subr_vmem.c revision 1.65.2.3 1 /* $NetBSD: subr_vmem.c,v 1.65.2.3 2013/01/23 00:06:22 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.65.2.3 2013/01/23 00:06:22 yamt Exp $");
38
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #define QCACHE
42 #endif /* defined(_KERNEL) */
43
44 #include <sys/param.h>
45 #include <sys/hash.h>
46 #include <sys/queue.h>
47 #include <sys/bitops.h>
48
49 #if defined(_KERNEL)
50 #include <sys/systm.h>
51 #include <sys/kernel.h> /* hz */
52 #include <sys/callout.h>
53 #include <sys/kmem.h>
54 #include <sys/pool.h>
55 #include <sys/vmem.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include "../sys/vmem.h"
65 #endif /* defined(_KERNEL) */
66
67
68 #if defined(_KERNEL)
69 #include <sys/evcnt.h>
70 #define VMEM_EVCNT_DEFINE(name) \
71 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
72 "vmemev", #name); \
73 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
74 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
75 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
76
77 VMEM_EVCNT_DEFINE(bt_pages)
78 VMEM_EVCNT_DEFINE(bt_count)
79 VMEM_EVCNT_DEFINE(bt_inuse)
80
81 #define LOCK_DECL(name) \
82 kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
83
84 #define CONDVAR_DECL(name) \
85 kcondvar_t name
86
87 #else /* defined(_KERNEL) */
88 #include <stdio.h>
89 #include <errno.h>
90 #include <assert.h>
91 #include <stdlib.h>
92 #include <string.h>
93
94 #define VMEM_EVCNT_INCR(ev) /* nothing */
95 #define VMEM_EVCNT_DECR(ev) /* nothing */
96
97 #define UNITTEST
98 #define KASSERT(a) assert(a)
99 #define LOCK_DECL(name) /* nothing */
100 #define CONDVAR_DECL(name) /* nothing */
101 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
102 #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
103 #define mutex_init(a, b, c) /* nothing */
104 #define mutex_destroy(a) /* nothing */
105 #define mutex_enter(a) /* nothing */
106 #define mutex_tryenter(a) true
107 #define mutex_exit(a) /* nothing */
108 #define mutex_owned(a) /* nothing */
109 #define ASSERT_SLEEPABLE() /* nothing */
110 #define panic(...) printf(__VA_ARGS__); abort()
111 #endif /* defined(_KERNEL) */
112
113 struct vmem;
114 struct vmem_btag;
115
116 #if defined(VMEM_SANITY)
117 static void vmem_check(vmem_t *);
118 #else /* defined(VMEM_SANITY) */
119 #define vmem_check(vm) /* nothing */
120 #endif /* defined(VMEM_SANITY) */
121
122 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
123
124 #define VMEM_HASHSIZE_MIN 1 /* XXX */
125 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
126 #define VMEM_HASHSIZE_INIT 1
127
128 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
129
130 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
131 LIST_HEAD(vmem_freelist, vmem_btag);
132 LIST_HEAD(vmem_hashlist, vmem_btag);
133
134 #if defined(QCACHE)
135 #define VMEM_QCACHE_IDX_MAX 32
136
137 #define QC_NAME_MAX 16
138
139 struct qcache {
140 pool_cache_t qc_cache;
141 vmem_t *qc_vmem;
142 char qc_name[QC_NAME_MAX];
143 };
144 typedef struct qcache qcache_t;
145 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
146 #endif /* defined(QCACHE) */
147
148 #define VMEM_NAME_MAX 16
149
150 /* vmem arena */
151 struct vmem {
152 CONDVAR_DECL(vm_cv);
153 LOCK_DECL(vm_lock);
154 vm_flag_t vm_flags;
155 vmem_import_t *vm_importfn;
156 vmem_release_t *vm_releasefn;
157 size_t vm_nfreetags;
158 LIST_HEAD(, vmem_btag) vm_freetags;
159 void *vm_arg;
160 struct vmem_seglist vm_seglist;
161 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
162 size_t vm_hashsize;
163 size_t vm_nbusytag;
164 struct vmem_hashlist *vm_hashlist;
165 struct vmem_hashlist vm_hash0;
166 size_t vm_quantum_mask;
167 int vm_quantum_shift;
168 size_t vm_size;
169 size_t vm_inuse;
170 char vm_name[VMEM_NAME_MAX+1];
171 LIST_ENTRY(vmem) vm_alllist;
172
173 #if defined(QCACHE)
174 /* quantum cache */
175 size_t vm_qcache_max;
176 struct pool_allocator vm_qcache_allocator;
177 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
178 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
179 #endif /* defined(QCACHE) */
180 };
181
182 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
183 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
184 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
185 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
186 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
187 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
188
189 #if defined(_KERNEL)
190 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
191 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
192 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
193 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
194 #endif /* defined(_KERNEL) */
195
196 /* boundary tag */
197 struct vmem_btag {
198 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
199 union {
200 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
201 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
202 } bt_u;
203 #define bt_hashlist bt_u.u_hashlist
204 #define bt_freelist bt_u.u_freelist
205 vmem_addr_t bt_start;
206 vmem_size_t bt_size;
207 int bt_type;
208 };
209
210 #define BT_TYPE_SPAN 1
211 #define BT_TYPE_SPAN_STATIC 2
212 #define BT_TYPE_FREE 3
213 #define BT_TYPE_BUSY 4
214 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
215
216 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
217
218 typedef struct vmem_btag bt_t;
219
220 #if defined(_KERNEL)
221 static kmutex_t vmem_list_lock;
222 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
223 #endif /* defined(_KERNEL) */
224
225 /* ---- misc */
226
227 #define VMEM_ALIGNUP(addr, align) \
228 (-(-(addr) & -(align)))
229
230 #define VMEM_CROSS_P(addr1, addr2, boundary) \
231 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
232
233 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
234 #define SIZE2ORDER(size) ((int)ilog2(size))
235
236 #if !defined(_KERNEL)
237 #define xmalloc(sz, flags) malloc(sz)
238 #define xfree(p, sz) free(p)
239 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
240 #define bt_free(vm, bt) free(bt)
241 #else /* defined(_KERNEL) */
242
243 #define xmalloc(sz, flags) \
244 kmem_intr_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
245 #define xfree(p, sz) kmem_intr_free(p, sz);
246
247 /*
248 * Memory for arenas initialized during bootstrap.
249 * There is memory for STATIC_VMEM_COUNT bootstrap arenas.
250 *
251 * BT_RESERVE calculation:
252 * we allocate memory for boundry tags with vmem, therefor we have
253 * to keep a reserve of bts used to allocated memory for bts.
254 * This reserve is 4 for each arena involved in allocating vmems memory.
255 * BT_MAXFREE: don't cache excessive counts of bts in arenas
256 */
257 #define STATIC_VMEM_COUNT 4
258 #define STATIC_BT_COUNT 200
259 #define BT_MINRESERVE 4
260 #define BT_MAXFREE 64
261 /* must be equal or greater then qcache multiplier for kmem_va_arena */
262 #define STATIC_QC_POOL_COUNT 8
263
264 static struct vmem static_vmems[STATIC_VMEM_COUNT];
265 static int static_vmem_count = STATIC_VMEM_COUNT;
266
267 static struct vmem_btag static_bts[STATIC_BT_COUNT];
268 static int static_bt_count = STATIC_BT_COUNT;
269
270 static struct pool_cache static_qc_pools[STATIC_QC_POOL_COUNT];
271 static int static_qc_pool_count = STATIC_QC_POOL_COUNT;
272
273 vmem_t *kmem_va_meta_arena;
274 vmem_t *kmem_meta_arena;
275
276 static kmutex_t vmem_refill_lock;
277 static kmutex_t vmem_btag_lock;
278 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
279 static size_t vmem_btag_freelist_count = 0;
280 static size_t vmem_btag_count = STATIC_BT_COUNT;
281
282 /* ---- boundary tag */
283
284 #define BT_PER_PAGE (PAGE_SIZE / sizeof(bt_t))
285
286 static int bt_refill(vmem_t *vm, vm_flag_t flags);
287
288 static int
289 bt_refillglobal(vm_flag_t flags)
290 {
291 vmem_addr_t va;
292 bt_t *btp;
293 bt_t *bt;
294 int i;
295
296 mutex_enter(&vmem_refill_lock);
297
298 mutex_enter(&vmem_btag_lock);
299 if (vmem_btag_freelist_count > 0) {
300 mutex_exit(&vmem_btag_lock);
301 mutex_exit(&vmem_refill_lock);
302 return 0;
303 } else {
304 mutex_exit(&vmem_btag_lock);
305 }
306
307 if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
308 (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
309 mutex_exit(&vmem_btag_lock);
310 mutex_exit(&vmem_refill_lock);
311 return ENOMEM;
312 }
313 VMEM_EVCNT_INCR(bt_pages);
314
315 mutex_enter(&vmem_btag_lock);
316 btp = (void *) va;
317 for (i = 0; i < (BT_PER_PAGE); i++) {
318 bt = btp;
319 memset(bt, 0, sizeof(*bt));
320 LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
321 bt_freelist);
322 vmem_btag_freelist_count++;
323 vmem_btag_count++;
324 VMEM_EVCNT_INCR(bt_count);
325 btp++;
326 }
327 mutex_exit(&vmem_btag_lock);
328
329 bt_refill(kmem_arena, (flags & ~VM_FITMASK)
330 | VM_INSTANTFIT | VM_POPULATING);
331 bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK)
332 | VM_INSTANTFIT | VM_POPULATING);
333 bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK)
334 | VM_INSTANTFIT | VM_POPULATING);
335
336 mutex_exit(&vmem_refill_lock);
337
338 return 0;
339 }
340
341 static int
342 bt_refill(vmem_t *vm, vm_flag_t flags)
343 {
344 bt_t *bt;
345
346 if (!(flags & VM_POPULATING)) {
347 bt_refillglobal(flags);
348 }
349
350 VMEM_LOCK(vm);
351 mutex_enter(&vmem_btag_lock);
352 while (!LIST_EMPTY(&vmem_btag_freelist) &&
353 vm->vm_nfreetags <= BT_MINRESERVE) {
354 bt = LIST_FIRST(&vmem_btag_freelist);
355 LIST_REMOVE(bt, bt_freelist);
356 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
357 vm->vm_nfreetags++;
358 vmem_btag_freelist_count--;
359 }
360 mutex_exit(&vmem_btag_lock);
361
362 if (vm->vm_nfreetags == 0) {
363 VMEM_UNLOCK(vm);
364 return ENOMEM;
365 }
366 VMEM_UNLOCK(vm);
367
368 return 0;
369 }
370
371 static inline bt_t *
372 bt_alloc(vmem_t *vm, vm_flag_t flags)
373 {
374 bt_t *bt;
375 again:
376 VMEM_LOCK(vm);
377 if (vm->vm_nfreetags <= BT_MINRESERVE &&
378 (flags & VM_POPULATING) == 0) {
379 VMEM_UNLOCK(vm);
380 if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
381 return NULL;
382 }
383 goto again;
384 }
385 bt = LIST_FIRST(&vm->vm_freetags);
386 LIST_REMOVE(bt, bt_freelist);
387 vm->vm_nfreetags--;
388 VMEM_UNLOCK(vm);
389 VMEM_EVCNT_INCR(bt_inuse);
390
391 return bt;
392 }
393
394 static inline void
395 bt_free(vmem_t *vm, bt_t *bt)
396 {
397
398 VMEM_LOCK(vm);
399 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
400 vm->vm_nfreetags++;
401 while (vm->vm_nfreetags > BT_MAXFREE) {
402 bt = LIST_FIRST(&vm->vm_freetags);
403 LIST_REMOVE(bt, bt_freelist);
404 vm->vm_nfreetags--;
405 mutex_enter(&vmem_btag_lock);
406 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
407 vmem_btag_freelist_count++;
408 mutex_exit(&vmem_btag_lock);
409 }
410 VMEM_UNLOCK(vm);
411 VMEM_EVCNT_DECR(bt_inuse);
412 }
413
414 #endif /* defined(_KERNEL) */
415
416 /*
417 * freelist[0] ... [1, 1]
418 * freelist[1] ... [2, 3]
419 * freelist[2] ... [4, 7]
420 * freelist[3] ... [8, 15]
421 * :
422 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
423 * :
424 */
425
426 static struct vmem_freelist *
427 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
428 {
429 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
430 const int idx = SIZE2ORDER(qsize);
431
432 KASSERT(size != 0 && qsize != 0);
433 KASSERT((size & vm->vm_quantum_mask) == 0);
434 KASSERT(idx >= 0);
435 KASSERT(idx < VMEM_MAXORDER);
436
437 return &vm->vm_freelist[idx];
438 }
439
440 /*
441 * bt_freehead_toalloc: return the freelist for the given size and allocation
442 * strategy.
443 *
444 * for VM_INSTANTFIT, return the list in which any blocks are large enough
445 * for the requested size. otherwise, return the list which can have blocks
446 * large enough for the requested size.
447 */
448
449 static struct vmem_freelist *
450 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
451 {
452 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
453 int idx = SIZE2ORDER(qsize);
454
455 KASSERT(size != 0 && qsize != 0);
456 KASSERT((size & vm->vm_quantum_mask) == 0);
457
458 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
459 idx++;
460 /* check too large request? */
461 }
462 KASSERT(idx >= 0);
463 KASSERT(idx < VMEM_MAXORDER);
464
465 return &vm->vm_freelist[idx];
466 }
467
468 /* ---- boundary tag hash */
469
470 static struct vmem_hashlist *
471 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
472 {
473 struct vmem_hashlist *list;
474 unsigned int hash;
475
476 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
477 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
478
479 return list;
480 }
481
482 static bt_t *
483 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
484 {
485 struct vmem_hashlist *list;
486 bt_t *bt;
487
488 list = bt_hashhead(vm, addr);
489 LIST_FOREACH(bt, list, bt_hashlist) {
490 if (bt->bt_start == addr) {
491 break;
492 }
493 }
494
495 return bt;
496 }
497
498 static void
499 bt_rembusy(vmem_t *vm, bt_t *bt)
500 {
501
502 KASSERT(vm->vm_nbusytag > 0);
503 vm->vm_inuse -= bt->bt_size;
504 vm->vm_nbusytag--;
505 LIST_REMOVE(bt, bt_hashlist);
506 }
507
508 static void
509 bt_insbusy(vmem_t *vm, bt_t *bt)
510 {
511 struct vmem_hashlist *list;
512
513 KASSERT(bt->bt_type == BT_TYPE_BUSY);
514
515 list = bt_hashhead(vm, bt->bt_start);
516 LIST_INSERT_HEAD(list, bt, bt_hashlist);
517 vm->vm_nbusytag++;
518 vm->vm_inuse += bt->bt_size;
519 }
520
521 /* ---- boundary tag list */
522
523 static void
524 bt_remseg(vmem_t *vm, bt_t *bt)
525 {
526
527 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
528 }
529
530 static void
531 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
532 {
533
534 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
535 }
536
537 static void
538 bt_insseg_tail(vmem_t *vm, bt_t *bt)
539 {
540
541 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
542 }
543
544 static void
545 bt_remfree(vmem_t *vm, bt_t *bt)
546 {
547
548 KASSERT(bt->bt_type == BT_TYPE_FREE);
549
550 LIST_REMOVE(bt, bt_freelist);
551 }
552
553 static void
554 bt_insfree(vmem_t *vm, bt_t *bt)
555 {
556 struct vmem_freelist *list;
557
558 list = bt_freehead_tofree(vm, bt->bt_size);
559 LIST_INSERT_HEAD(list, bt, bt_freelist);
560 }
561
562 /* ---- vmem internal functions */
563
564 #if defined(QCACHE)
565 static inline vm_flag_t
566 prf_to_vmf(int prflags)
567 {
568 vm_flag_t vmflags;
569
570 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
571 if ((prflags & PR_WAITOK) != 0) {
572 vmflags = VM_SLEEP;
573 } else {
574 vmflags = VM_NOSLEEP;
575 }
576 return vmflags;
577 }
578
579 static inline int
580 vmf_to_prf(vm_flag_t vmflags)
581 {
582 int prflags;
583
584 if ((vmflags & VM_SLEEP) != 0) {
585 prflags = PR_WAITOK;
586 } else {
587 prflags = PR_NOWAIT;
588 }
589 return prflags;
590 }
591
592 static size_t
593 qc_poolpage_size(size_t qcache_max)
594 {
595 int i;
596
597 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
598 /* nothing */
599 }
600 return ORDER2SIZE(i);
601 }
602
603 static void *
604 qc_poolpage_alloc(struct pool *pool, int prflags)
605 {
606 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
607 vmem_t *vm = qc->qc_vmem;
608 vmem_addr_t addr;
609
610 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
611 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
612 return NULL;
613 return (void *)addr;
614 }
615
616 static void
617 qc_poolpage_free(struct pool *pool, void *addr)
618 {
619 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
620 vmem_t *vm = qc->qc_vmem;
621
622 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
623 }
624
625 static void
626 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
627 {
628 qcache_t *prevqc;
629 struct pool_allocator *pa;
630 int qcache_idx_max;
631 int i;
632
633 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
634 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
635 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
636 }
637 vm->vm_qcache_max = qcache_max;
638 pa = &vm->vm_qcache_allocator;
639 memset(pa, 0, sizeof(*pa));
640 pa->pa_alloc = qc_poolpage_alloc;
641 pa->pa_free = qc_poolpage_free;
642 pa->pa_pagesz = qc_poolpage_size(qcache_max);
643
644 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
645 prevqc = NULL;
646 for (i = qcache_idx_max; i > 0; i--) {
647 qcache_t *qc = &vm->vm_qcache_store[i - 1];
648 size_t size = i << vm->vm_quantum_shift;
649 pool_cache_t pc;
650
651 qc->qc_vmem = vm;
652 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
653 vm->vm_name, size);
654
655 if (vm->vm_flags & VM_BOOTSTRAP) {
656 KASSERT(static_qc_pool_count > 0);
657 pc = &static_qc_pools[--static_qc_pool_count];
658 pool_cache_bootstrap(pc, size,
659 ORDER2SIZE(vm->vm_quantum_shift), 0,
660 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
661 qc->qc_name, pa, ipl, NULL, NULL, NULL);
662 } else {
663 pc = pool_cache_init(size,
664 ORDER2SIZE(vm->vm_quantum_shift), 0,
665 PR_NOALIGN | PR_NOTOUCH /* XXX */,
666 qc->qc_name, pa, ipl, NULL, NULL, NULL);
667 }
668 qc->qc_cache = pc;
669 KASSERT(qc->qc_cache != NULL); /* XXX */
670 if (prevqc != NULL &&
671 qc->qc_cache->pc_pool.pr_itemsperpage ==
672 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
673 if (vm->vm_flags & VM_BOOTSTRAP) {
674 pool_cache_bootstrap_destroy(pc);
675 //static_qc_pool_count++;
676 } else {
677 pool_cache_destroy(qc->qc_cache);
678 }
679 vm->vm_qcache[i - 1] = prevqc;
680 continue;
681 }
682 qc->qc_cache->pc_pool.pr_qcache = qc;
683 vm->vm_qcache[i - 1] = qc;
684 prevqc = qc;
685 }
686 }
687
688 static void
689 qc_destroy(vmem_t *vm)
690 {
691 const qcache_t *prevqc;
692 int i;
693 int qcache_idx_max;
694
695 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
696 prevqc = NULL;
697 for (i = 0; i < qcache_idx_max; i++) {
698 qcache_t *qc = vm->vm_qcache[i];
699
700 if (prevqc == qc) {
701 continue;
702 }
703 if (vm->vm_flags & VM_BOOTSTRAP) {
704 pool_cache_bootstrap_destroy(qc->qc_cache);
705 } else {
706 pool_cache_destroy(qc->qc_cache);
707 }
708 prevqc = qc;
709 }
710 }
711 #endif
712
713 #if defined(_KERNEL)
714 void
715 vmem_bootstrap(void)
716 {
717
718 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
719 mutex_init(&vmem_refill_lock, MUTEX_DEFAULT, IPL_VM);
720 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
721
722 while (static_bt_count-- > 0) {
723 bt_t *bt = &static_bts[static_bt_count];
724 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
725 VMEM_EVCNT_INCR(bt_count);
726 vmem_btag_freelist_count++;
727 }
728 }
729
730 void
731 vmem_init(vmem_t *vm)
732 {
733
734 kmem_va_meta_arena = vmem_create("vmem-va", 0, 0, PAGE_SIZE,
735 vmem_alloc, vmem_free, vm,
736 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
737 IPL_VM);
738
739 kmem_meta_arena = vmem_create("vmem-meta", 0, 0, PAGE_SIZE,
740 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
741 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
742 }
743 #endif /* defined(_KERNEL) */
744
745 static int
746 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
747 int spanbttype)
748 {
749 bt_t *btspan;
750 bt_t *btfree;
751
752 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
753 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
754 KASSERT(spanbttype == BT_TYPE_SPAN ||
755 spanbttype == BT_TYPE_SPAN_STATIC);
756
757 btspan = bt_alloc(vm, flags);
758 if (btspan == NULL) {
759 return ENOMEM;
760 }
761 btfree = bt_alloc(vm, flags);
762 if (btfree == NULL) {
763 bt_free(vm, btspan);
764 return ENOMEM;
765 }
766
767 btspan->bt_type = spanbttype;
768 btspan->bt_start = addr;
769 btspan->bt_size = size;
770
771 btfree->bt_type = BT_TYPE_FREE;
772 btfree->bt_start = addr;
773 btfree->bt_size = size;
774
775 VMEM_LOCK(vm);
776 bt_insseg_tail(vm, btspan);
777 bt_insseg(vm, btfree, btspan);
778 bt_insfree(vm, btfree);
779 vm->vm_size += size;
780 VMEM_UNLOCK(vm);
781
782 return 0;
783 }
784
785 static void
786 vmem_destroy1(vmem_t *vm)
787 {
788
789 #if defined(QCACHE)
790 qc_destroy(vm);
791 #endif /* defined(QCACHE) */
792 if (vm->vm_hashlist != NULL) {
793 int i;
794
795 for (i = 0; i < vm->vm_hashsize; i++) {
796 bt_t *bt;
797
798 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
799 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
800 bt_free(vm, bt);
801 }
802 }
803 if (vm->vm_hashlist != &vm->vm_hash0) {
804 xfree(vm->vm_hashlist,
805 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
806 }
807 }
808
809 while (vm->vm_nfreetags > 0) {
810 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
811 LIST_REMOVE(bt, bt_freelist);
812 vm->vm_nfreetags--;
813 mutex_enter(&vmem_btag_lock);
814 #if defined (_KERNEL)
815 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
816 vmem_btag_freelist_count++;
817 #endif /* defined(_KERNEL) */
818 mutex_exit(&vmem_btag_lock);
819 }
820
821 VMEM_LOCK_DESTROY(vm);
822 xfree(vm, sizeof(*vm));
823 }
824
825 static int
826 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
827 {
828 vmem_addr_t addr;
829 int rc;
830
831 if (vm->vm_importfn == NULL) {
832 return EINVAL;
833 }
834
835 if (vm->vm_flags & VM_LARGEIMPORT) {
836 size *= 8;
837 }
838
839 if (vm->vm_flags & VM_XIMPORT) {
840 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
841 &size, flags, &addr);
842 } else {
843 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
844 }
845 if (rc) {
846 return ENOMEM;
847 }
848
849 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
850 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
851 return ENOMEM;
852 }
853
854 return 0;
855 }
856
857 static int
858 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
859 {
860 bt_t *bt;
861 int i;
862 struct vmem_hashlist *newhashlist;
863 struct vmem_hashlist *oldhashlist;
864 size_t oldhashsize;
865
866 KASSERT(newhashsize > 0);
867
868 newhashlist =
869 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
870 if (newhashlist == NULL) {
871 return ENOMEM;
872 }
873 for (i = 0; i < newhashsize; i++) {
874 LIST_INIT(&newhashlist[i]);
875 }
876
877 if (!VMEM_TRYLOCK(vm)) {
878 xfree(newhashlist,
879 sizeof(struct vmem_hashlist *) * newhashsize);
880 return EBUSY;
881 }
882 oldhashlist = vm->vm_hashlist;
883 oldhashsize = vm->vm_hashsize;
884 vm->vm_hashlist = newhashlist;
885 vm->vm_hashsize = newhashsize;
886 if (oldhashlist == NULL) {
887 VMEM_UNLOCK(vm);
888 return 0;
889 }
890 for (i = 0; i < oldhashsize; i++) {
891 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
892 bt_rembusy(vm, bt); /* XXX */
893 bt_insbusy(vm, bt);
894 }
895 }
896 VMEM_UNLOCK(vm);
897
898 if (oldhashlist != &vm->vm_hash0) {
899 xfree(oldhashlist,
900 sizeof(struct vmem_hashlist *) * oldhashsize);
901 }
902
903 return 0;
904 }
905
906 /*
907 * vmem_fit: check if a bt can satisfy the given restrictions.
908 *
909 * it's a caller's responsibility to ensure the region is big enough
910 * before calling us.
911 */
912
913 static int
914 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
915 vmem_size_t phase, vmem_size_t nocross,
916 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
917 {
918 vmem_addr_t start;
919 vmem_addr_t end;
920
921 KASSERT(size > 0);
922 KASSERT(bt->bt_size >= size); /* caller's responsibility */
923
924 /*
925 * XXX assumption: vmem_addr_t and vmem_size_t are
926 * unsigned integer of the same size.
927 */
928
929 start = bt->bt_start;
930 if (start < minaddr) {
931 start = minaddr;
932 }
933 end = BT_END(bt);
934 if (end > maxaddr) {
935 end = maxaddr;
936 }
937 if (start > end) {
938 return ENOMEM;
939 }
940
941 start = VMEM_ALIGNUP(start - phase, align) + phase;
942 if (start < bt->bt_start) {
943 start += align;
944 }
945 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
946 KASSERT(align < nocross);
947 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
948 }
949 if (start <= end && end - start >= size - 1) {
950 KASSERT((start & (align - 1)) == phase);
951 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
952 KASSERT(minaddr <= start);
953 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
954 KASSERT(bt->bt_start <= start);
955 KASSERT(BT_END(bt) - start >= size - 1);
956 *addrp = start;
957 return 0;
958 }
959 return ENOMEM;
960 }
961
962
963 /*
964 * vmem_create_internal: creates a vmem arena.
965 */
966
967 static vmem_t *
968 vmem_create_internal(const char *name, vmem_addr_t base, vmem_size_t size,
969 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
970 void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
971 {
972 vmem_t *vm = NULL;
973 int i;
974
975 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
976 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
977 KASSERT(quantum > 0);
978
979 if (flags & VM_BOOTSTRAP) {
980 #if defined(_KERNEL)
981 KASSERT(static_vmem_count > 0);
982 vm = &static_vmems[--static_vmem_count];
983 #endif /* defined(_KERNEL) */
984 } else {
985 vm = xmalloc(sizeof(*vm), flags);
986 }
987 if (vm == NULL) {
988 return NULL;
989 }
990
991 VMEM_CONDVAR_INIT(vm, "vmem");
992 VMEM_LOCK_INIT(vm, ipl);
993 vm->vm_flags = flags;
994 vm->vm_nfreetags = 0;
995 LIST_INIT(&vm->vm_freetags);
996 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
997 vm->vm_quantum_mask = quantum - 1;
998 vm->vm_quantum_shift = SIZE2ORDER(quantum);
999 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
1000 vm->vm_importfn = importfn;
1001 vm->vm_releasefn = releasefn;
1002 vm->vm_arg = arg;
1003 vm->vm_nbusytag = 0;
1004 vm->vm_size = 0;
1005 vm->vm_inuse = 0;
1006 #if defined(QCACHE)
1007 qc_init(vm, qcache_max, ipl);
1008 #endif /* defined(QCACHE) */
1009
1010 CIRCLEQ_INIT(&vm->vm_seglist);
1011 for (i = 0; i < VMEM_MAXORDER; i++) {
1012 LIST_INIT(&vm->vm_freelist[i]);
1013 }
1014 vm->vm_hashlist = NULL;
1015 if (flags & VM_BOOTSTRAP) {
1016 vm->vm_hashsize = 1;
1017 vm->vm_hashlist = &vm->vm_hash0;
1018 } else if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
1019 vmem_destroy1(vm);
1020 return NULL;
1021 }
1022
1023 if (size != 0) {
1024 if (vmem_add(vm, base, size, flags) != 0) {
1025 vmem_destroy1(vm);
1026 return NULL;
1027 }
1028 }
1029
1030 #if defined(_KERNEL)
1031 if (flags & VM_BOOTSTRAP) {
1032 bt_refill(vm, VM_NOSLEEP);
1033 }
1034
1035 mutex_enter(&vmem_list_lock);
1036 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1037 mutex_exit(&vmem_list_lock);
1038 #endif /* defined(_KERNEL) */
1039
1040 return vm;
1041 }
1042
1043
1044 /* ---- vmem API */
1045
1046 /*
1047 * vmem_create: create an arena.
1048 *
1049 * => must not be called from interrupt context.
1050 */
1051
1052 vmem_t *
1053 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1054 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1055 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1056 {
1057
1058 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1059 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1060 KASSERT((flags & (VM_XIMPORT)) == 0);
1061
1062 return vmem_create_internal(name, base, size, quantum,
1063 importfn, releasefn, source, qcache_max, flags, ipl);
1064 }
1065
1066 /*
1067 * vmem_xcreate: create an arena takes alternative import func.
1068 *
1069 * => must not be called from interrupt context.
1070 */
1071
1072 vmem_t *
1073 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1074 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1075 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1076 {
1077
1078 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1079 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1080 KASSERT((flags & (VM_XIMPORT)) == 0);
1081
1082 return vmem_create_internal(name, base, size, quantum,
1083 (vmem_import_t *)importfn, releasefn, source,
1084 qcache_max, flags | VM_XIMPORT, ipl);
1085 }
1086
1087 void
1088 vmem_destroy(vmem_t *vm)
1089 {
1090
1091 #if defined(_KERNEL)
1092 mutex_enter(&vmem_list_lock);
1093 LIST_REMOVE(vm, vm_alllist);
1094 mutex_exit(&vmem_list_lock);
1095 #endif /* defined(_KERNEL) */
1096
1097 vmem_destroy1(vm);
1098 }
1099
1100 vmem_size_t
1101 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1102 {
1103
1104 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1105 }
1106
1107 /*
1108 * vmem_alloc:
1109 *
1110 * => caller must ensure appropriate spl,
1111 * if the arena can be accessed from interrupt context.
1112 */
1113
1114 int
1115 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1116 {
1117 const vm_flag_t strat __unused = flags & VM_FITMASK;
1118
1119 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1120 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1121
1122 KASSERT(size > 0);
1123 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1124 if ((flags & VM_SLEEP) != 0) {
1125 ASSERT_SLEEPABLE();
1126 }
1127
1128 #if defined(QCACHE)
1129 if (size <= vm->vm_qcache_max) {
1130 void *p;
1131 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1132 qcache_t *qc = vm->vm_qcache[qidx - 1];
1133
1134 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1135 if (addrp != NULL)
1136 *addrp = (vmem_addr_t)p;
1137 return (p == NULL) ? ENOMEM : 0;
1138 }
1139 #endif /* defined(QCACHE) */
1140
1141 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1142 flags, addrp);
1143 }
1144
1145 int
1146 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1147 const vmem_size_t phase, const vmem_size_t nocross,
1148 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1149 vmem_addr_t *addrp)
1150 {
1151 struct vmem_freelist *list;
1152 struct vmem_freelist *first;
1153 struct vmem_freelist *end;
1154 bt_t *bt;
1155 bt_t *btnew;
1156 bt_t *btnew2;
1157 const vmem_size_t size = vmem_roundup_size(vm, size0);
1158 vm_flag_t strat = flags & VM_FITMASK;
1159 vmem_addr_t start;
1160 int rc;
1161
1162 KASSERT(size0 > 0);
1163 KASSERT(size > 0);
1164 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1165 if ((flags & VM_SLEEP) != 0) {
1166 ASSERT_SLEEPABLE();
1167 }
1168 KASSERT((align & vm->vm_quantum_mask) == 0);
1169 KASSERT((align & (align - 1)) == 0);
1170 KASSERT((phase & vm->vm_quantum_mask) == 0);
1171 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1172 KASSERT((nocross & (nocross - 1)) == 0);
1173 KASSERT((align == 0 && phase == 0) || phase < align);
1174 KASSERT(nocross == 0 || nocross >= size);
1175 KASSERT(minaddr <= maxaddr);
1176 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1177
1178 if (align == 0) {
1179 align = vm->vm_quantum_mask + 1;
1180 }
1181
1182 /*
1183 * allocate boundary tags before acquiring the vmem lock.
1184 */
1185 btnew = bt_alloc(vm, flags);
1186 if (btnew == NULL) {
1187 return ENOMEM;
1188 }
1189 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1190 if (btnew2 == NULL) {
1191 bt_free(vm, btnew);
1192 return ENOMEM;
1193 }
1194
1195 /*
1196 * choose a free block from which we allocate.
1197 */
1198 retry_strat:
1199 first = bt_freehead_toalloc(vm, size, strat);
1200 end = &vm->vm_freelist[VMEM_MAXORDER];
1201 retry:
1202 bt = NULL;
1203 VMEM_LOCK(vm);
1204 vmem_check(vm);
1205 if (strat == VM_INSTANTFIT) {
1206 /*
1207 * just choose the first block which satisfies our restrictions.
1208 *
1209 * note that we don't need to check the size of the blocks
1210 * because any blocks found on these list should be larger than
1211 * the given size.
1212 */
1213 for (list = first; list < end; list++) {
1214 bt = LIST_FIRST(list);
1215 if (bt != NULL) {
1216 rc = vmem_fit(bt, size, align, phase,
1217 nocross, minaddr, maxaddr, &start);
1218 if (rc == 0) {
1219 goto gotit;
1220 }
1221 /*
1222 * don't bother to follow the bt_freelist link
1223 * here. the list can be very long and we are
1224 * told to run fast. blocks from the later free
1225 * lists are larger and have better chances to
1226 * satisfy our restrictions.
1227 */
1228 }
1229 }
1230 } else { /* VM_BESTFIT */
1231 /*
1232 * we assume that, for space efficiency, it's better to
1233 * allocate from a smaller block. thus we will start searching
1234 * from the lower-order list than VM_INSTANTFIT.
1235 * however, don't bother to find the smallest block in a free
1236 * list because the list can be very long. we can revisit it
1237 * if/when it turns out to be a problem.
1238 *
1239 * note that the 'first' list can contain blocks smaller than
1240 * the requested size. thus we need to check bt_size.
1241 */
1242 for (list = first; list < end; list++) {
1243 LIST_FOREACH(bt, list, bt_freelist) {
1244 if (bt->bt_size >= size) {
1245 rc = vmem_fit(bt, size, align, phase,
1246 nocross, minaddr, maxaddr, &start);
1247 if (rc == 0) {
1248 goto gotit;
1249 }
1250 }
1251 }
1252 }
1253 }
1254 VMEM_UNLOCK(vm);
1255 #if 1
1256 if (strat == VM_INSTANTFIT) {
1257 strat = VM_BESTFIT;
1258 goto retry_strat;
1259 }
1260 #endif
1261 if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1262
1263 /*
1264 * XXX should try to import a region large enough to
1265 * satisfy restrictions?
1266 */
1267
1268 goto fail;
1269 }
1270 /* XXX eeek, minaddr & maxaddr not respected */
1271 if (vmem_import(vm, size, flags) == 0) {
1272 goto retry;
1273 }
1274 /* XXX */
1275
1276 if ((flags & VM_SLEEP) != 0) {
1277 #if defined(_KERNEL) && !defined(_RUMPKERNEL)
1278 mutex_spin_enter(&uvm_fpageqlock);
1279 uvm_kick_pdaemon();
1280 mutex_spin_exit(&uvm_fpageqlock);
1281 #endif
1282 VMEM_LOCK(vm);
1283 VMEM_CONDVAR_WAIT(vm);
1284 VMEM_UNLOCK(vm);
1285 goto retry;
1286 }
1287 fail:
1288 bt_free(vm, btnew);
1289 bt_free(vm, btnew2);
1290 return ENOMEM;
1291
1292 gotit:
1293 KASSERT(bt->bt_type == BT_TYPE_FREE);
1294 KASSERT(bt->bt_size >= size);
1295 bt_remfree(vm, bt);
1296 vmem_check(vm);
1297 if (bt->bt_start != start) {
1298 btnew2->bt_type = BT_TYPE_FREE;
1299 btnew2->bt_start = bt->bt_start;
1300 btnew2->bt_size = start - bt->bt_start;
1301 bt->bt_start = start;
1302 bt->bt_size -= btnew2->bt_size;
1303 bt_insfree(vm, btnew2);
1304 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1305 btnew2 = NULL;
1306 vmem_check(vm);
1307 }
1308 KASSERT(bt->bt_start == start);
1309 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1310 /* split */
1311 btnew->bt_type = BT_TYPE_BUSY;
1312 btnew->bt_start = bt->bt_start;
1313 btnew->bt_size = size;
1314 bt->bt_start = bt->bt_start + size;
1315 bt->bt_size -= size;
1316 bt_insfree(vm, bt);
1317 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1318 bt_insbusy(vm, btnew);
1319 vmem_check(vm);
1320 VMEM_UNLOCK(vm);
1321 } else {
1322 bt->bt_type = BT_TYPE_BUSY;
1323 bt_insbusy(vm, bt);
1324 vmem_check(vm);
1325 VMEM_UNLOCK(vm);
1326 bt_free(vm, btnew);
1327 btnew = bt;
1328 }
1329 if (btnew2 != NULL) {
1330 bt_free(vm, btnew2);
1331 }
1332 KASSERT(btnew->bt_size >= size);
1333 btnew->bt_type = BT_TYPE_BUSY;
1334
1335 if (addrp != NULL)
1336 *addrp = btnew->bt_start;
1337 return 0;
1338 }
1339
1340 /*
1341 * vmem_free:
1342 *
1343 * => caller must ensure appropriate spl,
1344 * if the arena can be accessed from interrupt context.
1345 */
1346
1347 void
1348 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1349 {
1350
1351 KASSERT(size > 0);
1352
1353 #if defined(QCACHE)
1354 if (size <= vm->vm_qcache_max) {
1355 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1356 qcache_t *qc = vm->vm_qcache[qidx - 1];
1357
1358 pool_cache_put(qc->qc_cache, (void *)addr);
1359 return;
1360 }
1361 #endif /* defined(QCACHE) */
1362
1363 vmem_xfree(vm, addr, size);
1364 }
1365
1366 void
1367 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1368 {
1369 bt_t *bt;
1370 bt_t *t;
1371 LIST_HEAD(, vmem_btag) tofree;
1372
1373 LIST_INIT(&tofree);
1374
1375 KASSERT(size > 0);
1376
1377 VMEM_LOCK(vm);
1378
1379 bt = bt_lookupbusy(vm, addr);
1380 KASSERT(bt != NULL);
1381 KASSERT(bt->bt_start == addr);
1382 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1383 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1384 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1385 bt_rembusy(vm, bt);
1386 bt->bt_type = BT_TYPE_FREE;
1387
1388 /* coalesce */
1389 t = CIRCLEQ_NEXT(bt, bt_seglist);
1390 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1391 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1392 bt_remfree(vm, t);
1393 bt_remseg(vm, t);
1394 bt->bt_size += t->bt_size;
1395 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1396 }
1397 t = CIRCLEQ_PREV(bt, bt_seglist);
1398 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1399 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1400 bt_remfree(vm, t);
1401 bt_remseg(vm, t);
1402 bt->bt_size += t->bt_size;
1403 bt->bt_start = t->bt_start;
1404 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1405 }
1406
1407 t = CIRCLEQ_PREV(bt, bt_seglist);
1408 KASSERT(t != NULL);
1409 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1410 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1411 t->bt_size == bt->bt_size) {
1412 vmem_addr_t spanaddr;
1413 vmem_size_t spansize;
1414
1415 KASSERT(t->bt_start == bt->bt_start);
1416 spanaddr = bt->bt_start;
1417 spansize = bt->bt_size;
1418 bt_remseg(vm, bt);
1419 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1420 bt_remseg(vm, t);
1421 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1422 vm->vm_size -= spansize;
1423 VMEM_CONDVAR_BROADCAST(vm);
1424 VMEM_UNLOCK(vm);
1425 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1426 } else {
1427 bt_insfree(vm, bt);
1428 VMEM_CONDVAR_BROADCAST(vm);
1429 VMEM_UNLOCK(vm);
1430 }
1431
1432 while (!LIST_EMPTY(&tofree)) {
1433 t = LIST_FIRST(&tofree);
1434 LIST_REMOVE(t, bt_freelist);
1435 bt_free(vm, t);
1436 }
1437 }
1438
1439 /*
1440 * vmem_add:
1441 *
1442 * => caller must ensure appropriate spl,
1443 * if the arena can be accessed from interrupt context.
1444 */
1445
1446 int
1447 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1448 {
1449
1450 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1451 }
1452
1453 /*
1454 * vmem_size: information about arenas size
1455 *
1456 * => return free/allocated size in arena
1457 */
1458 vmem_size_t
1459 vmem_size(vmem_t *vm, int typemask)
1460 {
1461
1462 switch (typemask) {
1463 case VMEM_ALLOC:
1464 return vm->vm_inuse;
1465 case VMEM_FREE:
1466 return vm->vm_size - vm->vm_inuse;
1467 case VMEM_FREE|VMEM_ALLOC:
1468 return vm->vm_size;
1469 default:
1470 panic("vmem_size");
1471 }
1472 }
1473
1474 /* ---- rehash */
1475
1476 #if defined(_KERNEL)
1477 static struct callout vmem_rehash_ch;
1478 static int vmem_rehash_interval;
1479 static struct workqueue *vmem_rehash_wq;
1480 static struct work vmem_rehash_wk;
1481
1482 static void
1483 vmem_rehash_all(struct work *wk, void *dummy)
1484 {
1485 vmem_t *vm;
1486
1487 KASSERT(wk == &vmem_rehash_wk);
1488 mutex_enter(&vmem_list_lock);
1489 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1490 size_t desired;
1491 size_t current;
1492
1493 if (!VMEM_TRYLOCK(vm)) {
1494 continue;
1495 }
1496 desired = vm->vm_nbusytag;
1497 current = vm->vm_hashsize;
1498 VMEM_UNLOCK(vm);
1499
1500 if (desired > VMEM_HASHSIZE_MAX) {
1501 desired = VMEM_HASHSIZE_MAX;
1502 } else if (desired < VMEM_HASHSIZE_MIN) {
1503 desired = VMEM_HASHSIZE_MIN;
1504 }
1505 if (desired > current * 2 || desired * 2 < current) {
1506 vmem_rehash(vm, desired, VM_NOSLEEP);
1507 }
1508 }
1509 mutex_exit(&vmem_list_lock);
1510
1511 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1512 }
1513
1514 static void
1515 vmem_rehash_all_kick(void *dummy)
1516 {
1517
1518 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1519 }
1520
1521 void
1522 vmem_rehash_start(void)
1523 {
1524 int error;
1525
1526 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1527 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1528 if (error) {
1529 panic("%s: workqueue_create %d\n", __func__, error);
1530 }
1531 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1532 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1533
1534 vmem_rehash_interval = hz * 10;
1535 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1536 }
1537 #endif /* defined(_KERNEL) */
1538
1539 /* ---- debug */
1540
1541 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1542
1543 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1544
1545 static const char *
1546 bt_type_string(int type)
1547 {
1548 static const char * const table[] = {
1549 [BT_TYPE_BUSY] = "busy",
1550 [BT_TYPE_FREE] = "free",
1551 [BT_TYPE_SPAN] = "span",
1552 [BT_TYPE_SPAN_STATIC] = "static span",
1553 };
1554
1555 if (type >= __arraycount(table)) {
1556 return "BOGUS";
1557 }
1558 return table[type];
1559 }
1560
1561 static void
1562 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1563 {
1564
1565 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1566 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1567 bt->bt_type, bt_type_string(bt->bt_type));
1568 }
1569
1570 static void
1571 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1572 {
1573 const bt_t *bt;
1574 int i;
1575
1576 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1577 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1578 bt_dump(bt, pr);
1579 }
1580
1581 for (i = 0; i < VMEM_MAXORDER; i++) {
1582 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1583
1584 if (LIST_EMPTY(fl)) {
1585 continue;
1586 }
1587
1588 (*pr)("freelist[%d]\n", i);
1589 LIST_FOREACH(bt, fl, bt_freelist) {
1590 bt_dump(bt, pr);
1591 }
1592 }
1593 }
1594
1595 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1596
1597 #if defined(DDB)
1598 static bt_t *
1599 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1600 {
1601 bt_t *bt;
1602
1603 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1604 if (BT_ISSPAN_P(bt)) {
1605 continue;
1606 }
1607 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1608 return bt;
1609 }
1610 }
1611
1612 return NULL;
1613 }
1614
1615 void
1616 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1617 {
1618 vmem_t *vm;
1619
1620 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1621 bt_t *bt;
1622
1623 bt = vmem_whatis_lookup(vm, addr);
1624 if (bt == NULL) {
1625 continue;
1626 }
1627 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1628 (void *)addr, (void *)bt->bt_start,
1629 (size_t)(addr - bt->bt_start), vm->vm_name,
1630 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1631 }
1632 }
1633
1634 void
1635 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1636 {
1637 const vmem_t *vm;
1638
1639 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1640 vmem_dump(vm, pr);
1641 }
1642 }
1643
1644 void
1645 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1646 {
1647 const vmem_t *vm = (const void *)addr;
1648
1649 vmem_dump(vm, pr);
1650 }
1651 #endif /* defined(DDB) */
1652
1653 #if defined(_KERNEL)
1654 #define vmem_printf printf
1655 #else
1656 #include <stdio.h>
1657 #include <stdarg.h>
1658
1659 static void
1660 vmem_printf(const char *fmt, ...)
1661 {
1662 va_list ap;
1663 va_start(ap, fmt);
1664 vprintf(fmt, ap);
1665 va_end(ap);
1666 }
1667 #endif
1668
1669 #if defined(VMEM_SANITY)
1670
1671 static bool
1672 vmem_check_sanity(vmem_t *vm)
1673 {
1674 const bt_t *bt, *bt2;
1675
1676 KASSERT(vm != NULL);
1677
1678 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1679 if (bt->bt_start > BT_END(bt)) {
1680 printf("corrupted tag\n");
1681 bt_dump(bt, vmem_printf);
1682 return false;
1683 }
1684 }
1685 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1686 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1687 if (bt == bt2) {
1688 continue;
1689 }
1690 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1691 continue;
1692 }
1693 if (bt->bt_start <= BT_END(bt2) &&
1694 bt2->bt_start <= BT_END(bt)) {
1695 printf("overwrapped tags\n");
1696 bt_dump(bt, vmem_printf);
1697 bt_dump(bt2, vmem_printf);
1698 return false;
1699 }
1700 }
1701 }
1702
1703 return true;
1704 }
1705
1706 static void
1707 vmem_check(vmem_t *vm)
1708 {
1709
1710 if (!vmem_check_sanity(vm)) {
1711 panic("insanity vmem %p", vm);
1712 }
1713 }
1714
1715 #endif /* defined(VMEM_SANITY) */
1716
1717 #if defined(UNITTEST)
1718 int
1719 main(void)
1720 {
1721 int rc;
1722 vmem_t *vm;
1723 vmem_addr_t p;
1724 struct reg {
1725 vmem_addr_t p;
1726 vmem_size_t sz;
1727 bool x;
1728 } *reg = NULL;
1729 int nreg = 0;
1730 int nalloc = 0;
1731 int nfree = 0;
1732 vmem_size_t total = 0;
1733 #if 1
1734 vm_flag_t strat = VM_INSTANTFIT;
1735 #else
1736 vm_flag_t strat = VM_BESTFIT;
1737 #endif
1738
1739 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1740 #ifdef _KERNEL
1741 IPL_NONE
1742 #else
1743 0
1744 #endif
1745 );
1746 if (vm == NULL) {
1747 printf("vmem_create\n");
1748 exit(EXIT_FAILURE);
1749 }
1750 vmem_dump(vm, vmem_printf);
1751
1752 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1753 assert(rc == 0);
1754 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1755 assert(rc == 0);
1756 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1757 assert(rc == 0);
1758 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1759 assert(rc == 0);
1760 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1761 assert(rc == 0);
1762 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1763 assert(rc == 0);
1764 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1765 assert(rc == 0);
1766 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1767 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1768 assert(rc != 0);
1769 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1770 assert(rc == 0 && p == 0);
1771 vmem_xfree(vm, p, 50);
1772 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1773 assert(rc == 0 && p == 0);
1774 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1775 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1776 assert(rc != 0);
1777 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1778 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1779 assert(rc != 0);
1780 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1781 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1782 assert(rc == 0);
1783 vmem_dump(vm, vmem_printf);
1784 for (;;) {
1785 struct reg *r;
1786 int t = rand() % 100;
1787
1788 if (t > 45) {
1789 /* alloc */
1790 vmem_size_t sz = rand() % 500 + 1;
1791 bool x;
1792 vmem_size_t align, phase, nocross;
1793 vmem_addr_t minaddr, maxaddr;
1794
1795 if (t > 70) {
1796 x = true;
1797 /* XXX */
1798 align = 1 << (rand() % 15);
1799 phase = rand() % 65536;
1800 nocross = 1 << (rand() % 15);
1801 if (align <= phase) {
1802 phase = 0;
1803 }
1804 if (VMEM_CROSS_P(phase, phase + sz - 1,
1805 nocross)) {
1806 nocross = 0;
1807 }
1808 do {
1809 minaddr = rand() % 50000;
1810 maxaddr = rand() % 70000;
1811 } while (minaddr > maxaddr);
1812 printf("=== xalloc %" PRIu64
1813 " align=%" PRIu64 ", phase=%" PRIu64
1814 ", nocross=%" PRIu64 ", min=%" PRIu64
1815 ", max=%" PRIu64 "\n",
1816 (uint64_t)sz,
1817 (uint64_t)align,
1818 (uint64_t)phase,
1819 (uint64_t)nocross,
1820 (uint64_t)minaddr,
1821 (uint64_t)maxaddr);
1822 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1823 minaddr, maxaddr, strat|VM_SLEEP, &p);
1824 } else {
1825 x = false;
1826 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1827 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1828 }
1829 printf("-> %" PRIu64 "\n", (uint64_t)p);
1830 vmem_dump(vm, vmem_printf);
1831 if (rc != 0) {
1832 if (x) {
1833 continue;
1834 }
1835 break;
1836 }
1837 nreg++;
1838 reg = realloc(reg, sizeof(*reg) * nreg);
1839 r = ®[nreg - 1];
1840 r->p = p;
1841 r->sz = sz;
1842 r->x = x;
1843 total += sz;
1844 nalloc++;
1845 } else if (nreg != 0) {
1846 /* free */
1847 r = ®[rand() % nreg];
1848 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1849 (uint64_t)r->p, (uint64_t)r->sz);
1850 if (r->x) {
1851 vmem_xfree(vm, r->p, r->sz);
1852 } else {
1853 vmem_free(vm, r->p, r->sz);
1854 }
1855 total -= r->sz;
1856 vmem_dump(vm, vmem_printf);
1857 *r = reg[nreg - 1];
1858 nreg--;
1859 nfree++;
1860 }
1861 printf("total=%" PRIu64 "\n", (uint64_t)total);
1862 }
1863 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1864 (uint64_t)total, nalloc, nfree);
1865 exit(EXIT_SUCCESS);
1866 }
1867 #endif /* defined(UNITTEST) */
1868