subr_vmem.c revision 1.64 1 /* $NetBSD: subr_vmem.c,v 1.64 2011/10/19 11:12:37 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * todo:
36 * - decide how to import segments for vmem_xalloc.
37 * - don't rely on malloc(9).
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.64 2011/10/19 11:12:37 yamt Exp $");
42
43 #if defined(_KERNEL)
44 #include "opt_ddb.h"
45 #define QCACHE
46 #endif /* defined(_KERNEL) */
47
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/queue.h>
51 #include <sys/bitops.h>
52
53 #if defined(_KERNEL)
54 #include <sys/systm.h>
55 #include <sys/kernel.h> /* hz */
56 #include <sys/callout.h>
57 #include <sys/malloc.h>
58 #include <sys/once.h>
59 #include <sys/pool.h>
60 #include <sys/vmem.h>
61 #include <sys/workqueue.h>
62 #else /* defined(_KERNEL) */
63 #include "../sys/vmem.h"
64 #endif /* defined(_KERNEL) */
65
66 #if defined(_KERNEL)
67 #define LOCK_DECL(name) \
68 kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
69 #else /* defined(_KERNEL) */
70 #include <errno.h>
71 #include <assert.h>
72 #include <stdlib.h>
73 #include <string.h>
74
75 #define UNITTEST
76 #define KASSERT(a) assert(a)
77 #define LOCK_DECL(name) /* nothing */
78 #define mutex_init(a, b, c) /* nothing */
79 #define mutex_destroy(a) /* nothing */
80 #define mutex_enter(a) /* nothing */
81 #define mutex_tryenter(a) true
82 #define mutex_exit(a) /* nothing */
83 #define mutex_owned(a) /* nothing */
84 #define ASSERT_SLEEPABLE() /* nothing */
85 #define panic(...) printf(__VA_ARGS__); abort()
86 #endif /* defined(_KERNEL) */
87
88 struct vmem;
89 struct vmem_btag;
90
91 #if defined(VMEM_SANITY)
92 static void vmem_check(vmem_t *);
93 #else /* defined(VMEM_SANITY) */
94 #define vmem_check(vm) /* nothing */
95 #endif /* defined(VMEM_SANITY) */
96
97 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
98
99 #define VMEM_HASHSIZE_MIN 1 /* XXX */
100 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
101 #define VMEM_HASHSIZE_INIT 128
102
103 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
104
105 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
106 LIST_HEAD(vmem_freelist, vmem_btag);
107 LIST_HEAD(vmem_hashlist, vmem_btag);
108
109 #if defined(QCACHE)
110 #define VMEM_QCACHE_IDX_MAX 32
111
112 #define QC_NAME_MAX 16
113
114 struct qcache {
115 pool_cache_t qc_cache;
116 vmem_t *qc_vmem;
117 char qc_name[QC_NAME_MAX];
118 };
119 typedef struct qcache qcache_t;
120 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
121 #endif /* defined(QCACHE) */
122
123 #define VMEM_NAME_MAX 16
124
125 /* vmem arena */
126 struct vmem {
127 LOCK_DECL(vm_lock);
128 int (*vm_importfn)(void *, vmem_size_t, vmem_size_t *,
129 vm_flag_t, vmem_addr_t *);
130 void (*vm_releasefn)(void *, vmem_addr_t, vmem_size_t);
131 vmem_t *vm_source;
132 void *vm_arg;
133 struct vmem_seglist vm_seglist;
134 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
135 size_t vm_hashsize;
136 size_t vm_nbusytag;
137 struct vmem_hashlist *vm_hashlist;
138 size_t vm_quantum_mask;
139 int vm_quantum_shift;
140 char vm_name[VMEM_NAME_MAX+1];
141 LIST_ENTRY(vmem) vm_alllist;
142
143 #if defined(QCACHE)
144 /* quantum cache */
145 size_t vm_qcache_max;
146 struct pool_allocator vm_qcache_allocator;
147 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
148 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
149 #endif /* defined(QCACHE) */
150 };
151
152 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
153 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
154 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
155 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
156 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
157 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
158
159 /* boundary tag */
160 struct vmem_btag {
161 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
162 union {
163 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
164 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
165 } bt_u;
166 #define bt_hashlist bt_u.u_hashlist
167 #define bt_freelist bt_u.u_freelist
168 vmem_addr_t bt_start;
169 vmem_size_t bt_size;
170 int bt_type;
171 };
172
173 #define BT_TYPE_SPAN 1
174 #define BT_TYPE_SPAN_STATIC 2
175 #define BT_TYPE_FREE 3
176 #define BT_TYPE_BUSY 4
177 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
178
179 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
180
181 typedef struct vmem_btag bt_t;
182
183 /* ---- misc */
184
185 #define VMEM_ALIGNUP(addr, align) \
186 (-(-(addr) & -(align)))
187
188 #define VMEM_CROSS_P(addr1, addr2, boundary) \
189 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
190
191 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
192 #define SIZE2ORDER(size) ((int)ilog2(size))
193
194 #if !defined(_KERNEL)
195 #define xmalloc(sz, flags) malloc(sz)
196 #define xfree(p) free(p)
197 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
198 #define bt_free(vm, bt) free(bt)
199 #else /* !defined(_KERNEL) */
200
201 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
202
203 static inline void *
204 xmalloc(size_t sz, vm_flag_t flags)
205 {
206 return malloc(sz, M_VMEM,
207 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
208 }
209
210 static inline void
211 xfree(void *p)
212 {
213 free(p, M_VMEM);
214 }
215
216 /* ---- boundary tag */
217
218 static struct pool_cache bt_cache;
219
220 static inline bt_t *
221 bt_alloc(vmem_t *vm, vm_flag_t flags)
222 {
223 return pool_cache_get(&bt_cache,
224 (flags & VM_SLEEP) ? PR_WAITOK : PR_NOWAIT);
225 }
226
227 static inline void
228 bt_free(vmem_t *vm, bt_t *bt)
229 {
230 pool_cache_put(&bt_cache, bt);
231 }
232
233 #endif /* !defined(_KERNEL) */
234
235 /*
236 * freelist[0] ... [1, 1]
237 * freelist[1] ... [2, 3]
238 * freelist[2] ... [4, 7]
239 * freelist[3] ... [8, 15]
240 * :
241 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
242 * :
243 */
244
245 static struct vmem_freelist *
246 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
247 {
248 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
249 const int idx = SIZE2ORDER(qsize);
250
251 KASSERT(size != 0 && qsize != 0);
252 KASSERT((size & vm->vm_quantum_mask) == 0);
253 KASSERT(idx >= 0);
254 KASSERT(idx < VMEM_MAXORDER);
255
256 return &vm->vm_freelist[idx];
257 }
258
259 /*
260 * bt_freehead_toalloc: return the freelist for the given size and allocation
261 * strategy.
262 *
263 * for VM_INSTANTFIT, return the list in which any blocks are large enough
264 * for the requested size. otherwise, return the list which can have blocks
265 * large enough for the requested size.
266 */
267
268 static struct vmem_freelist *
269 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
270 {
271 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
272 int idx = SIZE2ORDER(qsize);
273
274 KASSERT(size != 0 && qsize != 0);
275 KASSERT((size & vm->vm_quantum_mask) == 0);
276
277 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
278 idx++;
279 /* check too large request? */
280 }
281 KASSERT(idx >= 0);
282 KASSERT(idx < VMEM_MAXORDER);
283
284 return &vm->vm_freelist[idx];
285 }
286
287 /* ---- boundary tag hash */
288
289 static struct vmem_hashlist *
290 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
291 {
292 struct vmem_hashlist *list;
293 unsigned int hash;
294
295 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
296 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
297
298 return list;
299 }
300
301 static bt_t *
302 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
303 {
304 struct vmem_hashlist *list;
305 bt_t *bt;
306
307 list = bt_hashhead(vm, addr);
308 LIST_FOREACH(bt, list, bt_hashlist) {
309 if (bt->bt_start == addr) {
310 break;
311 }
312 }
313
314 return bt;
315 }
316
317 static void
318 bt_rembusy(vmem_t *vm, bt_t *bt)
319 {
320
321 KASSERT(vm->vm_nbusytag > 0);
322 vm->vm_nbusytag--;
323 LIST_REMOVE(bt, bt_hashlist);
324 }
325
326 static void
327 bt_insbusy(vmem_t *vm, bt_t *bt)
328 {
329 struct vmem_hashlist *list;
330
331 KASSERT(bt->bt_type == BT_TYPE_BUSY);
332
333 list = bt_hashhead(vm, bt->bt_start);
334 LIST_INSERT_HEAD(list, bt, bt_hashlist);
335 vm->vm_nbusytag++;
336 }
337
338 /* ---- boundary tag list */
339
340 static void
341 bt_remseg(vmem_t *vm, bt_t *bt)
342 {
343
344 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
345 }
346
347 static void
348 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
349 {
350
351 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
352 }
353
354 static void
355 bt_insseg_tail(vmem_t *vm, bt_t *bt)
356 {
357
358 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
359 }
360
361 static void
362 bt_remfree(vmem_t *vm, bt_t *bt)
363 {
364
365 KASSERT(bt->bt_type == BT_TYPE_FREE);
366
367 LIST_REMOVE(bt, bt_freelist);
368 }
369
370 static void
371 bt_insfree(vmem_t *vm, bt_t *bt)
372 {
373 struct vmem_freelist *list;
374
375 list = bt_freehead_tofree(vm, bt->bt_size);
376 LIST_INSERT_HEAD(list, bt, bt_freelist);
377 }
378
379 /* ---- vmem internal functions */
380
381 #if defined(_KERNEL)
382 static kmutex_t vmem_list_lock;
383 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
384 #endif /* defined(_KERNEL) */
385
386 #if defined(QCACHE)
387 static inline vm_flag_t
388 prf_to_vmf(int prflags)
389 {
390 vm_flag_t vmflags;
391
392 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
393 if ((prflags & PR_WAITOK) != 0) {
394 vmflags = VM_SLEEP;
395 } else {
396 vmflags = VM_NOSLEEP;
397 }
398 return vmflags;
399 }
400
401 static inline int
402 vmf_to_prf(vm_flag_t vmflags)
403 {
404 int prflags;
405
406 if ((vmflags & VM_SLEEP) != 0) {
407 prflags = PR_WAITOK;
408 } else {
409 prflags = PR_NOWAIT;
410 }
411 return prflags;
412 }
413
414 static size_t
415 qc_poolpage_size(size_t qcache_max)
416 {
417 int i;
418
419 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
420 /* nothing */
421 }
422 return ORDER2SIZE(i);
423 }
424
425 static void *
426 qc_poolpage_alloc(struct pool *pool, int prflags)
427 {
428 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
429 vmem_t *vm = qc->qc_vmem;
430 vmem_addr_t addr;
431
432 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
433 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
434 return NULL;
435 return (void *)addr;
436 }
437
438 static void
439 qc_poolpage_free(struct pool *pool, void *addr)
440 {
441 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
442 vmem_t *vm = qc->qc_vmem;
443
444 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
445 }
446
447 static void
448 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
449 {
450 qcache_t *prevqc;
451 struct pool_allocator *pa;
452 int qcache_idx_max;
453 int i;
454
455 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
456 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
457 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
458 }
459 vm->vm_qcache_max = qcache_max;
460 pa = &vm->vm_qcache_allocator;
461 memset(pa, 0, sizeof(*pa));
462 pa->pa_alloc = qc_poolpage_alloc;
463 pa->pa_free = qc_poolpage_free;
464 pa->pa_pagesz = qc_poolpage_size(qcache_max);
465
466 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
467 prevqc = NULL;
468 for (i = qcache_idx_max; i > 0; i--) {
469 qcache_t *qc = &vm->vm_qcache_store[i - 1];
470 size_t size = i << vm->vm_quantum_shift;
471
472 qc->qc_vmem = vm;
473 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
474 vm->vm_name, size);
475 qc->qc_cache = pool_cache_init(size,
476 ORDER2SIZE(vm->vm_quantum_shift), 0,
477 PR_NOALIGN | PR_NOTOUCH /* XXX */,
478 qc->qc_name, pa, ipl, NULL, NULL, NULL);
479 KASSERT(qc->qc_cache != NULL); /* XXX */
480 if (prevqc != NULL &&
481 qc->qc_cache->pc_pool.pr_itemsperpage ==
482 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
483 pool_cache_destroy(qc->qc_cache);
484 vm->vm_qcache[i - 1] = prevqc;
485 continue;
486 }
487 qc->qc_cache->pc_pool.pr_qcache = qc;
488 vm->vm_qcache[i - 1] = qc;
489 prevqc = qc;
490 }
491 }
492
493 static void
494 qc_destroy(vmem_t *vm)
495 {
496 const qcache_t *prevqc;
497 int i;
498 int qcache_idx_max;
499
500 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
501 prevqc = NULL;
502 for (i = 0; i < qcache_idx_max; i++) {
503 qcache_t *qc = vm->vm_qcache[i];
504
505 if (prevqc == qc) {
506 continue;
507 }
508 pool_cache_destroy(qc->qc_cache);
509 prevqc = qc;
510 }
511 }
512
513 static bool
514 qc_reap(vmem_t *vm)
515 {
516 const qcache_t *prevqc;
517 int i;
518 int qcache_idx_max;
519 bool didsomething = false;
520
521 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
522 prevqc = NULL;
523 for (i = 0; i < qcache_idx_max; i++) {
524 qcache_t *qc = vm->vm_qcache[i];
525
526 if (prevqc == qc) {
527 continue;
528 }
529 if (pool_cache_reclaim(qc->qc_cache) != 0) {
530 didsomething = true;
531 }
532 prevqc = qc;
533 }
534
535 return didsomething;
536 }
537 #endif /* defined(QCACHE) */
538
539 #if defined(_KERNEL)
540 static int
541 vmem_init(void)
542 {
543
544 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
545 pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
546 NULL, IPL_VM, NULL, NULL, NULL);
547 return 0;
548 }
549 #endif /* defined(_KERNEL) */
550
551 static int
552 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
553 int spanbttype)
554 {
555 bt_t *btspan;
556 bt_t *btfree;
557
558 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
559 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
560 KASSERT(spanbttype == BT_TYPE_SPAN ||
561 spanbttype == BT_TYPE_SPAN_STATIC);
562
563 btspan = bt_alloc(vm, flags);
564 if (btspan == NULL) {
565 return ENOMEM;
566 }
567 btfree = bt_alloc(vm, flags);
568 if (btfree == NULL) {
569 bt_free(vm, btspan);
570 return ENOMEM;
571 }
572
573 btspan->bt_type = spanbttype;
574 btspan->bt_start = addr;
575 btspan->bt_size = size;
576
577 btfree->bt_type = BT_TYPE_FREE;
578 btfree->bt_start = addr;
579 btfree->bt_size = size;
580
581 VMEM_LOCK(vm);
582 bt_insseg_tail(vm, btspan);
583 bt_insseg(vm, btfree, btspan);
584 bt_insfree(vm, btfree);
585 VMEM_UNLOCK(vm);
586
587 return 0;
588 }
589
590 static void
591 vmem_destroy1(vmem_t *vm)
592 {
593
594 #if defined(QCACHE)
595 qc_destroy(vm);
596 #endif /* defined(QCACHE) */
597 if (vm->vm_hashlist != NULL) {
598 int i;
599
600 for (i = 0; i < vm->vm_hashsize; i++) {
601 bt_t *bt;
602
603 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
604 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
605 bt_free(vm, bt);
606 }
607 }
608 xfree(vm->vm_hashlist);
609 }
610 VMEM_LOCK_DESTROY(vm);
611 xfree(vm);
612 }
613
614 static int
615 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
616 {
617 vmem_addr_t addr;
618 int rc;
619
620 if (vm->vm_importfn == NULL) {
621 return EINVAL;
622 }
623
624 rc = (*vm->vm_importfn)(vm->vm_arg, size, &size, flags, &addr);
625 if (rc != 0) {
626 return ENOMEM;
627 }
628
629 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
630 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
631 return ENOMEM;
632 }
633
634 return 0;
635 }
636
637 static int
638 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
639 {
640 bt_t *bt;
641 int i;
642 struct vmem_hashlist *newhashlist;
643 struct vmem_hashlist *oldhashlist;
644 size_t oldhashsize;
645
646 KASSERT(newhashsize > 0);
647
648 newhashlist =
649 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
650 if (newhashlist == NULL) {
651 return ENOMEM;
652 }
653 for (i = 0; i < newhashsize; i++) {
654 LIST_INIT(&newhashlist[i]);
655 }
656
657 if (!VMEM_TRYLOCK(vm)) {
658 xfree(newhashlist);
659 return EBUSY;
660 }
661 oldhashlist = vm->vm_hashlist;
662 oldhashsize = vm->vm_hashsize;
663 vm->vm_hashlist = newhashlist;
664 vm->vm_hashsize = newhashsize;
665 if (oldhashlist == NULL) {
666 VMEM_UNLOCK(vm);
667 return 0;
668 }
669 for (i = 0; i < oldhashsize; i++) {
670 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
671 bt_rembusy(vm, bt); /* XXX */
672 bt_insbusy(vm, bt);
673 }
674 }
675 VMEM_UNLOCK(vm);
676
677 xfree(oldhashlist);
678
679 return 0;
680 }
681
682 /*
683 * vmem_fit: check if a bt can satisfy the given restrictions.
684 *
685 * it's a caller's responsibility to ensure the region is big enough
686 * before calling us.
687 */
688
689 static int
690 vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
691 vmem_size_t phase, vmem_size_t nocross,
692 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
693 {
694 vmem_addr_t start;
695 vmem_addr_t end;
696
697 KASSERT(size > 0);
698 KASSERT(bt->bt_size >= size); /* caller's responsibility */
699
700 /*
701 * XXX assumption: vmem_addr_t and vmem_size_t are
702 * unsigned integer of the same size.
703 */
704
705 start = bt->bt_start;
706 if (start < minaddr) {
707 start = minaddr;
708 }
709 end = BT_END(bt);
710 if (end > maxaddr) {
711 end = maxaddr;
712 }
713 if (start > end) {
714 return ENOMEM;
715 }
716
717 start = VMEM_ALIGNUP(start - phase, align) + phase;
718 if (start < bt->bt_start) {
719 start += align;
720 }
721 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
722 KASSERT(align < nocross);
723 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
724 }
725 if (start <= end && end - start >= size - 1) {
726 KASSERT((start & (align - 1)) == phase);
727 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
728 KASSERT(minaddr <= start);
729 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
730 KASSERT(bt->bt_start <= start);
731 KASSERT(BT_END(bt) - start >= size - 1);
732 *addrp = start;
733 return 0;
734 }
735 return ENOMEM;
736 }
737
738 /* ---- vmem API */
739
740 /*
741 * vmem_create: create an arena.
742 *
743 * => must not be called from interrupt context.
744 */
745
746 vmem_t *
747 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
748 vmem_size_t quantum,
749 int (*importfn)(void *, vmem_size_t, vmem_size_t *, vm_flag_t,
750 vmem_addr_t *),
751 void (*releasefn)(void *, vmem_addr_t, vmem_size_t),
752 void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
753 {
754 vmem_t *vm;
755 int i;
756 #if defined(_KERNEL)
757 static ONCE_DECL(control);
758 #endif /* defined(_KERNEL) */
759
760 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
761 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
762 KASSERT(quantum > 0);
763
764 #if defined(_KERNEL)
765 if (RUN_ONCE(&control, vmem_init)) {
766 return NULL;
767 }
768 #endif /* defined(_KERNEL) */
769 vm = xmalloc(sizeof(*vm), flags);
770 if (vm == NULL) {
771 return NULL;
772 }
773
774 VMEM_LOCK_INIT(vm, ipl);
775 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
776 vm->vm_quantum_mask = quantum - 1;
777 vm->vm_quantum_shift = SIZE2ORDER(quantum);
778 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
779 vm->vm_importfn = importfn;
780 vm->vm_releasefn = releasefn;
781 vm->vm_arg = arg;
782 vm->vm_nbusytag = 0;
783 #if defined(QCACHE)
784 qc_init(vm, qcache_max, ipl);
785 #endif /* defined(QCACHE) */
786
787 CIRCLEQ_INIT(&vm->vm_seglist);
788 for (i = 0; i < VMEM_MAXORDER; i++) {
789 LIST_INIT(&vm->vm_freelist[i]);
790 }
791 vm->vm_hashlist = NULL;
792 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
793 vmem_destroy1(vm);
794 return NULL;
795 }
796
797 if (size != 0) {
798 if (vmem_add(vm, base, size, flags) != 0) {
799 vmem_destroy1(vm);
800 return NULL;
801 }
802 }
803
804 #if defined(_KERNEL)
805 mutex_enter(&vmem_list_lock);
806 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
807 mutex_exit(&vmem_list_lock);
808 #endif /* defined(_KERNEL) */
809
810 return vm;
811 }
812
813 void
814 vmem_destroy(vmem_t *vm)
815 {
816
817 #if defined(_KERNEL)
818 mutex_enter(&vmem_list_lock);
819 LIST_REMOVE(vm, vm_alllist);
820 mutex_exit(&vmem_list_lock);
821 #endif /* defined(_KERNEL) */
822
823 vmem_destroy1(vm);
824 }
825
826 vmem_size_t
827 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
828 {
829
830 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
831 }
832
833 /*
834 * vmem_alloc:
835 *
836 * => caller must ensure appropriate spl,
837 * if the arena can be accessed from interrupt context.
838 */
839
840 int
841 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
842 {
843 const vm_flag_t strat __unused = flags & VM_FITMASK;
844
845 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
846 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
847
848 KASSERT(size > 0);
849 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
850 if ((flags & VM_SLEEP) != 0) {
851 ASSERT_SLEEPABLE();
852 }
853
854 #if defined(QCACHE)
855 if (size <= vm->vm_qcache_max) {
856 void *p;
857 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
858 qcache_t *qc = vm->vm_qcache[qidx - 1];
859
860 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
861 if (addrp != NULL)
862 *addrp = (vmem_addr_t)p;
863 return (p == NULL) ? ENOMEM : 0;
864 }
865 #endif /* defined(QCACHE) */
866
867 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
868 flags, addrp);
869 }
870
871 int
872 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
873 const vmem_size_t phase, const vmem_size_t nocross,
874 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
875 vmem_addr_t *addrp)
876 {
877 struct vmem_freelist *list;
878 struct vmem_freelist *first;
879 struct vmem_freelist *end;
880 bt_t *bt;
881 bt_t *btnew;
882 bt_t *btnew2;
883 const vmem_size_t size = vmem_roundup_size(vm, size0);
884 vm_flag_t strat = flags & VM_FITMASK;
885 vmem_addr_t start;
886 int rc;
887
888 KASSERT(size0 > 0);
889 KASSERT(size > 0);
890 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
891 if ((flags & VM_SLEEP) != 0) {
892 ASSERT_SLEEPABLE();
893 }
894 KASSERT((align & vm->vm_quantum_mask) == 0);
895 KASSERT((align & (align - 1)) == 0);
896 KASSERT((phase & vm->vm_quantum_mask) == 0);
897 KASSERT((nocross & vm->vm_quantum_mask) == 0);
898 KASSERT((nocross & (nocross - 1)) == 0);
899 KASSERT((align == 0 && phase == 0) || phase < align);
900 KASSERT(nocross == 0 || nocross >= size);
901 KASSERT(minaddr <= maxaddr);
902 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
903
904 if (align == 0) {
905 align = vm->vm_quantum_mask + 1;
906 }
907
908 /*
909 * allocate boundary tags before acquiring the vmem lock.
910 */
911 btnew = bt_alloc(vm, flags);
912 if (btnew == NULL) {
913 return ENOMEM;
914 }
915 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
916 if (btnew2 == NULL) {
917 bt_free(vm, btnew);
918 return ENOMEM;
919 }
920
921 /*
922 * choose a free block from which we allocate.
923 */
924 retry_strat:
925 first = bt_freehead_toalloc(vm, size, strat);
926 end = &vm->vm_freelist[VMEM_MAXORDER];
927 retry:
928 bt = NULL;
929 VMEM_LOCK(vm);
930 vmem_check(vm);
931 if (strat == VM_INSTANTFIT) {
932 /*
933 * just choose the first block which satisfies our restrictions.
934 *
935 * note that we don't need to check the size of the blocks
936 * because any blocks found on these list should be larger than
937 * the given size.
938 */
939 for (list = first; list < end; list++) {
940 bt = LIST_FIRST(list);
941 if (bt != NULL) {
942 rc = vmem_fit(bt, size, align, phase,
943 nocross, minaddr, maxaddr, &start);
944 if (rc == 0) {
945 goto gotit;
946 }
947 /*
948 * don't bother to follow the bt_freelist link
949 * here. the list can be very long and we are
950 * told to run fast. blocks from the later free
951 * lists are larger and have better chances to
952 * satisfy our restrictions.
953 */
954 }
955 }
956 } else { /* VM_BESTFIT */
957 /*
958 * we assume that, for space efficiency, it's better to
959 * allocate from a smaller block. thus we will start searching
960 * from the lower-order list than VM_INSTANTFIT.
961 * however, don't bother to find the smallest block in a free
962 * list because the list can be very long. we can revisit it
963 * if/when it turns out to be a problem.
964 *
965 * note that the 'first' list can contain blocks smaller than
966 * the requested size. thus we need to check bt_size.
967 */
968 for (list = first; list < end; list++) {
969 LIST_FOREACH(bt, list, bt_freelist) {
970 if (bt->bt_size >= size) {
971 rc = vmem_fit(bt, size, align, phase,
972 nocross, minaddr, maxaddr, &start);
973 if (rc == 0) {
974 goto gotit;
975 }
976 }
977 }
978 }
979 }
980 VMEM_UNLOCK(vm);
981 #if 1
982 if (strat == VM_INSTANTFIT) {
983 strat = VM_BESTFIT;
984 goto retry_strat;
985 }
986 #endif
987 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
988 nocross != 0) {
989
990 /*
991 * XXX should try to import a region large enough to
992 * satisfy restrictions?
993 */
994
995 goto fail;
996 }
997 /* XXX eeek, minaddr & maxaddr not respected */
998 if (vmem_import(vm, size, flags) == 0) {
999 goto retry;
1000 }
1001 /* XXX */
1002 fail:
1003 bt_free(vm, btnew);
1004 bt_free(vm, btnew2);
1005 return ENOMEM;
1006
1007 gotit:
1008 KASSERT(bt->bt_type == BT_TYPE_FREE);
1009 KASSERT(bt->bt_size >= size);
1010 bt_remfree(vm, bt);
1011 vmem_check(vm);
1012 if (bt->bt_start != start) {
1013 btnew2->bt_type = BT_TYPE_FREE;
1014 btnew2->bt_start = bt->bt_start;
1015 btnew2->bt_size = start - bt->bt_start;
1016 bt->bt_start = start;
1017 bt->bt_size -= btnew2->bt_size;
1018 bt_insfree(vm, btnew2);
1019 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1020 btnew2 = NULL;
1021 vmem_check(vm);
1022 }
1023 KASSERT(bt->bt_start == start);
1024 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1025 /* split */
1026 btnew->bt_type = BT_TYPE_BUSY;
1027 btnew->bt_start = bt->bt_start;
1028 btnew->bt_size = size;
1029 bt->bt_start = bt->bt_start + size;
1030 bt->bt_size -= size;
1031 bt_insfree(vm, bt);
1032 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1033 bt_insbusy(vm, btnew);
1034 vmem_check(vm);
1035 VMEM_UNLOCK(vm);
1036 } else {
1037 bt->bt_type = BT_TYPE_BUSY;
1038 bt_insbusy(vm, bt);
1039 vmem_check(vm);
1040 VMEM_UNLOCK(vm);
1041 bt_free(vm, btnew);
1042 btnew = bt;
1043 }
1044 if (btnew2 != NULL) {
1045 bt_free(vm, btnew2);
1046 }
1047 KASSERT(btnew->bt_size >= size);
1048 btnew->bt_type = BT_TYPE_BUSY;
1049
1050 if (addrp != NULL)
1051 *addrp = btnew->bt_start;
1052 return 0;
1053 }
1054
1055 /*
1056 * vmem_free:
1057 *
1058 * => caller must ensure appropriate spl,
1059 * if the arena can be accessed from interrupt context.
1060 */
1061
1062 void
1063 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1064 {
1065
1066 KASSERT(size > 0);
1067
1068 #if defined(QCACHE)
1069 if (size <= vm->vm_qcache_max) {
1070 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1071 qcache_t *qc = vm->vm_qcache[qidx - 1];
1072
1073 pool_cache_put(qc->qc_cache, (void *)addr);
1074 return;
1075 }
1076 #endif /* defined(QCACHE) */
1077
1078 vmem_xfree(vm, addr, size);
1079 }
1080
1081 void
1082 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1083 {
1084 bt_t *bt;
1085 bt_t *t;
1086
1087 KASSERT(size > 0);
1088
1089 VMEM_LOCK(vm);
1090
1091 bt = bt_lookupbusy(vm, addr);
1092 KASSERT(bt != NULL);
1093 KASSERT(bt->bt_start == addr);
1094 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1095 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1096 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1097 bt_rembusy(vm, bt);
1098 bt->bt_type = BT_TYPE_FREE;
1099
1100 /* coalesce */
1101 t = CIRCLEQ_NEXT(bt, bt_seglist);
1102 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1103 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1104 bt_remfree(vm, t);
1105 bt_remseg(vm, t);
1106 bt->bt_size += t->bt_size;
1107 bt_free(vm, t);
1108 }
1109 t = CIRCLEQ_PREV(bt, bt_seglist);
1110 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1111 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1112 bt_remfree(vm, t);
1113 bt_remseg(vm, t);
1114 bt->bt_size += t->bt_size;
1115 bt->bt_start = t->bt_start;
1116 bt_free(vm, t);
1117 }
1118
1119 t = CIRCLEQ_PREV(bt, bt_seglist);
1120 KASSERT(t != NULL);
1121 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1122 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1123 t->bt_size == bt->bt_size) {
1124 vmem_addr_t spanaddr;
1125 vmem_size_t spansize;
1126
1127 KASSERT(t->bt_start == bt->bt_start);
1128 spanaddr = bt->bt_start;
1129 spansize = bt->bt_size;
1130 bt_remseg(vm, bt);
1131 bt_free(vm, bt);
1132 bt_remseg(vm, t);
1133 bt_free(vm, t);
1134 VMEM_UNLOCK(vm);
1135 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1136 } else {
1137 bt_insfree(vm, bt);
1138 VMEM_UNLOCK(vm);
1139 }
1140 }
1141
1142 /*
1143 * vmem_add:
1144 *
1145 * => caller must ensure appropriate spl,
1146 * if the arena can be accessed from interrupt context.
1147 */
1148
1149 int
1150 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1151 {
1152
1153 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1154 }
1155
1156 /*
1157 * vmem_reap: reap unused resources.
1158 *
1159 * => return true if we successfully reaped something.
1160 */
1161
1162 bool
1163 vmem_reap(vmem_t *vm)
1164 {
1165 bool didsomething = false;
1166
1167 #if defined(QCACHE)
1168 didsomething = qc_reap(vm);
1169 #endif /* defined(QCACHE) */
1170 return didsomething;
1171 }
1172
1173 /* ---- rehash */
1174
1175 #if defined(_KERNEL)
1176 static struct callout vmem_rehash_ch;
1177 static int vmem_rehash_interval;
1178 static struct workqueue *vmem_rehash_wq;
1179 static struct work vmem_rehash_wk;
1180
1181 static void
1182 vmem_rehash_all(struct work *wk, void *dummy)
1183 {
1184 vmem_t *vm;
1185
1186 KASSERT(wk == &vmem_rehash_wk);
1187 mutex_enter(&vmem_list_lock);
1188 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1189 size_t desired;
1190 size_t current;
1191
1192 if (!VMEM_TRYLOCK(vm)) {
1193 continue;
1194 }
1195 desired = vm->vm_nbusytag;
1196 current = vm->vm_hashsize;
1197 VMEM_UNLOCK(vm);
1198
1199 if (desired > VMEM_HASHSIZE_MAX) {
1200 desired = VMEM_HASHSIZE_MAX;
1201 } else if (desired < VMEM_HASHSIZE_MIN) {
1202 desired = VMEM_HASHSIZE_MIN;
1203 }
1204 if (desired > current * 2 || desired * 2 < current) {
1205 printf("vmem %s rehash %zu -> %zu\n",
1206 vm->vm_name, current, desired);
1207 vmem_rehash(vm, desired, VM_NOSLEEP);
1208 }
1209 }
1210 mutex_exit(&vmem_list_lock);
1211
1212 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1213 }
1214
1215 static void
1216 vmem_rehash_all_kick(void *dummy)
1217 {
1218
1219 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1220 }
1221
1222 void
1223 vmem_rehash_start(void)
1224 {
1225 int error;
1226
1227 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1228 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1229 if (error) {
1230 panic("%s: workqueue_create %d\n", __func__, error);
1231 }
1232 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1233 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1234
1235 vmem_rehash_interval = hz * 10;
1236 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1237 }
1238 #endif /* defined(_KERNEL) */
1239
1240 /* ---- debug */
1241
1242 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1243
1244 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1245
1246 static const char *
1247 bt_type_string(int type)
1248 {
1249 static const char * const table[] = {
1250 [BT_TYPE_BUSY] = "busy",
1251 [BT_TYPE_FREE] = "free",
1252 [BT_TYPE_SPAN] = "span",
1253 [BT_TYPE_SPAN_STATIC] = "static span",
1254 };
1255
1256 if (type >= __arraycount(table)) {
1257 return "BOGUS";
1258 }
1259 return table[type];
1260 }
1261
1262 static void
1263 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1264 {
1265
1266 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1267 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1268 bt->bt_type, bt_type_string(bt->bt_type));
1269 }
1270
1271 static void
1272 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1273 {
1274 const bt_t *bt;
1275 int i;
1276
1277 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1278 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1279 bt_dump(bt, pr);
1280 }
1281
1282 for (i = 0; i < VMEM_MAXORDER; i++) {
1283 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1284
1285 if (LIST_EMPTY(fl)) {
1286 continue;
1287 }
1288
1289 (*pr)("freelist[%d]\n", i);
1290 LIST_FOREACH(bt, fl, bt_freelist) {
1291 bt_dump(bt, pr);
1292 }
1293 }
1294 }
1295
1296 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1297
1298 #if defined(DDB)
1299 static bt_t *
1300 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1301 {
1302 bt_t *bt;
1303
1304 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1305 if (BT_ISSPAN_P(bt)) {
1306 continue;
1307 }
1308 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1309 return bt;
1310 }
1311 }
1312
1313 return NULL;
1314 }
1315
1316 void
1317 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1318 {
1319 vmem_t *vm;
1320
1321 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1322 bt_t *bt;
1323
1324 bt = vmem_whatis_lookup(vm, addr);
1325 if (bt == NULL) {
1326 continue;
1327 }
1328 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1329 (void *)addr, (void *)bt->bt_start,
1330 (size_t)(addr - bt->bt_start), vm->vm_name,
1331 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1332 }
1333 }
1334
1335 void
1336 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1337 {
1338 const vmem_t *vm;
1339
1340 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1341 vmem_dump(vm, pr);
1342 }
1343 }
1344
1345 void
1346 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1347 {
1348 const vmem_t *vm = (const void *)addr;
1349
1350 vmem_dump(vm, pr);
1351 }
1352 #endif /* defined(DDB) */
1353
1354 #if defined(_KERNEL)
1355 #define vmem_printf printf
1356 #else
1357 #include <stdio.h>
1358 #include <stdarg.h>
1359
1360 static void
1361 vmem_printf(const char *fmt, ...)
1362 {
1363 va_list ap;
1364 va_start(ap, fmt);
1365 vprintf(fmt, ap);
1366 va_end(ap);
1367 }
1368 #endif
1369
1370 #if defined(VMEM_SANITY)
1371
1372 static bool
1373 vmem_check_sanity(vmem_t *vm)
1374 {
1375 const bt_t *bt, *bt2;
1376
1377 KASSERT(vm != NULL);
1378
1379 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1380 if (bt->bt_start > BT_END(bt)) {
1381 printf("corrupted tag\n");
1382 bt_dump(bt, vmem_printf);
1383 return false;
1384 }
1385 }
1386 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1387 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1388 if (bt == bt2) {
1389 continue;
1390 }
1391 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1392 continue;
1393 }
1394 if (bt->bt_start <= BT_END(bt2) &&
1395 bt2->bt_start <= BT_END(bt)) {
1396 printf("overwrapped tags\n");
1397 bt_dump(bt, vmem_printf);
1398 bt_dump(bt2, vmem_printf);
1399 return false;
1400 }
1401 }
1402 }
1403
1404 return true;
1405 }
1406
1407 static void
1408 vmem_check(vmem_t *vm)
1409 {
1410
1411 if (!vmem_check_sanity(vm)) {
1412 panic("insanity vmem %p", vm);
1413 }
1414 }
1415
1416 #endif /* defined(VMEM_SANITY) */
1417
1418 #if defined(UNITTEST)
1419 int
1420 main(void)
1421 {
1422 int rc;
1423 vmem_t *vm;
1424 vmem_addr_t p;
1425 struct reg {
1426 vmem_addr_t p;
1427 vmem_size_t sz;
1428 bool x;
1429 } *reg = NULL;
1430 int nreg = 0;
1431 int nalloc = 0;
1432 int nfree = 0;
1433 vmem_size_t total = 0;
1434 #if 1
1435 vm_flag_t strat = VM_INSTANTFIT;
1436 #else
1437 vm_flag_t strat = VM_BESTFIT;
1438 #endif
1439
1440 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1441 #ifdef _KERNEL
1442 IPL_NONE
1443 #else
1444 0
1445 #endif
1446 );
1447 if (vm == NULL) {
1448 printf("vmem_create\n");
1449 exit(EXIT_FAILURE);
1450 }
1451 vmem_dump(vm, vmem_printf);
1452
1453 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1454 assert(rc == 0);
1455 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1456 assert(rc == 0);
1457 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1458 assert(rc == 0);
1459 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1460 assert(rc == 0);
1461 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1462 assert(rc == 0);
1463 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1464 assert(rc == 0);
1465 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1466 assert(rc == 0);
1467 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1468 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1469 assert(rc != 0);
1470 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1471 assert(rc == 0 && p == 0);
1472 vmem_xfree(vm, p, 50);
1473 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1474 assert(rc == 0 && p == 0);
1475 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1476 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1477 assert(rc != 0);
1478 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1479 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1480 assert(rc != 0);
1481 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1482 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1483 assert(rc == 0);
1484 vmem_dump(vm, vmem_printf);
1485 for (;;) {
1486 struct reg *r;
1487 int t = rand() % 100;
1488
1489 if (t > 45) {
1490 /* alloc */
1491 vmem_size_t sz = rand() % 500 + 1;
1492 bool x;
1493 vmem_size_t align, phase, nocross;
1494 vmem_addr_t minaddr, maxaddr;
1495
1496 if (t > 70) {
1497 x = true;
1498 /* XXX */
1499 align = 1 << (rand() % 15);
1500 phase = rand() % 65536;
1501 nocross = 1 << (rand() % 15);
1502 if (align <= phase) {
1503 phase = 0;
1504 }
1505 if (VMEM_CROSS_P(phase, phase + sz - 1,
1506 nocross)) {
1507 nocross = 0;
1508 }
1509 do {
1510 minaddr = rand() % 50000;
1511 maxaddr = rand() % 70000;
1512 } while (minaddr > maxaddr);
1513 printf("=== xalloc %" PRIu64
1514 " align=%" PRIu64 ", phase=%" PRIu64
1515 ", nocross=%" PRIu64 ", min=%" PRIu64
1516 ", max=%" PRIu64 "\n",
1517 (uint64_t)sz,
1518 (uint64_t)align,
1519 (uint64_t)phase,
1520 (uint64_t)nocross,
1521 (uint64_t)minaddr,
1522 (uint64_t)maxaddr);
1523 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1524 minaddr, maxaddr, strat|VM_SLEEP, &p);
1525 } else {
1526 x = false;
1527 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1528 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1529 }
1530 printf("-> %" PRIu64 "\n", (uint64_t)p);
1531 vmem_dump(vm, vmem_printf);
1532 if (rc != 0) {
1533 if (x) {
1534 continue;
1535 }
1536 break;
1537 }
1538 nreg++;
1539 reg = realloc(reg, sizeof(*reg) * nreg);
1540 r = ®[nreg - 1];
1541 r->p = p;
1542 r->sz = sz;
1543 r->x = x;
1544 total += sz;
1545 nalloc++;
1546 } else if (nreg != 0) {
1547 /* free */
1548 r = ®[rand() % nreg];
1549 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1550 (uint64_t)r->p, (uint64_t)r->sz);
1551 if (r->x) {
1552 vmem_xfree(vm, r->p, r->sz);
1553 } else {
1554 vmem_free(vm, r->p, r->sz);
1555 }
1556 total -= r->sz;
1557 vmem_dump(vm, vmem_printf);
1558 *r = reg[nreg - 1];
1559 nreg--;
1560 nfree++;
1561 }
1562 printf("total=%" PRIu64 "\n", (uint64_t)total);
1563 }
1564 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1565 (uint64_t)total, nalloc, nfree);
1566 exit(EXIT_SUCCESS);
1567 }
1568 #endif /* defined(UNITTEST) */
1569