64" %s\n",
776 func, vm->vm_name,
777 (uint64_t)bt->bt_start,
778 (uint64_t)BT_END(bt),
779 (bt->bt_type == BT_TYPE_BUSY) ?
780 "allocated" :
781 (bt->bt_type == BT_TYPE_FREE) ?
782 "free" :
783 (bt->bt_type == BT_TYPE_SPAN) ?
784 "span" : "static span");
785 printf("%s: overlapping VMEM '%s' span 0x%"
786 PRIx64" - 0x%"PRIx64" %s\n",
787 func, vm->vm_name,
788 (uint64_t)bt2->bt_start,
789 (uint64_t)BT_END(bt2),
790 (bt2->bt_type == BT_TYPE_BUSY) ?
791 "allocated" :
792 (bt2->bt_type == BT_TYPE_FREE) ?
793 "free" :
794 (bt2->bt_type == BT_TYPE_SPAN) ?
795 "span" : "static span");
796 return false;
797 }
798 if (BT_END(bt) > bt2->bt_start) {
799 printf("%s: overlapping VMEM '%s' span 0x%"
800 PRIx64" - 0x%"PRIx64" %s\n",
801 func, vm->vm_name,
802 (uint64_t)bt->bt_start,
803 (uint64_t)BT_END(bt),
804 (bt->bt_type == BT_TYPE_BUSY) ?
805 "allocated" :
806 (bt->bt_type == BT_TYPE_FREE) ?
807 "free" :
808 (bt->bt_type == BT_TYPE_SPAN) ?
809 "span" : "static span");
810 printf("%s: overlapping VMEM '%s' span 0x%"
811 PRIx64" - 0x%"PRIx64" %s\n",
812 func, vm->vm_name,
813 (uint64_t)bt2->bt_start,
814 (uint64_t)BT_END(bt2),
815 (bt2->bt_type == BT_TYPE_BUSY) ?
816 "allocated" :
817 (bt2->bt_type == BT_TYPE_FREE) ?
818 "free" :
819 (bt2->bt_type == BT_TYPE_SPAN) ?
820 "span" : "static span");
821 return false;
822 }
823
824 return true;
825 }
826
827 static bool
828 vmem_check_sanity(vmem_t *vm)
829 {
830 const bt_t *bt, *bt2;
831
832 KASSERT(vm != NULL);
833
834 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
835 if (bt->bt_start >= BT_END(bt)) {
836 printf("%s: bogus VMEM '%s' span 0x%"PRIx64
837 " - 0x%"PRIx64" %s\n",
838 __func__, vm->vm_name,
839 (uint64_t)bt->bt_start, (uint64_t)BT_END(bt),
840 (bt->bt_type == BT_TYPE_BUSY) ?
841 "allocated" :
842 (bt->bt_type == BT_TYPE_FREE) ?
843 "free" :
844 (bt->bt_type == BT_TYPE_SPAN) ?
845 "span" : "static span");
846 return false;
847 }
848
849 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
850 if (bt2->bt_start >= BT_END(bt2)) {
851 printf("%s: bogus VMEM '%s' span 0x%"PRIx64
852 " - 0x%"PRIx64" %s\n",
853 __func__, vm->vm_name,
854 (uint64_t)bt2->bt_start,
855 (uint64_t)BT_END(bt2),
856 (bt2->bt_type == BT_TYPE_BUSY) ?
857 "allocated" :
858 (bt2->bt_type == BT_TYPE_FREE) ?
859 "free" :
860 (bt2->bt_type == BT_TYPE_SPAN) ?
861 "span" : "static span");
862 return false;
863 }
864 if (bt == bt2)
865 continue;
866
867 if (vmem_check_spanoverlap(__func__, vm, bt, bt2)
868 == false)
869 return false;
870 }
871 }
872
873 return true;
874 }
875 #endif /* VMEM_DEBUG */
876
877 /* ---- vmem API */
878
879 /*
880 * vmem_create: create an arena.
881 *
882 * => must not be called from interrupt context.
883 */
884
885 vmem_t *
886 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
887 vmem_size_t quantum,
888 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
889 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
890 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
891 int ipl)
892 {
893 vmem_t *vm;
894 int i;
895 #if defined(_KERNEL)
896 static ONCE_DECL(control);
897 #endif /* defined(_KERNEL) */
898
899 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
900 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
901
902 #if defined(_KERNEL)
903 if (RUN_ONCE(&control, vmem_init)) {
904 return NULL;
905 }
906 #endif /* defined(_KERNEL) */
907 vm = xmalloc(sizeof(*vm), flags);
908 if (vm == NULL) {
909 return NULL;
910 }
911
912 VMEM_LOCK_INIT(vm, ipl);
913 vm->vm_name = name;
914 vm->vm_quantum_mask = quantum - 1;
915 vm->vm_quantum_shift = calc_order(quantum);
916 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
917 vm->vm_allocfn = allocfn;
918 vm->vm_freefn = freefn;
919 vm->vm_source = source;
920 vm->vm_nbusytag = 0;
921 #if defined(QCACHE)
922 qc_init(vm, qcache_max, ipl);
923 #endif /* defined(QCACHE) */
924
925 CIRCLEQ_INIT(&vm->vm_seglist);
926 for (i = 0; i < VMEM_MAXORDER; i++) {
927 LIST_INIT(&vm->vm_freelist[i]);
928 }
929 vm->vm_hashlist = NULL;
930 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
931 vmem_destroy1(vm);
932 return NULL;
933 }
934
935 if (size != 0) {
936 if (vmem_add(vm, base, size, flags) == 0) {
937 vmem_destroy1(vm);
938 return NULL;
939 }
940 }
941
942 #if defined(_KERNEL)
943 mutex_enter(&vmem_list_lock);
944 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
945 mutex_exit(&vmem_list_lock);
946 #endif /* defined(_KERNEL) */
947
948 return vm;
949 }
950
951 void
952 vmem_destroy(vmem_t *vm)
953 {
954
955 #if defined(_KERNEL)
956 mutex_enter(&vmem_list_lock);
957 LIST_REMOVE(vm, vm_alllist);
958 mutex_exit(&vmem_list_lock);
959 #endif /* defined(_KERNEL) */
960
961 vmem_destroy1(vm);
962 }
963
964 vmem_size_t
965 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
966 {
967
968 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
969 }
970
971 /*
972 * vmem_alloc:
973 *
974 * => caller must ensure appropriate spl,
975 * if the arena can be accessed from interrupt context.
976 */
977
978 vmem_addr_t
979 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
980 {
981 const vm_flag_t strat __unused = flags & VM_FITMASK;
982
983 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
984 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
985
986 KASSERT(size > 0);
987 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
988 if ((flags & VM_SLEEP) != 0) {
989 ASSERT_SLEEPABLE();
990 }
991
992 #if defined(QCACHE)
993 if (size <= vm->vm_qcache_max) {
994 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
995 qcache_t *qc = vm->vm_qcache[qidx - 1];
996
997 return (vmem_addr_t)pool_cache_get(qc->qc_cache,
998 vmf_to_prf(flags));
999 }
1000 #endif /* defined(QCACHE) */
1001
1002 return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
1003 }
1004
1005 vmem_addr_t
1006 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
1007 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
1008 vm_flag_t flags)
1009 {
1010 struct vmem_freelist *list;
1011 struct vmem_freelist *first;
1012 struct vmem_freelist *end;
1013 bt_t *bt;
1014 bt_t *btnew;
1015 bt_t *btnew2;
1016 const vmem_size_t size = vmem_roundup_size(vm, size0);
1017 vm_flag_t strat = flags & VM_FITMASK;
1018 vmem_addr_t start;
1019
1020 KASSERT(size0 > 0);
1021 KASSERT(size > 0);
1022 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1023 if ((flags & VM_SLEEP) != 0) {
1024 ASSERT_SLEEPABLE();
1025 }
1026 KASSERT((align & vm->vm_quantum_mask) == 0);
1027 KASSERT((align & (align - 1)) == 0);
1028 KASSERT((phase & vm->vm_quantum_mask) == 0);
1029 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1030 KASSERT((nocross & (nocross - 1)) == 0);
1031 KASSERT((align == 0 && phase == 0) || phase < align);
1032 KASSERT(nocross == 0 || nocross >= size);
1033 KASSERT(maxaddr == 0 || minaddr < maxaddr);
1034 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1035
1036 if (align == 0) {
1037 align = vm->vm_quantum_mask + 1;
1038 }
1039 btnew = bt_alloc(vm, flags);
1040 if (btnew == NULL) {
1041 return VMEM_ADDR_NULL;
1042 }
1043 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1044 if (btnew2 == NULL) {
1045 bt_free(vm, btnew);
1046 return VMEM_ADDR_NULL;
1047 }
1048
1049 retry_strat:
1050 first = bt_freehead_toalloc(vm, size, strat);
1051 end = &vm->vm_freelist[VMEM_MAXORDER];
1052 retry:
1053 bt = NULL;
1054 VMEM_LOCK(vm);
1055 KASSERT(vmem_check_sanity(vm));
1056 if (strat == VM_INSTANTFIT) {
1057 for (list = first; list < end; list++) {
1058 bt = LIST_FIRST(list);
1059 if (bt != NULL) {
1060 start = vmem_fit(bt, size, align, phase,
1061 nocross, minaddr, maxaddr);
1062 if (start != VMEM_ADDR_NULL) {
1063 goto gotit;
1064 }
1065 }
1066 }
1067 } else { /* VM_BESTFIT */
1068 for (list = first; list < end; list++) {
1069 LIST_FOREACH(bt, list, bt_freelist) {
1070 if (bt->bt_size >= size) {
1071 start = vmem_fit(bt, size, align, phase,
1072 nocross, minaddr, maxaddr);
1073 if (start != VMEM_ADDR_NULL) {
1074 goto gotit;
1075 }
1076 }
1077 }
1078 }
1079 }
1080 VMEM_UNLOCK(vm);
1081 #if 1
1082 if (strat == VM_INSTANTFIT) {
1083 strat = VM_BESTFIT;
1084 goto retry_strat;
1085 }
1086 #endif
1087 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
1088 nocross != 0 || minaddr != 0 || maxaddr != 0) {
1089
1090 /*
1091 * XXX should try to import a region large enough to
1092 * satisfy restrictions?
1093 */
1094
1095 goto fail;
1096 }
1097 if (vmem_import(vm, size, flags) == 0) {
1098 goto retry;
1099 }
1100 /* XXX */
1101 fail:
1102 bt_free(vm, btnew);
1103 bt_free(vm, btnew2);
1104 return VMEM_ADDR_NULL;
1105
1106 gotit:
1107 KASSERT(bt->bt_type == BT_TYPE_FREE);
1108 KASSERT(bt->bt_size >= size);
1109 bt_remfree(vm, bt);
1110 KASSERT(vmem_check_sanity(vm));
1111 if (bt->bt_start != start) {
1112 btnew2->bt_type = BT_TYPE_FREE;
1113 btnew2->bt_start = bt->bt_start;
1114 btnew2->bt_size = start - bt->bt_start;
1115 bt->bt_start = start;
1116 bt->bt_size -= btnew2->bt_size;
1117 bt_insfree(vm, btnew2);
1118 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1119 btnew2 = NULL;
1120 KASSERT(vmem_check_sanity(vm));
1121 }
1122 KASSERT(bt->bt_start == start);
1123 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1124 /* split */
1125 btnew->bt_type = BT_TYPE_BUSY;
1126 btnew->bt_start = bt->bt_start;
1127 btnew->bt_size = size;
1128 bt->bt_start = bt->bt_start + size;
1129 bt->bt_size -= size;
1130 bt_insfree(vm, bt);
1131 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1132 bt_insbusy(vm, btnew);
1133 KASSERT(vmem_check_sanity(vm));
1134 VMEM_UNLOCK(vm);
1135 } else {
1136 bt->bt_type = BT_TYPE_BUSY;
1137 bt_insbusy(vm, bt);
1138 KASSERT(vmem_check_sanity(vm));
1139 VMEM_UNLOCK(vm);
1140 bt_free(vm, btnew);
1141 btnew = bt;
1142 }
1143 if (btnew2 != NULL) {
1144 bt_free(vm, btnew2);
1145 }
1146 KASSERT(btnew->bt_size >= size);
1147 btnew->bt_type = BT_TYPE_BUSY;
1148
1149 KASSERT(vmem_check_sanity(vm));
1150 return btnew->bt_start;
1151 }
1152
1153 /*
1154 * vmem_free:
1155 *
1156 * => caller must ensure appropriate spl,
1157 * if the arena can be accessed from interrupt context.
1158 */
1159
1160 void
1161 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1162 {
1163
1164 KASSERT(addr != VMEM_ADDR_NULL);
1165 KASSERT(size > 0);
1166
1167 #if defined(QCACHE)
1168 if (size <= vm->vm_qcache_max) {
1169 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1170 qcache_t *qc = vm->vm_qcache[qidx - 1];
1171
1172 return pool_cache_put(qc->qc_cache, (void *)addr);
1173 }
1174 #endif /* defined(QCACHE) */
1175
1176 vmem_xfree(vm, addr, size);
1177 }
1178
1179 void
1180 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1181 {
1182 bt_t *bt;
1183 bt_t *t;
1184
1185 KASSERT(addr != VMEM_ADDR_NULL);
1186 KASSERT(size > 0);
1187
1188 VMEM_LOCK(vm);
1189
1190 bt = bt_lookupbusy(vm, addr);
1191 KASSERT(bt != NULL);
1192 KASSERT(bt->bt_start == addr);
1193 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1194 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1195 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1196 bt_rembusy(vm, bt);
1197 bt->bt_type = BT_TYPE_FREE;
1198
1199 /* coalesce */
1200 t = CIRCLEQ_NEXT(bt, bt_seglist);
1201 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1202 KASSERT(BT_END(bt) == t->bt_start);
1203 bt_remfree(vm, t);
1204 bt_remseg(vm, t);
1205 bt->bt_size += t->bt_size;
1206 bt_free(vm, t);
1207 }
1208 t = CIRCLEQ_PREV(bt, bt_seglist);
1209 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1210 KASSERT(BT_END(t) == bt->bt_start);
1211 bt_remfree(vm, t);
1212 bt_remseg(vm, t);
1213 bt->bt_size += t->bt_size;
1214 bt->bt_start = t->bt_start;
1215 bt_free(vm, t);
1216 }
1217
1218 t = CIRCLEQ_PREV(bt, bt_seglist);
1219 KASSERT(t != NULL);
1220 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1221 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1222 t->bt_size == bt->bt_size) {
1223 vmem_addr_t spanaddr;
1224 vmem_size_t spansize;
1225
1226 KASSERT(t->bt_start == bt->bt_start);
1227 spanaddr = bt->bt_start;
1228 spansize = bt->bt_size;
1229 bt_remseg(vm, bt);
1230 bt_free(vm, bt);
1231 bt_remseg(vm, t);
1232 bt_free(vm, t);
1233 VMEM_UNLOCK(vm);
1234 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1235 } else {
1236 bt_insfree(vm, bt);
1237 VMEM_UNLOCK(vm);
1238 }
1239 }
1240
1241 /*
1242 * vmem_add:
1243 *
1244 * => caller must ensure appropriate spl,
1245 * if the arena can be accessed from interrupt context.
1246 */
1247
1248 vmem_addr_t
1249 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1250 {
1251
1252 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1253 }
1254
1255 /*
1256 * vmem_reap: reap unused resources.
1257 *
1258 * => return true if we successfully reaped something.
1259 */
1260
1261 bool
1262 vmem_reap(vmem_t *vm)
1263 {
1264 bool didsomething = false;
1265
1266 #if defined(QCACHE)
1267 didsomething = qc_reap(vm);
1268 #endif /* defined(QCACHE) */
1269 return didsomething;
1270 }
1271
1272 /* ---- rehash */
1273
1274 #if defined(_KERNEL)
1275 static struct callout vmem_rehash_ch;
1276 static int vmem_rehash_interval;
1277 static struct workqueue *vmem_rehash_wq;
1278 static struct work vmem_rehash_wk;
1279
1280 static void
1281 vmem_rehash_all(struct work *wk, void *dummy)
1282 {
1283 vmem_t *vm;
1284
1285 KASSERT(wk == &vmem_rehash_wk);
1286 mutex_enter(&vmem_list_lock);
1287 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1288 size_t desired;
1289 size_t current;
1290
1291 if (!VMEM_TRYLOCK(vm)) {
1292 continue;
1293 }
1294 desired = vm->vm_nbusytag;
1295 current = vm->vm_hashsize;
1296 VMEM_UNLOCK(vm);
1297
1298 if (desired > VMEM_HASHSIZE_MAX) {
1299 desired = VMEM_HASHSIZE_MAX;
1300 } else if (desired < VMEM_HASHSIZE_MIN) {
1301 desired = VMEM_HASHSIZE_MIN;
1302 }
1303 if (desired > current * 2 || desired * 2 < current) {
1304 vmem_rehash(vm, desired, VM_NOSLEEP);
1305 }
1306 }
1307 mutex_exit(&vmem_list_lock);
1308
1309 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1310 }
1311
1312 static void
1313 vmem_rehash_all_kick(void *dummy)
1314 {
1315
1316 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1317 }
1318
1319 void
1320 vmem_rehash_start(void)
1321 {
1322 int error;
1323
1324 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1325 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1326 if (error) {
1327 panic("%s: workqueue_create %d\n", __func__, error);
1328 }
1329 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1330 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1331
1332 vmem_rehash_interval = hz * 10;
1333 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1334 }
1335 #endif /* defined(_KERNEL) */
1336
1337 /* ---- debug */
1338
1339 #if defined(DDB)
1340 static bt_t *
1341 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1342 {
1343 bt_t *bt;
1344
1345 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1346 if (BT_ISSPAN_P(bt)) {
1347 continue;
1348 }
1349 if (bt->bt_start <= addr && addr < BT_END(bt)) {
1350 return bt;
1351 }
1352 }
1353
1354 return NULL;
1355 }
1356
1357 void
1358 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1359 {
1360 vmem_t *vm;
1361
1362 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1363 bt_t *bt;
1364
1365 bt = vmem_whatis_lookup(vm, addr);
1366 if (bt == NULL) {
1367 continue;
1368 }
1369 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1370 (void *)addr, (void *)bt->bt_start,
1371 (size_t)(addr - bt->bt_start), vm->vm_name,
1372 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1373 }
1374 }
1375
1376 static void
1377 vmem_showall(void (*pr)(const char *, ...))
1378 {
1379 vmem_t *vm;
1380
1381 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1382 (*pr)("VMEM '%s' at %p\n", vm->vm_name, vm);
1383 if (vm->vm_source)
1384 (*pr)(" VMEM backend '%s' at %p\n",
1385 vm->vm_source->vm_name, vm->vm_source);
1386 }
1387 }
1388
1389 static void
1390 vmem_show(uintptr_t addr, void (*pr)(const char *, ...))
1391 {
1392 vmem_t *vm;
1393 bt_t *bt = NULL;
1394
1395 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1396 if ((uintptr_t)vm == addr)
1397 goto found;
1398 }
1399
1400 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1401 bt = vmem_whatis_lookup(vm, addr);
1402 if (bt != NULL)
1403 goto found;
1404 }
1405
1406 return;
1407 found:
1408
1409 (*pr)("VMEM '%s' spans\n", vm->vm_name);
1410 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1411 (*pr)(" 0x%"PRIx64" - 0x%"PRIx64" %s\n",
1412 bt->bt_start, BT_END(bt),
1413 (bt->bt_type == BT_TYPE_BUSY) ?
1414 "allocated" :
1415 (bt->bt_type == BT_TYPE_FREE) ?
1416 "free" :
1417 (bt->bt_type == BT_TYPE_SPAN) ?
1418 "span" : "static span");
1419 }
1420 }
1421
1422 void
1423 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1424 {
1425 if (modif[0] == 'a') {
1426 vmem_showall(pr);
1427 return;
1428 }
1429
1430 vmem_show(addr, pr);
1431 }
1432 #endif /* defined(DDB) */
1433
1434 #if defined(VMEM_DEBUG)
1435
1436 #if !defined(_KERNEL)
1437 #include <stdio.h>
1438 #endif /* !defined(_KERNEL) */
1439
1440 void bt_dump(const bt_t *);
1441
1442 void
1443 bt_dump(const bt_t *bt)
1444 {
1445
1446 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1447 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1448 bt->bt_type);
1449 }
1450
1451 void
1452 vmem_dump(const vmem_t *vm)
1453 {
1454 const bt_t *bt;
1455 int i;
1456
1457 printf("vmem %p '%s'\n", vm, vm->vm_name);
1458 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1459 bt_dump(bt);
1460 }
1461
1462 for (i = 0; i < VMEM_MAXORDER; i++) {
1463 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1464
1465 if (LIST_EMPTY(fl)) {
1466 continue;
1467 }
1468
1469 printf("freelist[%d]\n", i);
1470 LIST_FOREACH(bt, fl, bt_freelist) {
1471 bt_dump(bt);
1472 if (bt->bt_size) {
1473 }
1474 }
1475 }
1476 }
1477
1478 #if !defined(_KERNEL)
1479
1480 int
1481 main()
1482 {
1483 vmem_t *vm;
1484 vmem_addr_t p;
1485 struct reg {
1486 vmem_addr_t p;
1487 vmem_size_t sz;
1488 bool x;
1489 } *reg = NULL;
1490 int nreg = 0;
1491 int nalloc = 0;
1492 int nfree = 0;
1493 vmem_size_t total = 0;
1494 #if 1
1495 vm_flag_t strat = VM_INSTANTFIT;
1496 #else
1497 vm_flag_t strat = VM_BESTFIT;
1498 #endif
1499
1500 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1501 NULL, NULL, NULL, 0, VM_SLEEP);
1502 if (vm == NULL) {
1503 printf("vmem_create\n");
1504 exit(EXIT_FAILURE);
1505 }
1506 vmem_dump(vm);
1507
1508 p = vmem_add(vm, 100, 200, VM_SLEEP);
1509 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1510 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1511 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1512 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1513 vmem_dump(vm);
1514 for (;;) {
1515 struct reg *r;
1516 int t = rand() % 100;
1517
1518 if (t > 45) {
1519 /* alloc */
1520 vmem_size_t sz = rand() % 500 + 1;
1521 bool x;
1522 vmem_size_t align, phase, nocross;
1523 vmem_addr_t minaddr, maxaddr;
1524
1525 if (t > 70) {
1526 x = true;
1527 /* XXX */
1528 align = 1 << (rand() % 15);
1529 phase = rand() % 65536;
1530 nocross = 1 << (rand() % 15);
1531 if (align <= phase) {
1532 phase = 0;
1533 }
1534 if (VMEM_CROSS_P(phase, phase + sz - 1,
1535 nocross)) {
1536 nocross = 0;
1537 }
1538 minaddr = rand() % 50000;
1539 maxaddr = rand() % 70000;
1540 if (minaddr > maxaddr) {
1541 minaddr = 0;
1542 maxaddr = 0;
1543 }
1544 printf("=== xalloc %" PRIu64
1545 " align=%" PRIu64 ", phase=%" PRIu64
1546 ", nocross=%" PRIu64 ", min=%" PRIu64
1547 ", max=%" PRIu64 "\n",
1548 (uint64_t)sz,
1549 (uint64_t)align,
1550 (uint64_t)phase,
1551 (uint64_t)nocross,
1552 (uint64_t)minaddr,
1553 (uint64_t)maxaddr);
1554 p = vmem_xalloc(vm, sz, align, phase, nocross,
1555 minaddr, maxaddr, strat|VM_SLEEP);
1556 } else {
1557 x = false;
1558 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1559 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1560 }
1561 printf("-> %" PRIu64 "\n", (uint64_t)p);
1562 vmem_dump(vm);
1563 if (p == VMEM_ADDR_NULL) {
1564 if (x) {
1565 continue;
1566 }
1567 break;
1568 }
1569 nreg++;
1570 reg = realloc(reg, sizeof(*reg) * nreg);
1571 r = ®[nreg - 1];
1572 r->p = p;
1573 r->sz = sz;
1574 r->x = x;
1575 total += sz;
1576 nalloc++;
1577 } else if (nreg != 0) {
1578 /* free */
1579 r = ®[rand() % nreg];
1580 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1581 (uint64_t)r->p, (uint64_t)r->sz);
1582 if (r->x) {
1583 vmem_xfree(vm, r->p, r->sz);
1584 } else {
1585 vmem_free(vm, r->p, r->sz);
1586 }
1587 total -= r->sz;
1588 vmem_dump(vm);
1589 *r = reg[nreg - 1];
1590 nreg--;
1591 nfree++;
1592 }
1593 printf("total=%" PRIu64 "\n", (uint64_t)total);
1594 }
1595 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1596 (uint64_t)total, nalloc, nfree);
1597 exit(EXIT_SUCCESS);
1598 }
1599 #endif /* !defined(_KERNEL) */
1600 #endif /* defined(VMEM_DEBUG) */
1601