subr_vmem.c revision 1.67 1 /* $NetBSD: subr_vmem.c,v 1.67 2012/01/28 23:05:48 rmind Exp $ */
2
3 /*-
4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.67 2012/01/28 23:05:48 rmind Exp $");
38
39 #if defined(_KERNEL)
40 #include "opt_ddb.h"
41 #define QCACHE
42 #endif /* defined(_KERNEL) */
43
44 #include <sys/param.h>
45 #include <sys/hash.h>
46 #include <sys/queue.h>
47 #include <sys/bitops.h>
48
49 #if defined(_KERNEL)
50 #include <sys/systm.h>
51 #include <sys/kernel.h> /* hz */
52 #include <sys/callout.h>
53 #include <sys/kmem.h>
54 #include <sys/pool.h>
55 #include <sys/vmem.h>
56 #include <sys/workqueue.h>
57 #include <sys/atomic.h>
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_extern.h>
60 #include <uvm/uvm_km.h>
61 #include <uvm/uvm_page.h>
62 #include <uvm/uvm_pdaemon.h>
63 #else /* defined(_KERNEL) */
64 #include "../sys/vmem.h"
65 #endif /* defined(_KERNEL) */
66
67
68 #if defined(_KERNEL)
69 #include <sys/evcnt.h>
70 #define VMEM_EVCNT_DEFINE(name) \
71 struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
72 "vmemev", #name); \
73 EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
74 #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
75 #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
76
77 VMEM_EVCNT_DEFINE(bt_pages)
78 VMEM_EVCNT_DEFINE(bt_count)
79 VMEM_EVCNT_DEFINE(bt_inuse)
80
81 #define LOCK_DECL(name) \
82 kmutex_t name; char lockpad[COHERENCY_UNIT - sizeof(kmutex_t)]
83
84 #define CONDVAR_DECL(name) \
85 kcondvar_t name;
86
87 #else /* defined(_KERNEL) */
88 #include <stdio.h>
89 #include <errno.h>
90 #include <assert.h>
91 #include <stdlib.h>
92 #include <string.h>
93
94 #define VMEM_EVCNT_INCR(ev) /* nothing */
95 #define VMEM_EVCNT_DECR(ev) /* nothing */
96
97 #define UNITTEST
98 #define KASSERT(a) assert(a)
99 #define LOCK_DECL(name) /* nothing */
100 #define CONDVAR_DECL(name) /* nothing */
101 #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
102 #define mutex_init(a, b, c) /* nothing */
103 #define mutex_destroy(a) /* nothing */
104 #define mutex_enter(a) /* nothing */
105 #define mutex_tryenter(a) true
106 #define mutex_exit(a) /* nothing */
107 #define mutex_owned(a) /* nothing */
108 #define ASSERT_SLEEPABLE() /* nothing */
109 #define panic(...) printf(__VA_ARGS__); abort()
110 #endif /* defined(_KERNEL) */
111
112 struct vmem;
113 struct vmem_btag;
114
115 #if defined(VMEM_SANITY)
116 static void vmem_check(vmem_t *);
117 #else /* defined(VMEM_SANITY) */
118 #define vmem_check(vm) /* nothing */
119 #endif /* defined(VMEM_SANITY) */
120
121 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
122
123 #define VMEM_HASHSIZE_MIN 1 /* XXX */
124 #define VMEM_HASHSIZE_MAX 65536 /* XXX */
125 #define VMEM_HASHSIZE_INIT 1
126
127 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
128
129 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
130 LIST_HEAD(vmem_freelist, vmem_btag);
131 LIST_HEAD(vmem_hashlist, vmem_btag);
132
133 #if defined(QCACHE)
134 #define VMEM_QCACHE_IDX_MAX 32
135
136 #define QC_NAME_MAX 16
137
138 struct qcache {
139 pool_cache_t qc_cache;
140 vmem_t *qc_vmem;
141 char qc_name[QC_NAME_MAX];
142 };
143 typedef struct qcache qcache_t;
144 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
145 #endif /* defined(QCACHE) */
146
147 #define VMEM_NAME_MAX 16
148
149 /* vmem arena */
150 struct vmem {
151 CONDVAR_DECL(vm_cv);
152 LOCK_DECL(vm_lock);
153 vm_flag_t vm_flags;
154 vmem_import_t *vm_importfn;
155 vmem_release_t *vm_releasefn;
156 size_t vm_nfreetags;
157 LIST_HEAD(, vmem_btag) vm_freetags;
158 void *vm_arg;
159 struct vmem_seglist vm_seglist;
160 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
161 size_t vm_hashsize;
162 size_t vm_nbusytag;
163 struct vmem_hashlist *vm_hashlist;
164 struct vmem_hashlist vm_hash0;
165 size_t vm_quantum_mask;
166 int vm_quantum_shift;
167 size_t vm_size;
168 size_t vm_inuse;
169 char vm_name[VMEM_NAME_MAX+1];
170 LIST_ENTRY(vmem) vm_alllist;
171
172 #if defined(QCACHE)
173 /* quantum cache */
174 size_t vm_qcache_max;
175 struct pool_allocator vm_qcache_allocator;
176 qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
177 qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
178 #endif /* defined(QCACHE) */
179 };
180
181 #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
182 #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
183 #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
184 #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
185 #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
186 #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
187
188 #if defined(_KERNEL)
189 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
190 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
191 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
192 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
193 #endif /* defined(_KERNEL) */
194
195 /* boundary tag */
196 struct vmem_btag {
197 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
198 union {
199 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
200 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
201 } bt_u;
202 #define bt_hashlist bt_u.u_hashlist
203 #define bt_freelist bt_u.u_freelist
204 vmem_addr_t bt_start;
205 vmem_size_t bt_size;
206 int bt_type;
207 };
208
209 #define BT_TYPE_SPAN 1
210 #define BT_TYPE_SPAN_STATIC 2
211 #define BT_TYPE_FREE 3
212 #define BT_TYPE_BUSY 4
213 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
214
215 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1)
216
217 typedef struct vmem_btag bt_t;
218
219 #if defined(_KERNEL)
220 static kmutex_t vmem_list_lock;
221 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
222 #endif /* defined(_KERNEL) */
223
224 /* ---- misc */
225
226 #define VMEM_ALIGNUP(addr, align) \
227 (-(-(addr) & -(align)))
228
229 #define VMEM_CROSS_P(addr1, addr2, boundary) \
230 ((((addr1) ^ (addr2)) & -(boundary)) != 0)
231
232 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
233 #define SIZE2ORDER(size) ((int)ilog2(size))
234
235 #if !defined(_KERNEL)
236 #define xmalloc(sz, flags) malloc(sz)
237 #define xfree(p, sz) free(p)
238 #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
239 #define bt_free(vm, bt) free(bt)
240 #else /* defined(_KERNEL) */
241
242 #define xmalloc(sz, flags) \
243 kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
244 #define xfree(p, sz) kmem_free(p, sz);
245
246 #define BT_MINRESERVE 6
247 #define BT_MAXFREE 64
248 #define STATIC_VMEM_COUNT 5
249 #define STATIC_BT_COUNT 200
250 #define STATIC_QC_POOL_COUNT (VMEM_QCACHE_IDX_MAX + 1)
251
252 static struct vmem static_vmems[STATIC_VMEM_COUNT];
253 static int static_vmem_count = STATIC_VMEM_COUNT;
254
255 static struct vmem_btag static_bts[STATIC_BT_COUNT];
256 static int static_bt_count = STATIC_BT_COUNT;
257
258 static struct pool_cache static_qc_pools[STATIC_QC_POOL_COUNT];
259 static int static_qc_pool_count = STATIC_QC_POOL_COUNT;
260
261 vmem_t *kmem_va_meta_arena;
262 vmem_t *kmem_meta_arena;
263
264 static kmutex_t vmem_btag_lock;
265 static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
266 static size_t vmem_btag_freelist_count = 0;
267 static size_t vmem_btag_count = STATIC_BT_COUNT;
268
269 /* ---- boundary tag */
270
271 #define BT_PER_PAGE (PAGE_SIZE / sizeof(bt_t))
272
273 static int bt_refill(vmem_t *vm, vm_flag_t flags);
274
275 static int
276 bt_refillglobal(vm_flag_t flags)
277 {
278 vmem_addr_t va;
279 bt_t *btp;
280 bt_t *bt;
281 int i;
282
283 mutex_enter(&vmem_btag_lock);
284 if (vmem_btag_freelist_count > (BT_MINRESERVE * 16)) {
285 mutex_exit(&vmem_btag_lock);
286 return 0;
287 }
288
289 if (vmem_alloc(kmem_meta_arena, PAGE_SIZE,
290 (flags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va) != 0) {
291 mutex_exit(&vmem_btag_lock);
292 return ENOMEM;
293 }
294 VMEM_EVCNT_INCR(bt_pages);
295
296 btp = (void *) va;
297 for (i = 0; i < (BT_PER_PAGE); i++) {
298 bt = btp;
299 memset(bt, 0, sizeof(*bt));
300 LIST_INSERT_HEAD(&vmem_btag_freelist, bt,
301 bt_freelist);
302 vmem_btag_freelist_count++;
303 vmem_btag_count++;
304 VMEM_EVCNT_INCR(bt_count);
305 btp++;
306 }
307 mutex_exit(&vmem_btag_lock);
308
309 bt_refill(kmem_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
310 bt_refill(kmem_va_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
311 bt_refill(kmem_meta_arena, (flags & ~VM_FITMASK) | VM_INSTANTFIT);
312
313 return 0;
314 }
315
316 static int
317 bt_refill(vmem_t *vm, vm_flag_t flags)
318 {
319 bt_t *bt;
320
321 bt_refillglobal(flags);
322
323 VMEM_LOCK(vm);
324 mutex_enter(&vmem_btag_lock);
325 while (!LIST_EMPTY(&vmem_btag_freelist) &&
326 vm->vm_nfreetags < (BT_MINRESERVE * 2)) {
327 bt = LIST_FIRST(&vmem_btag_freelist);
328 LIST_REMOVE(bt, bt_freelist);
329 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
330 vm->vm_nfreetags++;
331 vmem_btag_freelist_count--;
332 }
333 mutex_exit(&vmem_btag_lock);
334
335 if (vm->vm_nfreetags == 0) {
336 VMEM_UNLOCK(vm);
337 return ENOMEM;
338 }
339 VMEM_UNLOCK(vm);
340
341 return 0;
342 }
343
344 static inline bt_t *
345 bt_alloc(vmem_t *vm, vm_flag_t flags)
346 {
347 bt_t *bt;
348 again:
349 VMEM_LOCK(vm);
350 if (vm->vm_nfreetags < BT_MINRESERVE &&
351 (flags & VM_POPULATING) == 0) {
352 VMEM_UNLOCK(vm);
353 if (bt_refill(vm, VM_NOSLEEP | VM_INSTANTFIT)) {
354 return NULL;
355 }
356 goto again;
357 }
358 bt = LIST_FIRST(&vm->vm_freetags);
359 LIST_REMOVE(bt, bt_freelist);
360 vm->vm_nfreetags--;
361 VMEM_UNLOCK(vm);
362 VMEM_EVCNT_INCR(bt_inuse);
363
364 return bt;
365 }
366
367 static inline void
368 bt_free(vmem_t *vm, bt_t *bt)
369 {
370
371 VMEM_LOCK(vm);
372 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
373 vm->vm_nfreetags++;
374 while (vm->vm_nfreetags > BT_MAXFREE) {
375 bt = LIST_FIRST(&vm->vm_freetags);
376 LIST_REMOVE(bt, bt_freelist);
377 vm->vm_nfreetags--;
378 mutex_enter(&vmem_btag_lock);
379 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
380 vmem_btag_freelist_count++;
381 mutex_exit(&vmem_btag_lock);
382 }
383 VMEM_UNLOCK(vm);
384 VMEM_EVCNT_DECR(bt_inuse);
385 }
386
387 #endif /* defined(_KERNEL) */
388
389 /*
390 * freelist[0] ... [1, 1]
391 * freelist[1] ... [2, 3]
392 * freelist[2] ... [4, 7]
393 * freelist[3] ... [8, 15]
394 * :
395 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
396 * :
397 */
398
399 static struct vmem_freelist *
400 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
401 {
402 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
403 const int idx = SIZE2ORDER(qsize);
404
405 KASSERT(size != 0 && qsize != 0);
406 KASSERT((size & vm->vm_quantum_mask) == 0);
407 KASSERT(idx >= 0);
408 KASSERT(idx < VMEM_MAXORDER);
409
410 return &vm->vm_freelist[idx];
411 }
412
413 /*
414 * bt_freehead_toalloc: return the freelist for the given size and allocation
415 * strategy.
416 *
417 * for VM_INSTANTFIT, return the list in which any blocks are large enough
418 * for the requested size. otherwise, return the list which can have blocks
419 * large enough for the requested size.
420 */
421
422 static struct vmem_freelist *
423 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
424 {
425 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
426 int idx = SIZE2ORDER(qsize);
427
428 KASSERT(size != 0 && qsize != 0);
429 KASSERT((size & vm->vm_quantum_mask) == 0);
430
431 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
432 idx++;
433 /* check too large request? */
434 }
435 KASSERT(idx >= 0);
436 KASSERT(idx < VMEM_MAXORDER);
437
438 return &vm->vm_freelist[idx];
439 }
440
441 /* ---- boundary tag hash */
442
443 static struct vmem_hashlist *
444 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
445 {
446 struct vmem_hashlist *list;
447 unsigned int hash;
448
449 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
450 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
451
452 return list;
453 }
454
455 static bt_t *
456 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
457 {
458 struct vmem_hashlist *list;
459 bt_t *bt;
460
461 list = bt_hashhead(vm, addr);
462 LIST_FOREACH(bt, list, bt_hashlist) {
463 if (bt->bt_start == addr) {
464 break;
465 }
466 }
467
468 return bt;
469 }
470
471 static void
472 bt_rembusy(vmem_t *vm, bt_t *bt)
473 {
474
475 KASSERT(vm->vm_nbusytag > 0);
476 vm->vm_nbusytag--;
477 LIST_REMOVE(bt, bt_hashlist);
478 }
479
480 static void
481 bt_insbusy(vmem_t *vm, bt_t *bt)
482 {
483 struct vmem_hashlist *list;
484
485 KASSERT(bt->bt_type == BT_TYPE_BUSY);
486
487 list = bt_hashhead(vm, bt->bt_start);
488 LIST_INSERT_HEAD(list, bt, bt_hashlist);
489 vm->vm_nbusytag++;
490 }
491
492 /* ---- boundary tag list */
493
494 static void
495 bt_remseg(vmem_t *vm, bt_t *bt)
496 {
497
498 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
499 }
500
501 static void
502 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
503 {
504
505 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
506 }
507
508 static void
509 bt_insseg_tail(vmem_t *vm, bt_t *bt)
510 {
511
512 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
513 }
514
515 static void
516 bt_remfree(vmem_t *vm, bt_t *bt)
517 {
518
519 KASSERT(bt->bt_type == BT_TYPE_FREE);
520
521 LIST_REMOVE(bt, bt_freelist);
522 }
523
524 static void
525 bt_insfree(vmem_t *vm, bt_t *bt)
526 {
527 struct vmem_freelist *list;
528
529 list = bt_freehead_tofree(vm, bt->bt_size);
530 LIST_INSERT_HEAD(list, bt, bt_freelist);
531 }
532
533 /* ---- vmem internal functions */
534
535 #if defined(QCACHE)
536 static inline vm_flag_t
537 prf_to_vmf(int prflags)
538 {
539 vm_flag_t vmflags;
540
541 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
542 if ((prflags & PR_WAITOK) != 0) {
543 vmflags = VM_SLEEP;
544 } else {
545 vmflags = VM_NOSLEEP;
546 }
547 return vmflags;
548 }
549
550 static inline int
551 vmf_to_prf(vm_flag_t vmflags)
552 {
553 int prflags;
554
555 if ((vmflags & VM_SLEEP) != 0) {
556 prflags = PR_WAITOK;
557 } else {
558 prflags = PR_NOWAIT;
559 }
560 return prflags;
561 }
562
563 static size_t
564 qc_poolpage_size(size_t qcache_max)
565 {
566 int i;
567
568 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
569 /* nothing */
570 }
571 return ORDER2SIZE(i);
572 }
573
574 static void *
575 qc_poolpage_alloc(struct pool *pool, int prflags)
576 {
577 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
578 vmem_t *vm = qc->qc_vmem;
579 vmem_addr_t addr;
580
581 if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
582 prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
583 return NULL;
584 return (void *)addr;
585 }
586
587 static void
588 qc_poolpage_free(struct pool *pool, void *addr)
589 {
590 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
591 vmem_t *vm = qc->qc_vmem;
592
593 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
594 }
595
596 static void
597 qc_init(vmem_t *vm, size_t qcache_max, int ipl)
598 {
599 qcache_t *prevqc;
600 struct pool_allocator *pa;
601 int qcache_idx_max;
602 int i;
603
604 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
605 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
606 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
607 }
608 vm->vm_qcache_max = qcache_max;
609 pa = &vm->vm_qcache_allocator;
610 memset(pa, 0, sizeof(*pa));
611 pa->pa_alloc = qc_poolpage_alloc;
612 pa->pa_free = qc_poolpage_free;
613 pa->pa_pagesz = qc_poolpage_size(qcache_max);
614
615 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
616 prevqc = NULL;
617 for (i = qcache_idx_max; i > 0; i--) {
618 qcache_t *qc = &vm->vm_qcache_store[i - 1];
619 size_t size = i << vm->vm_quantum_shift;
620 pool_cache_t pc;
621
622 qc->qc_vmem = vm;
623 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
624 vm->vm_name, size);
625
626 if (vm->vm_flags & VM_BOOTSTRAP) {
627 KASSERT(static_qc_pool_count > 0);
628 pc = &static_qc_pools[--static_qc_pool_count];
629 pool_cache_bootstrap(pc, size,
630 ORDER2SIZE(vm->vm_quantum_shift), 0,
631 PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
632 qc->qc_name, pa, ipl, NULL, NULL, NULL);
633 } else {
634 pc = pool_cache_init(size,
635 ORDER2SIZE(vm->vm_quantum_shift), 0,
636 PR_NOALIGN | PR_NOTOUCH /* XXX */,
637 qc->qc_name, pa, ipl, NULL, NULL, NULL);
638 }
639 qc->qc_cache = pc;
640 KASSERT(qc->qc_cache != NULL); /* XXX */
641 if (prevqc != NULL &&
642 qc->qc_cache->pc_pool.pr_itemsperpage ==
643 prevqc->qc_cache->pc_pool.pr_itemsperpage) {
644 if (vm->vm_flags & VM_BOOTSTRAP) {
645 pool_cache_bootstrap_destroy(pc);
646 //static_qc_pool_count++;
647 } else {
648 pool_cache_destroy(qc->qc_cache);
649 }
650 vm->vm_qcache[i - 1] = prevqc;
651 continue;
652 }
653 qc->qc_cache->pc_pool.pr_qcache = qc;
654 vm->vm_qcache[i - 1] = qc;
655 prevqc = qc;
656 }
657 }
658
659 static void
660 qc_destroy(vmem_t *vm)
661 {
662 const qcache_t *prevqc;
663 int i;
664 int qcache_idx_max;
665
666 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
667 prevqc = NULL;
668 for (i = 0; i < qcache_idx_max; i++) {
669 qcache_t *qc = vm->vm_qcache[i];
670
671 if (prevqc == qc) {
672 continue;
673 }
674 if (vm->vm_flags & VM_BOOTSTRAP) {
675 pool_cache_bootstrap_destroy(qc->qc_cache);
676 } else {
677 pool_cache_destroy(qc->qc_cache);
678 }
679 prevqc = qc;
680 }
681 }
682 #endif
683
684 #if defined(_KERNEL)
685 void
686 vmem_bootstrap(void)
687 {
688
689 mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM);
690 mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
691
692 while (static_bt_count-- > 0) {
693 bt_t *bt = &static_bts[static_bt_count];
694 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
695 VMEM_EVCNT_INCR(bt_count);
696 vmem_btag_freelist_count++;
697 }
698 }
699
700 void
701 vmem_init(vmem_t *vm)
702 {
703
704 kmem_va_meta_arena = vmem_create("vmem-va", 0, 0, PAGE_SIZE,
705 vmem_alloc, vmem_free, vm,
706 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
707 IPL_VM);
708
709 kmem_meta_arena = vmem_create("vmem-meta", 0, 0, PAGE_SIZE,
710 uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
711 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
712 }
713 #endif /* defined(_KERNEL) */
714
715 static int
716 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
717 int spanbttype)
718 {
719 bt_t *btspan;
720 bt_t *btfree;
721
722 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
723 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
724 KASSERT(spanbttype == BT_TYPE_SPAN ||
725 spanbttype == BT_TYPE_SPAN_STATIC);
726
727 btspan = bt_alloc(vm, flags);
728 if (btspan == NULL) {
729 return ENOMEM;
730 }
731 btfree = bt_alloc(vm, flags);
732 if (btfree == NULL) {
733 bt_free(vm, btspan);
734 return ENOMEM;
735 }
736
737 btspan->bt_type = spanbttype;
738 btspan->bt_start = addr;
739 btspan->bt_size = size;
740
741 btfree->bt_type = BT_TYPE_FREE;
742 btfree->bt_start = addr;
743 btfree->bt_size = size;
744
745 VMEM_LOCK(vm);
746 bt_insseg_tail(vm, btspan);
747 bt_insseg(vm, btfree, btspan);
748 bt_insfree(vm, btfree);
749 vm->vm_size += size;
750 VMEM_UNLOCK(vm);
751
752 return 0;
753 }
754
755 static void
756 vmem_destroy1(vmem_t *vm)
757 {
758
759 #if defined(QCACHE)
760 qc_destroy(vm);
761 #endif /* defined(QCACHE) */
762 if (vm->vm_hashlist != NULL) {
763 int i;
764
765 for (i = 0; i < vm->vm_hashsize; i++) {
766 bt_t *bt;
767
768 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
769 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
770 bt_free(vm, bt);
771 }
772 }
773 if (vm->vm_hashlist != &vm->vm_hash0) {
774 xfree(vm->vm_hashlist,
775 sizeof(struct vmem_hashlist *) * vm->vm_hashsize);
776 }
777 }
778
779 while (vm->vm_nfreetags > 0) {
780 bt_t *bt = LIST_FIRST(&vm->vm_freetags);
781 LIST_REMOVE(bt, bt_freelist);
782 vm->vm_nfreetags--;
783 mutex_enter(&vmem_btag_lock);
784 #if defined (_KERNEL)
785 LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
786 vmem_btag_freelist_count++;
787 #endif /* defined(_KERNEL) */
788 mutex_exit(&vmem_btag_lock);
789 }
790
791 VMEM_LOCK_DESTROY(vm);
792 xfree(vm, sizeof(*vm));
793 }
794
795 static int
796 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
797 {
798 vmem_addr_t addr;
799 int rc;
800
801 if (vm->vm_importfn == NULL) {
802 return EINVAL;
803 }
804
805 if (vm->vm_flags & VM_LARGEIMPORT) {
806 size *= 32;
807 }
808
809 if (vm->vm_flags & VM_XIMPORT) {
810 rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size,
811 &size, flags, &addr);
812 if (rc != 0) {
813 return ENOMEM;
814 }
815 } else {
816 rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
817 if (rc != 0) {
818 return ENOMEM;
819 }
820 }
821
822 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
823 (*vm->vm_releasefn)(vm->vm_arg, addr, size);
824 return ENOMEM;
825 }
826
827 return 0;
828 }
829
830 static int
831 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
832 {
833 bt_t *bt;
834 int i;
835 struct vmem_hashlist *newhashlist;
836 struct vmem_hashlist *oldhashlist;
837 size_t oldhashsize;
838
839 KASSERT(newhashsize > 0);
840
841 newhashlist =
842 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
843 if (newhashlist == NULL) {
844 return ENOMEM;
845 }
846 for (i = 0; i < newhashsize; i++) {
847 LIST_INIT(&newhashlist[i]);
848 }
849
850 if (!VMEM_TRYLOCK(vm)) {
851 xfree(newhashlist,
852 sizeof(struct vmem_hashlist *) * newhashsize);
853 return EBUSY;
854 }
855 oldhashlist = vm->vm_hashlist;
856 oldhashsize = vm->vm_hashsize;
857 vm->vm_hashlist = newhashlist;
858 vm->vm_hashsize = newhashsize;
859 if (oldhashlist == NULL) {
860 VMEM_UNLOCK(vm);
861 return 0;
862 }
863 for (i = 0; i < oldhashsize; i++) {
864 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
865 bt_rembusy(vm, bt); /* XXX */
866 bt_insbusy(vm, bt);
867 }
868 }
869 VMEM_UNLOCK(vm);
870
871 if (oldhashlist != &vm->vm_hash0) {
872 xfree(oldhashlist,
873 sizeof(struct vmem_hashlist *) * oldhashsize);
874 }
875
876 return 0;
877 }
878
879 /*
880 * vmem_fit: check if a bt can satisfy the given restrictions.
881 *
882 * it's a caller's responsibility to ensure the region is big enough
883 * before calling us.
884 */
885
886 static int
887 vmem_fit(const bt_t const *bt, vmem_size_t size, vmem_size_t align,
888 vmem_size_t phase, vmem_size_t nocross,
889 vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
890 {
891 vmem_addr_t start;
892 vmem_addr_t end;
893
894 KASSERT(size > 0);
895 KASSERT(bt->bt_size >= size); /* caller's responsibility */
896
897 /*
898 * XXX assumption: vmem_addr_t and vmem_size_t are
899 * unsigned integer of the same size.
900 */
901
902 start = bt->bt_start;
903 if (start < minaddr) {
904 start = minaddr;
905 }
906 end = BT_END(bt);
907 if (end > maxaddr) {
908 end = maxaddr;
909 }
910 if (start > end) {
911 return ENOMEM;
912 }
913
914 start = VMEM_ALIGNUP(start - phase, align) + phase;
915 if (start < bt->bt_start) {
916 start += align;
917 }
918 if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
919 KASSERT(align < nocross);
920 start = VMEM_ALIGNUP(start - phase, nocross) + phase;
921 }
922 if (start <= end && end - start >= size - 1) {
923 KASSERT((start & (align - 1)) == phase);
924 KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
925 KASSERT(minaddr <= start);
926 KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
927 KASSERT(bt->bt_start <= start);
928 KASSERT(BT_END(bt) - start >= size - 1);
929 *addrp = start;
930 return 0;
931 }
932 return ENOMEM;
933 }
934
935
936 /*
937 * vmem_create_internal: creates a vmem arena.
938 */
939
940 static vmem_t *
941 vmem_create_internal(const char *name, vmem_addr_t base, vmem_size_t size,
942 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
943 void *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
944 {
945 vmem_t *vm = NULL;
946 int i;
947
948 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
949 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
950 KASSERT(quantum > 0);
951
952 if (flags & VM_BOOTSTRAP) {
953 #if defined(_KERNEL)
954 KASSERT(static_vmem_count > 0);
955 vm = &static_vmems[--static_vmem_count];
956 #endif /* defined(_KERNEL) */
957 } else {
958 vm = xmalloc(sizeof(*vm), flags);
959 }
960 if (vm == NULL) {
961 return NULL;
962 }
963
964 VMEM_CONDVAR_INIT(vm, "vmem");
965 VMEM_LOCK_INIT(vm, ipl);
966 vm->vm_flags = flags;
967 vm->vm_nfreetags = 0;
968 LIST_INIT(&vm->vm_freetags);
969 strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
970 vm->vm_quantum_mask = quantum - 1;
971 vm->vm_quantum_shift = SIZE2ORDER(quantum);
972 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
973 vm->vm_importfn = importfn;
974 vm->vm_releasefn = releasefn;
975 vm->vm_arg = arg;
976 vm->vm_nbusytag = 0;
977 vm->vm_size = 0;
978 vm->vm_inuse = 0;
979 #if defined(QCACHE)
980 qc_init(vm, qcache_max, ipl);
981 #endif /* defined(QCACHE) */
982
983 CIRCLEQ_INIT(&vm->vm_seglist);
984 for (i = 0; i < VMEM_MAXORDER; i++) {
985 LIST_INIT(&vm->vm_freelist[i]);
986 }
987 vm->vm_hashlist = NULL;
988 if (flags & VM_BOOTSTRAP) {
989 vm->vm_hashsize = 1;
990 vm->vm_hashlist = &vm->vm_hash0;
991 } else if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
992 vmem_destroy1(vm);
993 return NULL;
994 }
995
996 if (size != 0) {
997 if (vmem_add(vm, base, size, flags) != 0) {
998 vmem_destroy1(vm);
999 return NULL;
1000 }
1001 }
1002
1003 #if defined(_KERNEL)
1004 if (flags & VM_BOOTSTRAP) {
1005 bt_refill(vm, VM_NOSLEEP);
1006 }
1007
1008 mutex_enter(&vmem_list_lock);
1009 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1010 mutex_exit(&vmem_list_lock);
1011 #endif /* defined(_KERNEL) */
1012
1013 return vm;
1014 }
1015
1016
1017 /* ---- vmem API */
1018
1019 /*
1020 * vmem_create: create an arena.
1021 *
1022 * => must not be called from interrupt context.
1023 */
1024
1025 vmem_t *
1026 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1027 vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1028 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1029 {
1030
1031 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1032 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1033 KASSERT((flags & (VM_XIMPORT)) == 0);
1034
1035 return vmem_create_internal(name, base, size, quantum,
1036 importfn, releasefn, source, qcache_max, flags, ipl);
1037 }
1038
1039 /*
1040 * vmem_xcreate: create an arena takes alternative import func.
1041 *
1042 * => must not be called from interrupt context.
1043 */
1044
1045 vmem_t *
1046 vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1047 vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1048 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1049 {
1050
1051 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1052 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1053 KASSERT((flags & (VM_XIMPORT)) == 0);
1054
1055 return vmem_create_internal(name, base, size, quantum,
1056 (vmem_import_t *)importfn, releasefn, source,
1057 qcache_max, flags | VM_XIMPORT, ipl);
1058 }
1059
1060 void
1061 vmem_destroy(vmem_t *vm)
1062 {
1063
1064 #if defined(_KERNEL)
1065 mutex_enter(&vmem_list_lock);
1066 LIST_REMOVE(vm, vm_alllist);
1067 mutex_exit(&vmem_list_lock);
1068 #endif /* defined(_KERNEL) */
1069
1070 vmem_destroy1(vm);
1071 }
1072
1073 vmem_size_t
1074 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1075 {
1076
1077 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1078 }
1079
1080 /*
1081 * vmem_alloc:
1082 *
1083 * => caller must ensure appropriate spl,
1084 * if the arena can be accessed from interrupt context.
1085 */
1086
1087 int
1088 vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1089 {
1090 const vm_flag_t strat __unused = flags & VM_FITMASK;
1091
1092 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1093 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1094
1095 KASSERT(size > 0);
1096 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1097 if ((flags & VM_SLEEP) != 0) {
1098 ASSERT_SLEEPABLE();
1099 }
1100
1101 #if defined(QCACHE)
1102 if (size <= vm->vm_qcache_max) {
1103 void *p;
1104 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1105 qcache_t *qc = vm->vm_qcache[qidx - 1];
1106
1107 p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1108 if (addrp != NULL)
1109 *addrp = (vmem_addr_t)p;
1110 return (p == NULL) ? ENOMEM : 0;
1111 }
1112 #endif /* defined(QCACHE) */
1113
1114 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1115 flags, addrp);
1116 }
1117
1118 int
1119 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1120 const vmem_size_t phase, const vmem_size_t nocross,
1121 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1122 vmem_addr_t *addrp)
1123 {
1124 struct vmem_freelist *list;
1125 struct vmem_freelist *first;
1126 struct vmem_freelist *end;
1127 bt_t *bt;
1128 bt_t *btnew;
1129 bt_t *btnew2;
1130 const vmem_size_t size = vmem_roundup_size(vm, size0);
1131 vm_flag_t strat = flags & VM_FITMASK;
1132 vmem_addr_t start;
1133 int rc;
1134
1135 KASSERT(size0 > 0);
1136 KASSERT(size > 0);
1137 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1138 if ((flags & VM_SLEEP) != 0) {
1139 ASSERT_SLEEPABLE();
1140 }
1141 KASSERT((align & vm->vm_quantum_mask) == 0);
1142 KASSERT((align & (align - 1)) == 0);
1143 KASSERT((phase & vm->vm_quantum_mask) == 0);
1144 KASSERT((nocross & vm->vm_quantum_mask) == 0);
1145 KASSERT((nocross & (nocross - 1)) == 0);
1146 KASSERT((align == 0 && phase == 0) || phase < align);
1147 KASSERT(nocross == 0 || nocross >= size);
1148 KASSERT(minaddr <= maxaddr);
1149 KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1150
1151 if (align == 0) {
1152 align = vm->vm_quantum_mask + 1;
1153 }
1154
1155 /*
1156 * allocate boundary tags before acquiring the vmem lock.
1157 */
1158 btnew = bt_alloc(vm, flags);
1159 if (btnew == NULL) {
1160 return ENOMEM;
1161 }
1162 btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1163 if (btnew2 == NULL) {
1164 bt_free(vm, btnew);
1165 return ENOMEM;
1166 }
1167
1168 /*
1169 * choose a free block from which we allocate.
1170 */
1171 retry_strat:
1172 first = bt_freehead_toalloc(vm, size, strat);
1173 end = &vm->vm_freelist[VMEM_MAXORDER];
1174 retry:
1175 bt = NULL;
1176 VMEM_LOCK(vm);
1177 vmem_check(vm);
1178 if (strat == VM_INSTANTFIT) {
1179 /*
1180 * just choose the first block which satisfies our restrictions.
1181 *
1182 * note that we don't need to check the size of the blocks
1183 * because any blocks found on these list should be larger than
1184 * the given size.
1185 */
1186 for (list = first; list < end; list++) {
1187 bt = LIST_FIRST(list);
1188 if (bt != NULL) {
1189 rc = vmem_fit(bt, size, align, phase,
1190 nocross, minaddr, maxaddr, &start);
1191 if (rc == 0) {
1192 goto gotit;
1193 }
1194 /*
1195 * don't bother to follow the bt_freelist link
1196 * here. the list can be very long and we are
1197 * told to run fast. blocks from the later free
1198 * lists are larger and have better chances to
1199 * satisfy our restrictions.
1200 */
1201 }
1202 }
1203 } else { /* VM_BESTFIT */
1204 /*
1205 * we assume that, for space efficiency, it's better to
1206 * allocate from a smaller block. thus we will start searching
1207 * from the lower-order list than VM_INSTANTFIT.
1208 * however, don't bother to find the smallest block in a free
1209 * list because the list can be very long. we can revisit it
1210 * if/when it turns out to be a problem.
1211 *
1212 * note that the 'first' list can contain blocks smaller than
1213 * the requested size. thus we need to check bt_size.
1214 */
1215 for (list = first; list < end; list++) {
1216 LIST_FOREACH(bt, list, bt_freelist) {
1217 if (bt->bt_size >= size) {
1218 rc = vmem_fit(bt, size, align, phase,
1219 nocross, minaddr, maxaddr, &start);
1220 if (rc == 0) {
1221 goto gotit;
1222 }
1223 }
1224 }
1225 }
1226 }
1227 VMEM_UNLOCK(vm);
1228 #if 1
1229 if (strat == VM_INSTANTFIT) {
1230 strat = VM_BESTFIT;
1231 goto retry_strat;
1232 }
1233 #endif
1234 if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
1235 nocross != 0) {
1236
1237 /*
1238 * XXX should try to import a region large enough to
1239 * satisfy restrictions?
1240 */
1241
1242 goto fail;
1243 }
1244 /* XXX eeek, minaddr & maxaddr not respected */
1245 if (vmem_import(vm, size, flags) == 0) {
1246 goto retry;
1247 }
1248 /* XXX */
1249
1250 fail:
1251 bt_free(vm, btnew);
1252 bt_free(vm, btnew2);
1253 return ENOMEM;
1254
1255 gotit:
1256 KASSERT(bt->bt_type == BT_TYPE_FREE);
1257 KASSERT(bt->bt_size >= size);
1258 bt_remfree(vm, bt);
1259 vmem_check(vm);
1260 if (bt->bt_start != start) {
1261 btnew2->bt_type = BT_TYPE_FREE;
1262 btnew2->bt_start = bt->bt_start;
1263 btnew2->bt_size = start - bt->bt_start;
1264 bt->bt_start = start;
1265 bt->bt_size -= btnew2->bt_size;
1266 bt_insfree(vm, btnew2);
1267 bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
1268 btnew2 = NULL;
1269 vmem_check(vm);
1270 }
1271 KASSERT(bt->bt_start == start);
1272 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1273 /* split */
1274 btnew->bt_type = BT_TYPE_BUSY;
1275 btnew->bt_start = bt->bt_start;
1276 btnew->bt_size = size;
1277 bt->bt_start = bt->bt_start + size;
1278 bt->bt_size -= size;
1279 bt_insfree(vm, bt);
1280 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
1281 bt_insbusy(vm, btnew);
1282 vmem_check(vm);
1283 VMEM_UNLOCK(vm);
1284 } else {
1285 bt->bt_type = BT_TYPE_BUSY;
1286 bt_insbusy(vm, bt);
1287 vmem_check(vm);
1288 VMEM_UNLOCK(vm);
1289 bt_free(vm, btnew);
1290 btnew = bt;
1291 }
1292 if (btnew2 != NULL) {
1293 bt_free(vm, btnew2);
1294 }
1295 KASSERT(btnew->bt_size >= size);
1296 btnew->bt_type = BT_TYPE_BUSY;
1297
1298 if (addrp != NULL)
1299 *addrp = btnew->bt_start;
1300 return 0;
1301 }
1302
1303 /*
1304 * vmem_free:
1305 *
1306 * => caller must ensure appropriate spl,
1307 * if the arena can be accessed from interrupt context.
1308 */
1309
1310 void
1311 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1312 {
1313
1314 KASSERT(size > 0);
1315
1316 #if defined(QCACHE)
1317 if (size <= vm->vm_qcache_max) {
1318 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1319 qcache_t *qc = vm->vm_qcache[qidx - 1];
1320
1321 pool_cache_put(qc->qc_cache, (void *)addr);
1322 return;
1323 }
1324 #endif /* defined(QCACHE) */
1325
1326 vmem_xfree(vm, addr, size);
1327 }
1328
1329 void
1330 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1331 {
1332 bt_t *bt;
1333 bt_t *t;
1334 LIST_HEAD(, vmem_btag) tofree;
1335
1336 LIST_INIT(&tofree);
1337
1338 KASSERT(size > 0);
1339
1340 VMEM_LOCK(vm);
1341
1342 bt = bt_lookupbusy(vm, addr);
1343 KASSERT(bt != NULL);
1344 KASSERT(bt->bt_start == addr);
1345 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1346 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1347 KASSERT(bt->bt_type == BT_TYPE_BUSY);
1348 bt_rembusy(vm, bt);
1349 bt->bt_type = BT_TYPE_FREE;
1350
1351 vm->vm_inuse -= bt->bt_size;
1352
1353 /* coalesce */
1354 t = CIRCLEQ_NEXT(bt, bt_seglist);
1355 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1356 KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1357 bt_remfree(vm, t);
1358 bt_remseg(vm, t);
1359 bt->bt_size += t->bt_size;
1360 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1361 }
1362 t = CIRCLEQ_PREV(bt, bt_seglist);
1363 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1364 KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1365 bt_remfree(vm, t);
1366 bt_remseg(vm, t);
1367 bt->bt_size += t->bt_size;
1368 bt->bt_start = t->bt_start;
1369 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1370 }
1371
1372 t = CIRCLEQ_PREV(bt, bt_seglist);
1373 KASSERT(t != NULL);
1374 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1375 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1376 t->bt_size == bt->bt_size) {
1377 vmem_addr_t spanaddr;
1378 vmem_size_t spansize;
1379
1380 KASSERT(t->bt_start == bt->bt_start);
1381 spanaddr = bt->bt_start;
1382 spansize = bt->bt_size;
1383 bt_remseg(vm, bt);
1384 LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
1385 bt_remseg(vm, t);
1386 LIST_INSERT_HEAD(&tofree, t, bt_freelist);
1387 vm->vm_size -= spansize;
1388 VMEM_UNLOCK(vm);
1389 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1390 } else {
1391 bt_insfree(vm, bt);
1392 VMEM_UNLOCK(vm);
1393 }
1394
1395 while (!LIST_EMPTY(&tofree)) {
1396 t = LIST_FIRST(&tofree);
1397 LIST_REMOVE(t, bt_freelist);
1398 bt_free(vm, t);
1399 }
1400 #if defined(_KERNEL)
1401 VMEM_CONDVAR_BROADCAST(vm);
1402 #endif /* defined(_KERNEL) */
1403 }
1404
1405 /*
1406 * vmem_add:
1407 *
1408 * => caller must ensure appropriate spl,
1409 * if the arena can be accessed from interrupt context.
1410 */
1411
1412 int
1413 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1414 {
1415
1416 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1417 }
1418
1419 /*
1420 * vmem_size: information about arenas size
1421 *
1422 * => return free/allocated size in arena
1423 */
1424 vmem_size_t
1425 vmem_size(vmem_t *vm, int typemask)
1426 {
1427
1428 switch (typemask) {
1429 case VMEM_ALLOC:
1430 return vm->vm_inuse;
1431 case VMEM_FREE:
1432 return vm->vm_size - vm->vm_inuse;
1433 case VMEM_FREE|VMEM_ALLOC:
1434 return vm->vm_size;
1435 default:
1436 panic("vmem_size");
1437 }
1438 }
1439
1440 /* ---- rehash */
1441
1442 #if defined(_KERNEL)
1443 static struct callout vmem_rehash_ch;
1444 static int vmem_rehash_interval;
1445 static struct workqueue *vmem_rehash_wq;
1446 static struct work vmem_rehash_wk;
1447
1448 static void
1449 vmem_rehash_all(struct work *wk, void *dummy)
1450 {
1451 vmem_t *vm;
1452
1453 KASSERT(wk == &vmem_rehash_wk);
1454 mutex_enter(&vmem_list_lock);
1455 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1456 size_t desired;
1457 size_t current;
1458
1459 if (!VMEM_TRYLOCK(vm)) {
1460 continue;
1461 }
1462 desired = vm->vm_nbusytag;
1463 current = vm->vm_hashsize;
1464 VMEM_UNLOCK(vm);
1465
1466 if (desired > VMEM_HASHSIZE_MAX) {
1467 desired = VMEM_HASHSIZE_MAX;
1468 } else if (desired < VMEM_HASHSIZE_MIN) {
1469 desired = VMEM_HASHSIZE_MIN;
1470 }
1471 if (desired > current * 2 || desired * 2 < current) {
1472 vmem_rehash(vm, desired, VM_NOSLEEP);
1473 }
1474 VMEM_CONDVAR_BROADCAST(vm);
1475 }
1476 mutex_exit(&vmem_list_lock);
1477
1478 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1479 }
1480
1481 static void
1482 vmem_rehash_all_kick(void *dummy)
1483 {
1484
1485 workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1486 }
1487
1488 void
1489 vmem_rehash_start(void)
1490 {
1491 int error;
1492
1493 error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1494 vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1495 if (error) {
1496 panic("%s: workqueue_create %d\n", __func__, error);
1497 }
1498 callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1499 callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1500
1501 vmem_rehash_interval = hz * 10;
1502 callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1503 }
1504 #endif /* defined(_KERNEL) */
1505
1506 /* ---- debug */
1507
1508 #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1509
1510 static void bt_dump(const bt_t *, void (*)(const char *, ...));
1511
1512 static const char *
1513 bt_type_string(int type)
1514 {
1515 static const char * const table[] = {
1516 [BT_TYPE_BUSY] = "busy",
1517 [BT_TYPE_FREE] = "free",
1518 [BT_TYPE_SPAN] = "span",
1519 [BT_TYPE_SPAN_STATIC] = "static span",
1520 };
1521
1522 if (type >= __arraycount(table)) {
1523 return "BOGUS";
1524 }
1525 return table[type];
1526 }
1527
1528 static void
1529 bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1530 {
1531
1532 (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1533 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1534 bt->bt_type, bt_type_string(bt->bt_type));
1535 }
1536
1537 static void
1538 vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...))
1539 {
1540 const bt_t *bt;
1541 int i;
1542
1543 (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1544 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1545 bt_dump(bt, pr);
1546 }
1547
1548 for (i = 0; i < VMEM_MAXORDER; i++) {
1549 const struct vmem_freelist *fl = &vm->vm_freelist[i];
1550
1551 if (LIST_EMPTY(fl)) {
1552 continue;
1553 }
1554
1555 (*pr)("freelist[%d]\n", i);
1556 LIST_FOREACH(bt, fl, bt_freelist) {
1557 bt_dump(bt, pr);
1558 }
1559 }
1560 }
1561
1562 #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1563
1564 #if defined(DDB)
1565 static bt_t *
1566 vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1567 {
1568 bt_t *bt;
1569
1570 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1571 if (BT_ISSPAN_P(bt)) {
1572 continue;
1573 }
1574 if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1575 return bt;
1576 }
1577 }
1578
1579 return NULL;
1580 }
1581
1582 void
1583 vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1584 {
1585 vmem_t *vm;
1586
1587 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1588 bt_t *bt;
1589
1590 bt = vmem_whatis_lookup(vm, addr);
1591 if (bt == NULL) {
1592 continue;
1593 }
1594 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1595 (void *)addr, (void *)bt->bt_start,
1596 (size_t)(addr - bt->bt_start), vm->vm_name,
1597 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1598 }
1599 }
1600
1601 void
1602 vmem_printall(const char *modif, void (*pr)(const char *, ...))
1603 {
1604 const vmem_t *vm;
1605
1606 LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1607 vmem_dump(vm, pr);
1608 }
1609 }
1610
1611 void
1612 vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1613 {
1614 const vmem_t *vm = (const void *)addr;
1615
1616 vmem_dump(vm, pr);
1617 }
1618 #endif /* defined(DDB) */
1619
1620 #if defined(_KERNEL)
1621 #define vmem_printf printf
1622 #else
1623 #include <stdio.h>
1624 #include <stdarg.h>
1625
1626 static void
1627 vmem_printf(const char *fmt, ...)
1628 {
1629 va_list ap;
1630 va_start(ap, fmt);
1631 vprintf(fmt, ap);
1632 va_end(ap);
1633 }
1634 #endif
1635
1636 #if defined(VMEM_SANITY)
1637
1638 static bool
1639 vmem_check_sanity(vmem_t *vm)
1640 {
1641 const bt_t *bt, *bt2;
1642
1643 KASSERT(vm != NULL);
1644
1645 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1646 if (bt->bt_start > BT_END(bt)) {
1647 printf("corrupted tag\n");
1648 bt_dump(bt, vmem_printf);
1649 return false;
1650 }
1651 }
1652 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1653 CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1654 if (bt == bt2) {
1655 continue;
1656 }
1657 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1658 continue;
1659 }
1660 if (bt->bt_start <= BT_END(bt2) &&
1661 bt2->bt_start <= BT_END(bt)) {
1662 printf("overwrapped tags\n");
1663 bt_dump(bt, vmem_printf);
1664 bt_dump(bt2, vmem_printf);
1665 return false;
1666 }
1667 }
1668 }
1669
1670 return true;
1671 }
1672
1673 static void
1674 vmem_check(vmem_t *vm)
1675 {
1676
1677 if (!vmem_check_sanity(vm)) {
1678 panic("insanity vmem %p", vm);
1679 }
1680 }
1681
1682 #endif /* defined(VMEM_SANITY) */
1683
1684 #if defined(UNITTEST)
1685 int
1686 main(void)
1687 {
1688 int rc;
1689 vmem_t *vm;
1690 vmem_addr_t p;
1691 struct reg {
1692 vmem_addr_t p;
1693 vmem_size_t sz;
1694 bool x;
1695 } *reg = NULL;
1696 int nreg = 0;
1697 int nalloc = 0;
1698 int nfree = 0;
1699 vmem_size_t total = 0;
1700 #if 1
1701 vm_flag_t strat = VM_INSTANTFIT;
1702 #else
1703 vm_flag_t strat = VM_BESTFIT;
1704 #endif
1705
1706 vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1707 #ifdef _KERNEL
1708 IPL_NONE
1709 #else
1710 0
1711 #endif
1712 );
1713 if (vm == NULL) {
1714 printf("vmem_create\n");
1715 exit(EXIT_FAILURE);
1716 }
1717 vmem_dump(vm, vmem_printf);
1718
1719 rc = vmem_add(vm, 0, 50, VM_SLEEP);
1720 assert(rc == 0);
1721 rc = vmem_add(vm, 100, 200, VM_SLEEP);
1722 assert(rc == 0);
1723 rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1724 assert(rc == 0);
1725 rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1726 assert(rc == 0);
1727 rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1728 assert(rc == 0);
1729 rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1730 assert(rc == 0);
1731 rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1732 assert(rc == 0);
1733 rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1734 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1735 assert(rc != 0);
1736 rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1737 assert(rc == 0 && p == 0);
1738 vmem_xfree(vm, p, 50);
1739 rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1740 assert(rc == 0 && p == 0);
1741 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1742 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1743 assert(rc != 0);
1744 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1745 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1746 assert(rc != 0);
1747 rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1748 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1749 assert(rc == 0);
1750 vmem_dump(vm, vmem_printf);
1751 for (;;) {
1752 struct reg *r;
1753 int t = rand() % 100;
1754
1755 if (t > 45) {
1756 /* alloc */
1757 vmem_size_t sz = rand() % 500 + 1;
1758 bool x;
1759 vmem_size_t align, phase, nocross;
1760 vmem_addr_t minaddr, maxaddr;
1761
1762 if (t > 70) {
1763 x = true;
1764 /* XXX */
1765 align = 1 << (rand() % 15);
1766 phase = rand() % 65536;
1767 nocross = 1 << (rand() % 15);
1768 if (align <= phase) {
1769 phase = 0;
1770 }
1771 if (VMEM_CROSS_P(phase, phase + sz - 1,
1772 nocross)) {
1773 nocross = 0;
1774 }
1775 do {
1776 minaddr = rand() % 50000;
1777 maxaddr = rand() % 70000;
1778 } while (minaddr > maxaddr);
1779 printf("=== xalloc %" PRIu64
1780 " align=%" PRIu64 ", phase=%" PRIu64
1781 ", nocross=%" PRIu64 ", min=%" PRIu64
1782 ", max=%" PRIu64 "\n",
1783 (uint64_t)sz,
1784 (uint64_t)align,
1785 (uint64_t)phase,
1786 (uint64_t)nocross,
1787 (uint64_t)minaddr,
1788 (uint64_t)maxaddr);
1789 rc = vmem_xalloc(vm, sz, align, phase, nocross,
1790 minaddr, maxaddr, strat|VM_SLEEP, &p);
1791 } else {
1792 x = false;
1793 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1794 rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1795 }
1796 printf("-> %" PRIu64 "\n", (uint64_t)p);
1797 vmem_dump(vm, vmem_printf);
1798 if (rc != 0) {
1799 if (x) {
1800 continue;
1801 }
1802 break;
1803 }
1804 nreg++;
1805 reg = realloc(reg, sizeof(*reg) * nreg);
1806 r = ®[nreg - 1];
1807 r->p = p;
1808 r->sz = sz;
1809 r->x = x;
1810 total += sz;
1811 nalloc++;
1812 } else if (nreg != 0) {
1813 /* free */
1814 r = ®[rand() % nreg];
1815 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1816 (uint64_t)r->p, (uint64_t)r->sz);
1817 if (r->x) {
1818 vmem_xfree(vm, r->p, r->sz);
1819 } else {
1820 vmem_free(vm, r->p, r->sz);
1821 }
1822 total -= r->sz;
1823 vmem_dump(vm, vmem_printf);
1824 *r = reg[nreg - 1];
1825 nreg--;
1826 nfree++;
1827 }
1828 printf("total=%" PRIu64 "\n", (uint64_t)total);
1829 }
1830 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1831 (uint64_t)total, nalloc, nfree);
1832 exit(EXIT_SUCCESS);
1833 }
1834 #endif /* defined(UNITTEST) */
1835