subr_vmem.c revision 1.59 1 /* $NetBSD: subr_vmem.c,v 1.59 2011/07/26 13:09:11 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.59 2011/07/26 13:09:11 yamt Exp $");
42
43 #if defined(_KERNEL)
44 #include "opt_ddb.h"
45 #define QCACHE
46 #endif /* defined(_KERNEL) */
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/queue.h>
51
52 #if defined(_KERNEL)
53 #include <sys/systm.h>
54 #include <sys/kernel.h> /* hz */
55 #include <sys/callout.h>
56 #include <sys/malloc.h>
57 #include <sys/once.h>
58 #include <sys/pool.h>
59 #include <sys/vmem.h>
60 #include <sys/workqueue.h>
61 #else /* defined(_KERNEL) */
62 #include "../sys/vmem.h"
63 #endif /* defined(_KERNEL) */
64
65 #if defined(_KERNEL)
66 #define LOCK_DECL(name) \
67 kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
68 #else /* defined(_KERNEL) */
69 #include <errno.h>
70 #include <assert.h>
71 #include <stdlib.h>
72
73 #define UNITTEST
74 #define KASSERT(a) assert(a)
75 #define LOCK_DECL(name) /* nothing */
76 #define mutex_init(a, b, c) /* nothing */
77 #define mutex_destroy(a) /* nothing */
78 #define mutex_enter(a) /* nothing */
79 #define mutex_tryenter(a) true
80 #define mutex_exit(a) /* nothing */
81 #define mutex_owned(a) /* nothing */
82 #define ASSERT_SLEEPABLE() /* nothing */
83 #define panic(...) printf(__VA_ARGS__); abort()
84 #endif /* defined(_KERNEL) */
85
86 struct vmem;
87 struct vmem_btag;
88
89 #if defined(VMEM_SANITY)
90 static void vmem_check(vmem_t *);
91 #else /* defined(VMEM_SANITY) */
92 #define vmem_check(vm) /* nothing */
93 #endif /* defined(VMEM_SANITY) */
94
95 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
96
97 #define VMEM_HASHSIZE_MIN 1 /* XXX */
98 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
99 #define VMEM_HASHSIZE_INIT 128
100
101 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
102
103 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
104 LIST_HEAD(vmem_freelist, vmem_btag);
105 LIST_HEAD(vmem_hashlist, vmem_btag);
106
107 #if defined(QCACHE)
108 #define VMEM_QCACHE_IDX_MAX 32
109
110 #define QC_NAME_MAX 16
111
112 struct qcache {
113 pool_cache_t qc_cache;
114 vmem_t *qc_vmem;
115 char qc_name[QC_NAME_MAX];
116 };
117 typedef struct qcache qcache_t;
118 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
119 #endif /* defined(QCACHE) */
120
121 /* vmem arena */
122 struct vmem {
123 LOCK_DECL(vm_lock);
124 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
125 vm_flag_t);
126 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
127 vmem_t *vm_source;
128 struct vmem_seglist vm_seglist;
129 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
130 size_t vm_hashsize;
131 size_t vm_nbusytag;
132 struct vmem_hashlist *vm_hashlist;
133 size_t vm_quantum_mask;
134 int vm_quantum_shift;
135 const char *vm_name;
136 LIST_ENTRY(vmem) vm_alllist;
137
138 #if defined(QCACHE)
139 /* quantum cache */
140 size_t vm_qcache_max;
141 struct pool_allocator vm_qcache_allocator;
142 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
143 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
144 #endif /* defined(QCACHE) */
145 };
146
147 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
148 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
149 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
150 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
151 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
152 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
153
154 /* boundary tag */
155 struct vmem_btag {
156 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
157 union {
158 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
159 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
160 } bt_u;
161 #define bt_hashlist bt_u.u_hashlist
162 #define bt_freelist bt_u.u_freelist
163 vmem_addr_t bt_start;
164 vmem_size_t bt_size;
165 int bt_type;
166 };
167
168 #define BT_TYPE_SPAN 1
169 #define BT_TYPE_SPAN_STATIC 2
170 #define BT_TYPE_FREE 3
171 #define BT_TYPE_BUSY 4
172 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
173
174 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
175
176 typedef struct vmem_btag bt_t;
177
178 /* ---- misc */
179
180 #define VMEM_ALIGNUP(addr, align) \
181 (-(-(addr) & -(align)))
182 #define VMEM_CROSS_P(addr1, addr2, boundary) \
183 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
184
185 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
186
187 static int
188 calc_order(vmem_size_t size)
189 {
190 vmem_size_t target;
191 int i;
192
193 KASSERT(size != 0);
194
195 i = 0;
196 target = size >> 1;
197 while (ORDER2SIZE(i) <= target) {
198 i++;
199 }
200
201 KASSERT(ORDER2SIZE(i) <= size);
202 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
203
204 return i;
205 }
206
207 #if defined(_KERNEL)
208 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
209 #endif /* defined(_KERNEL) */
210
211 static void *
212 xmalloc(size_t sz, vm_flag_t flags)
213 {
214
215 #if defined(_KERNEL)
216 return malloc(sz, M_VMEM,
217 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
218 #else /* defined(_KERNEL) */
219 return malloc(sz);
220 #endif /* defined(_KERNEL) */
221 }
222
223 static void
224 xfree(void *p)
225 {
226
227 #if defined(_KERNEL)
228 return free(p, M_VMEM);
229 #else /* defined(_KERNEL) */
230 return free(p);
231 #endif /* defined(_KERNEL) */
232 }
233
234 /* ---- boundary tag */
235
236 #if defined(_KERNEL)
237 static struct pool_cache bt_cache;
238 #endif /* defined(_KERNEL) */
239
240 static bt_t *
241 bt_alloc(vmem_t *vm, vm_flag_t flags)
242 {
243 bt_t *bt;
244
245 #if defined(_KERNEL)
246 bt = pool_cache_get(&bt_cache,
247 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
248 #else /* defined(_KERNEL) */
249 bt = malloc(sizeof *bt);
250 #endif /* defined(_KERNEL) */
251
252 return bt;
253 }
254
255 static void
256 bt_free(vmem_t *vm, bt_t *bt)
257 {
258
259 #if defined(_KERNEL)
260 pool_cache_put(&bt_cache, bt);
261 #else /* defined(_KERNEL) */
262 free(bt);
263 #endif /* defined(_KERNEL) */
264 }
265
266 /*
267 * freelist[0] ... [1, 1]
268 * freelist[1] ... [2, 3]
269 * freelist[2] ... [4, 7]
270 * freelist[3] ... [8, 15]
271 * :
272 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
273 * :
274 */
275
276 static struct vmem_freelist *
277 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
278 {
279 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
280 int idx;
281
282 KASSERT((size & vm->vm_quantum_mask) == 0);
283 KASSERT(size != 0);
284
285 idx = calc_order(qsize);
286 KASSERT(idx >= 0);
287 KASSERT(idx < VMEM_MAXORDER);
288
289 return &vm->vm_freelist[idx];
290 }
291
292 /*
293 * bt_freehead_toalloc: return the freelist for the given size and allocation
294 * strategy.
295 *
296 * for VM_INSTANTFIT, return the list in which any blocks are large enough
297 * for the requested size. otherwise, return the list which can have blocks
298 * large enough for the requested size.
299 */
300
301 static struct vmem_freelist *
302 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
303 {
304 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
305 int idx;
306
307 KASSERT((size & vm->vm_quantum_mask) == 0);
308 KASSERT(size != 0);
309
310 idx = calc_order(qsize);
311 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
312 idx++;
313 /* check too large request? */
314 }
315 KASSERT(idx >= 0);
316 KASSERT(idx < VMEM_MAXORDER);
317
318 return &vm->vm_freelist[idx];
319 }
320
321 /* ---- boundary tag hash */
322
323 static struct vmem_hashlist *
324 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
325 {
326 struct vmem_hashlist *list;
327 unsigned int hash;
328
329 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
330 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
331
332 return list;
333 }
334
335 static bt_t *
336 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
337 {
338 struct vmem_hashlist *list;
339 bt_t *bt;
340
341 list = bt_hashhead(vm, addr);
342 LIST_FOREACH(bt, list, bt_hashlist) {
343 if (bt->bt_start == addr) {
344 break;
345 }
346 }
347
348 return bt;
349 }
350
351 static void
352 bt_rembusy(vmem_t *vm, bt_t *bt)
353 {
354
355 KASSERT(vm->vm_nbusytag > 0);
356 vm->vm_nbusytag--;
357 LIST_REMOVE(bt, bt_hashlist);
358 }
359
360 static void
361 bt_insbusy(vmem_t *vm, bt_t *bt)
362 {
363 struct vmem_hashlist *list;
364
365 KASSERT(bt->bt_type == BT_TYPE_BUSY);
366
367 list = bt_hashhead(vm, bt->bt_start);
368 LIST_INSERT_HEAD(list, bt, bt_hashlist);
369 vm->vm_nbusytag++;
370 }
371
372 /* ---- boundary tag list */
373
374 static void
375 bt_remseg(vmem_t *vm, bt_t *bt)
376 {
377
378 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
379 }
380
381 static void
382 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
383 {
384
385 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
386 }
387
388 static void
389 bt_insseg_tail(vmem_t *vm, bt_t *bt)
390 {
391
392 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
393 }
394
395 static void
396 bt_remfree(vmem_t *vm, bt_t *bt)
397 {
398
399 KASSERT(bt->bt_type == BT_TYPE_FREE);
400
401 LIST_REMOVE(bt, bt_freelist);
402 }
403
404 static void
405 bt_insfree(vmem_t *vm, bt_t *bt)
406 {
407 struct vmem_freelist *list;
408
409 list = bt_freehead_tofree(vm, bt->bt_size);
410 LIST_INSERT_HEAD(list, bt, bt_freelist);
411 }
412
413 /* ---- vmem internal functions */
414
415 #if defined(_KERNEL)
416 static kmutex_t vmem_list_lock;
417 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
418 #endif /* defined(_KERNEL) */
419
420 #if defined(QCACHE)
421 static inline vm_flag_t
422 prf_to_vmf(int prflags)
423 {
424 vm_flag_t vmflags;
425
426 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
427 if ((prflags & PR_WAITOK) != 0) {
428 vmflags = VM_SLEEP;
429 } else {
430 vmflags = VM_NOSLEEP;
431 }
432 return vmflags;
433 }
434
435 static inline int
436 vmf_to_prf(vm_flag_t vmflags)
437 {
438 int prflags;
439
440 if ((vmflags & VM_SLEEP) != 0) {
441 prflags = PR_WAITOK;
442 } else {
443 prflags = PR_NOWAIT;
444 }
445 return prflags;
446 }
447
448 static size_t
449 qc_poolpage_size(size_t qcache_max)
450 {
451 int i;
452
453 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
454 /* nothing */
455 }
456 return ORDER2SIZE(i);
457 }
458
459 static void *
460 qc_poolpage_alloc(struct pool *pool, int prflags)
461 {
462 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
463 vmem_t *vm = qc->qc_vmem;
464
465 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
466 prf_to_vmf(prflags) | VM_INSTANTFIT);
467 }
468
469 static void
470 qc_poolpage_free(struct pool *pool, void *addr)
471 {
472 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
473 vmem_t *vm = qc->qc_vmem;
474
475 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
476 }
477
478 static void
479 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
480 {
481 qcache_t *prevqc;
482 struct pool_allocator *pa;
483 int qcache_idx_max;
484 int i;
485
486 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
487 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
488 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
489 }
490 vm->vm_qcache_max = qcache_max;
491 pa = &vm->vm_qcache_allocator;
492 memset(pa, 0, sizeof(*pa));
493 pa->pa_alloc = qc_poolpage_alloc;
494 pa->pa_free = qc_poolpage_free;
495 pa->pa_pagesz = qc_poolpage_size(qcache_max);
496
497 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
498 prevqc = NULL;
499 for (i = qcache_idx_max; i > 0; i--) {
500 qcache_t *qc = &vm->vm_qcache_store[i - 1];
501 size_t size = i << vm->vm_quantum_shift;
502
503 qc->qc_vmem = vm;
504 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
505 vm->vm_name, size);
506 qc->qc_cache = pool_cache_init(size,
507 ORDER2SIZE(vm->vm_quantum_shift), 0,
508 PR_NOALIGN | PR_NOTOUCH /* XXX */,
509 qc->qc_name, pa, ipl, NULL, NULL, NULL);
510 KASSERT(qc->qc_cache != NULL); /* XXX */
511 if (prevqc != NULL &&
512 qc->qc_cache->pc_pool.pr_itemsperpage ==
513 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
514 pool_cache_destroy(qc->qc_cache);
515 vm->vm_qcache[i - 1] = prevqc;
516 continue;
517 }
518 qc->qc_cache->pc_pool.pr_qcache = qc;
519 vm->vm_qcache[i - 1] = qc;
520 prevqc = qc;
521 }
522 }
523
524 static void
525 qc_destroy(vmem_t *vm)
526 {
527 const qcache_t *prevqc;
528 int i;
529 int qcache_idx_max;
530
531 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
532 prevqc = NULL;
533 for (i = 0; i < qcache_idx_max; i++) {
534 qcache_t *qc = vm->vm_qcache[i];
535
536 if (prevqc == qc) {
537 continue;
538 }
539 pool_cache_destroy(qc->qc_cache);
540 prevqc = qc;
541 }
542 }
543
544 static bool
545 qc_reap(vmem_t *vm)
546 {
547 const qcache_t *prevqc;
548 int i;
549 int qcache_idx_max;
550 bool didsomething = false;
551
552 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
553 prevqc = NULL;
554 for (i = 0; i < qcache_idx_max; i++) {
555 qcache_t *qc = vm->vm_qcache[i];
556
557 if (prevqc == qc) {
558 continue;
559 }
560 if (pool_cache_reclaim(qc->qc_cache) != 0) {
561 didsomething = true;
562 }
563 prevqc = qc;
564 }
565
566 return didsomething;
567 }
568 #endif /* defined(QCACHE) */
569
570 #if defined(_KERNEL)
571 static int
572 vmem_init(void)
573 {
574
575 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
576 pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
577 NULL, IPL_VM, NULL, NULL, NULL);
578 return 0;
579 }
580 #endif /* defined(_KERNEL) */
581
582 static vmem_addr_t
583 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
584 int spanbttype)
585 {
586 bt_t *btspan;
587 bt_t *btfree;
588
589 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
590 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
591 KASSERT(spanbttype == BT_TYPE_SPAN ||
592 spanbttype == BT_TYPE_SPAN_STATIC);
593
594 btspan = bt_alloc(vm, flags);
595 if (btspan == NULL) {
596 return VMEM_ADDR_NULL;
597 }
598 btfree = bt_alloc(vm, flags);
599 if (btfree == NULL) {
600 bt_free(vm, btspan);
601 return VMEM_ADDR_NULL;
602 }
603
604 btspan->bt_type = spanbttype;
605 btspan->bt_start = addr;
606 btspan->bt_size = size;
607
608 btfree->bt_type = BT_TYPE_FREE;
609 btfree->bt_start = addr;
610 btfree->bt_size = size;
611
612 VMEM_LOCK(vm);
613 bt_insseg_tail(vm, btspan);
614 bt_insseg(vm, btfree, btspan);
615 bt_insfree(vm, btfree);
616 VMEM_UNLOCK(vm);
617
618 return addr;
619 }
620
621 static void
622 vmem_destroy1(vmem_t *vm)
623 {
624
625 #if defined(QCACHE)
626 qc_destroy(vm);
627 #endif /* defined(QCACHE) */
628 if (vm->vm_hashlist != NULL) {
629 int i;
630
631 for (i = 0; i < vm->vm_hashsize; i++) {
632 bt_t *bt;
633
634 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
635 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
636 bt_free(vm, bt);
637 }
638 }
639 xfree(vm->vm_hashlist);
640 }
641 VMEM_LOCK_DESTROY(vm);
642 xfree(vm);
643 }
644
645 static int
646 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
647 {
648 vmem_addr_t addr;
649
650 if (vm->vm_allocfn == NULL) {
651 return EINVAL;
652 }
653
654 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
655 if (addr == VMEM_ADDR_NULL) {
656 return ENOMEM;
657 }
658
659 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
660 (*vm->vm_freefn)(vm->vm_source, addr, size);
661 return ENOMEM;
662 }
663
664 return 0;
665 }
666
667 static int
668 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
669 {
670 bt_t *bt;
671 int i;
672 struct vmem_hashlist *newhashlist;
673 struct vmem_hashlist *oldhashlist;
674 size_t oldhashsize;
675
676 KASSERT(newhashsize > 0);
677
678 newhashlist =
679 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
680 if (newhashlist == NULL) {
681 return ENOMEM;
682 }
683 for (i = 0; i < newhashsize; i++) {
684 LIST_INIT(&newhashlist[i]);
685 }
686
687 if (!VMEM_TRYLOCK(vm)) {
688 xfree(newhashlist);
689 return EBUSY;
690 }
691 oldhashlist = vm->vm_hashlist;
692 oldhashsize = vm->vm_hashsize;
693 vm->vm_hashlist = newhashlist;
694 vm->vm_hashsize = newhashsize;
695 if (oldhashlist == NULL) {
696 VMEM_UNLOCK(vm);
697 return 0;
698 }
699 for (i = 0; i < oldhashsize; i++) {
700 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
701 bt_rembusy(vm, bt); /* XXX */
702 bt_insbusy(vm, bt);
703 }
704 }
705 VMEM_UNLOCK(vm);
706
707 xfree(oldhashlist);
708
709 return 0;
710 }
711
712 /*
713 * vmem_fit: check if a bt can satisfy the given restrictions.
714 *
715 * it's a caller's responsibility to ensure the region is big enough
716 * before calling us.
717 */
718
719 static vmem_addr_t
720 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
721 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
722 {
723 vmem_addr_t start;
724 vmem_addr_t end;
725
726 KASSERT(bt->bt_size >= size); /* caller's responsibility */
727
728 /*
729 * XXX assumption: vmem_addr_t and vmem_size_t are
730 * unsigned integer of the same size.
731 */
732
733 start = bt->bt_start;
734 if (start < minaddr) {
735 start = minaddr;
736 }
737 end = BT_END(bt);
738 if (end > maxaddr - 1) {
739 end = maxaddr - 1;
740 }
741 if (start >= end) {
742 return VMEM_ADDR_NULL;
743 }
744
745 start = VMEM_ALIGNUP(start - phase, align) + phase;
746 if (start < bt->bt_start) {
747 start += align;
748 }
749 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
750 KASSERT(align < nocross);
751 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
752 }
753 if (start < end && end - start >= size) {
754 KASSERT((start & (align - 1)) == phase);
755 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
756 KASSERT(minaddr <= start);
757 KASSERT(maxaddr == 0 || start + size <= maxaddr);
758 KASSERT(bt->bt_start <= start);
759 KASSERT(start + size <= BT_END(bt));
760 return start;
761 }
762 return VMEM_ADDR_NULL;
763 }
764
765 /* ---- vmem API */
766
767 /*
768 * vmem_create: create an arena.
769 *
770 * => must not be called from interrupt context.
771 */
772
773 vmem_t *
774 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
775 vmem_size_t quantum,
776 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
777 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
778 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
779 int ipl)
780 {
781 vmem_t *vm;
782 int i;
783 #if defined(_KERNEL)
784 static ONCE_DECL(control);
785 #endif /* defined(_KERNEL) */
786
787 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
788 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
789
790 #if defined(_KERNEL)
791 if (RUN_ONCE(&control, vmem_init)) {
792 return NULL;
793 }
794 #endif /* defined(_KERNEL) */
795 vm = xmalloc(sizeof(*vm), flags);
796 if (vm == NULL) {
797 return NULL;
798 }
799
800 VMEM_LOCK_INIT(vm, ipl);
801 vm->vm_name = name;
802 vm->vm_quantum_mask = quantum - 1;
803 vm->vm_quantum_shift = calc_order(quantum);
804 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
805 vm->vm_allocfn = allocfn;
806 vm->vm_freefn = freefn;
807 vm->vm_source = source;
808 vm->vm_nbusytag = 0;
809 #if defined(QCACHE)
810 qc_init(vm, qcache_max, ipl);
811 #endif /* defined(QCACHE) */
812
813 CIRCLEQ_INIT(&vm->vm_seglist);
814 for (i = 0; i < VMEM_MAXORDER; i++) {
815 LIST_INIT(&vm->vm_freelist[i]);
816 }
817 vm->vm_hashlist = NULL;
818 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
819 vmem_destroy1(vm);
820 return NULL;
821 }
822
823 if (size != 0) {
824 if (vmem_add(vm, base, size, flags) == 0) {
825 vmem_destroy1(vm);
826 return NULL;
827 }
828 }
829
830 #if defined(_KERNEL)
831 mutex_enter(&vmem_list_lock);
832 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
833 mutex_exit(&vmem_list_lock);
834 #endif /* defined(_KERNEL) */
835
836 return vm;
837 }
838
839 void
840 vmem_destroy(vmem_t *vm)
841 {
842
843 #if defined(_KERNEL)
844 mutex_enter(&vmem_list_lock);
845 LIST_REMOVE(vm, vm_alllist);
846 mutex_exit(&vmem_list_lock);
847 #endif /* defined(_KERNEL) */
848
849 vmem_destroy1(vm);
850 }
851
852 vmem_size_t
853 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
854 {
855
856 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
857 }
858
859 /*
860 * vmem_alloc:
861 *
862 * => caller must ensure appropriate spl,
863 * if the arena can be accessed from interrupt context.
864 */
865
866 vmem_addr_t
867 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
868 {
869 const vm_flag_t strat __unused = flags & VM_FITMASK;
870
871 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
872 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
873
874 KASSERT(size > 0);
875 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
876 if ((flags & VM_SLEEP) != 0) {
877 ASSERT_SLEEPABLE();
878 }
879
880 #if defined(QCACHE)
881 if (size <= vm->vm_qcache_max) {
882 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
883 qcache_t *qc = vm->vm_qcache[qidx - 1];
884
885 return (vmem_addr_t)pool_cache_get(qc->qc_cache,
886 vmf_to_prf(flags));
887 }
888 #endif /* defined(QCACHE) */
889
890 return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
891 }
892
893 vmem_addr_t
894 vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
895 vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
896 vm_flag_t flags)
897 {
898 struct vmem_freelist *list;
899 struct vmem_freelist *first;
900 struct vmem_freelist *end;
901 bt_t *bt;
902 bt_t *btnew;
903 bt_t *btnew2;
904 const vmem_size_t size = vmem_roundup_size(vm, size0);
905 vm_flag_t strat = flags & VM_FITMASK;
906 vmem_addr_t start;
907
908 KASSERT(size0 > 0);
909 KASSERT(size > 0);
910 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
911 if ((flags & VM_SLEEP) != 0) {
912 ASSERT_SLEEPABLE();
913 }
914 KASSERT((align & vm->vm_quantum_mask) == 0);
915 KASSERT((align & (align - 1)) == 0);
916 KASSERT((phase & vm->vm_quantum_mask) == 0);
917 KASSERT((nocross & vm->vm_quantum_mask) == 0);
918 KASSERT((nocross & (nocross - 1)) == 0);
919 KASSERT((align == 0 && phase == 0) || phase < align);
920 KASSERT(nocross == 0 || nocross >= size);
921 KASSERT(maxaddr == 0 || minaddr < maxaddr);
922 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
923
924 if (align == 0) {
925 align = vm->vm_quantum_mask + 1;
926 }
927
928 /*
929 * allocate boundary tags before acquiring the vmem lock.
930 */
931 btnew = bt_alloc(vm, flags);
932 if (btnew == NULL) {
933 return VMEM_ADDR_NULL;
934 }
935 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
936 if (btnew2 == NULL) {
937 bt_free(vm, btnew);
938 return VMEM_ADDR_NULL;
939 }
940
941 /*
942 * choose a free block from which we allocate.
943 */
944 retry_strat:
945 first = bt_freehead_toalloc(vm, size, strat);
946 end = &vm->vm_freelist[VMEM_MAXORDER];
947 retry:
948 bt = NULL;
949 VMEM_LOCK(vm);
950 vmem_check(vm);
951 if (strat == VM_INSTANTFIT) {
952 /*
953 * just choose the first block which satisfies our restrictions.
954 *
955 * note that we don't need to check the size of the blocks
956 * because any blocks found on these list should be larger than
957 * the given size.
958 */
959 for (list = first; list < end; list++) {
960 bt = LIST_FIRST(list);
961 if (bt != NULL) {
962 start = vmem_fit(bt, size, align, phase,
963 nocross, minaddr, maxaddr);
964 if (start != VMEM_ADDR_NULL) {
965 goto gotit;
966 }
967 /*
968 * don't bother to follow the bt_freelist link
969 * here. the list can be very long and we are
970 * told to run fast. blocks from the later free
971 * lists are larger and have better chances to
972 * satisfy our restrictions.
973 */
974 }
975 }
976 } else { /* VM_BESTFIT */
977 /*
978 * we assume that, for space efficiency, it's better to
979 * allocate from a smaller block. thus we will start searching
980 * from the lower-order list than VM_INSTANTFIT.
981 * however, don't bother to find the smallest block in a free
982 * list because the list can be very long. we can revisit it
983 * if/when it turns out to be a problem.
984 *
985 * note that the 'first' list can contain blocks smaller than
986 * the requested size. thus we need to check bt_size.
987 */
988 for (list = first; list < end; list++) {
989 LIST_FOREACH(bt, list, bt_freelist) {
990 if (bt->bt_size >= size) {
991 start = vmem_fit(bt, size, align, phase,
992 nocross, minaddr, maxaddr);
993 if (start != VMEM_ADDR_NULL) {
994 goto gotit;
995 }
996 }
997 }
998 }
999 }
1000 VMEM_UNLOCK(vm);
1001 #if 1
1002 if (strat == VM_INSTANTFIT) {
1003 strat = VM_BESTFIT;
1004 goto retry_strat;
1005 }
1006 #endif
1007 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
1008 nocross != 0 || minaddr != 0 || maxaddr != 0) {
1009
1010 /*
1011 * XXX should try to import a region large enough to
1012 * satisfy restrictions?
1013 */
1014
1015 goto fail;
1016 }
1017 if (vmem_import(vm, size, flags) == 0) {
1018 goto retry;
1019 }
1020 /* XXX */
1021 fail:
1022 bt_free(vm, btnew);
1023 bt_free(vm, btnew2);
1024 return VMEM_ADDR_NULL;
1025
1026 gotit:
1027 KASSERT(bt->bt_type == BT_TYPE_FREE);
1028 KASSERT(bt->bt_size >= size);
1029 bt_remfree(vm, bt);
1030 vmem_check(vm);
1031 if (bt->bt_start != start) {
1032 btnew2->bt_type = BT_TYPE_FREE;
1033 btnew2->bt_start = bt->bt_start;
1034 btnew2->bt_size = start - bt->bt_start;
1035 bt->bt_start = start;
1036 bt->bt_size -= btnew2->bt_size;
1037 bt_insfree(vm, btnew2);
1038 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1039 btnew2 = NULL;
1040 vmem_check(vm);
1041 }
1042 KASSERT(bt->bt_start == start);
1043 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1044 /* split */
1045 btnew->bt_type = BT_TYPE_BUSY;
1046 btnew->bt_start = bt->bt_start;
1047 btnew->bt_size = size;
1048 bt->bt_start = bt->bt_start + size;
1049 bt->bt_size -= size;
1050 bt_insfree(vm, bt);
1051 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1052 bt_insbusy(vm, btnew);
1053 vmem_check(vm);
1054 VMEM_UNLOCK(vm);
1055 } else {
1056 bt->bt_type = BT_TYPE_BUSY;
1057 bt_insbusy(vm, bt);
1058 vmem_check(vm);
1059 VMEM_UNLOCK(vm);
1060 bt_free(vm, btnew);
1061 btnew = bt;
1062 }
1063 if (btnew2 != NULL) {
1064 bt_free(vm, btnew2);
1065 }
1066 KASSERT(btnew->bt_size >= size);
1067 btnew->bt_type = BT_TYPE_BUSY;
1068
1069 return btnew->bt_start;
1070 }
1071
1072 /*
1073 * vmem_free:
1074 *
1075 * => caller must ensure appropriate spl,
1076 * if the arena can be accessed from interrupt context.
1077 */
1078
1079 void
1080 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1081 {
1082
1083 KASSERT(addr != VMEM_ADDR_NULL);
1084 KASSERT(size > 0);
1085
1086 #if defined(QCACHE)
1087 if (size <= vm->vm_qcache_max) {
1088 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1089 qcache_t *qc = vm->vm_qcache[qidx - 1];
1090
1091 return pool_cache_put(qc->qc_cache, (void *)addr);
1092 }
1093 #endif /* defined(QCACHE) */
1094
1095 vmem_xfree(vm, addr, size);
1096 }
1097
1098 void
1099 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1100 {
1101 bt_t *bt;
1102 bt_t *t;
1103
1104 KASSERT(addr != VMEM_ADDR_NULL);
1105 KASSERT(size > 0);
1106
1107 VMEM_LOCK(vm);
1108
1109 bt = bt_lookupbusy(vm, addr);
1110 KASSERT(bt != NULL);
1111 KASSERT(bt->bt_start == addr);
1112 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1113 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1114 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1115 bt_rembusy(vm, bt);
1116 bt->bt_type = BT_TYPE_FREE;
1117
1118 /* coalesce */
1119 t = CIRCLEQ_NEXT(bt, bt_seglist);
1120 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1121 KASSERT(BT_END(bt) == t->bt_start);
1122 bt_remfree(vm, t);
1123 bt_remseg(vm, t);
1124 bt->bt_size += t->bt_size;
1125 bt_free(vm, t);
1126 }
1127 t = CIRCLEQ_PREV(bt, bt_seglist);
1128 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1129 KASSERT(BT_END(t) == bt->bt_start);
1130 bt_remfree(vm, t);
1131 bt_remseg(vm, t);
1132 bt->bt_size += t->bt_size;
1133 bt->bt_start = t->bt_start;
1134 bt_free(vm, t);
1135 }
1136
1137 t = CIRCLEQ_PREV(bt, bt_seglist);
1138 KASSERT(t != NULL);
1139 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1140 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1141 t->bt_size == bt->bt_size) {
1142 vmem_addr_t spanaddr;
1143 vmem_size_t spansize;
1144
1145 KASSERT(t->bt_start == bt->bt_start);
1146 spanaddr = bt->bt_start;
1147 spansize = bt->bt_size;
1148 bt_remseg(vm, bt);
1149 bt_free(vm, bt);
1150 bt_remseg(vm, t);
1151 bt_free(vm, t);
1152 VMEM_UNLOCK(vm);
1153 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1154 } else {
1155 bt_insfree(vm, bt);
1156 VMEM_UNLOCK(vm);
1157 }
1158 }
1159
1160 /*
1161 * vmem_add:
1162 *
1163 * => caller must ensure appropriate spl,
1164 * if the arena can be accessed from interrupt context.
1165 */
1166
1167 vmem_addr_t
1168 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1169 {
1170
1171 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1172 }
1173
1174 /*
1175 * vmem_reap: reap unused resources.
1176 *
1177 * => return true if we successfully reaped something.
1178 */
1179
1180 bool
1181 vmem_reap(vmem_t *vm)
1182 {
1183 bool didsomething = false;
1184
1185 #if defined(QCACHE)
1186 didsomething = qc_reap(vm);
1187 #endif /* defined(QCACHE) */
1188 return didsomething;
1189 }
1190
1191 /* ---- rehash */
1192
1193 #if defined(_KERNEL)
1194 static struct callout vmem_rehash_ch;
1195 static int vmem_rehash_interval;
1196 static struct workqueue *vmem_rehash_wq;
1197 static struct work vmem_rehash_wk;
1198
1199 static void
1200 vmem_rehash_all(struct work *wk, void *dummy)
1201 {
1202 vmem_t *vm;
1203
1204 KASSERT(wk == &vmem_rehash_wk);
1205 mutex_enter(&vmem_list_lock);
1206 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1207 size_t desired;
1208 size_t current;
1209
1210 if (!VMEM_TRYLOCK(vm)) {
1211 continue;
1212 }
1213 desired = vm->vm_nbusytag;
1214 current = vm->vm_hashsize;
1215 VMEM_UNLOCK(vm);
1216
1217 if (desired > VMEM_HASHSIZE_MAX) {
1218 desired = VMEM_HASHSIZE_MAX;
1219 } else if (desired < VMEM_HASHSIZE_MIN) {
1220 desired = VMEM_HASHSIZE_MIN;
1221 }
1222 if (desired > current * 2 || desired * 2 < current) {
1223 vmem_rehash(vm, desired, VM_NOSLEEP);
1224 }
1225 }
1226 mutex_exit(&vmem_list_lock);
1227
1228 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1229 }
1230
1231 static void
1232 vmem_rehash_all_kick(void *dummy)
1233 {
1234
1235 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1236 }
1237
1238 void
1239 vmem_rehash_start(void)
1240 {
1241 int error;
1242
1243 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1244 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1245 if (error) {
1246 panic("%s: workqueue_create %d\n", __func__, error);
1247 }
1248 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1249 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1250
1251 vmem_rehash_interval = hz * 10;
1252 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1253 }
1254 #endif /* defined(_KERNEL) */
1255
1256 /* ---- debug */
1257
1258 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1259
1260 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1261
1262 static const char *
1263 bt_type_string(int type)
1264 {
1265 static const char * const table[] = {
1266 [BT_TYPE_BUSY] = "busy",
1267 [BT_TYPE_FREE] = "free",
1268 [BT_TYPE_SPAN] = "span",
1269 [BT_TYPE_SPAN_STATIC] = "static span",
1270 };
1271
1272 if (type >= __arraycount(table)) {
1273 return "BOGUS";
1274 }
1275 return table[type];
1276 }
1277
1278 static void
1279 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1280 {
1281
1282 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1283 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1284 bt->bt_type, bt_type_string(bt->bt_type));
1285 }
1286
1287 static void
1288 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1289 {
1290 const bt_t *bt;
1291 int i;
1292
1293 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1294 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1295 bt_dump(bt, pr);
1296 }
1297
1298 for (i = 0; i < VMEM_MAXORDER; i++) {
1299 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1300
1301 if (LIST_EMPTY(fl)) {
1302 continue;
1303 }
1304
1305 (*pr)("freelist[%d]\n", i);
1306 LIST_FOREACH(bt, fl, bt_freelist) {
1307 bt_dump(bt, pr);
1308 }
1309 }
1310 }
1311
1312 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1313
1314 #if defined(DDB)
1315 static bt_t *
1316 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1317 {
1318 bt_t *bt;
1319
1320 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1321 if (BT_ISSPAN_P(bt)) {
1322 continue;
1323 }
1324 if (bt->bt_start <= addr && addr < BT_END(bt)) {
1325 return bt;
1326 }
1327 }
1328
1329 return NULL;
1330 }
1331
1332 void
1333 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1334 {
1335 vmem_t *vm;
1336
1337 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1338 bt_t *bt;
1339
1340 bt = vmem_whatis_lookup(vm, addr);
1341 if (bt == NULL) {
1342 continue;
1343 }
1344 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1345 (void *)addr, (void *)bt->bt_start,
1346 (size_t)(addr - bt->bt_start), vm->vm_name,
1347 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1348 }
1349 }
1350
1351 void
1352 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1353 {
1354 const vmem_t *vm;
1355
1356 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1357 vmem_dump(vm, pr);
1358 }
1359 }
1360
1361 void
1362 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1363 {
1364 const vmem_t *vm = (const void *)addr;
1365
1366 vmem_dump(vm, pr);
1367 }
1368 #endif /* defined(DDB) */
1369
1370 #if !defined(_KERNEL)
1371 #include <stdio.h>
1372 #endif /* !defined(_KERNEL) */
1373
1374 #if defined(VMEM_SANITY)
1375
1376 static bool
1377 vmem_check_sanity(vmem_t *vm)
1378 {
1379 const bt_t *bt, *bt2;
1380
1381 KASSERT(vm != NULL);
1382
1383 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1384 if (bt->bt_start >= BT_END(bt)) {
1385 printf("corrupted tag\n");
1386 bt_dump(bt, (void *)printf);
1387 return false;
1388 }
1389 }
1390 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1391 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1392 if (bt == bt2) {
1393 continue;
1394 }
1395 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1396 continue;
1397 }
1398 if (bt->bt_start < BT_END(bt2) &&
1399 bt2->bt_start < BT_END(bt)) {
1400 printf("overwrapped tags\n");
1401 bt_dump(bt, (void *)printf);
1402 bt_dump(bt2, (void *)printf);
1403 return false;
1404 }
1405 }
1406 }
1407
1408 return true;
1409 }
1410
1411 static void
1412 vmem_check(vmem_t *vm)
1413 {
1414
1415 if (!vmem_check_sanity(vm)) {
1416 panic("insanity vmem %p", vm);
1417 }
1418 }
1419
1420 #endif /* defined(VMEM_SANITY) */
1421
1422 #if defined(UNITTEST)
1423 int
1424 main(void)
1425 {
1426 vmem_t *vm;
1427 vmem_addr_t p;
1428 struct reg {
1429 vmem_addr_t p;
1430 vmem_size_t sz;
1431 bool x;
1432 } *reg = NULL;
1433 int nreg = 0;
1434 int nalloc = 0;
1435 int nfree = 0;
1436 vmem_size_t total = 0;
1437 #if 1
1438 vm_flag_t strat = VM_INSTANTFIT;
1439 #else
1440 vm_flag_t strat = VM_BESTFIT;
1441 #endif
1442
1443 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1444 NULL, NULL, NULL, 0, VM_SLEEP, 0/*XXX*/);
1445 if (vm == NULL) {
1446 printf("vmem_create\n");
1447 exit(EXIT_FAILURE);
1448 }
1449 vmem_dump(vm, (void *)printf);
1450
1451 p = vmem_add(vm, 100, 200, VM_SLEEP);
1452 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1453 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1454 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1455 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1456 vmem_dump(vm, (void *)printf);
1457 for (;;) {
1458 struct reg *r;
1459 int t = rand() % 100;
1460
1461 if (t > 45) {
1462 /* alloc */
1463 vmem_size_t sz = rand() % 500 + 1;
1464 bool x;
1465 vmem_size_t align, phase, nocross;
1466 vmem_addr_t minaddr, maxaddr;
1467
1468 if (t > 70) {
1469 x = true;
1470 /* XXX */
1471 align = 1 << (rand() % 15);
1472 phase = rand() % 65536;
1473 nocross = 1 << (rand() % 15);
1474 if (align <= phase) {
1475 phase = 0;
1476 }
1477 if (VMEM_CROSS_P(phase, phase + sz - 1,
1478 nocross)) {
1479 nocross = 0;
1480 }
1481 minaddr = rand() % 50000;
1482 maxaddr = rand() % 70000;
1483 if (minaddr > maxaddr) {
1484 minaddr = 0;
1485 maxaddr = 0;
1486 }
1487 printf("=== xalloc %" PRIu64
1488 " align=%" PRIu64 ", phase=%" PRIu64
1489 ", nocross=%" PRIu64 ", min=%" PRIu64
1490 ", max=%" PRIu64 "\n",
1491 (uint64_t)sz,
1492 (uint64_t)align,
1493 (uint64_t)phase,
1494 (uint64_t)nocross,
1495 (uint64_t)minaddr,
1496 (uint64_t)maxaddr);
1497 p = vmem_xalloc(vm, sz, align, phase, nocross,
1498 minaddr, maxaddr, strat|VM_SLEEP);
1499 } else {
1500 x = false;
1501 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1502 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1503 }
1504 printf("-> %" PRIu64 "\n", (uint64_t)p);
1505 vmem_dump(vm, (void *)printf);
1506 if (p == VMEM_ADDR_NULL) {
1507 if (x) {
1508 continue;
1509 }
1510 break;
1511 }
1512 nreg++;
1513 reg = realloc(reg, sizeof(*reg) * nreg);
1514 r = ®[nreg - 1];
1515 r->p = p;
1516 r->sz = sz;
1517 r->x = x;
1518 total += sz;
1519 nalloc++;
1520 } else if (nreg != 0) {
1521 /* free */
1522 r = ®[rand() % nreg];
1523 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1524 (uint64_t)r->p, (uint64_t)r->sz);
1525 if (r->x) {
1526 vmem_xfree(vm, r->p, r->sz);
1527 } else {
1528 vmem_free(vm, r->p, r->sz);
1529 }
1530 total -= r->sz;
1531 vmem_dump(vm, (void *)printf);
1532 *r = reg[nreg - 1];
1533 nreg--;
1534 nfree++;
1535 }
1536 printf("total=%" PRIu64 "\n", (uint64_t)total);
1537 }
1538 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1539 (uint64_t)total, nalloc, nfree);
1540 exit(EXIT_SUCCESS);
1541 }
1542 #endif /* defined(UNITTEST) */
1543