subr_vmem.c revision 1.61 1 /* $NetBSD: subr_vmem.c,v 1.61 2011/09/02 22:25:08 dyoung Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.61 2011/09/02 22:25:08 dyoung Exp $");
42
43 #if defined(_KERNEL)
44 #include "opt_ddb.h"
45 #define QCACHE
46 #endif /* defined(_KERNEL) */
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/queue.h>
51
52 #if defined(_KERNEL)
53 #include <sys/systm.h>
54 #include <sys/kernel.h> /* hz */
55 #include <sys/callout.h>
56 #include <sys/malloc.h>
57 #include <sys/once.h>
58 #include <sys/pool.h>
59 #include <sys/vmem.h>
60 #include <sys/workqueue.h>
61 #else /* defined(_KERNEL) */
62 #include "../sys/vmem.h"
63 #endif /* defined(_KERNEL) */
64
65 #if defined(_KERNEL)
66 #define LOCK_DECL(name) \
67 kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
68 #else /* defined(_KERNEL) */
69 #include <errno.h>
70 #include <assert.h>
71 #include <stdlib.h>
72
73 #define UNITTEST
74 #define KASSERT(a) assert(a)
75 #define LOCK_DECL(name) /* nothing */
76 #define mutex_init(a, b, c) /* nothing */
77 #define mutex_destroy(a) /* nothing */
78 #define mutex_enter(a) /* nothing */
79 #define mutex_tryenter(a) true
80 #define mutex_exit(a) /* nothing */
81 #define mutex_owned(a) /* nothing */
82 #define ASSERT_SLEEPABLE() /* nothing */
83 #define panic(...) printf(__VA_ARGS__); abort()
84 #endif /* defined(_KERNEL) */
85
86 struct vmem;
87 struct vmem_btag;
88
89 #if defined(VMEM_SANITY)
90 static void vmem_check(vmem_t *);
91 #else /* defined(VMEM_SANITY) */
92 #define vmem_check(vm) /* nothing */
93 #endif /* defined(VMEM_SANITY) */
94
95 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
96
97 #define VMEM_HASHSIZE_MIN 1 /* XXX */
98 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
99 #define VMEM_HASHSIZE_INIT 128
100
101 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
102
103 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
104 LIST_HEAD(vmem_freelist, vmem_btag);
105 LIST_HEAD(vmem_hashlist, vmem_btag);
106
107 #if defined(QCACHE)
108 #define VMEM_QCACHE_IDX_MAX 32
109
110 #define QC_NAME_MAX 16
111
112 struct qcache {
113 pool_cache_t qc_cache;
114 vmem_t *qc_vmem;
115 char qc_name[QC_NAME_MAX];
116 };
117 typedef struct qcache qcache_t;
118 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
119 #endif /* defined(QCACHE) */
120
121 /* vmem arena */
122 struct vmem {
123 LOCK_DECL(vm_lock);
124 int (*vm_importfn)(void *, vmem_size_t, vmem_size_t *,
125 vm_flag_t, vmem_addr_t *);
126 void (*vm_releasefn)(void *, vmem_addr_t, vmem_size_t);
127 vmem_t *vm_source;
128 void *vm_arg;
129 struct vmem_seglist vm_seglist;
130 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
131 size_t vm_hashsize;
132 size_t vm_nbusytag;
133 struct vmem_hashlist *vm_hashlist;
134 size_t vm_quantum_mask;
135 int vm_quantum_shift;
136 const char *vm_name;
137 LIST_ENTRY(vmem) vm_alllist;
138
139 #if defined(QCACHE)
140 /* quantum cache */
141 size_t vm_qcache_max;
142 struct pool_allocator vm_qcache_allocator;
143 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
144 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
145 #endif /* defined(QCACHE) */
146 };
147
148 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
149 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
150 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
151 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
152 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
153 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
154
155 /* boundary tag */
156 struct vmem_btag {
157 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
158 union {
159 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
160 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
161 } bt_u;
162 #define bt_hashlist bt_u.u_hashlist
163 #define bt_freelist bt_u.u_freelist
164 vmem_addr_t bt_start;
165 vmem_size_t bt_size;
166 int bt_type;
167 };
168
169 #define BT_TYPE_SPAN 1
170 #define BT_TYPE_SPAN_STATIC 2
171 #define BT_TYPE_FREE 3
172 #define BT_TYPE_BUSY 4
173 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
174
175 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
176
177 typedef struct vmem_btag bt_t;
178
179 /* ---- misc */
180
181 #define VMEM_ALIGNUP(addr, align) \
182 (-(-(addr) & -(align)))
183 #define VMEM_CROSS_P(addr1, addr2, boundary) \
184 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
185
186 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
187
188 static int
189 calc_order(vmem_size_t size)
190 {
191 vmem_size_t target;
192 int i;
193
194 KASSERT(size != 0);
195
196 i = 0;
197 target = size >> 1;
198 while (ORDER2SIZE(i) <= target) {
199 i++;
200 }
201
202 KASSERT(ORDER2SIZE(i) <= size);
203 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
204
205 return i;
206 }
207
208 #if defined(_KERNEL)
209 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
210 #endif /* defined(_KERNEL) */
211
212 static void *
213 xmalloc(size_t sz, vm_flag_t flags)
214 {
215
216 #if defined(_KERNEL)
217 return malloc(sz, M_VMEM,
218 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
219 #else /* defined(_KERNEL) */
220 return malloc(sz);
221 #endif /* defined(_KERNEL) */
222 }
223
224 static void
225 xfree(void *p)
226 {
227
228 #if defined(_KERNEL)
229 return free(p, M_VMEM);
230 #else /* defined(_KERNEL) */
231 return free(p);
232 #endif /* defined(_KERNEL) */
233 }
234
235 /* ---- boundary tag */
236
237 #if defined(_KERNEL)
238 static struct pool_cache bt_cache;
239 #endif /* defined(_KERNEL) */
240
241 static bt_t *
242 bt_alloc(vmem_t *vm, vm_flag_t flags)
243 {
244 bt_t *bt;
245
246 #if defined(_KERNEL)
247 bt = pool_cache_get(&bt_cache,
248 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
249 #else /* defined(_KERNEL) */
250 bt = malloc(sizeof *bt);
251 #endif /* defined(_KERNEL) */
252
253 return bt;
254 }
255
256 static void
257 bt_free(vmem_t *vm, bt_t *bt)
258 {
259
260 #if defined(_KERNEL)
261 pool_cache_put(&bt_cache, bt);
262 #else /* defined(_KERNEL) */
263 free(bt);
264 #endif /* defined(_KERNEL) */
265 }
266
267 /*
268 * freelist[0] ... [1, 1]
269 * freelist[1] ... [2, 3]
270 * freelist[2] ... [4, 7]
271 * freelist[3] ... [8, 15]
272 * :
273 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
274 * :
275 */
276
277 static struct vmem_freelist *
278 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
279 {
280 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
281 int idx;
282
283 KASSERT((size & vm->vm_quantum_mask) == 0);
284 KASSERT(size != 0);
285
286 idx = calc_order(qsize);
287 KASSERT(idx >= 0);
288 KASSERT(idx < VMEM_MAXORDER);
289
290 return &vm->vm_freelist[idx];
291 }
292
293 /*
294 * bt_freehead_toalloc: return the freelist for the given size and allocation
295 * strategy.
296 *
297 * for VM_INSTANTFIT, return the list in which any blocks are large enough
298 * for the requested size. otherwise, return the list which can have blocks
299 * large enough for the requested size.
300 */
301
302 static struct vmem_freelist *
303 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
304 {
305 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
306 int idx;
307
308 KASSERT((size & vm->vm_quantum_mask) == 0);
309 KASSERT(size != 0);
310
311 idx = calc_order(qsize);
312 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
313 idx++;
314 /* check too large request? */
315 }
316 KASSERT(idx >= 0);
317 KASSERT(idx < VMEM_MAXORDER);
318
319 return &vm->vm_freelist[idx];
320 }
321
322 /* ---- boundary tag hash */
323
324 static struct vmem_hashlist *
325 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
326 {
327 struct vmem_hashlist *list;
328 unsigned int hash;
329
330 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
331 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
332
333 return list;
334 }
335
336 static bt_t *
337 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
338 {
339 struct vmem_hashlist *list;
340 bt_t *bt;
341
342 list = bt_hashhead(vm, addr);
343 LIST_FOREACH(bt, list, bt_hashlist) {
344 if (bt->bt_start == addr) {
345 break;
346 }
347 }
348
349 return bt;
350 }
351
352 static void
353 bt_rembusy(vmem_t *vm, bt_t *bt)
354 {
355
356 KASSERT(vm->vm_nbusytag > 0);
357 vm->vm_nbusytag--;
358 LIST_REMOVE(bt, bt_hashlist);
359 }
360
361 static void
362 bt_insbusy(vmem_t *vm, bt_t *bt)
363 {
364 struct vmem_hashlist *list;
365
366 KASSERT(bt->bt_type == BT_TYPE_BUSY);
367
368 list = bt_hashhead(vm, bt->bt_start);
369 LIST_INSERT_HEAD(list, bt, bt_hashlist);
370 vm->vm_nbusytag++;
371 }
372
373 /* ---- boundary tag list */
374
375 static void
376 bt_remseg(vmem_t *vm, bt_t *bt)
377 {
378
379 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
380 }
381
382 static void
383 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
384 {
385
386 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
387 }
388
389 static void
390 bt_insseg_tail(vmem_t *vm, bt_t *bt)
391 {
392
393 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
394 }
395
396 static void
397 bt_remfree(vmem_t *vm, bt_t *bt)
398 {
399
400 KASSERT(bt->bt_type == BT_TYPE_FREE);
401
402 LIST_REMOVE(bt, bt_freelist);
403 }
404
405 static void
406 bt_insfree(vmem_t *vm, bt_t *bt)
407 {
408 struct vmem_freelist *list;
409
410 list = bt_freehead_tofree(vm, bt->bt_size);
411 LIST_INSERT_HEAD(list, bt, bt_freelist);
412 }
413
414 /* ---- vmem internal functions */
415
416 #if defined(_KERNEL)
417 static kmutex_t vmem_list_lock;
418 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
419 #endif /* defined(_KERNEL) */
420
421 #if defined(QCACHE)
422 static inline vm_flag_t
423 prf_to_vmf(int prflags)
424 {
425 vm_flag_t vmflags;
426
427 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
428 if ((prflags & PR_WAITOK) != 0) {
429 vmflags = VM_SLEEP;
430 } else {
431 vmflags = VM_NOSLEEP;
432 }
433 return vmflags;
434 }
435
436 static inline int
437 vmf_to_prf(vm_flag_t vmflags)
438 {
439 int prflags;
440
441 if ((vmflags & VM_SLEEP) != 0) {
442 prflags = PR_WAITOK;
443 } else {
444 prflags = PR_NOWAIT;
445 }
446 return prflags;
447 }
448
449 static size_t
450 qc_poolpage_size(size_t qcache_max)
451 {
452 int i;
453
454 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
455 /* nothing */
456 }
457 return ORDER2SIZE(i);
458 }
459
460 static void *
461 qc_poolpage_alloc(struct pool *pool, int prflags)
462 {
463 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
464 vmem_t *vm = qc->qc_vmem;
465 vmem_addr_t addr;
466
467 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
468 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
469 return NULL;
470 return (void *)addr;
471 }
472
473 static void
474 qc_poolpage_free(struct pool *pool, void *addr)
475 {
476 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
477 vmem_t *vm = qc->qc_vmem;
478
479 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
480 }
481
482 static void
483 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
484 {
485 qcache_t *prevqc;
486 struct pool_allocator *pa;
487 int qcache_idx_max;
488 int i;
489
490 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
491 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
492 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
493 }
494 vm->vm_qcache_max = qcache_max;
495 pa = &vm->vm_qcache_allocator;
496 memset(pa, 0, sizeof(*pa));
497 pa->pa_alloc = qc_poolpage_alloc;
498 pa->pa_free = qc_poolpage_free;
499 pa->pa_pagesz = qc_poolpage_size(qcache_max);
500
501 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
502 prevqc = NULL;
503 for (i = qcache_idx_max; i > 0; i--) {
504 qcache_t *qc = &vm->vm_qcache_store[i - 1];
505 size_t size = i << vm->vm_quantum_shift;
506
507 qc->qc_vmem = vm;
508 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
509 vm->vm_name, size);
510 qc->qc_cache = pool_cache_init(size,
511 ORDER2SIZE(vm->vm_quantum_shift), 0,
512 PR_NOALIGN | PR_NOTOUCH /* XXX */,
513 qc->qc_name, pa, ipl, NULL, NULL, NULL);
514 KASSERT(qc->qc_cache != NULL); /* XXX */
515 if (prevqc != NULL &&
516 qc->qc_cache->pc_pool.pr_itemsperpage ==
517 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
518 pool_cache_destroy(qc->qc_cache);
519 vm->vm_qcache[i - 1] = prevqc;
520 continue;
521 }
522 qc->qc_cache->pc_pool.pr_qcache = qc;
523 vm->vm_qcache[i - 1] = qc;
524 prevqc = qc;
525 }
526 }
527
528 static void
529 qc_destroy(vmem_t *vm)
530 {
531 const qcache_t *prevqc;
532 int i;
533 int qcache_idx_max;
534
535 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
536 prevqc = NULL;
537 for (i = 0; i < qcache_idx_max; i++) {
538 qcache_t *qc = vm->vm_qcache[i];
539
540 if (prevqc == qc) {
541 continue;
542 }
543 pool_cache_destroy(qc->qc_cache);
544 prevqc = qc;
545 }
546 }
547
548 static bool
549 qc_reap(vmem_t *vm)
550 {
551 const qcache_t *prevqc;
552 int i;
553 int qcache_idx_max;
554 bool didsomething = false;
555
556 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
557 prevqc = NULL;
558 for (i = 0; i < qcache_idx_max; i++) {
559 qcache_t *qc = vm->vm_qcache[i];
560
561 if (prevqc == qc) {
562 continue;
563 }
564 if (pool_cache_reclaim(qc->qc_cache) != 0) {
565 didsomething = true;
566 }
567 prevqc = qc;
568 }
569
570 return didsomething;
571 }
572 #endif /* defined(QCACHE) */
573
574 #if defined(_KERNEL)
575 static int
576 vmem_init(void)
577 {
578
579 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
580 pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
581 NULL, IPL_VM, NULL, NULL, NULL);
582 return 0;
583 }
584 #endif /* defined(_KERNEL) */
585
586 static int
587 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
588 int spanbttype)
589 {
590 bt_t *btspan;
591 bt_t *btfree;
592
593 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
594 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
595 KASSERT(spanbttype == BT_TYPE_SPAN ||
596 spanbttype == BT_TYPE_SPAN_STATIC);
597
598 btspan = bt_alloc(vm, flags);
599 if (btspan == NULL) {
600 return ENOMEM;
601 }
602 btfree = bt_alloc(vm, flags);
603 if (btfree == NULL) {
604 bt_free(vm, btspan);
605 return ENOMEM;
606 }
607
608 btspan->bt_type = spanbttype;
609 btspan->bt_start = addr;
610 btspan->bt_size = size;
611
612 btfree->bt_type = BT_TYPE_FREE;
613 btfree->bt_start = addr;
614 btfree->bt_size = size;
615
616 VMEM_LOCK(vm);
617 bt_insseg_tail(vm, btspan);
618 bt_insseg(vm, btfree, btspan);
619 bt_insfree(vm, btfree);
620 VMEM_UNLOCK(vm);
621
622 return 0;
623 }
624
625 static void
626 vmem_destroy1(vmem_t *vm)
627 {
628
629 #if defined(QCACHE)
630 qc_destroy(vm);
631 #endif /* defined(QCACHE) */
632 if (vm->vm_hashlist != NULL) {
633 int i;
634
635 for (i = 0; i < vm->vm_hashsize; i++) {
636 bt_t *bt;
637
638 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
639 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
640 bt_free(vm, bt);
641 }
642 }
643 xfree(vm->vm_hashlist);
644 }
645 VMEM_LOCK_DESTROY(vm);
646 xfree(vm);
647 }
648
649 static int
650 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
651 {
652 vmem_addr_t addr;
653 int rc;
654
655 if (vm->vm_importfn == NULL) {
656 return EINVAL;
657 }
658
659 rc = (*vm->vm_importfn)(vm->vm_arg, size, &size, flags, &addr);
660 if (rc != 0) {
661 return ENOMEM;
662 }
663
664 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
665 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
666 return ENOMEM;
667 }
668
669 return 0;
670 }
671
672 static int
673 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
674 {
675 bt_t *bt;
676 int i;
677 struct vmem_hashlist *newhashlist;
678 struct vmem_hashlist *oldhashlist;
679 size_t oldhashsize;
680
681 KASSERT(newhashsize > 0);
682
683 newhashlist =
684 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
685 if (newhashlist == NULL) {
686 return ENOMEM;
687 }
688 for (i = 0; i < newhashsize; i++) {
689 LIST_INIT(&newhashlist[i]);
690 }
691
692 if (!VMEM_TRYLOCK(vm)) {
693 xfree(newhashlist);
694 return EBUSY;
695 }
696 oldhashlist = vm->vm_hashlist;
697 oldhashsize = vm->vm_hashsize;
698 vm->vm_hashlist = newhashlist;
699 vm->vm_hashsize = newhashsize;
700 if (oldhashlist == NULL) {
701 VMEM_UNLOCK(vm);
702 return 0;
703 }
704 for (i = 0; i < oldhashsize; i++) {
705 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
706 bt_rembusy(vm, bt); /* XXX */
707 bt_insbusy(vm, bt);
708 }
709 }
710 VMEM_UNLOCK(vm);
711
712 xfree(oldhashlist);
713
714 return 0;
715 }
716
717 /*
718 * vmem_fit: check if a bt can satisfy the given restrictions.
719 *
720 * it's a caller's responsibility to ensure the region is big enough
721 * before calling us.
722 */
723
724 static int
725 vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
726 vmem_size_t phase, vmem_size_t nocross,
727 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
728 {
729 vmem_addr_t start;
730 vmem_addr_t end;
731
732 KASSERT(size > 0);
733 KASSERT(bt->bt_size >= size); /* caller's responsibility */
734
735 /*
736 * XXX assumption: vmem_addr_t and vmem_size_t are
737 * unsigned integer of the same size.
738 */
739
740 start = bt->bt_start;
741 if (start < minaddr) {
742 start = minaddr;
743 }
744 end = BT_END(bt);
745 if (end > maxaddr) {
746 end = maxaddr;
747 }
748 if (start > end) {
749 return ENOMEM;
750 }
751
752 start = VMEM_ALIGNUP(start - phase, align) + phase;
753 if (start < bt->bt_start) {
754 start += align;
755 }
756 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
757 KASSERT(align < nocross);
758 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
759 }
760 if (start <= end && end - start >= size - 1) {
761 KASSERT((start & (align - 1)) == phase);
762 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
763 KASSERT(minaddr <= start);
764 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
765 KASSERT(bt->bt_start <= start);
766 KASSERT(BT_END(bt) - start >= size - 1);
767 *addrp = start;
768 return 0;
769 }
770 return ENOMEM;
771 }
772
773 /* ---- vmem API */
774
775 /*
776 * vmem_create: create an arena.
777 *
778 * => must not be called from interrupt context.
779 */
780
781 vmem_t *
782 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
783 vmem_size_t quantum,
784 int (*importfn)(void *, vmem_size_t, vmem_size_t *, vm_flag_t,
785 vmem_addr_t *),
786 void (*releasefn)(void *, vmem_addr_t, vmem_size_t),
787 void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
788 {
789 vmem_t *vm;
790 int i;
791 #if defined(_KERNEL)
792 static ONCE_DECL(control);
793 #endif /* defined(_KERNEL) */
794
795 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
796 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
797
798 #if defined(_KERNEL)
799 if (RUN_ONCE(&control, vmem_init)) {
800 return NULL;
801 }
802 #endif /* defined(_KERNEL) */
803 vm = xmalloc(sizeof(*vm), flags);
804 if (vm == NULL) {
805 return NULL;
806 }
807
808 VMEM_LOCK_INIT(vm, ipl);
809 vm->vm_name = name;
810 vm->vm_quantum_mask = quantum - 1;
811 vm->vm_quantum_shift = calc_order(quantum);
812 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
813 vm->vm_importfn = importfn;
814 vm->vm_releasefn = releasefn;
815 vm->vm_arg = arg;
816 vm->vm_nbusytag = 0;
817 #if defined(QCACHE)
818 qc_init(vm, qcache_max, ipl);
819 #endif /* defined(QCACHE) */
820
821 CIRCLEQ_INIT(&vm->vm_seglist);
822 for (i = 0; i < VMEM_MAXORDER; i++) {
823 LIST_INIT(&vm->vm_freelist[i]);
824 }
825 vm->vm_hashlist = NULL;
826 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
827 vmem_destroy1(vm);
828 return NULL;
829 }
830
831 if (size != 0) {
832 if (vmem_add(vm, base, size, flags) != 0) {
833 vmem_destroy1(vm);
834 return NULL;
835 }
836 }
837
838 #if defined(_KERNEL)
839 mutex_enter(&vmem_list_lock);
840 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
841 mutex_exit(&vmem_list_lock);
842 #endif /* defined(_KERNEL) */
843
844 return vm;
845 }
846
847 void
848 vmem_destroy(vmem_t *vm)
849 {
850
851 #if defined(_KERNEL)
852 mutex_enter(&vmem_list_lock);
853 LIST_REMOVE(vm, vm_alllist);
854 mutex_exit(&vmem_list_lock);
855 #endif /* defined(_KERNEL) */
856
857 vmem_destroy1(vm);
858 }
859
860 vmem_size_t
861 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
862 {
863
864 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
865 }
866
867 /*
868 * vmem_alloc:
869 *
870 * => caller must ensure appropriate spl,
871 * if the arena can be accessed from interrupt context.
872 */
873
874 int
875 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
876 {
877 const vm_flag_t strat __unused = flags & VM_FITMASK;
878
879 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
880 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
881
882 KASSERT(size > 0);
883 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
884 if ((flags & VM_SLEEP) != 0) {
885 ASSERT_SLEEPABLE();
886 }
887
888 #if defined(QCACHE)
889 if (size <= vm->vm_qcache_max) {
890 void *p;
891 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
892 qcache_t *qc = vm->vm_qcache[qidx - 1];
893
894 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
895 if (addrp != NULL)
896 *addrp = (vmem_addr_t)p;
897 return (p == NULL) ? ENOMEM : 0;
898 }
899 #endif /* defined(QCACHE) */
900
901 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
902 flags, addrp);
903 }
904
905 int
906 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
907 const vmem_size_t phase, const vmem_size_t nocross,
908 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
909 vmem_addr_t *addrp)
910 {
911 struct vmem_freelist *list;
912 struct vmem_freelist *first;
913 struct vmem_freelist *end;
914 bt_t *bt;
915 bt_t *btnew;
916 bt_t *btnew2;
917 const vmem_size_t size = vmem_roundup_size(vm, size0);
918 vm_flag_t strat = flags & VM_FITMASK;
919 vmem_addr_t start;
920 int rc;
921
922 KASSERT(size0 > 0);
923 KASSERT(size > 0);
924 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
925 if ((flags & VM_SLEEP) != 0) {
926 ASSERT_SLEEPABLE();
927 }
928 KASSERT((align & vm->vm_quantum_mask) == 0);
929 KASSERT((align & (align - 1)) == 0);
930 KASSERT((phase & vm->vm_quantum_mask) == 0);
931 KASSERT((nocross & vm->vm_quantum_mask) == 0);
932 KASSERT((nocross & (nocross - 1)) == 0);
933 KASSERT((align == 0 && phase == 0) || phase < align);
934 KASSERT(nocross == 0 || nocross >= size);
935 KASSERT(minaddr <= maxaddr);
936 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
937
938 if (align == 0) {
939 align = vm->vm_quantum_mask + 1;
940 }
941
942 /*
943 * allocate boundary tags before acquiring the vmem lock.
944 */
945 btnew = bt_alloc(vm, flags);
946 if (btnew == NULL) {
947 return ENOMEM;
948 }
949 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
950 if (btnew2 == NULL) {
951 bt_free(vm, btnew);
952 return ENOMEM;
953 }
954
955 /*
956 * choose a free block from which we allocate.
957 */
958 retry_strat:
959 first = bt_freehead_toalloc(vm, size, strat);
960 end = &vm->vm_freelist[VMEM_MAXORDER];
961 retry:
962 bt = NULL;
963 VMEM_LOCK(vm);
964 vmem_check(vm);
965 if (strat == VM_INSTANTFIT) {
966 /*
967 * just choose the first block which satisfies our restrictions.
968 *
969 * note that we don't need to check the size of the blocks
970 * because any blocks found on these list should be larger than
971 * the given size.
972 */
973 for (list = first; list < end; list++) {
974 bt = LIST_FIRST(list);
975 if (bt != NULL) {
976 rc = vmem_fit(bt, size, align, phase,
977 nocross, minaddr, maxaddr, &start);
978 if (rc == 0) {
979 goto gotit;
980 }
981 /*
982 * don't bother to follow the bt_freelist link
983 * here. the list can be very long and we are
984 * told to run fast. blocks from the later free
985 * lists are larger and have better chances to
986 * satisfy our restrictions.
987 */
988 }
989 }
990 } else { /* VM_BESTFIT */
991 /*
992 * we assume that, for space efficiency, it's better to
993 * allocate from a smaller block. thus we will start searching
994 * from the lower-order list than VM_INSTANTFIT.
995 * however, don't bother to find the smallest block in a free
996 * list because the list can be very long. we can revisit it
997 * if/when it turns out to be a problem.
998 *
999 * note that the 'first' list can contain blocks smaller than
1000 * the requested size. thus we need to check bt_size.
1001 */
1002 for (list = first; list < end; list++) {
1003 LIST_FOREACH(bt, list, bt_freelist) {
1004 if (bt->bt_size >= size) {
1005 rc = vmem_fit(bt, size, align, phase,
1006 nocross, minaddr, maxaddr, &start);
1007 if (rc == 0) {
1008 goto gotit;
1009 }
1010 }
1011 }
1012 }
1013 }
1014 VMEM_UNLOCK(vm);
1015 #if 1
1016 if (strat == VM_INSTANTFIT) {
1017 strat = VM_BESTFIT;
1018 goto retry_strat;
1019 }
1020 #endif
1021 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
1022 nocross != 0) {
1023
1024 /*
1025 * XXX should try to import a region large enough to
1026 * satisfy restrictions?
1027 */
1028
1029 goto fail;
1030 }
1031 /* XXX eeek, minaddr & maxaddr not respected */
1032 if (vmem_import(vm, size, flags) == 0) {
1033 goto retry;
1034 }
1035 /* XXX */
1036 fail:
1037 bt_free(vm, btnew);
1038 bt_free(vm, btnew2);
1039 return ENOMEM;
1040
1041 gotit:
1042 KASSERT(bt->bt_type == BT_TYPE_FREE);
1043 KASSERT(bt->bt_size >= size);
1044 bt_remfree(vm, bt);
1045 vmem_check(vm);
1046 if (bt->bt_start != start) {
1047 btnew2->bt_type = BT_TYPE_FREE;
1048 btnew2->bt_start = bt->bt_start;
1049 btnew2->bt_size = start - bt->bt_start;
1050 bt->bt_start = start;
1051 bt->bt_size -= btnew2->bt_size;
1052 bt_insfree(vm, btnew2);
1053 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1054 btnew2 = NULL;
1055 vmem_check(vm);
1056 }
1057 KASSERT(bt->bt_start == start);
1058 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1059 /* split */
1060 btnew->bt_type = BT_TYPE_BUSY;
1061 btnew->bt_start = bt->bt_start;
1062 btnew->bt_size = size;
1063 bt->bt_start = bt->bt_start + size;
1064 bt->bt_size -= size;
1065 bt_insfree(vm, bt);
1066 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1067 bt_insbusy(vm, btnew);
1068 vmem_check(vm);
1069 VMEM_UNLOCK(vm);
1070 } else {
1071 bt->bt_type = BT_TYPE_BUSY;
1072 bt_insbusy(vm, bt);
1073 vmem_check(vm);
1074 VMEM_UNLOCK(vm);
1075 bt_free(vm, btnew);
1076 btnew = bt;
1077 }
1078 if (btnew2 != NULL) {
1079 bt_free(vm, btnew2);
1080 }
1081 KASSERT(btnew->bt_size >= size);
1082 btnew->bt_type = BT_TYPE_BUSY;
1083
1084 if (addrp != NULL)
1085 *addrp = btnew->bt_start;
1086 return 0;
1087 }
1088
1089 /*
1090 * vmem_free:
1091 *
1092 * => caller must ensure appropriate spl,
1093 * if the arena can be accessed from interrupt context.
1094 */
1095
1096 void
1097 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1098 {
1099
1100 KASSERT(size > 0);
1101
1102 #if defined(QCACHE)
1103 if (size <= vm->vm_qcache_max) {
1104 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1105 qcache_t *qc = vm->vm_qcache[qidx - 1];
1106
1107 return pool_cache_put(qc->qc_cache, (void *)addr);
1108 }
1109 #endif /* defined(QCACHE) */
1110
1111 vmem_xfree(vm, addr, size);
1112 }
1113
1114 void
1115 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1116 {
1117 bt_t *bt;
1118 bt_t *t;
1119
1120 KASSERT(size > 0);
1121
1122 VMEM_LOCK(vm);
1123
1124 bt = bt_lookupbusy(vm, addr);
1125 KASSERT(bt != NULL);
1126 KASSERT(bt->bt_start == addr);
1127 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1128 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1129 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1130 bt_rembusy(vm, bt);
1131 bt->bt_type = BT_TYPE_FREE;
1132
1133 /* coalesce */
1134 t = CIRCLEQ_NEXT(bt, bt_seglist);
1135 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1136 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1137 bt_remfree(vm, t);
1138 bt_remseg(vm, t);
1139 bt->bt_size += t->bt_size;
1140 bt_free(vm, t);
1141 }
1142 t = CIRCLEQ_PREV(bt, bt_seglist);
1143 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1144 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1145 bt_remfree(vm, t);
1146 bt_remseg(vm, t);
1147 bt->bt_size += t->bt_size;
1148 bt->bt_start = t->bt_start;
1149 bt_free(vm, t);
1150 }
1151
1152 t = CIRCLEQ_PREV(bt, bt_seglist);
1153 KASSERT(t != NULL);
1154 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1155 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1156 t->bt_size == bt->bt_size) {
1157 vmem_addr_t spanaddr;
1158 vmem_size_t spansize;
1159
1160 KASSERT(t->bt_start == bt->bt_start);
1161 spanaddr = bt->bt_start;
1162 spansize = bt->bt_size;
1163 bt_remseg(vm, bt);
1164 bt_free(vm, bt);
1165 bt_remseg(vm, t);
1166 bt_free(vm, t);
1167 VMEM_UNLOCK(vm);
1168 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1169 } else {
1170 bt_insfree(vm, bt);
1171 VMEM_UNLOCK(vm);
1172 }
1173 }
1174
1175 /*
1176 * vmem_add:
1177 *
1178 * => caller must ensure appropriate spl,
1179 * if the arena can be accessed from interrupt context.
1180 */
1181
1182 int
1183 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1184 {
1185
1186 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1187 }
1188
1189 /*
1190 * vmem_reap: reap unused resources.
1191 *
1192 * => return true if we successfully reaped something.
1193 */
1194
1195 bool
1196 vmem_reap(vmem_t *vm)
1197 {
1198 bool didsomething = false;
1199
1200 #if defined(QCACHE)
1201 didsomething = qc_reap(vm);
1202 #endif /* defined(QCACHE) */
1203 return didsomething;
1204 }
1205
1206 /* ---- rehash */
1207
1208 #if defined(_KERNEL)
1209 static struct callout vmem_rehash_ch;
1210 static int vmem_rehash_interval;
1211 static struct workqueue *vmem_rehash_wq;
1212 static struct work vmem_rehash_wk;
1213
1214 static void
1215 vmem_rehash_all(struct work *wk, void *dummy)
1216 {
1217 vmem_t *vm;
1218
1219 KASSERT(wk == &vmem_rehash_wk);
1220 mutex_enter(&vmem_list_lock);
1221 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1222 size_t desired;
1223 size_t current;
1224
1225 if (!VMEM_TRYLOCK(vm)) {
1226 continue;
1227 }
1228 desired = vm->vm_nbusytag;
1229 current = vm->vm_hashsize;
1230 VMEM_UNLOCK(vm);
1231
1232 if (desired > VMEM_HASHSIZE_MAX) {
1233 desired = VMEM_HASHSIZE_MAX;
1234 } else if (desired < VMEM_HASHSIZE_MIN) {
1235 desired = VMEM_HASHSIZE_MIN;
1236 }
1237 if (desired > current * 2 || desired * 2 < current) {
1238 vmem_rehash(vm, desired, VM_NOSLEEP);
1239 }
1240 }
1241 mutex_exit(&vmem_list_lock);
1242
1243 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1244 }
1245
1246 static void
1247 vmem_rehash_all_kick(void *dummy)
1248 {
1249
1250 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1251 }
1252
1253 void
1254 vmem_rehash_start(void)
1255 {
1256 int error;
1257
1258 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1259 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1260 if (error) {
1261 panic("%s: workqueue_create %d\n", __func__, error);
1262 }
1263 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1264 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1265
1266 vmem_rehash_interval = hz * 10;
1267 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1268 }
1269 #endif /* defined(_KERNEL) */
1270
1271 /* ---- debug */
1272
1273 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1274
1275 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1276
1277 static const char *
1278 bt_type_string(int type)
1279 {
1280 static const char * const table[] = {
1281 [BT_TYPE_BUSY] = "busy",
1282 [BT_TYPE_FREE] = "free",
1283 [BT_TYPE_SPAN] = "span",
1284 [BT_TYPE_SPAN_STATIC] = "static span",
1285 };
1286
1287 if (type >= __arraycount(table)) {
1288 return "BOGUS";
1289 }
1290 return table[type];
1291 }
1292
1293 static void
1294 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1295 {
1296
1297 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1298 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1299 bt->bt_type, bt_type_string(bt->bt_type));
1300 }
1301
1302 static void
1303 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1304 {
1305 const bt_t *bt;
1306 int i;
1307
1308 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1309 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1310 bt_dump(bt, pr);
1311 }
1312
1313 for (i = 0; i < VMEM_MAXORDER; i++) {
1314 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1315
1316 if (LIST_EMPTY(fl)) {
1317 continue;
1318 }
1319
1320 (*pr)("freelist[%d]\n", i);
1321 LIST_FOREACH(bt, fl, bt_freelist) {
1322 bt_dump(bt, pr);
1323 }
1324 }
1325 }
1326
1327 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1328
1329 #if defined(DDB)
1330 static bt_t *
1331 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1332 {
1333 bt_t *bt;
1334
1335 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1336 if (BT_ISSPAN_P(bt)) {
1337 continue;
1338 }
1339 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1340 return bt;
1341 }
1342 }
1343
1344 return NULL;
1345 }
1346
1347 void
1348 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1349 {
1350 vmem_t *vm;
1351
1352 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1353 bt_t *bt;
1354
1355 bt = vmem_whatis_lookup(vm, addr);
1356 if (bt == NULL) {
1357 continue;
1358 }
1359 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1360 (void *)addr, (void *)bt->bt_start,
1361 (size_t)(addr - bt->bt_start), vm->vm_name,
1362 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1363 }
1364 }
1365
1366 void
1367 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1368 {
1369 const vmem_t *vm;
1370
1371 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1372 vmem_dump(vm, pr);
1373 }
1374 }
1375
1376 void
1377 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1378 {
1379 const vmem_t *vm = (const void *)addr;
1380
1381 vmem_dump(vm, pr);
1382 }
1383 #endif /* defined(DDB) */
1384
1385 #if defined(_KERNEL)
1386 #define vmem_printf printf
1387 #else
1388 #include <stdio.h>
1389 #include <stdarg.h>
1390
1391 static void
1392 vmem_printf(const char *fmt, ...)
1393 {
1394 va_list ap;
1395 va_start(ap, fmt);
1396 vprintf(fmt, ap);
1397 va_end(ap);
1398 }
1399 #endif
1400
1401 #if defined(VMEM_SANITY)
1402
1403 static bool
1404 vmem_check_sanity(vmem_t *vm)
1405 {
1406 const bt_t *bt, *bt2;
1407
1408 KASSERT(vm != NULL);
1409
1410 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1411 if (bt->bt_start > BT_END(bt)) {
1412 printf("corrupted tag\n");
1413 bt_dump(bt, vmem_printf);
1414 return false;
1415 }
1416 }
1417 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1418 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1419 if (bt == bt2) {
1420 continue;
1421 }
1422 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1423 continue;
1424 }
1425 if (bt->bt_start <= BT_END(bt2) &&
1426 bt2->bt_start <= BT_END(bt)) {
1427 printf("overwrapped tags\n");
1428 bt_dump(bt, vmem_printf);
1429 bt_dump(bt2, vmem_printf);
1430 return false;
1431 }
1432 }
1433 }
1434
1435 return true;
1436 }
1437
1438 static void
1439 vmem_check(vmem_t *vm)
1440 {
1441
1442 if (!vmem_check_sanity(vm)) {
1443 panic("insanity vmem %p", vm);
1444 }
1445 }
1446
1447 #endif /* defined(VMEM_SANITY) */
1448
1449 #if defined(UNITTEST)
1450 int
1451 main(void)
1452 {
1453 int rc;
1454 vmem_t *vm;
1455 vmem_addr_t p;
1456 struct reg {
1457 vmem_addr_t p;
1458 vmem_size_t sz;
1459 bool x;
1460 } *reg = NULL;
1461 int nreg = 0;
1462 int nalloc = 0;
1463 int nfree = 0;
1464 vmem_size_t total = 0;
1465 #if 1
1466 vm_flag_t strat = VM_INSTANTFIT;
1467 #else
1468 vm_flag_t strat = VM_BESTFIT;
1469 #endif
1470
1471 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1472 #ifdef _KERNEL
1473 IPL_NONE
1474 #else
1475 0
1476 #endif
1477 );
1478 if (vm == NULL) {
1479 printf("vmem_create\n");
1480 exit(EXIT_FAILURE);
1481 }
1482 vmem_dump(vm, vmem_printf);
1483
1484 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1485 assert(rc == 0);
1486 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1487 assert(rc == 0);
1488 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1489 assert(rc == 0);
1490 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1491 assert(rc == 0);
1492 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1493 assert(rc == 0);
1494 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1495 assert(rc == 0);
1496 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1497 assert(rc == 0);
1498 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1499 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1500 assert(rc != 0);
1501 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1502 assert(rc == 0 && p == 0);
1503 vmem_xfree(vm, p, 50);
1504 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1505 assert(rc == 0 && p == 0);
1506 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1507 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1508 assert(rc != 0);
1509 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1510 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1511 assert(rc != 0);
1512 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1513 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1514 assert(rc == 0);
1515 vmem_dump(vm, vmem_printf);
1516 for (;;) {
1517 struct reg *r;
1518 int t = rand() % 100;
1519
1520 if (t > 45) {
1521 /* alloc */
1522 vmem_size_t sz = rand() % 500 + 1;
1523 bool x;
1524 vmem_size_t align, phase, nocross;
1525 vmem_addr_t minaddr, maxaddr;
1526
1527 if (t > 70) {
1528 x = true;
1529 /* XXX */
1530 align = 1 << (rand() % 15);
1531 phase = rand() % 65536;
1532 nocross = 1 << (rand() % 15);
1533 if (align <= phase) {
1534 phase = 0;
1535 }
1536 if (VMEM_CROSS_P(phase, phase + sz - 1,
1537 nocross)) {
1538 nocross = 0;
1539 }
1540 do {
1541 minaddr = rand() % 50000;
1542 maxaddr = rand() % 70000;
1543 } while (minaddr > maxaddr);
1544 printf("=== xalloc %" PRIu64
1545 " align=%" PRIu64 ", phase=%" PRIu64
1546 ", nocross=%" PRIu64 ", min=%" PRIu64
1547 ", max=%" PRIu64 "\n",
1548 (uint64_t)sz,
1549 (uint64_t)align,
1550 (uint64_t)phase,
1551 (uint64_t)nocross,
1552 (uint64_t)minaddr,
1553 (uint64_t)maxaddr);
1554 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1555 minaddr, maxaddr, strat|VM_SLEEP, &p);
1556 } else {
1557 x = false;
1558 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1559 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1560 }
1561 printf("-> %" PRIu64 "\n", (uint64_t)p);
1562 vmem_dump(vm, vmem_printf);
1563 if (rc != 0) {
1564 if (x) {
1565 continue;
1566 }
1567 break;
1568 }
1569 nreg++;
1570 reg = realloc(reg, sizeof(*reg) * nreg);
1571 r = ®[nreg - 1];
1572 r->p = p;
1573 r->sz = sz;
1574 r->x = x;
1575 total += sz;
1576 nalloc++;
1577 } else if (nreg != 0) {
1578 /* free */
1579 r = ®[rand() % nreg];
1580 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1581 (uint64_t)r->p, (uint64_t)r->sz);
1582 if (r->x) {
1583 vmem_xfree(vm, r->p, r->sz);
1584 } else {
1585 vmem_free(vm, r->p, r->sz);
1586 }
1587 total -= r->sz;
1588 vmem_dump(vm, vmem_printf);
1589 *r = reg[nreg - 1];
1590 nreg--;
1591 nfree++;
1592 }
1593 printf("total=%" PRIu64 "\n", (uint64_t)total);
1594 }
1595 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1596 (uint64_t)total, nalloc, nfree);
1597 exit(EXIT_SUCCESS);
1598 }
1599 #endif /* defined(UNITTEST) */
1600