subr_vmem.c revision 1.47 1 /* $NetBSD: subr_vmem.c,v 1.47 2008/12/07 22:39:01 cegger Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.47 2008/12/07 22:39:01 cegger Exp $");
42
43 #define VMEM_DEBUG
44 #if defined(_KERNEL)
45 #include "opt_ddb.h"
46 #define QCACHE
47 #endif /* defined(_KERNEL) */
48
49 #include <sys/param.h>
50 #include <sys/hash.h>
51 #include <sys/queue.h>
52
53 #if defined(_KERNEL)
54 #include <sys/systm.h>
55 #include <sys/kernel.h> /* hz */
56 #include <sys/callout.h>
57 #include <sys/malloc.h>
58 #include <sys/once.h>
59 #include <sys/pool.h>
60 #include <sys/vmem.h>
61 #include <sys/workqueue.h>
62 #else /* defined(_KERNEL) */
63 #include "../sys/vmem.h"
64 #endif /* defined(_KERNEL) */
65
66 #if defined(_KERNEL)
67 #define LOCK_DECL(name) kmutex_t name
68 #else /* defined(_KERNEL) */
69 #include <errno.h>
70 #include <assert.h>
71 #include <stdlib.h>
72
73 #define KASSERT(a) assert(a)
74 #define LOCK_DECL(name) /* nothing */
75 #define mutex_init(a, b, c) /* nothing */
76 #define mutex_destroy(a) /* nothing */
77 #define mutex_enter(a) /* nothing */
78 #define mutex_exit(a) /* nothing */
79 #define mutex_owned(a) /* nothing */
80 #define ASSERT_SLEEPABLE() /* nothing */
81 #define IPL_VM 0
82 #endif /* defined(_KERNEL) */
83
84 struct vmem;
85 struct vmem_btag;
86
87 #if defined(VMEM_DEBUG)
88 void vmem_dump(const vmem_t *);
89 #endif /* defined(VMEM_DEBUG) */
90
91 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
92
93 #define VMEM_HASHSIZE_MIN 1 /* XXX */
94 #define VMEM_HASHSIZE_MAX 8192 /* XXX */
95 #define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
96
97 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
98
99 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
100 LIST_HEAD(vmem_freelist, vmem_btag);
101 LIST_HEAD(vmem_hashlist, vmem_btag);
102
103 #if defined(QCACHE)
104 #define VMEM_QCACHE_IDX_MAX 32
105
106 #define QC_NAME_MAX 16
107
108 struct qcache {
109 pool_cache_t qc_cache;
110 vmem_t *qc_vmem;
111 char qc_name[QC_NAME_MAX];
112 };
113 typedef struct qcache qcache_t;
114 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
115 #endif /* defined(QCACHE) */
116
117 /* vmem arena */
118 struct vmem {
119 LOCK_DECL(vm_lock);
120 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
121 vm_flag_t);
122 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
123 vmem_t *vm_source;
124 struct vmem_seglist vm_seglist;
125 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
126 size_t vm_hashsize;
127 size_t vm_nbusytag;
128 struct vmem_hashlist *vm_hashlist;
129 size_t vm_quantum_mask;
130 int vm_quantum_shift;
131 const char *vm_name;
132 LIST_ENTRY(vmem) vm_alllist;
133
134 #if defined(QCACHE)
135 /* quantum cache */
136 size_t vm_qcache_max;
137 struct pool_allocator vm_qcache_allocator;
138 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
139 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
140 #endif /* defined(QCACHE) */
141 };
142
143 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
144 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
145 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
146 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
147 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
148 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
149
150 /* boundary tag */
151 struct vmem_btag {
152 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
153 union {
154 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
155 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
156 } bt_u;
157 #define bt_hashlist bt_u.u_hashlist
158 #define bt_freelist bt_u.u_freelist
159 vmem_addr_t bt_start;
160 vmem_size_t bt_size;
161 int bt_type;
162 };
163
164 #define BT_TYPE_SPAN 1
165 #define BT_TYPE_SPAN_STATIC 2
166 #define BT_TYPE_FREE 3
167 #define BT_TYPE_BUSY 4
168 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
169
170 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
171
172 typedef struct vmem_btag bt_t;
173
174 /* ---- misc */
175
176 #define VMEM_ALIGNUP(addr, align) \
177 (-(-(addr) & -(align)))
178 #define VMEM_CROSS_P(addr1, addr2, boundary) \
179 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
180
181 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
182
183 static int
184 calc_order(vmem_size_t size)
185 {
186 vmem_size_t target;
187 int i;
188
189 KASSERT(size != 0);
190
191 i = 0;
192 target = size >> 1;
193 while (ORDER2SIZE(i) <= target) {
194 i++;
195 }
196
197 KASSERT(ORDER2SIZE(i) <= size);
198 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
199
200 return i;
201 }
202
203 #if defined(_KERNEL)
204 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
205 #endif /* defined(_KERNEL) */
206
207 static void *
208 xmalloc(size_t sz, vm_flag_t flags)
209 {
210
211 #if defined(_KERNEL)
212 return malloc(sz, M_VMEM,
213 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
214 #else /* defined(_KERNEL) */
215 return malloc(sz);
216 #endif /* defined(_KERNEL) */
217 }
218
219 static void
220 xfree(void *p)
221 {
222
223 #if defined(_KERNEL)
224 return free(p, M_VMEM);
225 #else /* defined(_KERNEL) */
226 return free(p);
227 #endif /* defined(_KERNEL) */
228 }
229
230 /* ---- boundary tag */
231
232 #if defined(_KERNEL)
233 static struct pool_cache bt_cache;
234 #endif /* defined(_KERNEL) */
235
236 static bt_t *
237 bt_alloc(vmem_t *vm, vm_flag_t flags)
238 {
239 bt_t *bt;
240
241 #if defined(_KERNEL)
242 bt = pool_cache_get(&bt_cache,
243 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
244 #else /* defined(_KERNEL) */
245 bt = malloc(sizeof *bt);
246 #endif /* defined(_KERNEL) */
247
248 return bt;
249 }
250
251 static void
252 bt_free(vmem_t *vm, bt_t *bt)
253 {
254
255 #if defined(_KERNEL)
256 pool_cache_put(&bt_cache, bt);
257 #else /* defined(_KERNEL) */
258 free(bt);
259 #endif /* defined(_KERNEL) */
260 }
261
262 /*
263 * freelist[0] ... [1, 1]
264 * freelist[1] ... [2, 3]
265 * freelist[2] ... [4, 7]
266 * freelist[3] ... [8, 15]
267 * :
268 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
269 * :
270 */
271
272 static struct vmem_freelist *
273 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
274 {
275 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
276 int idx;
277
278 KASSERT((size & vm->vm_quantum_mask) == 0);
279 KASSERT(size != 0);
280
281 idx = calc_order(qsize);
282 KASSERT(idx >= 0);
283 KASSERT(idx < VMEM_MAXORDER);
284
285 return &vm->vm_freelist[idx];
286 }
287
288 static struct vmem_freelist *
289 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
290 {
291 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
292 int idx;
293
294 KASSERT((size & vm->vm_quantum_mask) == 0);
295 KASSERT(size != 0);
296
297 idx = calc_order(qsize);
298 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
299 idx++;
300 /* check too large request? */
301 }
302 KASSERT(idx >= 0);
303 KASSERT(idx < VMEM_MAXORDER);
304
305 return &vm->vm_freelist[idx];
306 }
307
308 /* ---- boundary tag hash */
309
310 static struct vmem_hashlist *
311 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
312 {
313 struct vmem_hashlist *list;
314 unsigned int hash;
315
316 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
317 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
318
319 return list;
320 }
321
322 static bt_t *
323 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
324 {
325 struct vmem_hashlist *list;
326 bt_t *bt;
327
328 list = bt_hashhead(vm, addr);
329 LIST_FOREACH(bt, list, bt_hashlist) {
330 if (bt->bt_start == addr) {
331 break;
332 }
333 }
334
335 return bt;
336 }
337
338 static void
339 bt_rembusy(vmem_t *vm, bt_t *bt)
340 {
341
342 KASSERT(vm->vm_nbusytag > 0);
343 vm->vm_nbusytag--;
344 LIST_REMOVE(bt, bt_hashlist);
345 }
346
347 static void
348 bt_insbusy(vmem_t *vm, bt_t *bt)
349 {
350 struct vmem_hashlist *list;
351
352 KASSERT(bt->bt_type == BT_TYPE_BUSY);
353
354 list = bt_hashhead(vm, bt->bt_start);
355 LIST_INSERT_HEAD(list, bt, bt_hashlist);
356 vm->vm_nbusytag++;
357 }
358
359 /* ---- boundary tag list */
360
361 static void
362 bt_remseg(vmem_t *vm, bt_t *bt)
363 {
364
365 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
366 }
367
368 static void
369 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
370 {
371
372 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
373 }
374
375 static void
376 bt_insseg_tail(vmem_t *vm, bt_t *bt)
377 {
378
379 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
380 }
381
382 static void
383 bt_remfree(vmem_t *vm, bt_t *bt)
384 {
385
386 KASSERT(bt->bt_type == BT_TYPE_FREE);
387
388 LIST_REMOVE(bt, bt_freelist);
389 }
390
391 static void
392 bt_insfree(vmem_t *vm, bt_t *bt)
393 {
394 struct vmem_freelist *list;
395
396 list = bt_freehead_tofree(vm, bt->bt_size);
397 LIST_INSERT_HEAD(list, bt, bt_freelist);
398 }
399
400 /* ---- vmem internal functions */
401
402 #if defined(_KERNEL)
403 static kmutex_t vmem_list_lock;
404 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
405 #endif /* defined(_KERNEL) */
406
407 #if defined(QCACHE)
408 static inline vm_flag_t
409 prf_to_vmf(int prflags)
410 {
411 vm_flag_t vmflags;
412
413 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
414 if ((prflags & PR_WAITOK) != 0) {
415 vmflags = VM_SLEEP;
416 } else {
417 vmflags = VM_NOSLEEP;
418 }
419 return vmflags;
420 }
421
422 static inline int
423 vmf_to_prf(vm_flag_t vmflags)
424 {
425 int prflags;
426
427 if ((vmflags & VM_SLEEP) != 0) {
428 prflags = PR_WAITOK;
429 } else {
430 prflags = PR_NOWAIT;
431 }
432 return prflags;
433 }
434
435 static size_t
436 qc_poolpage_size(size_t qcache_max)
437 {
438 int i;
439
440 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
441 /* nothing */
442 }
443 return ORDER2SIZE(i);
444 }
445
446 static void *
447 qc_poolpage_alloc(struct pool *pool, int prflags)
448 {
449 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
450 vmem_t *vm = qc->qc_vmem;
451
452 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
453 prf_to_vmf(prflags) | VM_INSTANTFIT);
454 }
455
456 static void
457 qc_poolpage_free(struct pool *pool, void *addr)
458 {
459 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
460 vmem_t *vm = qc->qc_vmem;
461
462 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
463 }
464
465 static void
466 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
467 {
468 qcache_t *prevqc;
469 struct pool_allocator *pa;
470 int qcache_idx_max;
471 int i;
472
473 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
474 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
475 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
476 }
477 vm->vm_qcache_max = qcache_max;
478 pa = &vm->vm_qcache_allocator;
479 memset(pa, 0, sizeof(*pa));
480 pa->pa_alloc = qc_poolpage_alloc;
481 pa->pa_free = qc_poolpage_free;
482 pa->pa_pagesz = qc_poolpage_size(qcache_max);
483
484 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
485 prevqc = NULL;
486 for (i = qcache_idx_max; i > 0; i--) {
487 qcache_t *qc = &vm->vm_qcache_store[i - 1];
488 size_t size = i << vm->vm_quantum_shift;
489
490 qc->qc_vmem = vm;
491 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
492 vm->vm_name, size);
493 qc->qc_cache = pool_cache_init(size,
494 ORDER2SIZE(vm->vm_quantum_shift), 0,
495 PR_NOALIGN | PR_NOTOUCH /* XXX */,
496 qc->qc_name, pa, ipl, NULL, NULL, NULL);
497 KASSERT(qc->qc_cache != NULL); /* XXX */
498 if (prevqc != NULL &&
499 qc->qc_cache->pc_pool.pr_itemsperpage ==
500 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
501 pool_cache_destroy(qc->qc_cache);
502 vm->vm_qcache[i - 1] = prevqc;
503 continue;
504 }
505 qc->qc_cache->pc_pool.pr_qcache = qc;
506 vm->vm_qcache[i - 1] = qc;
507 prevqc = qc;
508 }
509 }
510
511 static void
512 qc_destroy(vmem_t *vm)
513 {
514 const qcache_t *prevqc;
515 int i;
516 int qcache_idx_max;
517
518 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
519 prevqc = NULL;
520 for (i = 0; i < qcache_idx_max; i++) {
521 qcache_t *qc = vm->vm_qcache[i];
522
523 if (prevqc == qc) {
524 continue;
525 }
526 pool_cache_destroy(qc->qc_cache);
527 prevqc = qc;
528 }
529 }
530
531 static bool
532 qc_reap(vmem_t *vm)
533 {
534 const qcache_t *prevqc;
535 int i;
536 int qcache_idx_max;
537 bool didsomething = false;
538
539 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
540 prevqc = NULL;
541 for (i = 0; i < qcache_idx_max; i++) {
542 qcache_t *qc = vm->vm_qcache[i];
543
544 if (prevqc == qc) {
545 continue;
546 }
547 if (pool_cache_reclaim(qc->qc_cache) != 0) {
548 didsomething = true;
549 }
550 prevqc = qc;
551 }
552
553 return didsomething;
554 }
555 #endif /* defined(QCACHE) */
556
557 #if defined(_KERNEL)
558 static int
559 vmem_init(void)
560 {
561
562 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
563 pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
564 NULL, IPL_VM, NULL, NULL, NULL);
565 return 0;
566 }
567 #endif /* defined(_KERNEL) */
568
569 static vmem_addr_t
570 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
571 int spanbttype)
572 {
573 bt_t *btspan;
574 bt_t *btfree;
575
576 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
577 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
578 KASSERT(spanbttype == BT_TYPE_SPAN || spanbttype == BT_TYPE_SPAN_STATIC);
579
580 btspan = bt_alloc(vm, flags);
581 if (btspan == NULL) {
582 return VMEM_ADDR_NULL;
583 }
584 btfree = bt_alloc(vm, flags);
585 if (btfree == NULL) {
586 bt_free(vm, btspan);
587 return VMEM_ADDR_NULL;
588 }
589
590 btspan->bt_type = spanbttype;
591 btspan->bt_start = addr;
592 btspan->bt_size = size;
593
594 btfree->bt_type = BT_TYPE_FREE;
595 btfree->bt_start = addr;
596 btfree->bt_size = size;
597
598 VMEM_LOCK(vm);
599 bt_insseg_tail(vm, btspan);
600 bt_insseg(vm, btfree, btspan);
601 bt_insfree(vm, btfree);
602 VMEM_UNLOCK(vm);
603
604 return addr;
605 }
606
607 static void
608 vmem_destroy1(vmem_t *vm)
609 {
610
611 #if defined(QCACHE)
612 qc_destroy(vm);
613 #endif /* defined(QCACHE) */
614 if (vm->vm_hashlist != NULL) {
615 int i;
616
617 for (i = 0; i < vm->vm_hashsize; i++) {
618 bt_t *bt;
619
620 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
621 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
622 bt_free(vm, bt);
623 }
624 }
625 xfree(vm->vm_hashlist);
626 }
627 VMEM_LOCK_DESTROY(vm);
628 xfree(vm);
629 }
630
631 static int
632 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
633 {
634 vmem_addr_t addr;
635
636 if (vm->vm_allocfn == NULL) {
637 return EINVAL;
638 }
639
640 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
641 if (addr == VMEM_ADDR_NULL) {
642 return ENOMEM;
643 }
644
645 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
646 (*vm->vm_freefn)(vm->vm_source, addr, size);
647 return ENOMEM;
648 }
649
650 return 0;
651 }
652
653 static int
654 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
655 {
656 bt_t *bt;
657 int i;
658 struct vmem_hashlist *newhashlist;
659 struct vmem_hashlist *oldhashlist;
660 size_t oldhashsize;
661
662 KASSERT(newhashsize > 0);
663
664 newhashlist =
665 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
666 if (newhashlist == NULL) {
667 return ENOMEM;
668 }
669 for (i = 0; i < newhashsize; i++) {
670 LIST_INIT(&newhashlist[i]);
671 }
672
673 if (!VMEM_TRYLOCK(vm)) {
674 xfree(newhashlist);
675 return EBUSY;
676 }
677 oldhashlist = vm->vm_hashlist;
678 oldhashsize = vm->vm_hashsize;
679 vm->vm_hashlist = newhashlist;
680 vm->vm_hashsize = newhashsize;
681 if (oldhashlist == NULL) {
682 VMEM_UNLOCK(vm);
683 return 0;
684 }
685 for (i = 0; i < oldhashsize; i++) {
686 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
687 bt_rembusy(vm, bt); /* XXX */
688 bt_insbusy(vm, bt);
689 }
690 }
691 VMEM_UNLOCK(vm);
692
693 xfree(oldhashlist);
694
695 return 0;
696 }
697
698 /*
699 * vmem_fit: check if a bt can satisfy the given restrictions.
700 */
701
702 static vmem_addr_t
703 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
704 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
705 {
706 vmem_addr_t start;
707 vmem_addr_t end;
708
709 KASSERT(bt->bt_size >= size);
710
711 /*
712 * XXX assumption: vmem_addr_t and vmem_size_t are
713 * unsigned integer of the same size.
714 */
715
716 start = bt->bt_start;
717 if (start < minaddr) {
718 start = minaddr;
719 }
720 end = BT_END(bt);
721 if (end > maxaddr - 1) {
722 end = maxaddr - 1;
723 }
724 if (start >= end) {
725 return VMEM_ADDR_NULL;
726 }
727
728 start = VMEM_ALIGNUP(start - phase, align) + phase;
729 if (start < bt->bt_start) {
730 start += align;
731 }
732 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
733 KASSERT(align < nocross);
734 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
735 }
736 if (start < end && end - start >= size) {
737 KASSERT((start & (align - 1)) == phase);
738 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
739 KASSERT(minaddr <= start);
740 KASSERT(maxaddr == 0 || start + size <= maxaddr);
741 KASSERT(bt->bt_start <= start);
742 KASSERT(start + size <= BT_END(bt));
743 return start;
744 }
745 return VMEM_ADDR_NULL;
746 }
747
748 #if !defined(DEBUG)
749 #define vmem_check_sanity(vm) true
750 #else
751
752 static bool
753 vmem_check_sanity(vmem_t *vm)
754 {
755 const bt_t *bt, *bt2;
756
757 KASSERT(vm != NULL);
758
759 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
760 if (bt->bt_start >= BT_END(bt)) {
761 printf("%s: bogus VMEM '%s' span 0x%"PRIx64
762 " - 0x%"PRIx64" %s\n",
763 __func__, vm->vm_name,
764 (uint64_t)bt->bt_start, (uint64_t)BT_END(bt),
765 (bt->bt_type == BT_TYPE_BUSY) ?
766 "allocated" :
767 (bt->bt_type == BT_TYPE_FREE) ?
768 "free" :
769 (bt->bt_type == BT_TYPE_SPAN) ?
770 "span" : "static span");
771 return false;
772 }
773
774 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
775 if (bt2->bt_start >= BT_END(bt2)) {
776 printf("%s: bogus VMEM '%s' span 0x%"PRIx64
777 " - 0x%"PRIx64" %s\n",
778 __func__, vm->vm_name,
779 (uint64_t)bt2->bt_start,
780 (uint64_t)BT_END(bt2),
781 (bt2->bt_type == BT_TYPE_BUSY) ?
782 "allocated" :
783 (bt2->bt_type == BT_TYPE_FREE) ?
784 "free" :
785 (bt2->bt_type == BT_TYPE_SPAN) ?
786 "span" : "static span");
787 return false;
788 }
789 if (bt == bt2)
790 continue;
791
792 if (bt->bt_start > bt2->bt_start) {
793 if (bt->bt_start >= BT_END(bt2))
794 continue;
795
796 printf("%s: overlapping VMEM '%s' span 0x%"
797 PRIx64" - 0x%"PRIx64" %s\n",
798 __func__, vm->vm_name,
799 (uint64_t)bt->bt_start,
800 (uint64_t)BT_END(bt),
801 (bt->bt_type == BT_TYPE_BUSY) ?
802 "allocated" :
803 (bt->bt_type == BT_TYPE_FREE) ?
804 "free" :
805 (bt->bt_type == BT_TYPE_SPAN) ?
806 "span" : "static span");
807 printf("%s: overlapping VMEM '%s' span 0x%"
808 PRIx64" - 0x%"PRIx64" %s\n",
809 __func__, vm->vm_name,
810 (uint64_t)bt2->bt_start,
811 (uint64_t)BT_END(bt2),
812 (bt2->bt_type == BT_TYPE_BUSY) ?
813 "allocated" :
814 (bt2->bt_type == BT_TYPE_FREE) ?
815 "free" :
816 (bt2->bt_type == BT_TYPE_SPAN) ?
817 "span" : "static span");
818 return false;
819 }
820 if (BT_END(bt) > bt2->bt_start) {
821 printf("%s: overlapping VMEM '%s' span 0x%"
822 PRIx64" - 0x%"PRIx64" %s\n",
823 __func__, vm->vm_name,
824 (uint64_t)bt->bt_start,
825 (uint64_t)BT_END(bt),
826 (bt->bt_type == BT_TYPE_BUSY) ?
827 "allocated" :
828 (bt->bt_type == BT_TYPE_FREE) ?
829 "free" :
830 (bt->bt_type == BT_TYPE_SPAN) ?
831 "span" : "static span");
832 printf("%s: overlapping VMEM '%s' span 0x%"
833 PRIx64" - 0x%"PRIx64" %s\n",
834 __func__, vm->vm_name,
835 (uint64_t)bt2->bt_start,
836 (uint64_t)BT_END(bt2),
837 (bt2->bt_type == BT_TYPE_BUSY) ?
838 "allocated" :
839 (bt2->bt_type == BT_TYPE_FREE) ?
840 "free" :
841 (bt2->bt_type == BT_TYPE_SPAN) ?
842 "span" : "static span");
843 return false;
844 }
845 }
846 }
847
848 return true;
849 }
850 #endif /* DEBUG */
851
852 /* ---- vmem API */
853
854 /*
855 * vmem_create: create an arena.
856 *
857 * => must not be called from interrupt context.
858 */
859
860 vmem_t *
861 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
862 vmem_size_t quantum,
863 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
864 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
865 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
866 int ipl)
867 {
868 vmem_t *vm;
869 int i;
870 #if defined(_KERNEL)
871 static ONCE_DECL(control);
872 #endif /* defined(_KERNEL) */
873
874 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
875 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
876
877 #if defined(_KERNEL)
878 if (RUN_ONCE(&control, vmem_init)) {
879 return NULL;
880 }
881 #endif /* defined(_KERNEL) */
882 vm = xmalloc(sizeof(*vm), flags);
883 if (vm == NULL) {
884 return NULL;
885 }
886
887 VMEM_LOCK_INIT(vm, ipl);
888 vm->vm_name = name;
889 vm->vm_quantum_mask = quantum - 1;
890 vm->vm_quantum_shift = calc_order(quantum);
891 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
892 vm->vm_allocfn = allocfn;
893 vm->vm_freefn = freefn;
894 vm->vm_source = source;
895 vm->vm_nbusytag = 0;
896 #if defined(QCACHE)
897 qc_init(vm, qcache_max, ipl);
898 #endif /* defined(QCACHE) */
899
900 CIRCLEQ_INIT(&vm->vm_seglist);
901 for (i = 0; i < VMEM_MAXORDER; i++) {
902 LIST_INIT(&vm->vm_freelist[i]);
903 }
904 vm->vm_hashlist = NULL;
905 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
906 vmem_destroy1(vm);
907 return NULL;
908 }
909
910 if (size != 0) {
911 if (vmem_add(vm, base, size, flags) == 0) {
912 vmem_destroy1(vm);
913 return NULL;
914 }
915 }
916
917 #if defined(_KERNEL)
918 mutex_enter(&vmem_list_lock);
919 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
920 mutex_exit(&vmem_list_lock);
921 #endif /* defined(_KERNEL) */
922
923 return vm;
924 }
925
926 void
927 vmem_destroy(vmem_t *vm)
928 {
929
930 #if defined(_KERNEL)
931 mutex_enter(&vmem_list_lock);
932 LIST_REMOVE(vm, vm_alllist);
933 mutex_exit(&vmem_list_lock);
934 #endif /* defined(_KERNEL) */
935
936 vmem_destroy1(vm);
937 }
938
939 vmem_size_t
940 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
941 {
942
943 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
944 }
945
946 /*
947 * vmem_alloc:
948 *
949 * => caller must ensure appropriate spl,
950 * if the arena can be accessed from interrupt context.
951 */
952
953 vmem_addr_t
954 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
955 {
956 const vm_flag_t strat __unused = flags & VM_FITMASK;
957
958 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
959 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
960
961 KASSERT(size > 0);
962 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
963 if ((flags & VM_SLEEP) != 0) {
964 ASSERT_SLEEPABLE();
965 }
966
967 #if defined(QCACHE)
968 if (size <= vm->vm_qcache_max) {
969 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
970 qcache_t *qc = vm->vm_qcache[qidx - 1];
971
972 return (vmem_addr_t)pool_cache_get(qc->qc_cache,
973 vmf_to_prf(flags));
974 }
975 #endif /* defined(QCACHE) */
976
977 return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
978 }
979
980 vmem_addr_t
981 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
982 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
983 vm_flag_t flags)
984 {
985 struct vmem_freelist *list;
986 struct vmem_freelist *first;
987 struct vmem_freelist *end;
988 bt_t *bt;
989 bt_t *btnew;
990 bt_t *btnew2;
991 const vmem_size_t size = vmem_roundup_size(vm, size0);
992 vm_flag_t strat = flags & VM_FITMASK;
993 vmem_addr_t start;
994
995 KASSERT(size0 > 0);
996 KASSERT(size > 0);
997 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
998 if ((flags & VM_SLEEP) != 0) {
999 ASSERT_SLEEPABLE();
1000 }
1001 KASSERT((align & vm->vm_quantum_mask) == 0);
1002 KASSERT((align & (align - 1)) == 0);
1003 KASSERT((phase & vm->vm_quantum_mask) == 0);
1004 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1005 KASSERT((nocross & (nocross - 1)) == 0);
1006 KASSERT((align == 0 && phase == 0) || phase < align);
1007 KASSERT(nocross == 0 || nocross >= size);
1008 KASSERT(maxaddr == 0 || minaddr < maxaddr);
1009 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1010 KASSERT(vmem_check_sanity(vm));
1011
1012 if (align == 0) {
1013 align = vm->vm_quantum_mask + 1;
1014 }
1015 btnew = bt_alloc(vm, flags);
1016 if (btnew == NULL) {
1017 return VMEM_ADDR_NULL;
1018 }
1019 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1020 if (btnew2 == NULL) {
1021 bt_free(vm, btnew);
1022 return VMEM_ADDR_NULL;
1023 }
1024
1025 retry_strat:
1026 first = bt_freehead_toalloc(vm, size, strat);
1027 end = &vm->vm_freelist[VMEM_MAXORDER];
1028 retry:
1029 bt = NULL;
1030 VMEM_LOCK(vm);
1031 if (strat == VM_INSTANTFIT) {
1032 for (list = first; list < end; list++) {
1033 bt = LIST_FIRST(list);
1034 if (bt != NULL) {
1035 start = vmem_fit(bt, size, align, phase,
1036 nocross, minaddr, maxaddr);
1037 if (start != VMEM_ADDR_NULL) {
1038 goto gotit;
1039 }
1040 }
1041 }
1042 } else { /* VM_BESTFIT */
1043 for (list = first; list < end; list++) {
1044 LIST_FOREACH(bt, list, bt_freelist) {
1045 if (bt->bt_size >= size) {
1046 start = vmem_fit(bt, size, align, phase,
1047 nocross, minaddr, maxaddr);
1048 if (start != VMEM_ADDR_NULL) {
1049 goto gotit;
1050 }
1051 }
1052 }
1053 }
1054 }
1055 VMEM_UNLOCK(vm);
1056 #if 1
1057 if (strat == VM_INSTANTFIT) {
1058 strat = VM_BESTFIT;
1059 goto retry_strat;
1060 }
1061 #endif
1062 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
1063 nocross != 0 || minaddr != 0 || maxaddr != 0) {
1064
1065 /*
1066 * XXX should try to import a region large enough to
1067 * satisfy restrictions?
1068 */
1069
1070 goto fail;
1071 }
1072 if (vmem_import(vm, size, flags) == 0) {
1073 goto retry;
1074 }
1075 /* XXX */
1076 fail:
1077 bt_free(vm, btnew);
1078 bt_free(vm, btnew2);
1079 return VMEM_ADDR_NULL;
1080
1081 gotit:
1082 KASSERT(bt->bt_type == BT_TYPE_FREE);
1083 KASSERT(bt->bt_size >= size);
1084 bt_remfree(vm, bt);
1085 KASSERT(vmem_check_sanity(vm));
1086 if (bt->bt_start != start) {
1087 btnew2->bt_type = BT_TYPE_FREE;
1088 btnew2->bt_start = bt->bt_start;
1089 btnew2->bt_size = start - bt->bt_start;
1090 bt->bt_start = start;
1091 bt->bt_size -= btnew2->bt_size;
1092 bt_insfree(vm, btnew2);
1093 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1094 btnew2 = NULL;
1095 KASSERT(vmem_check_sanity(vm));
1096 }
1097 KASSERT(bt->bt_start == start);
1098 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1099 /* split */
1100 btnew->bt_type = BT_TYPE_BUSY;
1101 btnew->bt_start = bt->bt_start;
1102 btnew->bt_size = size;
1103 bt->bt_start = bt->bt_start + size;
1104 bt->bt_size -= size;
1105 bt_insfree(vm, bt);
1106 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1107 bt_insbusy(vm, btnew);
1108 VMEM_UNLOCK(vm);
1109 KASSERT(vmem_check_sanity(vm));
1110 } else {
1111 bt->bt_type = BT_TYPE_BUSY;
1112 bt_insbusy(vm, bt);
1113 VMEM_UNLOCK(vm);
1114 bt_free(vm, btnew);
1115 btnew = bt;
1116 KASSERT(vmem_check_sanity(vm));
1117 }
1118 if (btnew2 != NULL) {
1119 bt_free(vm, btnew2);
1120 }
1121 KASSERT(btnew->bt_size >= size);
1122 btnew->bt_type = BT_TYPE_BUSY;
1123
1124 KASSERT(vmem_check_sanity(vm));
1125 return btnew->bt_start;
1126 }
1127
1128 /*
1129 * vmem_free:
1130 *
1131 * => caller must ensure appropriate spl,
1132 * if the arena can be accessed from interrupt context.
1133 */
1134
1135 void
1136 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1137 {
1138
1139 KASSERT(addr != VMEM_ADDR_NULL);
1140 KASSERT(size > 0);
1141
1142 #if defined(QCACHE)
1143 if (size <= vm->vm_qcache_max) {
1144 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1145 qcache_t *qc = vm->vm_qcache[qidx - 1];
1146
1147 return pool_cache_put(qc->qc_cache, (void *)addr);
1148 }
1149 #endif /* defined(QCACHE) */
1150
1151 vmem_xfree(vm, addr, size);
1152 }
1153
1154 void
1155 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1156 {
1157 bt_t *bt;
1158 bt_t *t;
1159
1160 KASSERT(addr != VMEM_ADDR_NULL);
1161 KASSERT(size > 0);
1162
1163 VMEM_LOCK(vm);
1164
1165 bt = bt_lookupbusy(vm, addr);
1166 KASSERT(bt != NULL);
1167 KASSERT(bt->bt_start == addr);
1168 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1169 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1170 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1171 bt_rembusy(vm, bt);
1172 bt->bt_type = BT_TYPE_FREE;
1173
1174 /* coalesce */
1175 t = CIRCLEQ_NEXT(bt, bt_seglist);
1176 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1177 KASSERT(BT_END(bt) == t->bt_start);
1178 bt_remfree(vm, t);
1179 bt_remseg(vm, t);
1180 bt->bt_size += t->bt_size;
1181 bt_free(vm, t);
1182 }
1183 t = CIRCLEQ_PREV(bt, bt_seglist);
1184 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1185 KASSERT(BT_END(t) == bt->bt_start);
1186 bt_remfree(vm, t);
1187 bt_remseg(vm, t);
1188 bt->bt_size += t->bt_size;
1189 bt->bt_start = t->bt_start;
1190 bt_free(vm, t);
1191 }
1192
1193 t = CIRCLEQ_PREV(bt, bt_seglist);
1194 KASSERT(t != NULL);
1195 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1196 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1197 t->bt_size == bt->bt_size) {
1198 vmem_addr_t spanaddr;
1199 vmem_size_t spansize;
1200
1201 KASSERT(t->bt_start == bt->bt_start);
1202 spanaddr = bt->bt_start;
1203 spansize = bt->bt_size;
1204 bt_remseg(vm, bt);
1205 bt_free(vm, bt);
1206 bt_remseg(vm, t);
1207 bt_free(vm, t);
1208 VMEM_UNLOCK(vm);
1209 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1210 } else {
1211 bt_insfree(vm, bt);
1212 VMEM_UNLOCK(vm);
1213 }
1214 }
1215
1216 /*
1217 * vmem_add:
1218 *
1219 * => caller must ensure appropriate spl,
1220 * if the arena can be accessed from interrupt context.
1221 */
1222
1223 vmem_addr_t
1224 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1225 {
1226
1227 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1228 }
1229
1230 /*
1231 * vmem_reap: reap unused resources.
1232 *
1233 * => return true if we successfully reaped something.
1234 */
1235
1236 bool
1237 vmem_reap(vmem_t *vm)
1238 {
1239 bool didsomething = false;
1240
1241 #if defined(QCACHE)
1242 didsomething = qc_reap(vm);
1243 #endif /* defined(QCACHE) */
1244 return didsomething;
1245 }
1246
1247 /* ---- rehash */
1248
1249 #if defined(_KERNEL)
1250 static struct callout vmem_rehash_ch;
1251 static int vmem_rehash_interval;
1252 static struct workqueue *vmem_rehash_wq;
1253 static struct work vmem_rehash_wk;
1254
1255 static void
1256 vmem_rehash_all(struct work *wk, void *dummy)
1257 {
1258 vmem_t *vm;
1259
1260 KASSERT(wk == &vmem_rehash_wk);
1261 mutex_enter(&vmem_list_lock);
1262 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1263 size_t desired;
1264 size_t current;
1265
1266 if (!VMEM_TRYLOCK(vm)) {
1267 continue;
1268 }
1269 desired = vm->vm_nbusytag;
1270 current = vm->vm_hashsize;
1271 VMEM_UNLOCK(vm);
1272
1273 if (desired > VMEM_HASHSIZE_MAX) {
1274 desired = VMEM_HASHSIZE_MAX;
1275 } else if (desired < VMEM_HASHSIZE_MIN) {
1276 desired = VMEM_HASHSIZE_MIN;
1277 }
1278 if (desired > current * 2 || desired * 2 < current) {
1279 vmem_rehash(vm, desired, VM_NOSLEEP);
1280 }
1281 }
1282 mutex_exit(&vmem_list_lock);
1283
1284 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1285 }
1286
1287 static void
1288 vmem_rehash_all_kick(void *dummy)
1289 {
1290
1291 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1292 }
1293
1294 void
1295 vmem_rehash_start(void)
1296 {
1297 int error;
1298
1299 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1300 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1301 if (error) {
1302 panic("%s: workqueue_create %d\n", __func__, error);
1303 }
1304 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1305 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1306
1307 vmem_rehash_interval = hz * 10;
1308 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1309 }
1310 #endif /* defined(_KERNEL) */
1311
1312 /* ---- debug */
1313
1314 #if defined(DDB)
1315 static bt_t *
1316 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1317 {
1318 bt_t *bt;
1319
1320 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1321 if (BT_ISSPAN_P(bt)) {
1322 continue;
1323 }
1324 if (bt->bt_start <= addr && addr < BT_END(bt)) {
1325 return bt;
1326 }
1327 }
1328
1329 return NULL;
1330 }
1331
1332 void
1333 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1334 {
1335 vmem_t *vm;
1336
1337 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1338 bt_t *bt;
1339
1340 bt = vmem_whatis_lookup(vm, addr);
1341 if (bt == NULL) {
1342 continue;
1343 }
1344 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1345 (void *)addr, (void *)bt->bt_start,
1346 (size_t)(addr - bt->bt_start), vm->vm_name,
1347 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1348 }
1349 }
1350
1351 static void
1352 vmem_showall(void (*pr)(const char *, ...))
1353 {
1354 vmem_t *vm;
1355
1356 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1357 (*pr)("VMEM '%s' at %p\n", vm->vm_name, vm);
1358 if (vm->vm_source)
1359 (*pr)(" VMEM backend '%s' at %p\n",
1360 vm->vm_source->vm_name, vm->vm_source);
1361 }
1362 }
1363
1364 static void
1365 vmem_show(uintptr_t addr, void (*pr)(const char *, ...))
1366 {
1367 vmem_t *vm;
1368 bt_t *bt = NULL;
1369
1370 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1371 if ((uintptr_t)vm == addr)
1372 goto found;
1373 }
1374
1375 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1376 bt = vmem_whatis_lookup(vm, addr);
1377 if (bt != NULL)
1378 goto found;
1379 }
1380
1381 return;
1382 found:
1383
1384 (*pr)("VMEM '%s' spans\n", vm->vm_name);
1385 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1386 (*pr)(" 0x%"PRIx64" - 0x%"PRIx64" %s\n",
1387 bt->bt_start, BT_END(bt),
1388 (bt->bt_type == BT_TYPE_BUSY) ?
1389 "allocated" :
1390 (bt->bt_type == BT_TYPE_FREE) ?
1391 "free" :
1392 (bt->bt_type == BT_TYPE_SPAN) ?
1393 "span" : "static span");
1394 }
1395 }
1396
1397 void
1398 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1399 {
1400 if (modif[0] == 'a') {
1401 vmem_showall(pr);
1402 return;
1403 }
1404
1405 vmem_show(addr, pr);
1406 }
1407 #endif /* defined(DDB) */
1408
1409 #if defined(VMEM_DEBUG)
1410
1411 #if !defined(_KERNEL)
1412 #include <stdio.h>
1413 #endif /* !defined(_KERNEL) */
1414
1415 void bt_dump(const bt_t *);
1416
1417 void
1418 bt_dump(const bt_t *bt)
1419 {
1420
1421 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
1422 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1423 bt->bt_type);
1424 }
1425
1426 void
1427 vmem_dump(const vmem_t *vm)
1428 {
1429 const bt_t *bt;
1430 int i;
1431
1432 printf("vmem %p '%s'\n", vm, vm->vm_name);
1433 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1434 bt_dump(bt);
1435 }
1436
1437 for (i = 0; i < VMEM_MAXORDER; i++) {
1438 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1439
1440 if (LIST_EMPTY(fl)) {
1441 continue;
1442 }
1443
1444 printf("freelist[%d]\n", i);
1445 LIST_FOREACH(bt, fl, bt_freelist) {
1446 bt_dump(bt);
1447 if (bt->bt_size) {
1448 }
1449 }
1450 }
1451 }
1452
1453 #if !defined(_KERNEL)
1454
1455 int
1456 main()
1457 {
1458 vmem_t *vm;
1459 vmem_addr_t p;
1460 struct reg {
1461 vmem_addr_t p;
1462 vmem_size_t sz;
1463 bool x;
1464 } *reg = NULL;
1465 int nreg = 0;
1466 int nalloc = 0;
1467 int nfree = 0;
1468 vmem_size_t total = 0;
1469 #if 1
1470 vm_flag_t strat = VM_INSTANTFIT;
1471 #else
1472 vm_flag_t strat = VM_BESTFIT;
1473 #endif
1474
1475 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1476 NULL, NULL, NULL, 0, VM_SLEEP);
1477 if (vm == NULL) {
1478 printf("vmem_create\n");
1479 exit(EXIT_FAILURE);
1480 }
1481 vmem_dump(vm);
1482
1483 p = vmem_add(vm, 100, 200, VM_SLEEP);
1484 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1485 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1486 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1487 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1488 vmem_dump(vm);
1489 for (;;) {
1490 struct reg *r;
1491 int t = rand() % 100;
1492
1493 if (t > 45) {
1494 /* alloc */
1495 vmem_size_t sz = rand() % 500 + 1;
1496 bool x;
1497 vmem_size_t align, phase, nocross;
1498 vmem_addr_t minaddr, maxaddr;
1499
1500 if (t > 70) {
1501 x = true;
1502 /* XXX */
1503 align = 1 << (rand() % 15);
1504 phase = rand() % 65536;
1505 nocross = 1 << (rand() % 15);
1506 if (align <= phase) {
1507 phase = 0;
1508 }
1509 if (VMEM_CROSS_P(phase, phase + sz - 1,
1510 nocross)) {
1511 nocross = 0;
1512 }
1513 minaddr = rand() % 50000;
1514 maxaddr = rand() % 70000;
1515 if (minaddr > maxaddr) {
1516 minaddr = 0;
1517 maxaddr = 0;
1518 }
1519 printf("=== xalloc %" PRIu64
1520 " align=%" PRIu64 ", phase=%" PRIu64
1521 ", nocross=%" PRIu64 ", min=%" PRIu64
1522 ", max=%" PRIu64 "\n",
1523 (uint64_t)sz,
1524 (uint64_t)align,
1525 (uint64_t)phase,
1526 (uint64_t)nocross,
1527 (uint64_t)minaddr,
1528 (uint64_t)maxaddr);
1529 p = vmem_xalloc(vm, sz, align, phase, nocross,
1530 minaddr, maxaddr, strat|VM_SLEEP);
1531 } else {
1532 x = false;
1533 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1534 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1535 }
1536 printf("-> %" PRIu64 "\n", (uint64_t)p);
1537 vmem_dump(vm);
1538 if (p == VMEM_ADDR_NULL) {
1539 if (x) {
1540 continue;
1541 }
1542 break;
1543 }
1544 nreg++;
1545 reg = realloc(reg, sizeof(*reg) * nreg);
1546 r = ®[nreg - 1];
1547 r->p = p;
1548 r->sz = sz;
1549 r->x = x;
1550 total += sz;
1551 nalloc++;
1552 } else if (nreg != 0) {
1553 /* free */
1554 r = ®[rand() % nreg];
1555 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1556 (uint64_t)r->p, (uint64_t)r->sz);
1557 if (r->x) {
1558 vmem_xfree(vm, r->p, r->sz);
1559 } else {
1560 vmem_free(vm, r->p, r->sz);
1561 }
1562 total -= r->sz;
1563 vmem_dump(vm);
1564 *r = reg[nreg - 1];
1565 nreg--;
1566 nfree++;
1567 }
1568 printf("total=%" PRIu64 "\n", (uint64_t)total);
1569 }
1570 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1571 (uint64_t)total, nalloc, nfree);
1572 exit(EXIT_SUCCESS);
1573 }
1574 #endif /* !defined(_KERNEL) */
1575 #endif /* defined(VMEM_DEBUG) */
1576