subr_vmem.c revision 1.6 1 /* $NetBSD: subr_vmem.c,v 1.6 2006/08/20 09:45:59 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * TODO:
36 * - implement vmem_xalloc/vmem_xfree
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.6 2006/08/20 09:45:59 yamt Exp $");
41
42 #define VMEM_DEBUG
43 #if defined(_KERNEL)
44 #define QCACHE
45 #endif /* defined(_KERNEL) */
46
47 #include <sys/param.h>
48 #include <sys/hash.h>
49 #include <sys/queue.h>
50
51 #if defined(_KERNEL)
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/once.h>
56 #include <sys/pool.h>
57 #include <sys/proc.h>
58 #include <sys/vmem.h>
59 #else /* defined(_KERNEL) */
60 #include "../sys/vmem.h"
61 #endif /* defined(_KERNEL) */
62
63 #if defined(_KERNEL)
64 #define SIMPLELOCK_DECL(name) struct simplelock name
65 #else /* defined(_KERNEL) */
66 #include <errno.h>
67 #include <assert.h>
68 #include <stdlib.h>
69
70 #define KASSERT(a) assert(a)
71 #define SIMPLELOCK_DECL(name) /* nothing */
72 #define LOCK_ASSERT(a) /* nothing */
73 #define simple_lock_init(a) /* nothing */
74 #define simple_lock(a) /* nothing */
75 #define simple_unlock(a) /* nothing */
76 #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
77 #endif /* defined(_KERNEL) */
78
79 struct vmem;
80 struct vmem_btag;
81
82 #if defined(VMEM_DEBUG)
83 void vmem_dump(const vmem_t *);
84 #endif /* defined(VMEM_DEBUG) */
85
86 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
87 #define VMEM_HASHSIZE_INIT 4096 /* XXX */
88
89 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
90
91 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
92 LIST_HEAD(vmem_freelist, vmem_btag);
93 LIST_HEAD(vmem_hashlist, vmem_btag);
94
95 #if defined(QCACHE)
96 #define VMEM_QCACHE_IDX_MAX 32
97
98 #define QC_NAME_MAX 16
99
100 struct qcache {
101 struct pool qc_pool;
102 struct pool_cache qc_cache;
103 vmem_t *qc_vmem;
104 char qc_name[QC_NAME_MAX];
105 };
106 typedef struct qcache qcache_t;
107 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
108 #endif /* defined(QCACHE) */
109
110 /* vmem arena */
111 struct vmem {
112 SIMPLELOCK_DECL(vm_lock);
113 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
114 vm_flag_t);
115 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
116 vmem_t *vm_source;
117 struct vmem_seglist vm_seglist;
118 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
119 size_t vm_hashsize;
120 size_t vm_nbusytag;
121 struct vmem_hashlist *vm_hashlist;
122 size_t vm_quantum_mask;
123 int vm_quantum_shift;
124 const char *vm_name;
125
126 #if defined(QCACHE)
127 /* quantum cache */
128 size_t vm_qcache_max;
129 struct pool_allocator vm_qcache_allocator;
130 qcache_t vm_qcache[VMEM_QCACHE_IDX_MAX];
131 #endif /* defined(QCACHE) */
132 };
133
134 #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
135 #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
136 #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
137 #define VMEM_ASSERT_LOCKED(vm) \
138 LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
139 #define VMEM_ASSERT_UNLOCKED(vm) \
140 LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
141
142 /* boundary tag */
143 struct vmem_btag {
144 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
145 union {
146 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
147 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
148 } bt_u;
149 #define bt_hashlist bt_u.u_hashlist
150 #define bt_freelist bt_u.u_freelist
151 vmem_addr_t bt_start;
152 vmem_size_t bt_size;
153 int bt_type;
154 };
155
156 #define BT_TYPE_SPAN 1
157 #define BT_TYPE_SPAN_STATIC 2
158 #define BT_TYPE_FREE 3
159 #define BT_TYPE_BUSY 4
160 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
161
162 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
163
164 typedef struct vmem_btag bt_t;
165
166 /* ---- misc */
167
168 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
169
170 static int
171 calc_order(vmem_size_t size)
172 {
173 vmem_size_t target;
174 int i;
175
176 KASSERT(size != 0);
177
178 i = 0;
179 target = size >> 1;
180 while (ORDER2SIZE(i) <= target) {
181 i++;
182 }
183
184 KASSERT(ORDER2SIZE(i) <= size);
185 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
186
187 return i;
188 }
189
190 #if defined(_KERNEL)
191 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
192 #endif /* defined(_KERNEL) */
193
194 static void *
195 xmalloc(size_t sz, vm_flag_t flags)
196 {
197
198 #if defined(_KERNEL)
199 return malloc(sz, M_VMEM,
200 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
201 #else /* defined(_KERNEL) */
202 return malloc(sz);
203 #endif /* defined(_KERNEL) */
204 }
205
206 static void
207 xfree(void *p)
208 {
209
210 #if defined(_KERNEL)
211 return free(p, M_VMEM);
212 #else /* defined(_KERNEL) */
213 return free(p);
214 #endif /* defined(_KERNEL) */
215 }
216
217 /* ---- boundary tag */
218
219 #if defined(_KERNEL)
220 static struct pool_cache bt_poolcache;
221 static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
222 #endif /* defined(_KERNEL) */
223
224 static bt_t *
225 bt_alloc(vmem_t *vm, vm_flag_t flags)
226 {
227 bt_t *bt;
228
229 #if defined(_KERNEL)
230 /* XXX bootstrap */
231 bt = pool_cache_get(&bt_poolcache,
232 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
233 #else /* defined(_KERNEL) */
234 bt = malloc(sizeof *bt);
235 #endif /* defined(_KERNEL) */
236
237 return bt;
238 }
239
240 static void
241 bt_free(vmem_t *vm, bt_t *bt)
242 {
243
244 #if defined(_KERNEL)
245 /* XXX bootstrap */
246 pool_cache_put(&bt_poolcache, bt);
247 #else /* defined(_KERNEL) */
248 free(bt);
249 #endif /* defined(_KERNEL) */
250 }
251
252 /*
253 * freelist[0] ... [1, 1]
254 * freelist[1] ... [2, 3]
255 * freelist[2] ... [4, 7]
256 * freelist[3] ... [8, 15]
257 * :
258 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
259 * :
260 */
261
262 static struct vmem_freelist *
263 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
264 {
265 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
266 int idx;
267
268 KASSERT((size & vm->vm_quantum_mask) == 0);
269 KASSERT(size != 0);
270
271 idx = calc_order(qsize);
272 KASSERT(idx >= 0);
273 KASSERT(idx < VMEM_MAXORDER);
274
275 return &vm->vm_freelist[idx];
276 }
277
278 static struct vmem_freelist *
279 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
280 {
281 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
282 int idx;
283
284 KASSERT((size & vm->vm_quantum_mask) == 0);
285 KASSERT(size != 0);
286
287 idx = calc_order(qsize);
288 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
289 idx++;
290 /* check too large request? */
291 }
292 KASSERT(idx >= 0);
293 KASSERT(idx < VMEM_MAXORDER);
294
295 return &vm->vm_freelist[idx];
296 }
297
298 /* ---- boundary tag hash */
299
300 static struct vmem_hashlist *
301 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
302 {
303 struct vmem_hashlist *list;
304 unsigned int hash;
305
306 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
307 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
308
309 return list;
310 }
311
312 static bt_t *
313 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
314 {
315 struct vmem_hashlist *list;
316 bt_t *bt;
317
318 list = bt_hashhead(vm, addr);
319 LIST_FOREACH(bt, list, bt_hashlist) {
320 if (bt->bt_start == addr) {
321 break;
322 }
323 }
324
325 return bt;
326 }
327
328 static void
329 bt_rembusy(vmem_t *vm, bt_t *bt)
330 {
331
332 KASSERT(vm->vm_nbusytag > 0);
333 vm->vm_nbusytag--;
334 LIST_REMOVE(bt, bt_hashlist);
335 }
336
337 static void
338 bt_insbusy(vmem_t *vm, bt_t *bt)
339 {
340 struct vmem_hashlist *list;
341
342 KASSERT(bt->bt_type == BT_TYPE_BUSY);
343
344 list = bt_hashhead(vm, bt->bt_start);
345 LIST_INSERT_HEAD(list, bt, bt_hashlist);
346 vm->vm_nbusytag++;
347 }
348
349 /* ---- boundary tag list */
350
351 static void
352 bt_remseg(vmem_t *vm, bt_t *bt)
353 {
354
355 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
356 }
357
358 static void
359 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
360 {
361
362 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
363 }
364
365 static void
366 bt_insseg_tail(vmem_t *vm, bt_t *bt)
367 {
368
369 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
370 }
371
372 static void
373 bt_remfree(vmem_t *vm, bt_t *bt)
374 {
375
376 KASSERT(bt->bt_type == BT_TYPE_FREE);
377
378 LIST_REMOVE(bt, bt_freelist);
379 }
380
381 static void
382 bt_insfree(vmem_t *vm, bt_t *bt)
383 {
384 struct vmem_freelist *list;
385
386 list = bt_freehead_tofree(vm, bt->bt_size);
387 LIST_INSERT_HEAD(list, bt, bt_freelist);
388 }
389
390 /* ---- vmem internal functions */
391
392 #if defined(QCACHE)
393 static inline vm_flag_t
394 prf_to_vmf(int prflags)
395 {
396 vm_flag_t vmflags;
397
398 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
399 if ((prflags & PR_WAITOK) != 0) {
400 vmflags = VM_SLEEP;
401 } else {
402 vmflags = VM_NOSLEEP;
403 }
404 return vmflags;
405 }
406
407 static inline int
408 vmf_to_prf(vm_flag_t vmflags)
409 {
410 int prflags;
411
412 switch ((vmflags & (VM_SLEEP | VM_NOSLEEP))) {
413 case VM_SLEEP:
414 prflags = PR_WAITOK;
415 break;
416
417 case VM_NOSLEEP:
418 prflags = PR_NOWAIT;
419 break;
420
421 #if defined(DIAGNOSTIC)
422 default:
423 panic("vmf_to_prf: unknown flag 0x%x\n", vmflags);
424 #endif /* defined(DIAGNOSTIC) */
425 }
426 return prflags;
427 }
428
429 static size_t
430 qc_poolpage_size(size_t qcache_max)
431 {
432 int i;
433
434 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
435 /* nothing */
436 }
437 return ORDER2SIZE(i);
438 }
439
440 static void *
441 qc_poolpage_alloc(struct pool *pool, int prflags)
442 {
443 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
444 vmem_t *vm = qc->qc_vmem;
445
446 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
447 prf_to_vmf(prflags) | VM_INSTANTFIT);
448 }
449
450 static void
451 qc_poolpage_free(struct pool *pool, void *addr)
452 {
453 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
454 vmem_t *vm = qc->qc_vmem;
455
456 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
457 }
458
459 static void
460 qc_init(vmem_t *vm, size_t qcache_max)
461 {
462 struct pool_allocator *pa;
463 int qcache_idx_max;
464 int i;
465
466 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
467 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
468 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
469 }
470 vm->vm_qcache_max = qcache_max;
471 pa = &vm->vm_qcache_allocator;
472 memset(pa, 0, sizeof(*pa));
473 pa->pa_alloc = qc_poolpage_alloc;
474 pa->pa_free = qc_poolpage_free;
475 pa->pa_pagesz = qc_poolpage_size(qcache_max);
476
477 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
478 for (i = 1; i <= qcache_idx_max; i++) {
479 qcache_t *qc = &vm->vm_qcache[i - 1];
480 size_t size = i << vm->vm_quantum_shift;
481
482 qc->qc_vmem = vm;
483 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%d",
484 vm->vm_name, size);
485 pool_init(&qc->qc_pool, size, 0, 0,
486 PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
487 pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
488 }
489 }
490
491 static boolean_t
492 qc_reap(vmem_t *vm)
493 {
494 int i;
495 int qcache_idx_max;
496 boolean_t didsomething = FALSE;
497
498 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
499 for (i = 1; i <= qcache_idx_max; i++) {
500 qcache_t *qc = &vm->vm_qcache[i - 1];
501
502 if (pool_reclaim(&qc->qc_pool) != 0) {
503 didsomething = TRUE;
504 }
505 }
506
507 return didsomething;
508 }
509 #endif /* defined(QCACHE) */
510
511 #if defined(_KERNEL)
512 static int
513 vmem_init(void)
514 {
515
516 pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
517 return 0;
518 }
519 #endif /* defined(_KERNEL) */
520
521 static vmem_addr_t
522 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
523 int spanbttype)
524 {
525 bt_t *btspan;
526 bt_t *btfree;
527
528 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
529 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
530 VMEM_ASSERT_UNLOCKED(vm);
531
532 btspan = bt_alloc(vm, flags);
533 if (btspan == NULL) {
534 return VMEM_ADDR_NULL;
535 }
536 btfree = bt_alloc(vm, flags);
537 if (btfree == NULL) {
538 bt_free(vm, btspan);
539 return VMEM_ADDR_NULL;
540 }
541
542 btspan->bt_type = spanbttype;
543 btspan->bt_start = addr;
544 btspan->bt_size = size;
545
546 btfree->bt_type = BT_TYPE_FREE;
547 btfree->bt_start = addr;
548 btfree->bt_size = size;
549
550 VMEM_LOCK(vm);
551 bt_insseg_tail(vm, btspan);
552 bt_insseg(vm, btfree, btspan);
553 bt_insfree(vm, btfree);
554 VMEM_UNLOCK(vm);
555
556 return addr;
557 }
558
559 static int
560 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
561 {
562 vmem_addr_t addr;
563
564 VMEM_ASSERT_UNLOCKED(vm);
565
566 if (vm->vm_allocfn == NULL) {
567 return EINVAL;
568 }
569
570 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
571 if (addr == VMEM_ADDR_NULL) {
572 return ENOMEM;
573 }
574
575 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
576 (*vm->vm_freefn)(vm->vm_source, addr, size);
577 return ENOMEM;
578 }
579
580 return 0;
581 }
582
583 static int
584 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
585 {
586 bt_t *bt;
587 int i;
588 struct vmem_hashlist *newhashlist;
589 struct vmem_hashlist *oldhashlist;
590 size_t oldhashsize;
591
592 KASSERT(newhashsize > 0);
593 VMEM_ASSERT_UNLOCKED(vm);
594
595 newhashlist =
596 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
597 if (newhashlist == NULL) {
598 return ENOMEM;
599 }
600 for (i = 0; i < newhashsize; i++) {
601 LIST_INIT(&newhashlist[i]);
602 }
603
604 VMEM_LOCK(vm);
605 oldhashlist = vm->vm_hashlist;
606 oldhashsize = vm->vm_hashsize;
607 vm->vm_hashlist = newhashlist;
608 vm->vm_hashsize = newhashsize;
609 if (oldhashlist == NULL) {
610 VMEM_UNLOCK(vm);
611 return 0;
612 }
613 for (i = 0; i < oldhashsize; i++) {
614 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
615 bt_rembusy(vm, bt); /* XXX */
616 bt_insbusy(vm, bt);
617 }
618 }
619 VMEM_UNLOCK(vm);
620
621 xfree(oldhashlist);
622
623 return 0;
624 }
625
626 /* ---- vmem API */
627
628 /*
629 * vmem_create: create an arena.
630 *
631 * => must not be called from interrupt context.
632 */
633
634 vmem_t *
635 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
636 vmem_size_t quantum,
637 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
638 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
639 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
640 {
641 vmem_t *vm;
642 int i;
643 #if defined(_KERNEL)
644 static ONCE_DECL(control);
645 #endif /* defined(_KERNEL) */
646
647 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
648 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
649
650 #if defined(_KERNEL)
651 if (RUN_ONCE(&control, vmem_init)) {
652 return NULL;
653 }
654 #endif /* defined(_KERNEL) */
655 vm = xmalloc(sizeof(*vm), flags);
656 if (vm == NULL) {
657 return NULL;
658 }
659
660 VMEM_LOCK_INIT(vm);
661 vm->vm_name = name;
662 vm->vm_quantum_mask = quantum - 1;
663 vm->vm_quantum_shift = calc_order(quantum);
664 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
665 vm->vm_allocfn = allocfn;
666 vm->vm_freefn = freefn;
667 vm->vm_source = source;
668 vm->vm_nbusytag = 0;
669 #if defined(QCACHE)
670 qc_init(vm, qcache_max);
671 #endif /* defined(QCACHE) */
672
673 CIRCLEQ_INIT(&vm->vm_seglist);
674 for (i = 0; i < VMEM_MAXORDER; i++) {
675 LIST_INIT(&vm->vm_freelist[i]);
676 }
677 vm->vm_hashlist = NULL;
678 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
679 vmem_destroy(vm);
680 return NULL;
681 }
682
683 if (size != 0) {
684 if (vmem_add(vm, base, size, flags) == 0) {
685 vmem_destroy(vm);
686 return NULL;
687 }
688 }
689
690 return vm;
691 }
692
693 void
694 vmem_destroy(vmem_t *vm)
695 {
696
697 VMEM_ASSERT_UNLOCKED(vm);
698
699 if (vm->vm_hashlist != NULL) {
700 int i;
701
702 for (i = 0; i < vm->vm_hashsize; i++) {
703 bt_t *bt;
704
705 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
706 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
707 bt_free(vm, bt);
708 }
709 }
710 xfree(vm->vm_hashlist);
711 }
712 xfree(vm);
713 }
714
715 vmem_size_t
716 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
717 {
718
719 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
720 }
721
722 /*
723 * vmem_alloc:
724 *
725 * => caller must ensure appropriate spl,
726 * if the arena can be accessed from interrupt context.
727 */
728
729 vmem_addr_t
730 vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
731 {
732 struct vmem_freelist *list;
733 struct vmem_freelist *first;
734 struct vmem_freelist *end;
735 bt_t *bt;
736 bt_t *btnew;
737 const vmem_size_t size = vmem_roundup_size(vm, size0);
738 vm_flag_t strat = flags & VM_FITMASK;
739
740 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
741 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
742 VMEM_ASSERT_UNLOCKED(vm);
743
744 KASSERT(size0 > 0);
745 KASSERT(size > 0);
746 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
747 if ((flags & VM_SLEEP) != 0) {
748 ASSERT_SLEEPABLE(NULL, "vmem_alloc");
749 }
750
751 #if defined(QCACHE)
752 if (size <= vm->vm_qcache_max) {
753 int qidx = size >> vm->vm_quantum_shift;
754 qcache_t *qc = &vm->vm_qcache[qidx - 1];
755
756 return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
757 vmf_to_prf(flags));
758 }
759 #endif /* defined(QCACHE) */
760
761 btnew = bt_alloc(vm, flags);
762 if (btnew == NULL) {
763 return VMEM_ADDR_NULL;
764 }
765
766 retry_strat:
767 first = bt_freehead_toalloc(vm, size, strat);
768 end = &vm->vm_freelist[VMEM_MAXORDER];
769 retry:
770 bt = NULL;
771 VMEM_LOCK(vm);
772 if (strat == VM_INSTANTFIT) {
773 for (list = first; list < end; list++) {
774 bt = LIST_FIRST(list);
775 if (bt != NULL) {
776 goto gotit;
777 }
778 }
779 } else { /* VM_BESTFIT */
780 for (list = first; list < end; list++) {
781 LIST_FOREACH(bt, list, bt_freelist) {
782 if (bt->bt_size >= size) {
783 goto gotit;
784 }
785 }
786 }
787 }
788 VMEM_UNLOCK(vm);
789 #if 1
790 if (strat == VM_INSTANTFIT) {
791 strat = VM_BESTFIT;
792 goto retry_strat;
793 }
794 #endif
795 if (vmem_import(vm, size, flags) == 0) {
796 goto retry;
797 }
798 /* XXX */
799 return VMEM_ADDR_NULL;
800
801 gotit:
802 KASSERT(bt->bt_type == BT_TYPE_FREE);
803 KASSERT(bt->bt_size >= size);
804 bt_remfree(vm, bt);
805 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
806 /* split */
807 btnew->bt_type = BT_TYPE_BUSY;
808 btnew->bt_start = bt->bt_start;
809 btnew->bt_size = size;
810 bt->bt_start = bt->bt_start + size;
811 bt->bt_size -= size;
812 bt_insfree(vm, bt);
813 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
814 bt_insbusy(vm, btnew);
815 VMEM_UNLOCK(vm);
816 } else {
817 bt->bt_type = BT_TYPE_BUSY;
818 bt_insbusy(vm, bt);
819 VMEM_UNLOCK(vm);
820 bt_free(vm, btnew);
821 btnew = bt;
822 }
823 KASSERT(btnew->bt_size >= size);
824 btnew->bt_type = BT_TYPE_BUSY;
825
826 return btnew->bt_start;
827 }
828
829 /*
830 * vmem_free:
831 *
832 * => caller must ensure appropriate spl,
833 * if the arena can be accessed from interrupt context.
834 */
835
836 void
837 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
838 {
839 bt_t *bt;
840 bt_t *t;
841
842 VMEM_ASSERT_UNLOCKED(vm);
843
844 KASSERT(addr != VMEM_ADDR_NULL);
845 KASSERT(size > 0);
846
847 #if defined(QCACHE)
848 if (size <= vm->vm_qcache_max) {
849 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
850 qcache_t *qc = &vm->vm_qcache[qidx - 1];
851
852 return pool_cache_put(&qc->qc_cache, (void *)addr);
853 }
854 #endif /* defined(QCACHE) */
855
856 VMEM_LOCK(vm);
857
858 bt = bt_lookupbusy(vm, addr);
859 KASSERT(bt != NULL);
860 KASSERT(bt->bt_start == addr);
861 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
862 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
863 KASSERT(bt->bt_type == BT_TYPE_BUSY);
864 bt_rembusy(vm, bt);
865 bt->bt_type = BT_TYPE_FREE;
866
867 /* coalesce */
868 t = CIRCLEQ_NEXT(bt, bt_seglist);
869 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
870 KASSERT(BT_END(bt) == t->bt_start);
871 bt_remfree(vm, t);
872 bt_remseg(vm, t);
873 bt->bt_size += t->bt_size;
874 bt_free(vm, t);
875 }
876 t = CIRCLEQ_PREV(bt, bt_seglist);
877 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
878 KASSERT(BT_END(t) == bt->bt_start);
879 bt_remfree(vm, t);
880 bt_remseg(vm, t);
881 bt->bt_size += t->bt_size;
882 bt->bt_start = t->bt_start;
883 bt_free(vm, t);
884 }
885
886 t = CIRCLEQ_PREV(bt, bt_seglist);
887 KASSERT(t != NULL);
888 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
889 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
890 t->bt_size == bt->bt_size) {
891 vmem_addr_t spanaddr;
892 vmem_size_t spansize;
893
894 KASSERT(t->bt_start == bt->bt_start);
895 spanaddr = bt->bt_start;
896 spansize = bt->bt_size;
897 bt_remseg(vm, bt);
898 bt_free(vm, bt);
899 bt_remseg(vm, t);
900 bt_free(vm, t);
901 VMEM_UNLOCK(vm);
902 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
903 } else {
904 bt_insfree(vm, bt);
905 VMEM_UNLOCK(vm);
906 }
907 }
908
909 /*
910 * vmem_add:
911 *
912 * => caller must ensure appropriate spl,
913 * if the arena can be accessed from interrupt context.
914 */
915
916 vmem_addr_t
917 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
918 {
919
920 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
921 }
922
923 /*
924 * vmem_reap: reap unused resources.
925 *
926 * => return TRUE if we successfully reaped something.
927 */
928
929 boolean_t
930 vmem_reap(vmem_t *vm)
931 {
932 boolean_t didsomething = FALSE;
933
934 VMEM_ASSERT_UNLOCKED(vm);
935
936 #if defined(QCACHE)
937 didsomething = qc_reap(vm);
938 #endif /* defined(QCACHE) */
939 return didsomething;
940 }
941
942 /* ---- debug */
943
944 #if defined(VMEM_DEBUG)
945
946 #if !defined(_KERNEL)
947 #include <stdio.h>
948 #endif /* !defined(_KERNEL) */
949
950 void bt_dump(const bt_t *);
951
952 void
953 bt_dump(const bt_t *bt)
954 {
955
956 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
957 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
958 bt->bt_type);
959 }
960
961 void
962 vmem_dump(const vmem_t *vm)
963 {
964 const bt_t *bt;
965 int i;
966
967 printf("vmem %p '%s'\n", vm, vm->vm_name);
968 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
969 bt_dump(bt);
970 }
971
972 for (i = 0; i < VMEM_MAXORDER; i++) {
973 const struct vmem_freelist *fl = &vm->vm_freelist[i];
974
975 if (LIST_EMPTY(fl)) {
976 continue;
977 }
978
979 printf("freelist[%d]\n", i);
980 LIST_FOREACH(bt, fl, bt_freelist) {
981 bt_dump(bt);
982 if (bt->bt_size) {
983 }
984 }
985 }
986 }
987
988 #if !defined(_KERNEL)
989
990 #include <stdlib.h>
991
992 int
993 main()
994 {
995 vmem_t *vm;
996 vmem_addr_t p;
997 struct reg {
998 vmem_addr_t p;
999 vmem_size_t sz;
1000 } *reg = NULL;
1001 int nreg = 0;
1002 int nalloc = 0;
1003 int nfree = 0;
1004 vmem_size_t total = 0;
1005 #if 1
1006 vm_flag_t strat = VM_INSTANTFIT;
1007 #else
1008 vm_flag_t strat = VM_BESTFIT;
1009 #endif
1010
1011 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1012 NULL, NULL, NULL, 0, VM_NOSLEEP);
1013 if (vm == NULL) {
1014 printf("vmem_create\n");
1015 exit(EXIT_FAILURE);
1016 }
1017 vmem_dump(vm);
1018
1019 p = vmem_add(vm, 100, 200, VM_SLEEP);
1020 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1021 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1022 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1023 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1024 vmem_dump(vm);
1025 for (;;) {
1026 struct reg *r;
1027
1028 if (rand() % 100 > 40) {
1029 vmem_size_t sz = rand() % 500 + 1;
1030
1031 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1032 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1033 printf("-> %" PRIu64 "\n", (uint64_t)p);
1034 vmem_dump(vm);
1035 if (p == VMEM_ADDR_NULL) {
1036 break;
1037 }
1038 nreg++;
1039 reg = realloc(reg, sizeof(*reg) * nreg);
1040 r = ®[nreg - 1];
1041 r->p = p;
1042 r->sz = sz;
1043 total += sz;
1044 nalloc++;
1045 } else if (nreg != 0) {
1046 r = ®[rand() % nreg];
1047 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1048 (uint64_t)r->p, (uint64_t)r->sz);
1049 vmem_free(vm, r->p, r->sz);
1050 total -= r->sz;
1051 vmem_dump(vm);
1052 *r = reg[nreg - 1];
1053 nreg--;
1054 nfree++;
1055 }
1056 printf("total=%" PRIu64 "\n", (uint64_t)total);
1057 }
1058 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1059 (uint64_t)total, nalloc, nfree);
1060 exit(EXIT_SUCCESS);
1061 }
1062 #endif /* !defined(_KERNEL) */
1063 #endif /* defined(VMEM_DEBUG) */
1064