subr_vmem.c revision 1.7 1 /* $NetBSD: subr_vmem.c,v 1.7 2006/08/20 13:14:03 yamt Exp $ */
2
3 /*-
4 * Copyright (c)2006 YAMAMOTO Takashi,
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * reference:
31 * - Magazines and Vmem: Extending the Slab Allocator
32 * to Many CPUs and Arbitrary Resources
33 * http://www.usenix.org/event/usenix01/bonwick.html
34 *
35 * TODO:
36 * - implement vmem_xalloc/vmem_xfree
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.7 2006/08/20 13:14:03 yamt Exp $");
41
42 #define VMEM_DEBUG
43 #if defined(_KERNEL)
44 #define QCACHE
45 #endif /* defined(_KERNEL) */
46
47 #include <sys/param.h>
48 #include <sys/hash.h>
49 #include <sys/queue.h>
50
51 #if defined(_KERNEL)
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/once.h>
56 #include <sys/pool.h>
57 #include <sys/proc.h>
58 #include <sys/vmem.h>
59 #else /* defined(_KERNEL) */
60 #include "../sys/vmem.h"
61 #endif /* defined(_KERNEL) */
62
63 #if defined(_KERNEL)
64 #define SIMPLELOCK_DECL(name) struct simplelock name
65 #else /* defined(_KERNEL) */
66 #include <errno.h>
67 #include <assert.h>
68 #include <stdlib.h>
69
70 #define KASSERT(a) assert(a)
71 #define SIMPLELOCK_DECL(name) /* nothing */
72 #define LOCK_ASSERT(a) /* nothing */
73 #define simple_lock_init(a) /* nothing */
74 #define simple_lock(a) /* nothing */
75 #define simple_unlock(a) /* nothing */
76 #define ASSERT_SLEEPABLE(lk, msg) /* nothing */
77 #endif /* defined(_KERNEL) */
78
79 struct vmem;
80 struct vmem_btag;
81
82 #if defined(VMEM_DEBUG)
83 void vmem_dump(const vmem_t *);
84 #endif /* defined(VMEM_DEBUG) */
85
86 #define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
87 #define VMEM_HASHSIZE_INIT 4096 /* XXX */
88
89 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
90
91 CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
92 LIST_HEAD(vmem_freelist, vmem_btag);
93 LIST_HEAD(vmem_hashlist, vmem_btag);
94
95 #if defined(QCACHE)
96 #define VMEM_QCACHE_IDX_MAX 32
97
98 #define QC_NAME_MAX 16
99
100 struct qcache {
101 struct pool qc_pool;
102 struct pool_cache qc_cache;
103 vmem_t *qc_vmem;
104 char qc_name[QC_NAME_MAX];
105 };
106 typedef struct qcache qcache_t;
107 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool))
108 #endif /* defined(QCACHE) */
109
110 /* vmem arena */
111 struct vmem {
112 SIMPLELOCK_DECL(vm_lock);
113 vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
114 vm_flag_t);
115 void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
116 vmem_t *vm_source;
117 struct vmem_seglist vm_seglist;
118 struct vmem_freelist vm_freelist[VMEM_MAXORDER];
119 size_t vm_hashsize;
120 size_t vm_nbusytag;
121 struct vmem_hashlist *vm_hashlist;
122 size_t vm_quantum_mask;
123 int vm_quantum_shift;
124 const char *vm_name;
125
126 #if defined(QCACHE)
127 /* quantum cache */
128 size_t vm_qcache_max;
129 struct pool_allocator vm_qcache_allocator;
130 qcache_t vm_qcache[VMEM_QCACHE_IDX_MAX];
131 #endif /* defined(QCACHE) */
132 };
133
134 #define VMEM_LOCK(vm) simple_lock(&vm->vm_lock)
135 #define VMEM_UNLOCK(vm) simple_unlock(&vm->vm_lock)
136 #define VMEM_LOCK_INIT(vm) simple_lock_init(&vm->vm_lock);
137 #define VMEM_ASSERT_LOCKED(vm) \
138 LOCK_ASSERT(simple_lock_held(&vm->vm_lock))
139 #define VMEM_ASSERT_UNLOCKED(vm) \
140 LOCK_ASSERT(!simple_lock_held(&vm->vm_lock))
141
142 /* boundary tag */
143 struct vmem_btag {
144 CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
145 union {
146 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
147 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
148 } bt_u;
149 #define bt_hashlist bt_u.u_hashlist
150 #define bt_freelist bt_u.u_freelist
151 vmem_addr_t bt_start;
152 vmem_size_t bt_size;
153 int bt_type;
154 };
155
156 #define BT_TYPE_SPAN 1
157 #define BT_TYPE_SPAN_STATIC 2
158 #define BT_TYPE_FREE 3
159 #define BT_TYPE_BUSY 4
160 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
161
162 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
163
164 typedef struct vmem_btag bt_t;
165
166 /* ---- misc */
167
168 #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
169
170 static int
171 calc_order(vmem_size_t size)
172 {
173 vmem_size_t target;
174 int i;
175
176 KASSERT(size != 0);
177
178 i = 0;
179 target = size >> 1;
180 while (ORDER2SIZE(i) <= target) {
181 i++;
182 }
183
184 KASSERT(ORDER2SIZE(i) <= size);
185 KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
186
187 return i;
188 }
189
190 #if defined(_KERNEL)
191 static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
192 #endif /* defined(_KERNEL) */
193
194 static void *
195 xmalloc(size_t sz, vm_flag_t flags)
196 {
197
198 #if defined(_KERNEL)
199 return malloc(sz, M_VMEM,
200 M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
201 #else /* defined(_KERNEL) */
202 return malloc(sz);
203 #endif /* defined(_KERNEL) */
204 }
205
206 static void
207 xfree(void *p)
208 {
209
210 #if defined(_KERNEL)
211 return free(p, M_VMEM);
212 #else /* defined(_KERNEL) */
213 return free(p);
214 #endif /* defined(_KERNEL) */
215 }
216
217 /* ---- boundary tag */
218
219 #if defined(_KERNEL)
220 static struct pool_cache bt_poolcache;
221 static POOL_INIT(bt_pool, sizeof(bt_t), 0, 0, 0, "vmembtpl", NULL);
222 #endif /* defined(_KERNEL) */
223
224 static bt_t *
225 bt_alloc(vmem_t *vm, vm_flag_t flags)
226 {
227 bt_t *bt;
228
229 #if defined(_KERNEL)
230 /* XXX bootstrap */
231 bt = pool_cache_get(&bt_poolcache,
232 (flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
233 #else /* defined(_KERNEL) */
234 bt = malloc(sizeof *bt);
235 #endif /* defined(_KERNEL) */
236
237 return bt;
238 }
239
240 static void
241 bt_free(vmem_t *vm, bt_t *bt)
242 {
243
244 #if defined(_KERNEL)
245 /* XXX bootstrap */
246 pool_cache_put(&bt_poolcache, bt);
247 #else /* defined(_KERNEL) */
248 free(bt);
249 #endif /* defined(_KERNEL) */
250 }
251
252 /*
253 * freelist[0] ... [1, 1]
254 * freelist[1] ... [2, 3]
255 * freelist[2] ... [4, 7]
256 * freelist[3] ... [8, 15]
257 * :
258 * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
259 * :
260 */
261
262 static struct vmem_freelist *
263 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
264 {
265 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
266 int idx;
267
268 KASSERT((size & vm->vm_quantum_mask) == 0);
269 KASSERT(size != 0);
270
271 idx = calc_order(qsize);
272 KASSERT(idx >= 0);
273 KASSERT(idx < VMEM_MAXORDER);
274
275 return &vm->vm_freelist[idx];
276 }
277
278 static struct vmem_freelist *
279 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
280 {
281 const vmem_size_t qsize = size >> vm->vm_quantum_shift;
282 int idx;
283
284 KASSERT((size & vm->vm_quantum_mask) == 0);
285 KASSERT(size != 0);
286
287 idx = calc_order(qsize);
288 if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
289 idx++;
290 /* check too large request? */
291 }
292 KASSERT(idx >= 0);
293 KASSERT(idx < VMEM_MAXORDER);
294
295 return &vm->vm_freelist[idx];
296 }
297
298 /* ---- boundary tag hash */
299
300 static struct vmem_hashlist *
301 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
302 {
303 struct vmem_hashlist *list;
304 unsigned int hash;
305
306 hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
307 list = &vm->vm_hashlist[hash % vm->vm_hashsize];
308
309 return list;
310 }
311
312 static bt_t *
313 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
314 {
315 struct vmem_hashlist *list;
316 bt_t *bt;
317
318 list = bt_hashhead(vm, addr);
319 LIST_FOREACH(bt, list, bt_hashlist) {
320 if (bt->bt_start == addr) {
321 break;
322 }
323 }
324
325 return bt;
326 }
327
328 static void
329 bt_rembusy(vmem_t *vm, bt_t *bt)
330 {
331
332 KASSERT(vm->vm_nbusytag > 0);
333 vm->vm_nbusytag--;
334 LIST_REMOVE(bt, bt_hashlist);
335 }
336
337 static void
338 bt_insbusy(vmem_t *vm, bt_t *bt)
339 {
340 struct vmem_hashlist *list;
341
342 KASSERT(bt->bt_type == BT_TYPE_BUSY);
343
344 list = bt_hashhead(vm, bt->bt_start);
345 LIST_INSERT_HEAD(list, bt, bt_hashlist);
346 vm->vm_nbusytag++;
347 }
348
349 /* ---- boundary tag list */
350
351 static void
352 bt_remseg(vmem_t *vm, bt_t *bt)
353 {
354
355 CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
356 }
357
358 static void
359 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
360 {
361
362 CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
363 }
364
365 static void
366 bt_insseg_tail(vmem_t *vm, bt_t *bt)
367 {
368
369 CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
370 }
371
372 static void
373 bt_remfree(vmem_t *vm, bt_t *bt)
374 {
375
376 KASSERT(bt->bt_type == BT_TYPE_FREE);
377
378 LIST_REMOVE(bt, bt_freelist);
379 }
380
381 static void
382 bt_insfree(vmem_t *vm, bt_t *bt)
383 {
384 struct vmem_freelist *list;
385
386 list = bt_freehead_tofree(vm, bt->bt_size);
387 LIST_INSERT_HEAD(list, bt, bt_freelist);
388 }
389
390 /* ---- vmem internal functions */
391
392 #if defined(QCACHE)
393 static inline vm_flag_t
394 prf_to_vmf(int prflags)
395 {
396 vm_flag_t vmflags;
397
398 KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
399 if ((prflags & PR_WAITOK) != 0) {
400 vmflags = VM_SLEEP;
401 } else {
402 vmflags = VM_NOSLEEP;
403 }
404 return vmflags;
405 }
406
407 static inline int
408 vmf_to_prf(vm_flag_t vmflags)
409 {
410 int prflags;
411
412 if ((vmflags & VM_SLEEP) != 0) {
413 prflags = PR_WAITOK;
414 } else {
415 prflags = PR_NOWAIT;
416 }
417 return prflags;
418 }
419
420 static size_t
421 qc_poolpage_size(size_t qcache_max)
422 {
423 int i;
424
425 for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
426 /* nothing */
427 }
428 return ORDER2SIZE(i);
429 }
430
431 static void *
432 qc_poolpage_alloc(struct pool *pool, int prflags)
433 {
434 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
435 vmem_t *vm = qc->qc_vmem;
436
437 return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
438 prf_to_vmf(prflags) | VM_INSTANTFIT);
439 }
440
441 static void
442 qc_poolpage_free(struct pool *pool, void *addr)
443 {
444 qcache_t *qc = QC_POOL_TO_QCACHE(pool);
445 vmem_t *vm = qc->qc_vmem;
446
447 vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
448 }
449
450 static void
451 qc_init(vmem_t *vm, size_t qcache_max)
452 {
453 struct pool_allocator *pa;
454 int qcache_idx_max;
455 int i;
456
457 KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
458 if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
459 qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
460 }
461 vm->vm_qcache_max = qcache_max;
462 pa = &vm->vm_qcache_allocator;
463 memset(pa, 0, sizeof(*pa));
464 pa->pa_alloc = qc_poolpage_alloc;
465 pa->pa_free = qc_poolpage_free;
466 pa->pa_pagesz = qc_poolpage_size(qcache_max);
467
468 qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
469 for (i = 1; i <= qcache_idx_max; i++) {
470 qcache_t *qc = &vm->vm_qcache[i - 1];
471 size_t size = i << vm->vm_quantum_shift;
472
473 qc->qc_vmem = vm;
474 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%d",
475 vm->vm_name, size);
476 pool_init(&qc->qc_pool, size, 0, 0,
477 PR_NOALIGN | PR_NOTOUCH /* XXX */, qc->qc_name, pa);
478 pool_cache_init(&qc->qc_cache, &qc->qc_pool, NULL, NULL, NULL);
479 }
480 }
481
482 static boolean_t
483 qc_reap(vmem_t *vm)
484 {
485 int i;
486 int qcache_idx_max;
487 boolean_t didsomething = FALSE;
488
489 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
490 for (i = 1; i <= qcache_idx_max; i++) {
491 qcache_t *qc = &vm->vm_qcache[i - 1];
492
493 if (pool_reclaim(&qc->qc_pool) != 0) {
494 didsomething = TRUE;
495 }
496 }
497
498 return didsomething;
499 }
500 #endif /* defined(QCACHE) */
501
502 #if defined(_KERNEL)
503 static int
504 vmem_init(void)
505 {
506
507 pool_cache_init(&bt_poolcache, &bt_pool, NULL, NULL, NULL);
508 return 0;
509 }
510 #endif /* defined(_KERNEL) */
511
512 static vmem_addr_t
513 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
514 int spanbttype)
515 {
516 bt_t *btspan;
517 bt_t *btfree;
518
519 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
520 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
521 VMEM_ASSERT_UNLOCKED(vm);
522
523 btspan = bt_alloc(vm, flags);
524 if (btspan == NULL) {
525 return VMEM_ADDR_NULL;
526 }
527 btfree = bt_alloc(vm, flags);
528 if (btfree == NULL) {
529 bt_free(vm, btspan);
530 return VMEM_ADDR_NULL;
531 }
532
533 btspan->bt_type = spanbttype;
534 btspan->bt_start = addr;
535 btspan->bt_size = size;
536
537 btfree->bt_type = BT_TYPE_FREE;
538 btfree->bt_start = addr;
539 btfree->bt_size = size;
540
541 VMEM_LOCK(vm);
542 bt_insseg_tail(vm, btspan);
543 bt_insseg(vm, btfree, btspan);
544 bt_insfree(vm, btfree);
545 VMEM_UNLOCK(vm);
546
547 return addr;
548 }
549
550 static int
551 vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
552 {
553 vmem_addr_t addr;
554
555 VMEM_ASSERT_UNLOCKED(vm);
556
557 if (vm->vm_allocfn == NULL) {
558 return EINVAL;
559 }
560
561 addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
562 if (addr == VMEM_ADDR_NULL) {
563 return ENOMEM;
564 }
565
566 if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
567 (*vm->vm_freefn)(vm->vm_source, addr, size);
568 return ENOMEM;
569 }
570
571 return 0;
572 }
573
574 static int
575 vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
576 {
577 bt_t *bt;
578 int i;
579 struct vmem_hashlist *newhashlist;
580 struct vmem_hashlist *oldhashlist;
581 size_t oldhashsize;
582
583 KASSERT(newhashsize > 0);
584 VMEM_ASSERT_UNLOCKED(vm);
585
586 newhashlist =
587 xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
588 if (newhashlist == NULL) {
589 return ENOMEM;
590 }
591 for (i = 0; i < newhashsize; i++) {
592 LIST_INIT(&newhashlist[i]);
593 }
594
595 VMEM_LOCK(vm);
596 oldhashlist = vm->vm_hashlist;
597 oldhashsize = vm->vm_hashsize;
598 vm->vm_hashlist = newhashlist;
599 vm->vm_hashsize = newhashsize;
600 if (oldhashlist == NULL) {
601 VMEM_UNLOCK(vm);
602 return 0;
603 }
604 for (i = 0; i < oldhashsize; i++) {
605 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
606 bt_rembusy(vm, bt); /* XXX */
607 bt_insbusy(vm, bt);
608 }
609 }
610 VMEM_UNLOCK(vm);
611
612 xfree(oldhashlist);
613
614 return 0;
615 }
616
617 /* ---- vmem API */
618
619 /*
620 * vmem_create: create an arena.
621 *
622 * => must not be called from interrupt context.
623 */
624
625 vmem_t *
626 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
627 vmem_size_t quantum,
628 vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
629 void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
630 vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags)
631 {
632 vmem_t *vm;
633 int i;
634 #if defined(_KERNEL)
635 static ONCE_DECL(control);
636 #endif /* defined(_KERNEL) */
637
638 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
639 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
640
641 #if defined(_KERNEL)
642 if (RUN_ONCE(&control, vmem_init)) {
643 return NULL;
644 }
645 #endif /* defined(_KERNEL) */
646 vm = xmalloc(sizeof(*vm), flags);
647 if (vm == NULL) {
648 return NULL;
649 }
650
651 VMEM_LOCK_INIT(vm);
652 vm->vm_name = name;
653 vm->vm_quantum_mask = quantum - 1;
654 vm->vm_quantum_shift = calc_order(quantum);
655 KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
656 vm->vm_allocfn = allocfn;
657 vm->vm_freefn = freefn;
658 vm->vm_source = source;
659 vm->vm_nbusytag = 0;
660 #if defined(QCACHE)
661 qc_init(vm, qcache_max);
662 #endif /* defined(QCACHE) */
663
664 CIRCLEQ_INIT(&vm->vm_seglist);
665 for (i = 0; i < VMEM_MAXORDER; i++) {
666 LIST_INIT(&vm->vm_freelist[i]);
667 }
668 vm->vm_hashlist = NULL;
669 if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
670 vmem_destroy(vm);
671 return NULL;
672 }
673
674 if (size != 0) {
675 if (vmem_add(vm, base, size, flags) == 0) {
676 vmem_destroy(vm);
677 return NULL;
678 }
679 }
680
681 return vm;
682 }
683
684 void
685 vmem_destroy(vmem_t *vm)
686 {
687
688 VMEM_ASSERT_UNLOCKED(vm);
689
690 if (vm->vm_hashlist != NULL) {
691 int i;
692
693 for (i = 0; i < vm->vm_hashsize; i++) {
694 bt_t *bt;
695
696 while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
697 KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
698 bt_free(vm, bt);
699 }
700 }
701 xfree(vm->vm_hashlist);
702 }
703 xfree(vm);
704 }
705
706 vmem_size_t
707 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
708 {
709
710 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
711 }
712
713 /*
714 * vmem_alloc:
715 *
716 * => caller must ensure appropriate spl,
717 * if the arena can be accessed from interrupt context.
718 */
719
720 vmem_addr_t
721 vmem_alloc(vmem_t *vm, vmem_size_t size0, vm_flag_t flags)
722 {
723 struct vmem_freelist *list;
724 struct vmem_freelist *first;
725 struct vmem_freelist *end;
726 bt_t *bt;
727 bt_t *btnew;
728 const vmem_size_t size = vmem_roundup_size(vm, size0);
729 vm_flag_t strat = flags & VM_FITMASK;
730
731 KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
732 KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
733 VMEM_ASSERT_UNLOCKED(vm);
734
735 KASSERT(size0 > 0);
736 KASSERT(size > 0);
737 KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
738 if ((flags & VM_SLEEP) != 0) {
739 ASSERT_SLEEPABLE(NULL, "vmem_alloc");
740 }
741
742 #if defined(QCACHE)
743 if (size <= vm->vm_qcache_max) {
744 int qidx = size >> vm->vm_quantum_shift;
745 qcache_t *qc = &vm->vm_qcache[qidx - 1];
746
747 return (vmem_addr_t)pool_cache_get(&qc->qc_cache,
748 vmf_to_prf(flags));
749 }
750 #endif /* defined(QCACHE) */
751
752 btnew = bt_alloc(vm, flags);
753 if (btnew == NULL) {
754 return VMEM_ADDR_NULL;
755 }
756
757 retry_strat:
758 first = bt_freehead_toalloc(vm, size, strat);
759 end = &vm->vm_freelist[VMEM_MAXORDER];
760 retry:
761 bt = NULL;
762 VMEM_LOCK(vm);
763 if (strat == VM_INSTANTFIT) {
764 for (list = first; list < end; list++) {
765 bt = LIST_FIRST(list);
766 if (bt != NULL) {
767 goto gotit;
768 }
769 }
770 } else { /* VM_BESTFIT */
771 for (list = first; list < end; list++) {
772 LIST_FOREACH(bt, list, bt_freelist) {
773 if (bt->bt_size >= size) {
774 goto gotit;
775 }
776 }
777 }
778 }
779 VMEM_UNLOCK(vm);
780 #if 1
781 if (strat == VM_INSTANTFIT) {
782 strat = VM_BESTFIT;
783 goto retry_strat;
784 }
785 #endif
786 if (vmem_import(vm, size, flags) == 0) {
787 goto retry;
788 }
789 /* XXX */
790 return VMEM_ADDR_NULL;
791
792 gotit:
793 KASSERT(bt->bt_type == BT_TYPE_FREE);
794 KASSERT(bt->bt_size >= size);
795 bt_remfree(vm, bt);
796 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
797 /* split */
798 btnew->bt_type = BT_TYPE_BUSY;
799 btnew->bt_start = bt->bt_start;
800 btnew->bt_size = size;
801 bt->bt_start = bt->bt_start + size;
802 bt->bt_size -= size;
803 bt_insfree(vm, bt);
804 bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
805 bt_insbusy(vm, btnew);
806 VMEM_UNLOCK(vm);
807 } else {
808 bt->bt_type = BT_TYPE_BUSY;
809 bt_insbusy(vm, bt);
810 VMEM_UNLOCK(vm);
811 bt_free(vm, btnew);
812 btnew = bt;
813 }
814 KASSERT(btnew->bt_size >= size);
815 btnew->bt_type = BT_TYPE_BUSY;
816
817 return btnew->bt_start;
818 }
819
820 /*
821 * vmem_free:
822 *
823 * => caller must ensure appropriate spl,
824 * if the arena can be accessed from interrupt context.
825 */
826
827 void
828 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
829 {
830 bt_t *bt;
831 bt_t *t;
832
833 VMEM_ASSERT_UNLOCKED(vm);
834
835 KASSERT(addr != VMEM_ADDR_NULL);
836 KASSERT(size > 0);
837
838 #if defined(QCACHE)
839 if (size <= vm->vm_qcache_max) {
840 int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
841 qcache_t *qc = &vm->vm_qcache[qidx - 1];
842
843 return pool_cache_put(&qc->qc_cache, (void *)addr);
844 }
845 #endif /* defined(QCACHE) */
846
847 VMEM_LOCK(vm);
848
849 bt = bt_lookupbusy(vm, addr);
850 KASSERT(bt != NULL);
851 KASSERT(bt->bt_start == addr);
852 KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
853 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
854 KASSERT(bt->bt_type == BT_TYPE_BUSY);
855 bt_rembusy(vm, bt);
856 bt->bt_type = BT_TYPE_FREE;
857
858 /* coalesce */
859 t = CIRCLEQ_NEXT(bt, bt_seglist);
860 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
861 KASSERT(BT_END(bt) == t->bt_start);
862 bt_remfree(vm, t);
863 bt_remseg(vm, t);
864 bt->bt_size += t->bt_size;
865 bt_free(vm, t);
866 }
867 t = CIRCLEQ_PREV(bt, bt_seglist);
868 if (t != NULL && t->bt_type == BT_TYPE_FREE) {
869 KASSERT(BT_END(t) == bt->bt_start);
870 bt_remfree(vm, t);
871 bt_remseg(vm, t);
872 bt->bt_size += t->bt_size;
873 bt->bt_start = t->bt_start;
874 bt_free(vm, t);
875 }
876
877 t = CIRCLEQ_PREV(bt, bt_seglist);
878 KASSERT(t != NULL);
879 KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
880 if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
881 t->bt_size == bt->bt_size) {
882 vmem_addr_t spanaddr;
883 vmem_size_t spansize;
884
885 KASSERT(t->bt_start == bt->bt_start);
886 spanaddr = bt->bt_start;
887 spansize = bt->bt_size;
888 bt_remseg(vm, bt);
889 bt_free(vm, bt);
890 bt_remseg(vm, t);
891 bt_free(vm, t);
892 VMEM_UNLOCK(vm);
893 (*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
894 } else {
895 bt_insfree(vm, bt);
896 VMEM_UNLOCK(vm);
897 }
898 }
899
900 /*
901 * vmem_add:
902 *
903 * => caller must ensure appropriate spl,
904 * if the arena can be accessed from interrupt context.
905 */
906
907 vmem_addr_t
908 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
909 {
910
911 return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
912 }
913
914 /*
915 * vmem_reap: reap unused resources.
916 *
917 * => return TRUE if we successfully reaped something.
918 */
919
920 boolean_t
921 vmem_reap(vmem_t *vm)
922 {
923 boolean_t didsomething = FALSE;
924
925 VMEM_ASSERT_UNLOCKED(vm);
926
927 #if defined(QCACHE)
928 didsomething = qc_reap(vm);
929 #endif /* defined(QCACHE) */
930 return didsomething;
931 }
932
933 /* ---- debug */
934
935 #if defined(VMEM_DEBUG)
936
937 #if !defined(_KERNEL)
938 #include <stdio.h>
939 #endif /* !defined(_KERNEL) */
940
941 void bt_dump(const bt_t *);
942
943 void
944 bt_dump(const bt_t *bt)
945 {
946
947 printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
948 bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
949 bt->bt_type);
950 }
951
952 void
953 vmem_dump(const vmem_t *vm)
954 {
955 const bt_t *bt;
956 int i;
957
958 printf("vmem %p '%s'\n", vm, vm->vm_name);
959 CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
960 bt_dump(bt);
961 }
962
963 for (i = 0; i < VMEM_MAXORDER; i++) {
964 const struct vmem_freelist *fl = &vm->vm_freelist[i];
965
966 if (LIST_EMPTY(fl)) {
967 continue;
968 }
969
970 printf("freelist[%d]\n", i);
971 LIST_FOREACH(bt, fl, bt_freelist) {
972 bt_dump(bt);
973 if (bt->bt_size) {
974 }
975 }
976 }
977 }
978
979 #if !defined(_KERNEL)
980
981 #include <stdlib.h>
982
983 int
984 main()
985 {
986 vmem_t *vm;
987 vmem_addr_t p;
988 struct reg {
989 vmem_addr_t p;
990 vmem_size_t sz;
991 } *reg = NULL;
992 int nreg = 0;
993 int nalloc = 0;
994 int nfree = 0;
995 vmem_size_t total = 0;
996 #if 1
997 vm_flag_t strat = VM_INSTANTFIT;
998 #else
999 vm_flag_t strat = VM_BESTFIT;
1000 #endif
1001
1002 vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
1003 NULL, NULL, NULL, 0, VM_NOSLEEP);
1004 if (vm == NULL) {
1005 printf("vmem_create\n");
1006 exit(EXIT_FAILURE);
1007 }
1008 vmem_dump(vm);
1009
1010 p = vmem_add(vm, 100, 200, VM_SLEEP);
1011 p = vmem_add(vm, 2000, 1, VM_SLEEP);
1012 p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
1013 p = vmem_add(vm, 10000, 10000, VM_SLEEP);
1014 p = vmem_add(vm, 500, 1000, VM_SLEEP);
1015 vmem_dump(vm);
1016 for (;;) {
1017 struct reg *r;
1018
1019 if (rand() % 100 > 40) {
1020 vmem_size_t sz = rand() % 500 + 1;
1021
1022 printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1023 p = vmem_alloc(vm, sz, strat|VM_SLEEP);
1024 printf("-> %" PRIu64 "\n", (uint64_t)p);
1025 vmem_dump(vm);
1026 if (p == VMEM_ADDR_NULL) {
1027 break;
1028 }
1029 nreg++;
1030 reg = realloc(reg, sizeof(*reg) * nreg);
1031 r = ®[nreg - 1];
1032 r->p = p;
1033 r->sz = sz;
1034 total += sz;
1035 nalloc++;
1036 } else if (nreg != 0) {
1037 r = ®[rand() % nreg];
1038 printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1039 (uint64_t)r->p, (uint64_t)r->sz);
1040 vmem_free(vm, r->p, r->sz);
1041 total -= r->sz;
1042 vmem_dump(vm);
1043 *r = reg[nreg - 1];
1044 nreg--;
1045 nfree++;
1046 }
1047 printf("total=%" PRIu64 "\n", (uint64_t)total);
1048 }
1049 fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1050 (uint64_t)total, nalloc, nfree);
1051 exit(EXIT_SUCCESS);
1052 }
1053 #endif /* !defined(_KERNEL) */
1054 #endif /* defined(VMEM_DEBUG) */
1055