subr_vmem.c revision 1.60 1 /* $NetBSD: subr_vmem.c,v 1.60 2011/08/23 22:00:57 dyoung Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.60 2011/08/23 22:00:57 dyoung Exp $");
42
43 #if defined(_KERNEL)
44 #include "opt_ddb.h"
45 #define QCACHE
46 #endif /* defined(_KERNEL) */
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/queue.h>
51
52 #if defined(_KERNEL)
53 #include <sys/systm.h>
54 #include <sys/kernel.h> /* hz */
55 #include <sys/callout.h>
56 #include <sys/malloc.h>
57 #include <sys/once.h>
58 #include <sys/pool.h>
59 #include <sys/vmem.h>
60 #include <sys/workqueue.h>
61 #else /* defined(_KERNEL) */
62 #include "../sys/vmem.h"
63 #endif /* defined(_KERNEL) */
64
65 #if defined(_KERNEL)
66 #define LOCK_DECL(name) \
67 kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
68 #else /* defined(_KERNEL) */
69 #include <errno.h>
70 #include <assert.h>
71 #include <stdlib.h>
72
73 #define UNITTEST
74 #define KASSERT(a) assert(a)
75 #define LOCK_DECL(name) /* nothing */
76 #define mutex_init(a, b, c) /* nothing */
77 #define mutex_destroy(a) /* nothing */
78 #define mutex_enter(a) /* nothing */
79 #define mutex_tryenter(a) true
80 #define mutex_exit(a) /* nothing */
81 #define mutex_owned(a) /* nothing */
82 #define ASSERT_SLEEPABLE() /* nothing */
83 #define panic(...) printf(__VA_ARGS__); abort()
84 #endif /* defined(_KERNEL) */
85
86 struct vmem;
87 struct vmem_btag;
88
89 #if defined(VMEM_SANITY)
90 static void vmem_check(vmem_t *);
91 #else /* defined(VMEM_SANITY) */
92 #define vmem_check(vm) /* nothing */
93 #endif /* defined(VMEM_SANITY) */
94
95 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
96
97 #define VMEM_HASHSIZE_MIN 1 /* XXX */
98 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
99 #define VMEM_HASHSIZE_INIT 128
100
101 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
102
103 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
104 LIST_HEAD(vmem_freelist, vmem_btag);
105 LIST_HEAD(vmem_hashlist, vmem_btag);
106
107 #if defined(QCACHE)
108 #define VMEM_QCACHE_IDX_MAX 32
109
110 #define QC_NAME_MAX 16
111
112 struct qcache {
113 pool_cache_t qc_cache;
114 vmem_t *qc_vmem;
115 char qc_name[QC_NAME_MAX];
116 };
117 typedef struct qcache qcache_t;
118 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
119 #endif /* defined(QCACHE) */
120
121 /* vmem arena */
122 struct vmem {
123 LOCK_DECL(vm_lock);
124 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
125 vm_flag_t);
126 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
127 vmem_t *vm_source;
128 struct vmem_seglist vm_seglist;
129 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
130 size_t vm_hashsize;
131 size_t vm_nbusytag;
132 struct vmem_hashlist *vm_hashlist;
133 size_t vm_quantum_mask;
134 int vm_quantum_shift;
135 const char *vm_name;
136 LIST_ENTRY(vmem) vm_alllist;
137
138 #if defined(QCACHE)
139 /* quantum cache */
140 size_t vm_qcache_max;
141 struct pool_allocator vm_qcache_allocator;
142 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
143 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
144 #endif /* defined(QCACHE) */
145 };
146
147 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
148 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
149 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
150 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
151 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
152 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
153
154 /* boundary tag */
155 struct vmem_btag {
156 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
157 union {
158 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
159 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
160 } bt_u;
161 #define bt_hashlist bt_u.u_hashlist
162 #define bt_freelist bt_u.u_freelist
163 vmem_addr_t bt_start;
164 vmem_size_t bt_size;
165 int bt_type;
166 };
167
168 #define BT_TYPE_SPAN 1
169 #define BT_TYPE_SPAN_STATIC 2
170 #define BT_TYPE_FREE 3
171 #define BT_TYPE_BUSY 4
172 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
173
174 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
175
176 typedef struct vmem_btag bt_t;
177
178 /* ---- misc */
179
180 #define VMEM_ALIGNUP(addr, align) \
181 (-(-(addr) & -(align)))
182 #define VMEM_CROSS_P(addr1, addr2, boundary) \
183 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
184
185 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
186
187 static int
188 calc_order(vmem_size_t size)
189 {
190 vmem_size_t target;
191 int i;
192
193 KASSERT(size != 0);
194
195 i = 0;
196 target = size >> 1;
197 while (ORDER2SIZE(i) <= target) {
198 i++;
199 }
200
201 KASSERT(ORDER2SIZE(i) <= size);
202 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
203
204 return i;
205 }
206
207 #if defined(_KERNEL)
208 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
209 #endif /* defined(_KERNEL) */
210
211 static void *
212 xmalloc(size_t sz, vm_flag_t flags)
213 {
214
215 #if defined(_KERNEL)
216 return malloc(sz, M_VMEM,
217 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
218 #else /* defined(_KERNEL) */
219 return malloc(sz);
220 #endif /* defined(_KERNEL) */
221 }
222
223 static void
224 xfree(void *p)
225 {
226
227 #if defined(_KERNEL)
228 return free(p, M_VMEM);
229 #else /* defined(_KERNEL) */
230 return free(p);
231 #endif /* defined(_KERNEL) */
232 }
233
234 /* ---- boundary tag */
235
236 #if defined(_KERNEL)
237 static struct pool_cache bt_cache;
238 #endif /* defined(_KERNEL) */
239
240 static bt_t *
241 bt_alloc(vmem_t *vm, vm_flag_t flags)
242 {
243 bt_t *bt;
244
245 #if defined(_KERNEL)
246 bt = pool_cache_get(&bt_cache,
247 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
248 #else /* defined(_KERNEL) */
249 bt = malloc(sizeof *bt);
250 #endif /* defined(_KERNEL) */
251
252 return bt;
253 }
254
255 static void
256 bt_free(vmem_t *vm, bt_t *bt)
257 {
258
259 #if defined(_KERNEL)
260 pool_cache_put(&bt_cache, bt);
261 #else /* defined(_KERNEL) */
262 free(bt);
263 #endif /* defined(_KERNEL) */
264 }
265
266 /*
267 * freelist[0] ... [1, 1]
268 * freelist[1] ... [2, 3]
269 * freelist[2] ... [4, 7]
270 * freelist[3] ... [8, 15]
271 * :
272 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
273 * :
274 */
275
276 static struct vmem_freelist *
277 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
278 {
279 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
280 int idx;
281
282 KASSERT((size & vm->vm_quantum_mask) == 0);
283 KASSERT(size != 0);
284
285 idx = calc_order(qsize);
286 KASSERT(idx >= 0);
287 KASSERT(idx < VMEM_MAXORDER);
288
289 return &vm->vm_freelist[idx];
290 }
291
292 /*
293 * bt_freehead_toalloc: return the freelist for the given size and allocation
294 * strategy.
295 *
296 * for VM_INSTANTFIT, return the list in which any blocks are large enough
297 * for the requested size. otherwise, return the list which can have blocks
298 * large enough for the requested size.
299 */
300
301 static struct vmem_freelist *
302 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
303 {
304 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
305 int idx;
306
307 KASSERT((size & vm->vm_quantum_mask) == 0);
308 KASSERT(size != 0);
309
310 idx = calc_order(qsize);
311 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
312 idx++;
313 /* check too large request? */
314 }
315 KASSERT(idx >= 0);
316 KASSERT(idx < VMEM_MAXORDER);
317
318 return &vm->vm_freelist[idx];
319 }
320
321 /* ---- boundary tag hash */
322
323 static struct vmem_hashlist *
324 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
325 {
326 struct vmem_hashlist *list;
327 unsigned int hash;
328
329 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
330 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
331
332 return list;
333 }
334
335 static bt_t *
336 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
337 {
338 struct vmem_hashlist *list;
339 bt_t *bt;
340
341 list = bt_hashhead(vm, addr);
342 LIST_FOREACH(bt, list, bt_hashlist) {
343 if (bt->bt_start == addr) {
344 break;
345 }
346 }
347
348 return bt;
349 }
350
351 static void
352 bt_rembusy(vmem_t *vm, bt_t *bt)
353 {
354
355 KASSERT(vm->vm_nbusytag > 0);
356 vm->vm_nbusytag--;
357 LIST_REMOVE(bt, bt_hashlist);
358 }
359
360 static void
361 bt_insbusy(vmem_t *vm, bt_t *bt)
362 {
363 struct vmem_hashlist *list;
364
365 KASSERT(bt->bt_type == BT_TYPE_BUSY);
366
367 list = bt_hashhead(vm, bt->bt_start);
368 LIST_INSERT_HEAD(list, bt, bt_hashlist);
369 vm->vm_nbusytag++;
370 }
371
372 /* ---- boundary tag list */
373
374 static void
375 bt_remseg(vmem_t *vm, bt_t *bt)
376 {
377
378 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
379 }
380
381 static void
382 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
383 {
384
385 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
386 }
387
388 static void
389 bt_insseg_tail(vmem_t *vm, bt_t *bt)
390 {
391
392 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
393 }
394
395 static void
396 bt_remfree(vmem_t *vm, bt_t *bt)
397 {
398
399 KASSERT(bt->bt_type == BT_TYPE_FREE);
400
401 LIST_REMOVE(bt, bt_freelist);
402 }
403
404 static void
405 bt_insfree(vmem_t *vm, bt_t *bt)
406 {
407 struct vmem_freelist *list;
408
409 list = bt_freehead_tofree(vm, bt->bt_size);
410 LIST_INSERT_HEAD(list, bt, bt_freelist);
411 }
412
413 /* ---- vmem internal functions */
414
415 #if defined(_KERNEL)
416 static kmutex_t vmem_list_lock;
417 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
418 #endif /* defined(_KERNEL) */
419
420 #if defined(QCACHE)
421 static inline vm_flag_t
422 prf_to_vmf(int prflags)
423 {
424 vm_flag_t vmflags;
425
426 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
427 if ((prflags & PR_WAITOK) != 0) {
428 vmflags = VM_SLEEP;
429 } else {
430 vmflags = VM_NOSLEEP;
431 }
432 return vmflags;
433 }
434
435 static inline int
436 vmf_to_prf(vm_flag_t vmflags)
437 {
438 int prflags;
439
440 if ((vmflags & VM_SLEEP) != 0) {
441 prflags = PR_WAITOK;
442 } else {
443 prflags = PR_NOWAIT;
444 }
445 return prflags;
446 }
447
448 static size_t
449 qc_poolpage_size(size_t qcache_max)
450 {
451 int i;
452
453 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
454 /* nothing */
455 }
456 return ORDER2SIZE(i);
457 }
458
459 static void *
460 qc_poolpage_alloc(struct pool *pool, int prflags)
461 {
462 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
463 vmem_t *vm = qc->qc_vmem;
464
465 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
466 prf_to_vmf(prflags) | VM_INSTANTFIT);
467 }
468
469 static void
470 qc_poolpage_free(struct pool *pool, void *addr)
471 {
472 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
473 vmem_t *vm = qc->qc_vmem;
474
475 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
476 }
477
478 static void
479 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
480 {
481 qcache_t *prevqc;
482 struct pool_allocator *pa;
483 int qcache_idx_max;
484 int i;
485
486 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
487 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
488 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
489 }
490 vm->vm_qcache_max = qcache_max;
491 pa = &vm->vm_qcache_allocator;
492 memset(pa, 0, sizeof(*pa));
493 pa->pa_alloc = qc_poolpage_alloc;
494 pa->pa_free = qc_poolpage_free;
495 pa->pa_pagesz = qc_poolpage_size(qcache_max);
496
497 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
498 prevqc = NULL;
499 for (i = qcache_idx_max; i > 0; i--) {
500 qcache_t *qc = &vm->vm_qcache_store[i - 1];
501 size_t size = i << vm->vm_quantum_shift;
502
503 qc->qc_vmem = vm;
504 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
505 vm->vm_name, size);
506 qc->qc_cache = pool_cache_init(size,
507 ORDER2SIZE(vm->vm_quantum_shift), 0,
508 PR_NOALIGN | PR_NOTOUCH /* XXX */,
509 qc->qc_name, pa, ipl, NULL, NULL, NULL);
510 KASSERT(qc->qc_cache != NULL); /* XXX */
511 if (prevqc != NULL &&
512 qc->qc_cache->pc_pool.pr_itemsperpage ==
513 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
514 pool_cache_destroy(qc->qc_cache);
515 vm->vm_qcache[i - 1] = prevqc;
516 continue;
517 }
518 qc->qc_cache->pc_pool.pr_qcache = qc;
519 vm->vm_qcache[i - 1] = qc;
520 prevqc = qc;
521 }
522 }
523
524 static void
525 qc_destroy(vmem_t *vm)
526 {
527 const qcache_t *prevqc;
528 int i;
529 int qcache_idx_max;
530
531 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
532 prevqc = NULL;
533 for (i = 0; i < qcache_idx_max; i++) {
534 qcache_t *qc = vm->vm_qcache[i];
535
536 if (prevqc == qc) {
537 continue;
538 }
539 pool_cache_destroy(qc->qc_cache);
540 prevqc = qc;
541 }
542 }
543
544 static bool
545 qc_reap(vmem_t *vm)
546 {
547 const qcache_t *prevqc;
548 int i;
549 int qcache_idx_max;
550 bool didsomething = false;
551
552 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
553 prevqc = NULL;
554 for (i = 0; i < qcache_idx_max; i++) {
555 qcache_t *qc = vm->vm_qcache[i];
556
557 if (prevqc == qc) {
558 continue;
559 }
560 if (pool_cache_reclaim(qc->qc_cache) != 0) {
561 didsomething = true;
562 }
563 prevqc = qc;
564 }
565
566 return didsomething;
567 }
568 #endif /* defined(QCACHE) */
569
570 #if defined(_KERNEL)
571 static int
572 vmem_init(void)
573 {
574
575 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
576 pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
577 NULL, IPL_VM, NULL, NULL, NULL);
578 return 0;
579 }
580 #endif /* defined(_KERNEL) */
581
582 static vmem_addr_t
583 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
584 int spanbttype)
585 {
586 bt_t *btspan;
587 bt_t *btfree;
588
589 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
590 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
591 KASSERT(spanbttype == BT_TYPE_SPAN ||
592 spanbttype == BT_TYPE_SPAN_STATIC);
593
594 btspan = bt_alloc(vm, flags);
595 if (btspan == NULL) {
596 return VMEM_ADDR_NULL;
597 }
598 btfree = bt_alloc(vm, flags);
599 if (btfree == NULL) {
600 bt_free(vm, btspan);
601 return VMEM_ADDR_NULL;
602 }
603
604 btspan->bt_type = spanbttype;
605 btspan->bt_start = addr;
606 btspan->bt_size = size;
607
608 btfree->bt_type = BT_TYPE_FREE;
609 btfree->bt_start = addr;
610 btfree->bt_size = size;
611
612 VMEM_LOCK(vm);
613 bt_insseg_tail(vm, btspan);
614 bt_insseg(vm, btfree, btspan);
615 bt_insfree(vm, btfree);
616 VMEM_UNLOCK(vm);
617
618 return addr;
619 }
620
621 static void
622 vmem_destroy1(vmem_t *vm)
623 {
624
625 #if defined(QCACHE)
626 qc_destroy(vm);
627 #endif /* defined(QCACHE) */
628 if (vm->vm_hashlist != NULL) {
629 int i;
630
631 for (i = 0; i < vm->vm_hashsize; i++) {
632 bt_t *bt;
633
634 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
635 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
636 bt_free(vm, bt);
637 }
638 }
639 xfree(vm->vm_hashlist);
640 }
641 VMEM_LOCK_DESTROY(vm);
642 xfree(vm);
643 }
644
645 static int
646 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
647 {
648 vmem_addr_t addr;
649
650 if (vm->vm_allocfn == NULL) {
651 return EINVAL;
652 }
653
654 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
655 if (addr == VMEM_ADDR_NULL) {
656 return ENOMEM;
657 }
658
659 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
660 (*vm->vm_freefn)(vm->vm_source, addr, size);
661 return ENOMEM;
662 }
663
664 return 0;
665 }
666
667 static int
668 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
669 {
670 bt_t *bt;
671 int i;
672 struct vmem_hashlist *newhashlist;
673 struct vmem_hashlist *oldhashlist;
674 size_t oldhashsize;
675
676 KASSERT(newhashsize > 0);
677
678 newhashlist =
679 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
680 if (newhashlist == NULL) {
681 return ENOMEM;
682 }
683 for (i = 0; i < newhashsize; i++) {
684 LIST_INIT(&newhashlist[i]);
685 }
686
687 if (!VMEM_TRYLOCK(vm)) {
688 xfree(newhashlist);
689 return EBUSY;
690 }
691 oldhashlist = vm->vm_hashlist;
692 oldhashsize = vm->vm_hashsize;
693 vm->vm_hashlist = newhashlist;
694 vm->vm_hashsize = newhashsize;
695 if (oldhashlist == NULL) {
696 VMEM_UNLOCK(vm);
697 return 0;
698 }
699 for (i = 0; i < oldhashsize; i++) {
700 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
701 bt_rembusy(vm, bt); /* XXX */
702 bt_insbusy(vm, bt);
703 }
704 }
705 VMEM_UNLOCK(vm);
706
707 xfree(oldhashlist);
708
709 return 0;
710 }
711
712 /*
713 * vmem_fit: check if a bt can satisfy the given restrictions.
714 *
715 * it's a caller's responsibility to ensure the region is big enough
716 * before calling us.
717 */
718
719 static vmem_addr_t
720 vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
721 vmem_size_t phase, vmem_size_t nocross,
722 vmem_addr_t minaddr, vmem_addr_t maxaddr)
723 {
724 vmem_addr_t start;
725 vmem_addr_t end;
726
727 KASSERT(size > 0);
728 KASSERT(bt->bt_size >= size); /* caller's responsibility */
729
730 /*
731 * XXX assumption: vmem_addr_t and vmem_size_t are
732 * unsigned integer of the same size.
733 */
734
735 start = bt->bt_start;
736 if (start < minaddr) {
737 start = minaddr;
738 }
739 end = BT_END(bt);
740 if (end > maxaddr) {
741 end = maxaddr;
742 }
743 if (start > end) {
744 return VMEM_ADDR_NULL;
745 }
746
747 start = VMEM_ALIGNUP(start - phase, align) + phase;
748 if (start < bt->bt_start) {
749 start += align;
750 }
751 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
752 KASSERT(align < nocross);
753 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
754 }
755 if (start <= end && end - start >= size - 1) {
756 KASSERT((start & (align - 1)) == phase);
757 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
758 KASSERT(minaddr <= start);
759 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
760 KASSERT(bt->bt_start <= start);
761 KASSERT(BT_END(bt) - start >= size - 1);
762 return start;
763 }
764 return VMEM_ADDR_NULL;
765 }
766
767 /* ---- vmem API */
768
769 /*
770 * vmem_create: create an arena.
771 *
772 * => must not be called from interrupt context.
773 */
774
775 vmem_t *
776 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
777 vmem_size_t quantum,
778 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
779 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
780 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
781 int ipl)
782 {
783 vmem_t *vm;
784 int i;
785 #if defined(_KERNEL)
786 static ONCE_DECL(control);
787 #endif /* defined(_KERNEL) */
788
789 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
790 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
791
792 #if defined(_KERNEL)
793 if (RUN_ONCE(&control, vmem_init)) {
794 return NULL;
795 }
796 #endif /* defined(_KERNEL) */
797 vm = xmalloc(sizeof(*vm), flags);
798 if (vm == NULL) {
799 return NULL;
800 }
801
802 VMEM_LOCK_INIT(vm, ipl);
803 vm->vm_name = name;
804 vm->vm_quantum_mask = quantum - 1;
805 vm->vm_quantum_shift = calc_order(quantum);
806 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
807 vm->vm_allocfn = allocfn;
808 vm->vm_freefn = freefn;
809 vm->vm_source = source;
810 vm->vm_nbusytag = 0;
811 #if defined(QCACHE)
812 qc_init(vm, qcache_max, ipl);
813 #endif /* defined(QCACHE) */
814
815 CIRCLEQ_INIT(&vm->vm_seglist);
816 for (i = 0; i < VMEM_MAXORDER; i++) {
817 LIST_INIT(&vm->vm_freelist[i]);
818 }
819 vm->vm_hashlist = NULL;
820 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
821 vmem_destroy1(vm);
822 return NULL;
823 }
824
825 if (size != 0) {
826 if (vmem_add(vm, base, size, flags) == 0) {
827 vmem_destroy1(vm);
828 return NULL;
829 }
830 }
831
832 #if defined(_KERNEL)
833 mutex_enter(&vmem_list_lock);
834 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
835 mutex_exit(&vmem_list_lock);
836 #endif /* defined(_KERNEL) */
837
838 return vm;
839 }
840
841 void
842 vmem_destroy(vmem_t *vm)
843 {
844
845 #if defined(_KERNEL)
846 mutex_enter(&vmem_list_lock);
847 LIST_REMOVE(vm, vm_alllist);
848 mutex_exit(&vmem_list_lock);
849 #endif /* defined(_KERNEL) */
850
851 vmem_destroy1(vm);
852 }
853
854 vmem_size_t
855 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
856 {
857
858 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
859 }
860
861 /*
862 * vmem_alloc:
863 *
864 * => caller must ensure appropriate spl,
865 * if the arena can be accessed from interrupt context.
866 */
867
868 vmem_addr_t
869 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
870 {
871 const vm_flag_t strat __unused = flags & VM_FITMASK;
872
873 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
874 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
875
876 KASSERT(size > 0);
877 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
878 if ((flags & VM_SLEEP) != 0) {
879 ASSERT_SLEEPABLE();
880 }
881
882 #if defined(QCACHE)
883 if (size <= vm->vm_qcache_max) {
884 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
885 qcache_t *qc = vm->vm_qcache[qidx - 1];
886
887 return (vmem_addr_t)pool_cache_get(qc->qc_cache,
888 vmf_to_prf(flags));
889 }
890 #endif /* defined(QCACHE) */
891
892 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
893 flags);
894 }
895
896 vmem_addr_t
897 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
898 const vmem_size_t phase, const vmem_size_t nocross,
899 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags)
900 {
901 struct vmem_freelist *list;
902 struct vmem_freelist *first;
903 struct vmem_freelist *end;
904 bt_t *bt;
905 bt_t *btnew;
906 bt_t *btnew2;
907 const vmem_size_t size = vmem_roundup_size(vm, size0);
908 vm_flag_t strat = flags & VM_FITMASK;
909 vmem_addr_t start;
910
911 KASSERT(size0 > 0);
912 KASSERT(size > 0);
913 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
914 if ((flags & VM_SLEEP) != 0) {
915 ASSERT_SLEEPABLE();
916 }
917 KASSERT((align & vm->vm_quantum_mask) == 0);
918 KASSERT((align & (align - 1)) == 0);
919 KASSERT((phase & vm->vm_quantum_mask) == 0);
920 KASSERT((nocross & vm->vm_quantum_mask) == 0);
921 KASSERT((nocross & (nocross - 1)) == 0);
922 KASSERT((align == 0 && phase == 0) || phase < align);
923 KASSERT(nocross == 0 || nocross >= size);
924 KASSERT(minaddr <= maxaddr);
925 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
926
927 if (align == 0) {
928 align = vm->vm_quantum_mask + 1;
929 }
930
931 /*
932 * allocate boundary tags before acquiring the vmem lock.
933 */
934 btnew = bt_alloc(vm, flags);
935 if (btnew == NULL) {
936 return VMEM_ADDR_NULL;
937 }
938 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
939 if (btnew2 == NULL) {
940 bt_free(vm, btnew);
941 return VMEM_ADDR_NULL;
942 }
943
944 /*
945 * choose a free block from which we allocate.
946 */
947 retry_strat:
948 first = bt_freehead_toalloc(vm, size, strat);
949 end = &vm->vm_freelist[VMEM_MAXORDER];
950 retry:
951 bt = NULL;
952 VMEM_LOCK(vm);
953 vmem_check(vm);
954 if (strat == VM_INSTANTFIT) {
955 /*
956 * just choose the first block which satisfies our restrictions.
957 *
958 * note that we don't need to check the size of the blocks
959 * because any blocks found on these list should be larger than
960 * the given size.
961 */
962 for (list = first; list < end; list++) {
963 bt = LIST_FIRST(list);
964 if (bt != NULL) {
965 start = vmem_fit(bt, size, align, phase,
966 nocross, minaddr, maxaddr);
967 if (start != VMEM_ADDR_NULL) {
968 goto gotit;
969 }
970 /*
971 * don't bother to follow the bt_freelist link
972 * here. the list can be very long and we are
973 * told to run fast. blocks from the later free
974 * lists are larger and have better chances to
975 * satisfy our restrictions.
976 */
977 }
978 }
979 } else { /* VM_BESTFIT */
980 /*
981 * we assume that, for space efficiency, it's better to
982 * allocate from a smaller block. thus we will start searching
983 * from the lower-order list than VM_INSTANTFIT.
984 * however, don't bother to find the smallest block in a free
985 * list because the list can be very long. we can revisit it
986 * if/when it turns out to be a problem.
987 *
988 * note that the 'first' list can contain blocks smaller than
989 * the requested size. thus we need to check bt_size.
990 */
991 for (list = first; list < end; list++) {
992 LIST_FOREACH(bt, list, bt_freelist) {
993 if (bt->bt_size >= size) {
994 start = vmem_fit(bt, size, align, phase,
995 nocross, minaddr, maxaddr);
996 if (start != VMEM_ADDR_NULL) {
997 goto gotit;
998 }
999 }
1000 }
1001 }
1002 }
1003 VMEM_UNLOCK(vm);
1004 #if 1
1005 if (strat == VM_INSTANTFIT) {
1006 strat = VM_BESTFIT;
1007 goto retry_strat;
1008 }
1009 #endif
1010 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
1011 nocross != 0) {
1012
1013 /*
1014 * XXX should try to import a region large enough to
1015 * satisfy restrictions?
1016 */
1017
1018 goto fail;
1019 }
1020 /* XXX eeek, minaddr & maxaddr not respected */
1021 if (vmem_import(vm, size, flags) == 0) {
1022 goto retry;
1023 }
1024 /* XXX */
1025 fail:
1026 bt_free(vm, btnew);
1027 bt_free(vm, btnew2);
1028 return VMEM_ADDR_NULL;
1029
1030 gotit:
1031 KASSERT(bt->bt_type == BT_TYPE_FREE);
1032 KASSERT(bt->bt_size >= size);
1033 bt_remfree(vm, bt);
1034 vmem_check(vm);
1035 if (bt->bt_start != start) {
1036 btnew2->bt_type = BT_TYPE_FREE;
1037 btnew2->bt_start = bt->bt_start;
1038 btnew2->bt_size = start - bt->bt_start;
1039 bt->bt_start = start;
1040 bt->bt_size -= btnew2->bt_size;
1041 bt_insfree(vm, btnew2);
1042 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1043 btnew2 = NULL;
1044 vmem_check(vm);
1045 }
1046 KASSERT(bt->bt_start == start);
1047 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1048 /* split */
1049 btnew->bt_type = BT_TYPE_BUSY;
1050 btnew->bt_start = bt->bt_start;
1051 btnew->bt_size = size;
1052 bt->bt_start = bt->bt_start + size;
1053 bt->bt_size -= size;
1054 bt_insfree(vm, bt);
1055 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1056 bt_insbusy(vm, btnew);
1057 vmem_check(vm);
1058 VMEM_UNLOCK(vm);
1059 } else {
1060 bt->bt_type = BT_TYPE_BUSY;
1061 bt_insbusy(vm, bt);
1062 vmem_check(vm);
1063 VMEM_UNLOCK(vm);
1064 bt_free(vm, btnew);
1065 btnew = bt;
1066 }
1067 if (btnew2 != NULL) {
1068 bt_free(vm, btnew2);
1069 }
1070 KASSERT(btnew->bt_size >= size);
1071 btnew->bt_type = BT_TYPE_BUSY;
1072
1073 return btnew->bt_start;
1074 }
1075
1076 /*
1077 * vmem_free:
1078 *
1079 * => caller must ensure appropriate spl,
1080 * if the arena can be accessed from interrupt context.
1081 */
1082
1083 void
1084 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1085 {
1086
1087 KASSERT(addr != VMEM_ADDR_NULL);
1088 KASSERT(size > 0);
1089
1090 #if defined(QCACHE)
1091 if (size <= vm->vm_qcache_max) {
1092 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1093 qcache_t *qc = vm->vm_qcache[qidx - 1];
1094
1095 return pool_cache_put(qc->qc_cache, (void *)addr);
1096 }
1097 #endif /* defined(QCACHE) */
1098
1099 vmem_xfree(vm, addr, size);
1100 }
1101
1102 void
1103 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1104 {
1105 bt_t *bt;
1106 bt_t *t;
1107
1108 KASSERT(addr != VMEM_ADDR_NULL);
1109 KASSERT(size > 0);
1110
1111 VMEM_LOCK(vm);
1112
1113 bt = bt_lookupbusy(vm, addr);
1114 KASSERT(bt != NULL);
1115 KASSERT(bt->bt_start == addr);
1116 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1117 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1118 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1119 bt_rembusy(vm, bt);
1120 bt->bt_type = BT_TYPE_FREE;
1121
1122 /* coalesce */
1123 t = CIRCLEQ_NEXT(bt, bt_seglist);
1124 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1125 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1126 bt_remfree(vm, t);
1127 bt_remseg(vm, t);
1128 bt->bt_size += t->bt_size;
1129 bt_free(vm, t);
1130 }
1131 t = CIRCLEQ_PREV(bt, bt_seglist);
1132 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1133 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1134 bt_remfree(vm, t);
1135 bt_remseg(vm, t);
1136 bt->bt_size += t->bt_size;
1137 bt->bt_start = t->bt_start;
1138 bt_free(vm, t);
1139 }
1140
1141 t = CIRCLEQ_PREV(bt, bt_seglist);
1142 KASSERT(t != NULL);
1143 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1144 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1145 t->bt_size == bt->bt_size) {
1146 vmem_addr_t spanaddr;
1147 vmem_size_t spansize;
1148
1149 KASSERT(t->bt_start == bt->bt_start);
1150 spanaddr = bt->bt_start;
1151 spansize = bt->bt_size;
1152 bt_remseg(vm, bt);
1153 bt_free(vm, bt);
1154 bt_remseg(vm, t);
1155 bt_free(vm, t);
1156 VMEM_UNLOCK(vm);
1157 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
1158 } else {
1159 bt_insfree(vm, bt);
1160 VMEM_UNLOCK(vm);
1161 }
1162 }
1163
1164 /*
1165 * vmem_add:
1166 *
1167 * => caller must ensure appropriate spl,
1168 * if the arena can be accessed from interrupt context.
1169 */
1170
1171 vmem_addr_t
1172 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1173 {
1174
1175 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1176 }
1177
1178 /*
1179 * vmem_reap: reap unused resources.
1180 *
1181 * => return true if we successfully reaped something.
1182 */
1183
1184 bool
1185 vmem_reap(vmem_t *vm)
1186 {
1187 bool didsomething = false;
1188
1189 #if defined(QCACHE)
1190 didsomething = qc_reap(vm);
1191 #endif /* defined(QCACHE) */
1192 return didsomething;
1193 }
1194
1195 /* ---- rehash */
1196
1197 #if defined(_KERNEL)
1198 static struct callout vmem_rehash_ch;
1199 static int vmem_rehash_interval;
1200 static struct workqueue *vmem_rehash_wq;
1201 static struct work vmem_rehash_wk;
1202
1203 static void
1204 vmem_rehash_all(struct work *wk, void *dummy)
1205 {
1206 vmem_t *vm;
1207
1208 KASSERT(wk == &vmem_rehash_wk);
1209 mutex_enter(&vmem_list_lock);
1210 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1211 size_t desired;
1212 size_t current;
1213
1214 if (!VMEM_TRYLOCK(vm)) {
1215 continue;
1216 }
1217 desired = vm->vm_nbusytag;
1218 current = vm->vm_hashsize;
1219 VMEM_UNLOCK(vm);
1220
1221 if (desired > VMEM_HASHSIZE_MAX) {
1222 desired = VMEM_HASHSIZE_MAX;
1223 } else if (desired < VMEM_HASHSIZE_MIN) {
1224 desired = VMEM_HASHSIZE_MIN;
1225 }
1226 if (desired > current * 2 || desired * 2 < current) {
1227 vmem_rehash(vm, desired, VM_NOSLEEP);
1228 }
1229 }
1230 mutex_exit(&vmem_list_lock);
1231
1232 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1233 }
1234
1235 static void
1236 vmem_rehash_all_kick(void *dummy)
1237 {
1238
1239 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1240 }
1241
1242 void
1243 vmem_rehash_start(void)
1244 {
1245 int error;
1246
1247 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1248 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1249 if (error) {
1250 panic("%s: workqueue_create %d\n", __func__, error);
1251 }
1252 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1253 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1254
1255 vmem_rehash_interval = hz * 10;
1256 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1257 }
1258 #endif /* defined(_KERNEL) */
1259
1260 /* ---- debug */
1261
1262 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1263
1264 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1265
1266 static const char *
1267 bt_type_string(int type)
1268 {
1269 static const char * const table[] = {
1270 [BT_TYPE_BUSY] = "busy",
1271 [BT_TYPE_FREE] = "free",
1272 [BT_TYPE_SPAN] = "span",
1273 [BT_TYPE_SPAN_STATIC] = "static span",
1274 };
1275
1276 if (type >= __arraycount(table)) {
1277 return "BOGUS";
1278 }
1279 return table[type];
1280 }
1281
1282 static void
1283 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1284 {
1285
1286 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1287 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1288 bt->bt_type, bt_type_string(bt->bt_type));
1289 }
1290
1291 static void
1292 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1293 {
1294 const bt_t *bt;
1295 int i;
1296
1297 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1298 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1299 bt_dump(bt, pr);
1300 }
1301
1302 for (i = 0; i < VMEM_MAXORDER; i++) {
1303 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1304
1305 if (LIST_EMPTY(fl)) {
1306 continue;
1307 }
1308
1309 (*pr)("freelist[%d]\n", i);
1310 LIST_FOREACH(bt, fl, bt_freelist) {
1311 bt_dump(bt, pr);
1312 }
1313 }
1314 }
1315
1316 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1317
1318 #if defined(DDB)
1319 static bt_t *
1320 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1321 {
1322 bt_t *bt;
1323
1324 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1325 if (BT_ISSPAN_P(bt)) {
1326 continue;
1327 }
1328 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1329 return bt;
1330 }
1331 }
1332
1333 return NULL;
1334 }
1335
1336 void
1337 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1338 {
1339 vmem_t *vm;
1340
1341 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1342 bt_t *bt;
1343
1344 bt = vmem_whatis_lookup(vm, addr);
1345 if (bt == NULL) {
1346 continue;
1347 }
1348 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1349 (void *)addr, (void *)bt->bt_start,
1350 (size_t)(addr - bt->bt_start), vm->vm_name,
1351 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1352 }
1353 }
1354
1355 void
1356 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1357 {
1358 const vmem_t *vm;
1359
1360 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1361 vmem_dump(vm, pr);
1362 }
1363 }
1364
1365 void
1366 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1367 {
1368 const vmem_t *vm = (const void *)addr;
1369
1370 vmem_dump(vm, pr);
1371 }
1372 #endif /* defined(DDB) */
1373
1374 #if defined(_KERNEL)
1375 #define vmem_printf printf
1376 #else
1377 #include <stdio.h>
1378 #include <stdarg.h>
1379
1380 static void
1381 vmem_printf(const char *fmt, ...)
1382 {
1383 va_list ap;
1384 va_start(ap, fmt);
1385 vprintf(fmt, ap);
1386 va_end(ap);
1387 }
1388 #endif
1389
1390 #if defined(VMEM_SANITY)
1391
1392 static bool
1393 vmem_check_sanity(vmem_t *vm)
1394 {
1395 const bt_t *bt, *bt2;
1396
1397 KASSERT(vm != NULL);
1398
1399 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1400 if (bt->bt_start > BT_END(bt)) {
1401 printf("corrupted tag\n");
1402 bt_dump(bt, vmem_printf);
1403 return false;
1404 }
1405 }
1406 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1407 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1408 if (bt == bt2) {
1409 continue;
1410 }
1411 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1412 continue;
1413 }
1414 if (bt->bt_start <= BT_END(bt2) &&
1415 bt2->bt_start <= BT_END(bt)) {
1416 printf("overwrapped tags\n");
1417 bt_dump(bt, vmem_printf);
1418 bt_dump(bt2, vmem_printf);
1419 return false;
1420 }
1421 }
1422 }
1423
1424 return true;
1425 }
1426
1427 static void
1428 vmem_check(vmem_t *vm)
1429 {
1430
1431 if (!vmem_check_sanity(vm)) {
1432 panic("insanity vmem %p", vm);
1433 }
1434 }
1435
1436 #endif /* defined(VMEM_SANITY) */
1437
1438 #if defined(UNITTEST)
1439 int
1440 main(void)
1441 {
1442 vmem_t *vm;
1443 vmem_addr_t p;
1444 struct reg {
1445 vmem_addr_t p;
1446 vmem_size_t sz;
1447 bool x;
1448 } *reg = NULL;
1449 int nreg = 0;
1450 int nalloc = 0;
1451 int nfree = 0;
1452 vmem_size_t total = 0;
1453 #if 1
1454 vm_flag_t strat = VM_INSTANTFIT;
1455 #else
1456 vm_flag_t strat = VM_BESTFIT;
1457 #endif
1458
1459 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1460 NULL, NULL, NULL, 0, VM_SLEEP, 0/*XXX*/);
1461 if (vm == NULL) {
1462 printf("vmem_create\n");
1463 exit(EXIT_FAILURE);
1464 }
1465 vmem_dump(vm, vmem_printf);
1466
1467 p = vmem_add(vm, 100, 200, VM_SLEEP);
1468 assert(p != VMEM_ADDR_NULL);
1469 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1470 assert(p != VMEM_ADDR_NULL);
1471 p = vmem_add(vm, 40000, 65536, VM_SLEEP);
1472 assert(p != VMEM_ADDR_NULL);
1473 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1474 assert(p != VMEM_ADDR_NULL);
1475 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1476 assert(p != VMEM_ADDR_NULL);
1477 p = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1478 assert(p != VMEM_ADDR_NULL);
1479 p = vmem_xalloc(vm, 0x101, 0, 0, 0,
1480 0xffffff00, 0xffffffff, strat|VM_SLEEP);
1481 assert(p == VMEM_ADDR_NULL);
1482 p = vmem_xalloc(vm, 0x100, 0, 0, 0,
1483 0xffffff01, 0xffffffff, strat|VM_SLEEP);
1484 assert(p == VMEM_ADDR_NULL);
1485 p = vmem_xalloc(vm, 0x100, 0, 0, 0,
1486 0xffffff00, 0xfffffffe, strat|VM_SLEEP);
1487 assert(p == VMEM_ADDR_NULL);
1488 p = vmem_xalloc(vm, 0x100, 0, 0, 0,
1489 0xffffff00, 0xffffffff, strat|VM_SLEEP);
1490 assert(p != VMEM_ADDR_NULL);
1491 vmem_dump(vm, vmem_printf);
1492 for (;;) {
1493 struct reg *r;
1494 int t = rand() % 100;
1495
1496 if (t > 45) {
1497 /* alloc */
1498 vmem_size_t sz = rand() % 500 + 1;
1499 bool x;
1500 vmem_size_t align, phase, nocross;
1501 vmem_addr_t minaddr, maxaddr;
1502
1503 if (t > 70) {
1504 x = true;
1505 /* XXX */
1506 align = 1 << (rand() % 15);
1507 phase = rand() % 65536;
1508 nocross = 1 << (rand() % 15);
1509 if (align <= phase) {
1510 phase = 0;
1511 }
1512 if (VMEM_CROSS_P(phase, phase + sz - 1,
1513 nocross)) {
1514 nocross = 0;
1515 }
1516 do {
1517 minaddr = rand() % 50000;
1518 maxaddr = rand() % 70000;
1519 } while (minaddr > maxaddr);
1520 printf("=== xalloc %" PRIu64
1521 " align=%" PRIu64 ", phase=%" PRIu64
1522 ", nocross=%" PRIu64 ", min=%" PRIu64
1523 ", max=%" PRIu64 "\n",
1524 (uint64_t)sz,
1525 (uint64_t)align,
1526 (uint64_t)phase,
1527 (uint64_t)nocross,
1528 (uint64_t)minaddr,
1529 (uint64_t)maxaddr);
1530 p = vmem_xalloc(vm, sz, align, phase, nocross,
1531 minaddr, maxaddr, strat|VM_SLEEP);
1532 } else {
1533 x = false;
1534 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1535 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1536 }
1537 printf("-> %" PRIu64 "\n", (uint64_t)p);
1538 vmem_dump(vm, vmem_printf);
1539 if (p == VMEM_ADDR_NULL) {
1540 if (x) {
1541 continue;
1542 }
1543 break;
1544 }
1545 nreg++;
1546 reg = realloc(reg, sizeof(*reg) * nreg);
1547 r = ®[nreg - 1];
1548 r->p = p;
1549 r->sz = sz;
1550 r->x = x;
1551 total += sz;
1552 nalloc++;
1553 } else if (nreg != 0) {
1554 /* free */
1555 r = ®[rand() % nreg];
1556 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1557 (uint64_t)r->p, (uint64_t)r->sz);
1558 if (r->x) {
1559 vmem_xfree(vm, r->p, r->sz);
1560 } else {
1561 vmem_free(vm, r->p, r->sz);
1562 }
1563 total -= r->sz;
1564 vmem_dump(vm, vmem_printf);
1565 *r = reg[nreg - 1];
1566 nreg--;
1567 nfree++;
1568 }
1569 printf("total=%" PRIu64 "\n", (uint64_t)total);
1570 }
1571 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1572 (uint64_t)total, nalloc, nfree);
1573 exit(EXIT_SUCCESS);
1574 }
1575 #endif /* defined(UNITTEST) */
1576