subr_vmem.c revision 1.66 1 /* $NetBSD: subr_vmem.c,v 1.66 2012/01/27 19:48:40 para Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.66 2012/01/27 19:48:40 para Exp $");
38
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #define QCACHE
42 #endif /* defined(_KERNEL) */
43
44 #include <sys/param.h>
45 #include <sys/hash.h>
46 #include <sys/queue.h>
47 #include <sys/bitops.h>
48
49 #if defined(_KERNEL)
50 #include <sys/systm.h>
51 #include <sys/kernel.h> /* hz */
52 #include <sys/callout.h>
53 #include <sys/kmem.h>
54 #include <sys/pool.h>
55 #include <sys/vmem.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include "../sys/vmem.h"
65 #endif /* defined(_KERNEL) */
66
67
68 #if defined(_KERNEL)
69 #include <sys/evcnt.h>
70 #define VMEM_EVCNT_DEFINE(name) \
71 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
72 "vmemev", #name); \
73 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
74 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
75 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
76
77 VMEM_EVCNT_DEFINE(bt_pages)
78 VMEM_EVCNT_DEFINE(bt_count)
79 VMEM_EVCNT_DEFINE(bt_inuse)
80
81 #define LOCK_DECL(name) \
82 kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
83
84 #define CONDVAR_DECL(name) \
85 kcondvar_t name;
86
87 #else /* defined(_KERNEL) */
88 #include <errno.h>
89 #include <assert.h>
90 #include <stdlib.h>
91 #include <string.h>
92
93 #define VMEM_EVCNT_INCR(ev) /* nothing */
94 #define VMEM_EVCNT_DECR(ev) /* nothing */
95
96 #define UNITTEST
97 #define KASSERT(a) assert(a)
98 #define LOCK_DECL(name) /* nothing */
99 #define CONDVAR_DECL(name) /* nothing */
100 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
101 #define mutex_init(a, b, c) /* nothing */
102 #define mutex_destroy(a) /* nothing */
103 #define mutex_enter(a) /* nothing */
104 #define mutex_tryenter(a) true
105 #define mutex_exit(a) /* nothing */
106 #define mutex_owned(a) /* nothing */
107 #define ASSERT_SLEEPABLE() /* nothing */
108 #define panic(...) printf(__VA_ARGS__); abort()
109 #endif /* defined(_KERNEL) */
110
111 struct vmem;
112 struct vmem_btag;
113
114 #if defined(VMEM_SANITY)
115 static void vmem_check(vmem_t *);
116 #else /* defined(VMEM_SANITY) */
117 #define vmem_check(vm) /* nothing */
118 #endif /* defined(VMEM_SANITY) */
119
120 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
121
122 #define VMEM_HASHSIZE_MIN 1 /* XXX */
123 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
124 #define VMEM_HASHSIZE_INIT 1
125
126 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
127
128 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
129 LIST_HEAD(vmem_freelist, vmem_btag);
130 LIST_HEAD(vmem_hashlist, vmem_btag);
131
132 #if defined(QCACHE)
133 #define VMEM_QCACHE_IDX_MAX 32
134
135 #define QC_NAME_MAX 16
136
137 struct qcache {
138 pool_cache_t qc_cache;
139 vmem_t *qc_vmem;
140 char qc_name[QC_NAME_MAX];
141 };
142 typedef struct qcache qcache_t;
143 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
144 #endif /* defined(QCACHE) */
145
146 #define VMEM_NAME_MAX 16
147
148 /* vmem arena */
149 struct vmem {
150 CONDVAR_DECL(vm_cv);
151 LOCK_DECL(vm_lock);
152 vm_flag_t vm_flags;
153 vmem_import_t *vm_importfn;
154 vmem_release_t *vm_releasefn;
155 size_t vm_nfreetags;
156 LIST_HEAD(, vmem_btag) vm_freetags;
157 void *vm_arg;
158 struct vmem_seglist vm_seglist;
159 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
160 size_t vm_hashsize;
161 size_t vm_nbusytag;
162 struct vmem_hashlist *vm_hashlist;
163 struct vmem_hashlist vm_hash0;
164 size_t vm_quantum_mask;
165 int vm_quantum_shift;
166 size_t vm_size;
167 size_t vm_inuse;
168 char vm_name[VMEM_NAME_MAX+1];
169 LIST_ENTRY(vmem) vm_alllist;
170
171 #if defined(QCACHE)
172 /* quantum cache */
173 size_t vm_qcache_max;
174 struct pool_allocator vm_qcache_allocator;
175 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
176 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
177 #endif /* defined(QCACHE) */
178 };
179
180 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
181 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
182 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
183 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
184 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
185 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
186
187 #if defined(_KERNEL)
188 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
189 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
190 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
191 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
192 #endif /* defined(_KERNEL) */
193
194 /* boundary tag */
195 struct vmem_btag {
196 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
197 union {
198 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
199 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
200 } bt_u;
201 #define bt_hashlist bt_u.u_hashlist
202 #define bt_freelist bt_u.u_freelist
203 vmem_addr_t bt_start;
204 vmem_size_t bt_size;
205 int bt_type;
206 };
207
208 #define BT_TYPE_SPAN 1
209 #define BT_TYPE_SPAN_STATIC 2
210 #define BT_TYPE_FREE 3
211 #define BT_TYPE_BUSY 4
212 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
213
214 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
215
216 typedef struct vmem_btag bt_t;
217
218 #if defined(_KERNEL)
219 static kmutex_t vmem_list_lock;
220 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
221 #endif /* defined(_KERNEL) */
222
223
224 /* ---- misc */
225
226 #define VMEM_ALIGNUP(addr, align) \
227 (-(-(addr) & -(align)))
228
229 #define VMEM_CROSS_P(addr1, addr2, boundary) \
230 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
231
232 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
233 #define SIZE2ORDER(size) ((int)ilog2(size))
234
235 #if !defined(_KERNEL)
236 #define xmalloc(sz, flags) malloc(sz)
237 #define xfree(p) free(p)
238 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
239 #define bt_free(vm, bt) free(bt)
240 #else /* !defined(_KERNEL) */
241
242 static inline void *
243 xmalloc(size_t sz, vm_flag_t flags)
244 {
245
246 #if defined(_KERNEL)
247 return kmem_alloc(sz, (flags & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
248 #else /* defined(_KERNEL) */
249 return malloc(sz);
250 #endif /* defined(_KERNEL) */
251 }
252
253 static inline void
254 xfree(void *p, size_t sz)
255 {
256
257 #if defined(_KERNEL)
258 kmem_free(p, sz);
259 #else /* defined(_KERNEL) */
260 free(p);
261 #endif /* defined(_KERNEL) */
262 }
263
264 #if defined(_KERNEL)
265
266 #define BT_MINRESERVE 6
267 #define BT_MAXFREE 64
268 #define STATIC_VMEM_COUNT 5
269 #define STATIC_BT_COUNT 200
270 #define STATIC_QC_POOL_COUNT (VMEM_QCACHE_IDX_MAX + 1)
271
272 static struct vmem static_vmems[STATIC_VMEM_COUNT];
273 static int static_vmem_count = STATIC_VMEM_COUNT;
274
275 static struct vmem_btag static_bts[STATIC_BT_COUNT];
276 static int static_bt_count = STATIC_BT_COUNT;
277
278 static struct pool_cache static_qc_pools[STATIC_QC_POOL_COUNT];
279 static int static_qc_pool_count = STATIC_QC_POOL_COUNT;
280
281 vmem_t *kmem_va_meta_arena;
282 vmem_t *kmem_meta_arena;
283
284 static kmutex_t vmem_btag_lock;
285 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
286 static size_t vmem_btag_freelist_count = 0;
287 static size_t vmem_btag_count = STATIC_BT_COUNT;
288
289 /* ---- boundary tag */
290
291 #define BT_PER_PAGE \
292 (PAGE_SIZE / sizeof(bt_t))
293
294 static int bt_refill(vmem_t *vm, vm_flag_t flags);
295
296 static int
297 bt_refillglobal(vm_flag_t flags)
298 {
299 vmem_addr_t va;
300 bt_t *btp;
301 bt_t *bt;
302 int i;
303
304 mutex_enter(&vmem_btag_lock);
305 if (vmem_btag_freelist_count > (BT_MINRESERVE * 16)) {
306 mutex_exit(&vmem_btag_lock);
307 return 0;
308 }
309
310 if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
311 (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
312 mutex_exit(&vmem_btag_lock);
313 return ENOMEM;
314 }
315 VMEM_EVCNT_INCR(bt_pages);
316
317 btp = (void *) va;
318 for (i = 0; i < (BT_PER_PAGE); i++) {
319 bt = btp;
320 memset(bt, 0, sizeof(*bt));
321 LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
322 bt_freelist);
323 vmem_btag_freelist_count++;
324 vmem_btag_count++;
325 VMEM_EVCNT_INCR(bt_count);
326 btp++;
327 }
328 mutex_exit(&vmem_btag_lock);
329
330 bt_refill(kmem_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
331 bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
332 bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
333
334 return 0;
335 }
336
337 static int
338 bt_refill(vmem_t *vm, vm_flag_t flags)
339 {
340 bt_t *bt;
341
342 bt_refillglobal(flags);
343
344 VMEM_LOCK(vm);
345 mutex_enter(&vmem_btag_lock);
346 while (!LIST_EMPTY(&vmem_btag_freelist) &&
347 vm->vm_nfreetags < (BT_MINRESERVE * 2)) {
348 bt = LIST_FIRST(&vmem_btag_freelist);
349 LIST_REMOVE(bt, bt_freelist);
350 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
351 vm->vm_nfreetags++;
352 vmem_btag_freelist_count--;
353 }
354 mutex_exit(&vmem_btag_lock);
355
356 if (vm->vm_nfreetags == 0) {
357 VMEM_UNLOCK(vm);
358 return ENOMEM;
359 }
360 VMEM_UNLOCK(vm);
361
362 return 0;
363 }
364 #endif /* defined(_KERNEL) */
365
366 static inline bt_t *
367 bt_alloc(vmem_t *vm, vm_flag_t flags)
368 {
369 bt_t *bt;
370
371 #if defined(_KERNEL)
372 again:
373 VMEM_LOCK(vm);
374 if (vm->vm_nfreetags < BT_MINRESERVE &&
375 (flags & VM_POPULATING) == 0) {
376 VMEM_UNLOCK(vm);
377 if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
378 return NULL;
379 }
380 goto again;
381 }
382 bt = LIST_FIRST(&vm->vm_freetags);
383 LIST_REMOVE(bt, bt_freelist);
384 vm->vm_nfreetags--;
385 VMEM_UNLOCK(vm);
386 VMEM_EVCNT_INCR(bt_inuse);
387 #else /* defined(_KERNEL) */
388 bt = malloc(sizeof *bt);
389 #endif /* defined(_KERNEL) */
390
391 return bt;
392 }
393
394 static inline void
395 bt_free(vmem_t *vm, bt_t *bt)
396 {
397
398 #if defined(_KERNEL)
399 VMEM_LOCK(vm);
400 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
401 vm->vm_nfreetags++;
402 while (vm->vm_nfreetags > BT_MAXFREE) {
403 bt = LIST_FIRST(&vm->vm_freetags);
404 LIST_REMOVE(bt, bt_freelist);
405 vm->vm_nfreetags--;
406 mutex_enter(&vmem_btag_lock);
407 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
408 vmem_btag_freelist_count++;
409 mutex_exit(&vmem_btag_lock);
410 }
411 VMEM_UNLOCK(vm);
412 VMEM_EVCNT_DECR(bt_inuse);
413 #else /* defined(_KERNEL) */
414 free(bt);
415 #endif /* defined(_KERNEL) */
416 }
417
418 #endif /* !defined(_KERNEL) */
419
420 /*
421 * freelist[0] ... [1, 1]
422 * freelist[1] ... [2, 3]
423 * freelist[2] ... [4, 7]
424 * freelist[3] ... [8, 15]
425 * :
426 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
427 * :
428 */
429
430 static struct vmem_freelist *
431 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
432 {
433 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
434 const int idx = SIZE2ORDER(qsize);
435
436 KASSERT(size != 0 && qsize != 0);
437 KASSERT((size & vm->vm_quantum_mask) == 0);
438 KASSERT(idx >= 0);
439 KASSERT(idx < VMEM_MAXORDER);
440
441 return &vm->vm_freelist[idx];
442 }
443
444 /*
445 * bt_freehead_toalloc: return the freelist for the given size and allocation
446 * strategy.
447 *
448 * for VM_INSTANTFIT, return the list in which any blocks are large enough
449 * for the requested size. otherwise, return the list which can have blocks
450 * large enough for the requested size.
451 */
452
453 static struct vmem_freelist *
454 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
455 {
456 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
457 int idx = SIZE2ORDER(qsize);
458
459 KASSERT(size != 0 && qsize != 0);
460 KASSERT((size & vm->vm_quantum_mask) == 0);
461
462 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
463 idx++;
464 /* check too large request? */
465 }
466 KASSERT(idx >= 0);
467 KASSERT(idx < VMEM_MAXORDER);
468
469 return &vm->vm_freelist[idx];
470 }
471
472 /* ---- boundary tag hash */
473
474 static struct vmem_hashlist *
475 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
476 {
477 struct vmem_hashlist *list;
478 unsigned int hash;
479
480 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
481 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
482
483 return list;
484 }
485
486 static bt_t *
487 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
488 {
489 struct vmem_hashlist *list;
490 bt_t *bt;
491
492 list = bt_hashhead(vm, addr);
493 LIST_FOREACH(bt, list, bt_hashlist) {
494 if (bt->bt_start == addr) {
495 break;
496 }
497 }
498
499 return bt;
500 }
501
502 static void
503 bt_rembusy(vmem_t *vm, bt_t *bt)
504 {
505
506 KASSERT(vm->vm_nbusytag > 0);
507 vm->vm_nbusytag--;
508 LIST_REMOVE(bt, bt_hashlist);
509 }
510
511 static void
512 bt_insbusy(vmem_t *vm, bt_t *bt)
513 {
514 struct vmem_hashlist *list;
515
516 KASSERT(bt->bt_type == BT_TYPE_BUSY);
517
518 list = bt_hashhead(vm, bt->bt_start);
519 LIST_INSERT_HEAD(list, bt, bt_hashlist);
520 vm->vm_nbusytag++;
521 }
522
523 /* ---- boundary tag list */
524
525 static void
526 bt_remseg(vmem_t *vm, bt_t *bt)
527 {
528
529 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
530 }
531
532 static void
533 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
534 {
535
536 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
537 }
538
539 static void
540 bt_insseg_tail(vmem_t *vm, bt_t *bt)
541 {
542
543 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
544 }
545
546 static void
547 bt_remfree(vmem_t *vm, bt_t *bt)
548 {
549
550 KASSERT(bt->bt_type == BT_TYPE_FREE);
551
552 LIST_REMOVE(bt, bt_freelist);
553 }
554
555 static void
556 bt_insfree(vmem_t *vm, bt_t *bt)
557 {
558 struct vmem_freelist *list;
559
560 list = bt_freehead_tofree(vm, bt->bt_size);
561 LIST_INSERT_HEAD(list, bt, bt_freelist);
562 }
563
564 /* ---- vmem internal functions */
565
566 #if defined(QCACHE)
567 static inline vm_flag_t
568 prf_to_vmf(int prflags)
569 {
570 vm_flag_t vmflags;
571
572 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
573 if ((prflags & PR_WAITOK) != 0) {
574 vmflags = VM_SLEEP;
575 } else {
576 vmflags = VM_NOSLEEP;
577 }
578 return vmflags;
579 }
580
581 static inline int
582 vmf_to_prf(vm_flag_t vmflags)
583 {
584 int prflags;
585
586 if ((vmflags & VM_SLEEP) != 0) {
587 prflags = PR_WAITOK;
588 } else {
589 prflags = PR_NOWAIT;
590 }
591 return prflags;
592 }
593
594 static size_t
595 qc_poolpage_size(size_t qcache_max)
596 {
597 int i;
598
599 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
600 /* nothing */
601 }
602 return ORDER2SIZE(i);
603 }
604
605 static void *
606 qc_poolpage_alloc(struct pool *pool, int prflags)
607 {
608 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
609 vmem_t *vm = qc->qc_vmem;
610 vmem_addr_t addr;
611
612 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
613 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
614 return NULL;
615 return (void *)addr;
616 }
617
618 static void
619 qc_poolpage_free(struct pool *pool, void *addr)
620 {
621 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
622 vmem_t *vm = qc->qc_vmem;
623
624 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
625 }
626
627 static void
628 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
629 {
630 qcache_t *prevqc;
631 struct pool_allocator *pa;
632 int qcache_idx_max;
633 int i;
634
635 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
636 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
637 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
638 }
639 vm->vm_qcache_max = qcache_max;
640 pa = &vm->vm_qcache_allocator;
641 memset(pa, 0, sizeof(*pa));
642 pa->pa_alloc = qc_poolpage_alloc;
643 pa->pa_free = qc_poolpage_free;
644 pa->pa_pagesz = qc_poolpage_size(qcache_max);
645
646 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
647 prevqc = NULL;
648 for (i = qcache_idx_max; i > 0; i--) {
649 qcache_t *qc = &vm->vm_qcache_store[i - 1];
650 size_t size = i << vm->vm_quantum_shift;
651 pool_cache_t pc;
652
653 qc->qc_vmem = vm;
654 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
655 vm->vm_name, size);
656
657 if (vm->vm_flags & VM_BOOTSTRAP) {
658 KASSERT(static_qc_pool_count > 0);
659 pc = &static_qc_pools[--static_qc_pool_count];
660 pool_cache_bootstrap(pc, size,
661 ORDER2SIZE(vm->vm_quantum_shift), 0,
662 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
663 qc->qc_name, pa, ipl, NULL, NULL, NULL);
664 } else {
665 pc = pool_cache_init(size,
666 ORDER2SIZE(vm->vm_quantum_shift), 0,
667 PR_NOALIGN | PR_NOTOUCH /* XXX */,
668 qc->qc_name, pa, ipl, NULL, NULL, NULL);
669 }
670 qc->qc_cache = pc;
671 KASSERT(qc->qc_cache != NULL); /* XXX */
672 if (prevqc != NULL &&
673 qc->qc_cache->pc_pool.pr_itemsperpage ==
674 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
675 if (vm->vm_flags & VM_BOOTSTRAP) {
676 pool_cache_bootstrap_destroy(pc);
677 //static_qc_pool_count++;
678 } else {
679 pool_cache_destroy(qc->qc_cache);
680 }
681 vm->vm_qcache[i - 1] = prevqc;
682 continue;
683 }
684 qc->qc_cache->pc_pool.pr_qcache = qc;
685 vm->vm_qcache[i - 1] = qc;
686 prevqc = qc;
687 }
688 }
689
690 static void
691 qc_destroy(vmem_t *vm)
692 {
693 const qcache_t *prevqc;
694 int i;
695 int qcache_idx_max;
696
697 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
698 prevqc = NULL;
699 for (i = 0; i < qcache_idx_max; i++) {
700 qcache_t *qc = vm->vm_qcache[i];
701
702 if (prevqc == qc) {
703 continue;
704 }
705 if (vm->vm_flags & VM_BOOTSTRAP) {
706 pool_cache_bootstrap_destroy(qc->qc_cache);
707 } else {
708 pool_cache_destroy(qc->qc_cache);
709 }
710 prevqc = qc;
711 }
712 }
713 #endif
714
715 #if defined(_KERNEL)
716 void
717 vmem_bootstrap(void)
718 {
719
720 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
721 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
722
723 while (static_bt_count-- > 0) {
724 bt_t *bt = &static_bts[static_bt_count];
725 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
726 VMEM_EVCNT_INCR(bt_count);
727 vmem_btag_freelist_count++;
728 }
729 }
730
731 void
732 vmem_init(vmem_t *vm)
733 {
734
735 kmem_va_meta_arena = vmem_create("vmem-va", 0, 0, PAGE_SIZE,
736 vmem_alloc, vmem_free, vm,
737 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
738 IPL_VM);
739
740 kmem_meta_arena = vmem_create("vmem-meta", 0, 0, PAGE_SIZE,
741 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
742 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
743 }
744 #endif /* defined(_KERNEL) */
745
746 static int
747 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
748 int spanbttype)
749 {
750 bt_t *btspan;
751 bt_t *btfree;
752
753 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
754 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
755 KASSERT(spanbttype == BT_TYPE_SPAN ||
756 spanbttype == BT_TYPE_SPAN_STATIC);
757
758 btspan = bt_alloc(vm, flags);
759 if (btspan == NULL) {
760 return ENOMEM;
761 }
762 btfree = bt_alloc(vm, flags);
763 if (btfree == NULL) {
764 bt_free(vm, btspan);
765 return ENOMEM;
766 }
767
768 btspan->bt_type = spanbttype;
769 btspan->bt_start = addr;
770 btspan->bt_size = size;
771
772 btfree->bt_type = BT_TYPE_FREE;
773 btfree->bt_start = addr;
774 btfree->bt_size = size;
775
776 VMEM_LOCK(vm);
777 bt_insseg_tail(vm, btspan);
778 bt_insseg(vm, btfree, btspan);
779 bt_insfree(vm, btfree);
780 vm->vm_size += size;
781 VMEM_UNLOCK(vm);
782
783 return 0;
784 }
785
786 static void
787 vmem_destroy1(vmem_t *vm)
788 {
789
790 #if defined(QCACHE)
791 qc_destroy(vm);
792 #endif /* defined(QCACHE) */
793 if (vm->vm_hashlist != NULL) {
794 int i;
795
796 for (i = 0; i < vm->vm_hashsize; i++) {
797 bt_t *bt;
798
799 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
800 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
801 bt_free(vm, bt);
802 }
803 }
804 if (vm->vm_hashlist != &vm->vm_hash0) {
805 xfree(vm->vm_hashlist,
806 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
807 }
808 }
809
810 while (vm->vm_nfreetags > 0) {
811 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
812 LIST_REMOVE(bt, bt_freelist);
813 vm->vm_nfreetags--;
814 mutex_enter(&vmem_btag_lock);
815 #if defined (_KERNEL)
816 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
817 vmem_btag_freelist_count++;
818 #endif /* defined(_KERNEL) */
819 mutex_exit(&vmem_btag_lock);
820 }
821
822 VMEM_LOCK_DESTROY(vm);
823 xfree(vm, sizeof(*vm));
824 }
825
826 static int
827 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
828 {
829 vmem_addr_t addr;
830 int rc;
831
832 if (vm->vm_importfn == NULL) {
833 return EINVAL;
834 }
835
836 if (vm->vm_flags & VM_LARGEIMPORT) {
837 size *= 32;
838 }
839
840 if (vm->vm_flags & VM_XIMPORT) {
841 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
842 &size, flags, &addr);
843 if (rc != 0) {
844 return ENOMEM;
845 }
846 } else {
847 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
848 if (rc != 0) {
849 return ENOMEM;
850 }
851 }
852
853 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
854 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
855 return ENOMEM;
856 }
857
858 return 0;
859 }
860
861 static int
862 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
863 {
864 bt_t *bt;
865 int i;
866 struct vmem_hashlist *newhashlist;
867 struct vmem_hashlist *oldhashlist;
868 size_t oldhashsize;
869
870 KASSERT(newhashsize > 0);
871
872 newhashlist =
873 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
874 if (newhashlist == NULL) {
875 return ENOMEM;
876 }
877 for (i = 0; i < newhashsize; i++) {
878 LIST_INIT(&newhashlist[i]);
879 }
880
881 if (!VMEM_TRYLOCK(vm)) {
882 xfree(newhashlist,
883 sizeof(struct vmem_hashlist *) * newhashsize);
884 return EBUSY;
885 }
886 oldhashlist = vm->vm_hashlist;
887 oldhashsize = vm->vm_hashsize;
888 vm->vm_hashlist = newhashlist;
889 vm->vm_hashsize = newhashsize;
890 if (oldhashlist == NULL) {
891 VMEM_UNLOCK(vm);
892 return 0;
893 }
894 for (i = 0; i < oldhashsize; i++) {
895 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
896 bt_rembusy(vm, bt); /* XXX */
897 bt_insbusy(vm, bt);
898 }
899 }
900 VMEM_UNLOCK(vm);
901
902 if (oldhashlist != &vm->vm_hash0) {
903 xfree(oldhashlist,
904 sizeof(struct vmem_hashlist *) * oldhashsize);
905 }
906
907 return 0;
908 }
909
910 /*
911 * vmem_fit: check if a bt can satisfy the given restrictions.
912 *
913 * it's a caller's responsibility to ensure the region is big enough
914 * before calling us.
915 */
916
917 static int
918 vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
919 vmem_size_t phase, vmem_size_t nocross,
920 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
921 {
922 vmem_addr_t start;
923 vmem_addr_t end;
924
925 KASSERT(size > 0);
926 KASSERT(bt->bt_size >= size); /* caller's responsibility */
927
928 /*
929 * XXX assumption: vmem_addr_t and vmem_size_t are
930 * unsigned integer of the same size.
931 */
932
933 start = bt->bt_start;
934 if (start < minaddr) {
935 start = minaddr;
936 }
937 end = BT_END(bt);
938 if (end > maxaddr) {
939 end = maxaddr;
940 }
941 if (start > end) {
942 return ENOMEM;
943 }
944
945 start = VMEM_ALIGNUP(start - phase, align) + phase;
946 if (start < bt->bt_start) {
947 start += align;
948 }
949 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
950 KASSERT(align < nocross);
951 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
952 }
953 if (start <= end && end - start >= size - 1) {
954 KASSERT((start & (align - 1)) == phase);
955 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
956 KASSERT(minaddr <= start);
957 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
958 KASSERT(bt->bt_start <= start);
959 KASSERT(BT_END(bt) - start >= size - 1);
960 *addrp = start;
961 return 0;
962 }
963 return ENOMEM;
964 }
965
966
967 /*
968 * vmem_create_internal: creates a vmem arena.
969 */
970
971 static vmem_t *
972 vmem_create_internal(const char *name, vmem_addr_t base, vmem_size_t size,
973 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
974 void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
975 {
976 vmem_t *vm = NULL;
977 int i;
978
979 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
980 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
981 KASSERT(quantum > 0);
982
983 if (flags & VM_BOOTSTRAP) {
984 #if defined(_KERNEL)
985 KASSERT(static_vmem_count > 0);
986 vm = &static_vmems[--static_vmem_count];
987 #endif /* defined(_KERNEL) */
988 } else {
989 vm = xmalloc(sizeof(*vm), flags);
990 }
991 if (vm == NULL) {
992 return NULL;
993 }
994
995 VMEM_CONDVAR_INIT(vm, "vmem");
996 VMEM_LOCK_INIT(vm, ipl);
997 vm->vm_flags = flags;
998 vm->vm_nfreetags = 0;
999 LIST_INIT(&vm->vm_freetags);
1000 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
1001 vm->vm_quantum_mask = quantum - 1;
1002 vm->vm_quantum_shift = SIZE2ORDER(quantum);
1003 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
1004 vm->vm_importfn = importfn;
1005 vm->vm_releasefn = releasefn;
1006 vm->vm_arg = arg;
1007 vm->vm_nbusytag = 0;
1008 vm->vm_size = 0;
1009 vm->vm_inuse = 0;
1010 #if defined(QCACHE)
1011 qc_init(vm, qcache_max, ipl);
1012 #endif /* defined(QCACHE) */
1013
1014 CIRCLEQ_INIT(&vm->vm_seglist);
1015 for (i = 0; i < VMEM_MAXORDER; i++) {
1016 LIST_INIT(&vm->vm_freelist[i]);
1017 }
1018 vm->vm_hashlist = NULL;
1019 if (flags & VM_BOOTSTRAP) {
1020 vm->vm_hashsize = 1;
1021 vm->vm_hashlist = &vm->vm_hash0;
1022 } else if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
1023 vmem_destroy1(vm);
1024 return NULL;
1025 }
1026
1027 if (size != 0) {
1028 if (vmem_add(vm, base, size, flags) != 0) {
1029 vmem_destroy1(vm);
1030 return NULL;
1031 }
1032 }
1033
1034 #if defined(_KERNEL)
1035 if (flags & VM_BOOTSTRAP) {
1036 bt_refill(vm, VM_NOSLEEP);
1037 }
1038
1039 mutex_enter(&vmem_list_lock);
1040 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1041 mutex_exit(&vmem_list_lock);
1042 #endif /* defined(_KERNEL) */
1043
1044 return vm;
1045 }
1046
1047
1048 /* ---- vmem API */
1049
1050 /*
1051 * vmem_create: create an arena.
1052 *
1053 * => must not be called from interrupt context.
1054 */
1055
1056 vmem_t *
1057 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1058 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1059 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
1060 int ipl)
1061 {
1062
1063 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1064 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1065 KASSERT((flags & (VM_XIMPORT)) == 0);
1066
1067 return vmem_create_internal(name, base, size, quantum,
1068 importfn, releasefn, source, qcache_max, flags, ipl);
1069 }
1070
1071 /*
1072 * vmem_xcreate: create an arena takes alternative import func.
1073 *
1074 * => must not be called from interrupt context.
1075 */
1076
1077 vmem_t *
1078 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1079 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1080 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
1081 int ipl)
1082 {
1083
1084 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1085 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1086 KASSERT((flags & (VM_XIMPORT)) == 0);
1087
1088 return vmem_create_internal(name, base, size, quantum,
1089 (vmem_import_t *)importfn, releasefn, source,
1090 qcache_max, flags | VM_XIMPORT, ipl);
1091 }
1092
1093 void
1094 vmem_destroy(vmem_t *vm)
1095 {
1096
1097 #if defined(_KERNEL)
1098 mutex_enter(&vmem_list_lock);
1099 LIST_REMOVE(vm, vm_alllist);
1100 mutex_exit(&vmem_list_lock);
1101 #endif /* defined(_KERNEL) */
1102
1103 vmem_destroy1(vm);
1104 }
1105
1106 vmem_size_t
1107 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1108 {
1109
1110 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1111 }
1112
1113 /*
1114 * vmem_alloc:
1115 *
1116 * => caller must ensure appropriate spl,
1117 * if the arena can be accessed from interrupt context.
1118 */
1119
1120 int
1121 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1122 {
1123 const vm_flag_t strat __unused = flags & VM_FITMASK;
1124
1125 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1126 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1127
1128 KASSERT(size > 0);
1129 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1130 if ((flags & VM_SLEEP) != 0) {
1131 ASSERT_SLEEPABLE();
1132 }
1133
1134 #if defined(QCACHE)
1135 if (size <= vm->vm_qcache_max) {
1136 void *p;
1137 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1138 qcache_t *qc = vm->vm_qcache[qidx - 1];
1139
1140 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1141 if (addrp != NULL)
1142 *addrp = (vmem_addr_t)p;
1143 return (p == NULL) ? ENOMEM : 0;
1144 }
1145 #endif /* defined(QCACHE) */
1146
1147 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1148 flags, addrp);
1149 }
1150
1151 int
1152 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1153 const vmem_size_t phase, const vmem_size_t nocross,
1154 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1155 vmem_addr_t *addrp)
1156 {
1157 struct vmem_freelist *list;
1158 struct vmem_freelist *first;
1159 struct vmem_freelist *end;
1160 bt_t *bt;
1161 bt_t *btnew;
1162 bt_t *btnew2;
1163 const vmem_size_t size = vmem_roundup_size(vm, size0);
1164 vm_flag_t strat = flags & VM_FITMASK;
1165 vmem_addr_t start;
1166 int rc;
1167
1168 KASSERT(size0 > 0);
1169 KASSERT(size > 0);
1170 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1171 if ((flags & VM_SLEEP) != 0) {
1172 ASSERT_SLEEPABLE();
1173 }
1174 KASSERT((align & vm->vm_quantum_mask) == 0);
1175 KASSERT((align & (align - 1)) == 0);
1176 KASSERT((phase & vm->vm_quantum_mask) == 0);
1177 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1178 KASSERT((nocross & (nocross - 1)) == 0);
1179 KASSERT((align == 0 && phase == 0) || phase < align);
1180 KASSERT(nocross == 0 || nocross >= size);
1181 KASSERT(minaddr <= maxaddr);
1182 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1183
1184 if (align == 0) {
1185 align = vm->vm_quantum_mask + 1;
1186 }
1187
1188 /*
1189 * allocate boundary tags before acquiring the vmem lock.
1190 */
1191 btnew = bt_alloc(vm, flags);
1192 if (btnew == NULL) {
1193 return ENOMEM;
1194 }
1195 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1196 if (btnew2 == NULL) {
1197 bt_free(vm, btnew);
1198 return ENOMEM;
1199 }
1200
1201 /*
1202 * choose a free block from which we allocate.
1203 */
1204 retry_strat:
1205 first = bt_freehead_toalloc(vm, size, strat);
1206 end = &vm->vm_freelist[VMEM_MAXORDER];
1207 retry:
1208 bt = NULL;
1209 VMEM_LOCK(vm);
1210 vmem_check(vm);
1211 if (strat == VM_INSTANTFIT) {
1212 /*
1213 * just choose the first block which satisfies our restrictions.
1214 *
1215 * note that we don't need to check the size of the blocks
1216 * because any blocks found on these list should be larger than
1217 * the given size.
1218 */
1219 for (list = first; list < end; list++) {
1220 bt = LIST_FIRST(list);
1221 if (bt != NULL) {
1222 rc = vmem_fit(bt, size, align, phase,
1223 nocross, minaddr, maxaddr, &start);
1224 if (rc == 0) {
1225 goto gotit;
1226 }
1227 /*
1228 * don't bother to follow the bt_freelist link
1229 * here. the list can be very long and we are
1230 * told to run fast. blocks from the later free
1231 * lists are larger and have better chances to
1232 * satisfy our restrictions.
1233 */
1234 }
1235 }
1236 } else { /* VM_BESTFIT */
1237 /*
1238 * we assume that, for space efficiency, it's better to
1239 * allocate from a smaller block. thus we will start searching
1240 * from the lower-order list than VM_INSTANTFIT.
1241 * however, don't bother to find the smallest block in a free
1242 * list because the list can be very long. we can revisit it
1243 * if/when it turns out to be a problem.
1244 *
1245 * note that the 'first' list can contain blocks smaller than
1246 * the requested size. thus we need to check bt_size.
1247 */
1248 for (list = first; list < end; list++) {
1249 LIST_FOREACH(bt, list, bt_freelist) {
1250 if (bt->bt_size >= size) {
1251 rc = vmem_fit(bt, size, align, phase,
1252 nocross, minaddr, maxaddr, &start);
1253 if (rc == 0) {
1254 goto gotit;
1255 }
1256 }
1257 }
1258 }
1259 }
1260 VMEM_UNLOCK(vm);
1261 #if 1
1262 if (strat == VM_INSTANTFIT) {
1263 strat = VM_BESTFIT;
1264 goto retry_strat;
1265 }
1266 #endif
1267 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
1268 nocross != 0) {
1269
1270 /*
1271 * XXX should try to import a region large enough to
1272 * satisfy restrictions?
1273 */
1274
1275 goto fail;
1276 }
1277 /* XXX eeek, minaddr & maxaddr not respected */
1278 if (vmem_import(vm, size, flags) == 0) {
1279 goto retry;
1280 }
1281 /* XXX */
1282
1283 fail:
1284 bt_free(vm, btnew);
1285 bt_free(vm, btnew2);
1286 return ENOMEM;
1287
1288 gotit:
1289 KASSERT(bt->bt_type == BT_TYPE_FREE);
1290 KASSERT(bt->bt_size >= size);
1291 bt_remfree(vm, bt);
1292 vmem_check(vm);
1293 if (bt->bt_start != start) {
1294 btnew2->bt_type = BT_TYPE_FREE;
1295 btnew2->bt_start = bt->bt_start;
1296 btnew2->bt_size = start - bt->bt_start;
1297 bt->bt_start = start;
1298 bt->bt_size -= btnew2->bt_size;
1299 bt_insfree(vm, btnew2);
1300 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1301 btnew2 = NULL;
1302 vmem_check(vm);
1303 }
1304 KASSERT(bt->bt_start == start);
1305 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1306 /* split */
1307 btnew->bt_type = BT_TYPE_BUSY;
1308 btnew->bt_start = bt->bt_start;
1309 btnew->bt_size = size;
1310 bt->bt_start = bt->bt_start + size;
1311 bt->bt_size -= size;
1312 bt_insfree(vm, bt);
1313 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1314 bt_insbusy(vm, btnew);
1315 vmem_check(vm);
1316 VMEM_UNLOCK(vm);
1317 } else {
1318 bt->bt_type = BT_TYPE_BUSY;
1319 bt_insbusy(vm, bt);
1320 vmem_check(vm);
1321 VMEM_UNLOCK(vm);
1322 bt_free(vm, btnew);
1323 btnew = bt;
1324 }
1325 if (btnew2 != NULL) {
1326 bt_free(vm, btnew2);
1327 }
1328 KASSERT(btnew->bt_size >= size);
1329 btnew->bt_type = BT_TYPE_BUSY;
1330
1331 if (addrp != NULL)
1332 *addrp = btnew->bt_start;
1333 return 0;
1334 }
1335
1336 /*
1337 * vmem_free:
1338 *
1339 * => caller must ensure appropriate spl,
1340 * if the arena can be accessed from interrupt context.
1341 */
1342
1343 void
1344 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1345 {
1346
1347 KASSERT(size > 0);
1348
1349 #if defined(QCACHE)
1350 if (size <= vm->vm_qcache_max) {
1351 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1352 qcache_t *qc = vm->vm_qcache[qidx - 1];
1353
1354 pool_cache_put(qc->qc_cache, (void *)addr);
1355 return;
1356 }
1357 #endif /* defined(QCACHE) */
1358
1359 vmem_xfree(vm, addr, size);
1360 }
1361
1362 void
1363 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1364 {
1365 bt_t *bt;
1366 bt_t *t;
1367 LIST_HEAD(, vmem_btag) tofree;
1368
1369 LIST_INIT(&tofree);
1370
1371 KASSERT(size > 0);
1372
1373 VMEM_LOCK(vm);
1374
1375 bt = bt_lookupbusy(vm, addr);
1376 KASSERT(bt != NULL);
1377 KASSERT(bt->bt_start == addr);
1378 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1379 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1380 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1381 bt_rembusy(vm, bt);
1382 bt->bt_type = BT_TYPE_FREE;
1383
1384 vm->vm_inuse -= bt->bt_size;
1385
1386 /* coalesce */
1387 t = CIRCLEQ_NEXT(bt, bt_seglist);
1388 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1389 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1390 bt_remfree(vm, t);
1391 bt_remseg(vm, t);
1392 bt->bt_size += t->bt_size;
1393 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1394 }
1395 t = CIRCLEQ_PREV(bt, bt_seglist);
1396 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1397 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1398 bt_remfree(vm, t);
1399 bt_remseg(vm, t);
1400 bt->bt_size += t->bt_size;
1401 bt->bt_start = t->bt_start;
1402 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1403 }
1404
1405 t = CIRCLEQ_PREV(bt, bt_seglist);
1406 KASSERT(t != NULL);
1407 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1408 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1409 t->bt_size == bt->bt_size) {
1410 vmem_addr_t spanaddr;
1411 vmem_size_t spansize;
1412
1413 KASSERT(t->bt_start == bt->bt_start);
1414 spanaddr = bt->bt_start;
1415 spansize = bt->bt_size;
1416 bt_remseg(vm, bt);
1417 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1418 bt_remseg(vm, t);
1419 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1420 vm->vm_size -= spansize;
1421 VMEM_UNLOCK(vm);
1422 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1423 } else {
1424 bt_insfree(vm, bt);
1425 VMEM_UNLOCK(vm);
1426 }
1427
1428 while (!LIST_EMPTY(&tofree)) {
1429 t = LIST_FIRST(&tofree);
1430 LIST_REMOVE(t, bt_freelist);
1431 bt_free(vm, t);
1432 }
1433 #if defined(_KERNEL)
1434 VMEM_CONDVAR_BROADCAST(vm);
1435 #endif /* defined(_KERNEL) */
1436 }
1437
1438 /*
1439 * vmem_add:
1440 *
1441 * => caller must ensure appropriate spl,
1442 * if the arena can be accessed from interrupt context.
1443 */
1444
1445 int
1446 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1447 {
1448
1449 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1450 }
1451
1452 /*
1453 * vmem_size: information about arenas size
1454 *
1455 * => return free/allocated size in arena
1456 */
1457 vmem_size_t
1458 vmem_size(vmem_t *vm, int typemask)
1459 {
1460
1461 switch (typemask) {
1462 case VMEM_ALLOC:
1463 return vm->vm_inuse;
1464 case VMEM_FREE:
1465 return vm->vm_size - vm->vm_inuse;
1466 case VMEM_FREE|VMEM_ALLOC:
1467 return vm->vm_size;
1468 default:
1469 panic("vmem_size");
1470 }
1471 }
1472
1473 /* ---- rehash */
1474
1475 #if defined(_KERNEL)
1476 static struct callout vmem_rehash_ch;
1477 static int vmem_rehash_interval;
1478 static struct workqueue *vmem_rehash_wq;
1479 static struct work vmem_rehash_wk;
1480
1481 static void
1482 vmem_rehash_all(struct work *wk, void *dummy)
1483 {
1484 vmem_t *vm;
1485
1486 KASSERT(wk == &vmem_rehash_wk);
1487 mutex_enter(&vmem_list_lock);
1488 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1489 size_t desired;
1490 size_t current;
1491
1492 if (!VMEM_TRYLOCK(vm)) {
1493 continue;
1494 }
1495 desired = vm->vm_nbusytag;
1496 current = vm->vm_hashsize;
1497 VMEM_UNLOCK(vm);
1498
1499 if (desired > VMEM_HASHSIZE_MAX) {
1500 desired = VMEM_HASHSIZE_MAX;
1501 } else if (desired < VMEM_HASHSIZE_MIN) {
1502 desired = VMEM_HASHSIZE_MIN;
1503 }
1504 if (desired > current * 2 || desired * 2 < current) {
1505 vmem_rehash(vm, desired, VM_NOSLEEP);
1506 }
1507 VMEM_CONDVAR_BROADCAST(vm);
1508 }
1509 mutex_exit(&vmem_list_lock);
1510
1511 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1512 }
1513
1514 static void
1515 vmem_rehash_all_kick(void *dummy)
1516 {
1517
1518 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1519 }
1520
1521 void
1522 vmem_rehash_start(void)
1523 {
1524 int error;
1525
1526 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1527 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1528 if (error) {
1529 panic("%s: workqueue_create %d\n", __func__, error);
1530 }
1531 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1532 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1533
1534 vmem_rehash_interval = hz * 10;
1535 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1536 }
1537 #endif /* defined(_KERNEL) */
1538
1539 /* ---- debug */
1540
1541 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1542
1543 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1544
1545 static const char *
1546 bt_type_string(int type)
1547 {
1548 static const char * const table[] = {
1549 [BT_TYPE_BUSY] = "busy",
1550 [BT_TYPE_FREE] = "free",
1551 [BT_TYPE_SPAN] = "span",
1552 [BT_TYPE_SPAN_STATIC] = "static span",
1553 };
1554
1555 if (type >= __arraycount(table)) {
1556 return "BOGUS";
1557 }
1558 return table[type];
1559 }
1560
1561 static void
1562 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1563 {
1564
1565 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1566 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1567 bt->bt_type, bt_type_string(bt->bt_type));
1568 }
1569
1570 static void
1571 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1572 {
1573 const bt_t *bt;
1574 int i;
1575
1576 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1577 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1578 bt_dump(bt, pr);
1579 }
1580
1581 for (i = 0; i < VMEM_MAXORDER; i++) {
1582 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1583
1584 if (LIST_EMPTY(fl)) {
1585 continue;
1586 }
1587
1588 (*pr)("freelist[%d]\n", i);
1589 LIST_FOREACH(bt, fl, bt_freelist) {
1590 bt_dump(bt, pr);
1591 }
1592 }
1593 }
1594
1595 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1596
1597 #if defined(DDB)
1598 static bt_t *
1599 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1600 {
1601 bt_t *bt;
1602
1603 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1604 if (BT_ISSPAN_P(bt)) {
1605 continue;
1606 }
1607 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1608 return bt;
1609 }
1610 }
1611
1612 return NULL;
1613 }
1614
1615 void
1616 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1617 {
1618 vmem_t *vm;
1619
1620 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1621 bt_t *bt;
1622
1623 bt = vmem_whatis_lookup(vm, addr);
1624 if (bt == NULL) {
1625 continue;
1626 }
1627 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1628 (void *)addr, (void *)bt->bt_start,
1629 (size_t)(addr - bt->bt_start), vm->vm_name,
1630 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1631 }
1632 }
1633
1634 void
1635 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1636 {
1637 const vmem_t *vm;
1638
1639 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1640 vmem_dump(vm, pr);
1641 }
1642 }
1643
1644 void
1645 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1646 {
1647 const vmem_t *vm = (const void *)addr;
1648
1649 vmem_dump(vm, pr);
1650 }
1651 #endif /* defined(DDB) */
1652
1653 #if defined(_KERNEL)
1654 #define vmem_printf printf
1655 #else
1656 #include <stdio.h>
1657 #include <stdarg.h>
1658
1659 static void
1660 vmem_printf(const char *fmt, ...)
1661 {
1662 va_list ap;
1663 va_start(ap, fmt);
1664 vprintf(fmt, ap);
1665 va_end(ap);
1666 }
1667 #endif
1668
1669 #if defined(VMEM_SANITY)
1670
1671 static bool
1672 vmem_check_sanity(vmem_t *vm)
1673 {
1674 const bt_t *bt, *bt2;
1675
1676 KASSERT(vm != NULL);
1677
1678 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1679 if (bt->bt_start > BT_END(bt)) {
1680 printf("corrupted tag\n");
1681 bt_dump(bt, vmem_printf);
1682 return false;
1683 }
1684 }
1685 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1686 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1687 if (bt == bt2) {
1688 continue;
1689 }
1690 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1691 continue;
1692 }
1693 if (bt->bt_start <= BT_END(bt2) &&
1694 bt2->bt_start <= BT_END(bt)) {
1695 printf("overwrapped tags\n");
1696 bt_dump(bt, vmem_printf);
1697 bt_dump(bt2, vmem_printf);
1698 return false;
1699 }
1700 }
1701 }
1702
1703 return true;
1704 }
1705
1706 static void
1707 vmem_check(vmem_t *vm)
1708 {
1709
1710 if (!vmem_check_sanity(vm)) {
1711 panic("insanity vmem %p", vm);
1712 }
1713 }
1714
1715 #endif /* defined(VMEM_SANITY) */
1716
1717 #if defined(UNITTEST)
1718 int
1719 main(void)
1720 {
1721 int rc;
1722 vmem_t *vm;
1723 vmem_addr_t p;
1724 struct reg {
1725 vmem_addr_t p;
1726 vmem_size_t sz;
1727 bool x;
1728 } *reg = NULL;
1729 int nreg = 0;
1730 int nalloc = 0;
1731 int nfree = 0;
1732 vmem_size_t total = 0;
1733 #if 1
1734 vm_flag_t strat = VM_INSTANTFIT;
1735 #else
1736 vm_flag_t strat = VM_BESTFIT;
1737 #endif
1738
1739 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1740 #ifdef _KERNEL
1741 IPL_NONE
1742 #else
1743 0
1744 #endif
1745 );
1746 if (vm == NULL) {
1747 printf("vmem_create\n");
1748 exit(EXIT_FAILURE);
1749 }
1750 vmem_dump(vm, vmem_printf);
1751
1752 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1753 assert(rc == 0);
1754 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1755 assert(rc == 0);
1756 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1757 assert(rc == 0);
1758 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1759 assert(rc == 0);
1760 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1761 assert(rc == 0);
1762 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1763 assert(rc == 0);
1764 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1765 assert(rc == 0);
1766 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1767 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1768 assert(rc != 0);
1769 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1770 assert(rc == 0 && p == 0);
1771 vmem_xfree(vm, p, 50);
1772 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1773 assert(rc == 0 && p == 0);
1774 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1775 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1776 assert(rc != 0);
1777 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1778 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1779 assert(rc != 0);
1780 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1781 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1782 assert(rc == 0);
1783 vmem_dump(vm, vmem_printf);
1784 for (;;) {
1785 struct reg *r;
1786 int t = rand() % 100;
1787
1788 if (t > 45) {
1789 /* alloc */
1790 vmem_size_t sz = rand() % 500 + 1;
1791 bool x;
1792 vmem_size_t align, phase, nocross;
1793 vmem_addr_t minaddr, maxaddr;
1794
1795 if (t > 70) {
1796 x = true;
1797 /* XXX */
1798 align = 1 << (rand() % 15);
1799 phase = rand() % 65536;
1800 nocross = 1 << (rand() % 15);
1801 if (align <= phase) {
1802 phase = 0;
1803 }
1804 if (VMEM_CROSS_P(phase, phase + sz - 1,
1805 nocross)) {
1806 nocross = 0;
1807 }
1808 do {
1809 minaddr = rand() % 50000;
1810 maxaddr = rand() % 70000;
1811 } while (minaddr > maxaddr);
1812 printf("=== xalloc %" PRIu64
1813 " align=%" PRIu64 ", phase=%" PRIu64
1814 ", nocross=%" PRIu64 ", min=%" PRIu64
1815 ", max=%" PRIu64 "\n",
1816 (uint64_t)sz,
1817 (uint64_t)align,
1818 (uint64_t)phase,
1819 (uint64_t)nocross,
1820 (uint64_t)minaddr,
1821 (uint64_t)maxaddr);
1822 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1823 minaddr, maxaddr, strat|VM_SLEEP, &p);
1824 } else {
1825 x = false;
1826 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1827 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1828 }
1829 printf("-> %" PRIu64 "\n", (uint64_t)p);
1830 vmem_dump(vm, vmem_printf);
1831 if (rc != 0) {
1832 if (x) {
1833 continue;
1834 }
1835 break;
1836 }
1837 nreg++;
1838 reg = realloc(reg, sizeof(*reg) * nreg);
1839 r = ®[nreg - 1];
1840 r->p = p;
1841 r->sz = sz;
1842 r->x = x;
1843 total += sz;
1844 nalloc++;
1845 } else if (nreg != 0) {
1846 /* free */
1847 r = ®[rand() % nreg];
1848 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1849 (uint64_t)r->p, (uint64_t)r->sz);
1850 if (r->x) {
1851 vmem_xfree(vm, r->p, r->sz);
1852 } else {
1853 vmem_free(vm, r->p, r->sz);
1854 }
1855 total -= r->sz;
1856 vmem_dump(vm, vmem_printf);
1857 *r = reg[nreg - 1];
1858 nreg--;
1859 nfree++;
1860 }
1861 printf("total=%" PRIu64 "\n", (uint64_t)total);
1862 }
1863 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1864 (uint64_t)total, nalloc, nfree);
1865 exit(EXIT_SUCCESS);
1866 }
1867 #endif /* defined(UNITTEST) */
1868
1869